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We prove a scaling limit theorem for the super-replication cost of options in a Cox–Ross–Rubinstein bino-
mial model with transient price impact. The correct scaling turns out to keep the market depth parameter
constant while resilience over fixed periods of time grows in inverse proportion with the duration between
trading times. For vanilla options, the scaling limit is found to coincide with the one obtained by PDE-
methods in (Math. Finance 22 (2012) 250–276) for models with purely temporary price impact. These
models are a special case of our framework and so our probabilistic scaling limit argument allows one to
expand the scope of the scaling limit result to path-dependent options.
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1. Introduction

Super-replication in continuous-time financial models with market frictions is well known to
typically lead to trivial buy-and-hold results. For markets with proportional transaction costs,
this was first established rigorously by Shreve et al. [18]. For discrete-time models, Kusuoka
[14] used a dual description of super-replication costs to determine a regime that yields a non-
trivial scaling limit for vanishing transaction costs. Such scaling limits were recently obtained
in the multivariate case in [6], for fixed costs in [3], and for purely temporary nonlinear costs as
specified by Çetin et al. [8] in Gökay and Soner [12], Dolinsky and Soner [10], Bank et al. [5].

The present paper yields such a scaling limit result for models with transient price impact
where also past trades affect the spread at which present transactions are executed; see [2,15,16]
for models of this type for optimal liquidation problems and [7] for an optimal investment study
of such a model. The present paper is motivated by Bank and Dolinsky [4] which confirms the
triviality of super-replication costs also for continuous-time models with transient price impact.
We therefore introduce in this paper a discrete-time version of the model considered in [4] and,
for the special case of a binomial Cox–Ross-Rubinstein reference model, compute the scaling
limit of super-replication costs when market resilience becomes infinite.

It turns out that the resulting scaling limit coincides with the scaling limit obtained for bi-
nomial models with purely temporary price impact and modified market depth, as studied (for
the geometric random walk case) in [5,10,12]. In this regard, it nicely complements the high-
resilience asymptotics carried out by Roch and Soner[17] who prove convergence in probability
of wealth dynamics.
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Our approach for computing the scaling limit is purely probabilistic. The proof of the lower
bound is done in two steps. In the first step, we establish a simple lower bound for the super-
replication prices in terms of consistent price systems with “small” spread. The second step is
to use Kusuoka’s techniques from [14] to construct, for a given martingale M on Wiener space
with suitably regular volatility process, a sequence of consistent price systems for our binomial
reference models with vanishing spread which converge in law to M . Kusuoka’s techniques
are particularly useful here as they also allow us to control the approximation of the quadratic
variation of M .

The proof of the upper bound is more complicated. First, we notice that the portfolio value in
the transient price impact dominates from above the portfolio value in a quadratic costs setup with
a modified market depth which can be viewed as a binomial version of the temporary price impact
model introduced in [8]. The key step is then to establish an upper bound for the super-replication
prices with such quadratic costs. Using the pathwise Doob inequalities of Acciaio et al. [1], we
argue that it essentially suffices to super-replicate the payoff knocked out when the underlying
fluctuates “too much”. For this “tamed” payoff, we identify a rich enough subclass of constrained
trading strategies, for which super-replication costs remain unchanged asymptotically, but whose
dual consistent price systems turn out to be tight. This new technique to obtain tightness in fully
quadratic costs problems is key for our analysis and allows us to resolve an open question from [5,
10] who had to impose linear growth constraints on transaction costs and only allowed quadratic
costs in an ever smaller region around zero. As a by-product of our probabilistic approach, we
obtain an extension of the limit result of Gökay and Soner [12], who used PDE-techniques, from
vanilla options to path-dependent options.

The paper is organized as follows. In Section 2, we formalize the super-replication problem
with transient price impact and give a duality result. Section 3 formulates and discusses our
scaling limit result and gives its proof.

2. Super-replication with transient price impact in discrete time

2.1. A discrete-time model with transient price impact

In this section, we develop and analyze a discrete-time version of the continuous-time financial
model studied in [4] where the trades of a large investor affect an asset’s price in a transient
manner. Specifically, we fix a filtered probability space (�,F , (Fn)n=0,...,N ,P) and consider an
adapted, real-valued process P = (Pn)n=0,...,N to describe the evolution of an asset’s fundamen-
tal value at times n = 0, . . . ,N . In addition to this asset, a large investor has at her disposal a
bank account that, for simplicity, bears no interest. She is endowed with an initial position of
X0 � x0 ∈ R units of the asset and is free to choose her position Xn ∈ Fn−1 in which she will
confront the nth fundamental shock �Pn � Pn − Pn−1, n = 1, . . . ,N . We will let denote the
collection of all these strategies X. In line with Huberman and Stanzl [13], the investor’s trans-
actions have a linear permanent impact on the asset’s price beyond its fundamental value. So, the
mid-price evolves according to

P X
n � Pn + ιXn, n = 0, . . . ,N.
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In addition, the investor’s transactions affect the half-spread, that is, the mark-up above (resp.
below) the mid-price P X at which the investor’s orders are filled when she buys (respectively
sells) the asset. We model this quantity by

ζX
0 � ζ0,

ζX
n � (1 − r)ζX

n−1 + |Xn − Xn−1|
δ

, n = 1, . . . ,N.
(2.1)

Here, ζ0 ≥ 0 is the given initial half-spread. The investor’s trades widen the spread in inverse
proportion to the market’s depth δ > 0, assumed to be constant for simplicity. The constant
0 < r ≤ 1 measures the market’s resilience and describes the fraction by which the spread will
diminish over a trading period. It is convenient (and quite appropriate) to assume that transactions
affect mid-prices and spreads gradually, letting the first bits of the nth transaction Xn − Xn−1 be
filled at the favorable pre-transaction mid-price Pn−1 + ιXn−1 and at the pre-transaction spread
(1− r)ζX

n−1 while the last bits are filled at the less favorable post-transaction levels Pn−1 + ιXn =
P X

n −�Pn and (1− r)ζX
n−1 +|Xn −Xn−1|/δ = ζX

n . As a result, the investor’s given cash position
ξX evolves from its given initial level ξ0 ∈R according to

ξX
0 � ξ0,

ξX
n � ξX

n−1 −
(

Pn−1 + ι

2
(Xn + Xn−1)

)
(Xn − Xn−1)

−
(

(1 − r)ζX
n−1 + 1

2δ
|Xn − Xn−1|

)
|Xn − Xn−1|

(2.2)

at times n = 1, . . . ,N . A more tangible description of the investor’s cash positions is given by
the following lemma.

Lemma 2.1. The investor’s cash position at time n = 1, . . . ,N is

ξX
n = ξ0 −

n∑
m=1

Pm−1(Xm − Xm−1) − ι

2

(
X2

n − x2
0

)− κX
n

= ξ0 + x0P0 − XnPn +
n∑

m=1

Xm(Pm − Pm−1) − ι

2

(
X2

n − x2
0

)− κX
n , (2.3)

where κX describes the liquidity costs

κX
n = (1 − r)

n∑
m=1

ζX
m−1|Xm − Xm−1| + 1

2δ

n∑
m=1

(Xm − Xm−1)
2 (2.4)

= δ

2

((
ζX
n

)2 + (
1 − (1 − r)2) ∑

1≤m<n

(
ζX
m

)2 − (1 − r)2ζ 2
0

)
(2.5)
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with

ζX
n = (1 − r)nζ0 + 1

δ

n∑
m=1

(1 − r)n−m|Xm − Xm−1|, n = 1, . . . ,N.

Proof. Identity (2.3) follows readily from (2.2) where the representation (2.4) of κX
n is due to∑n

m=1(Xm + Xm−1)(Xm − Xm−1) = ∑n
m=1 X2

m − X2
m−1 = X2

n − x2
0 ; (2.5) follows readily by

expressing |Xm − Xm−1| in terms of ζX
m and ζX

m−1 as made possible by (2.1). �

In particular, we see that the liquidity costs κX are a convex functional of the investor’s trading
strategy X ∈ X. This observation opens the door for convex duality methods that indeed will be
key for our subsequent analysis.

2.2. Super-replication duality

Having established the investor’s wealth dynamics, we can now consider the problem to super-
replicate a contingent claim specified by a payoff H ∈ FN unaffected by the investor’s transac-
tions. More precisely, we will try to characterize the super-replication costs

π(H) � inf
{
ξ0 : ξX

N ≥ H a.s. for some X ∈ X with XN = 0
}
.

For models with full resilience (r = 1) as in [8], a dual description of super-replication costs has
been obtained in [10]. For models with limited resilience (r ∈ (0,1)) such a description is given
by the following lemma which complements its continuous-time analogue established in [4]:

Proposition 2.2. If r ∈ [0,1), the super-replication costs of any contingent claim H ≥ 0 have
the dual description

π(H) = sup
(Q,M,α)

{
EQ[H ] − 1

2
EQ

[
N∑

n=1

|αn − ζ0|2μn

]
− M0x0 − ι

2
x2

0

}
, (2.6)

where

μn � δ
(
1 − (1 − r)2)(1 − r)2n for n = 1, . . . ,N − 1, and μN = δ(1 − r)2N,

and where the supremum is taken over all triples (Q,M,α) of measures Q � P, square-
integrable Q-martingales M and Q-square-integrable, predictable processes α with

|Pn−1 − Mn−1| ≤ 1

δ(1 − r)n
EQ

[
N∑

m=n

αmμm

∣∣∣ Fn−1

]
, n = 1, . . . ,N.
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In the case r = 1 corresponding to purely temporary impact, we have the simpler duality

π(H) = sup
(Q,M)

{
EQ[H ] − 1

2δ
EQ

[
N∑

n=1

|Pn−1 − Mn−1|2
]

− M0x0 − ι

2
x2

0

}

with a supremum over probabilities Q� P and all square-integrable Q-martingales M .

Proof. Using the wealth dynamics of Lemma 2.1, the proof can be done similarly as in the
continuous-time analogue in [4] and is therefore omitted. For r = 1 one can proceed as in [10]
together with the Lagrange multiplier argument for the choice of martingale M from [4]. �

So, super-replication costs in our model with price impact take the form of a convex risk
measure. The structure of the costs’ dual description is similar in spirit to the one observed for
proportional transaction costs models: the payoff’s assessment is made using consistent price
systems with a martingale M that is in some sense close to the underlying’s price process P . By
contrast to these models with fixed spread, closeness is measured in our setting by a process α

that needs to be chosen to balance greater flexibility in choosing M with higher penalties from
the L2-distance to the initial spread arising in the Legendre-Fenchel representation (2.6) of the
super-replication cost functional.

As illustrated in [4], super-replication prices in continuous-time often are trivially arising
from simple buy-and-hold strategies that cannot be improved upon due to the most unlikely,
but nonetheless still most relevant strong short-term fluctuations in the price of the hedging in-
strument that are typically possible in these models. Similar to Kusuoka’s approach in [14] to
discrete-time models with fixed spread, we thus need to re-scale price impact to ensure a non-
trivial scaling limit for our model. This will be made precise in the next section.

3. Scaling limit of super-replication costs

In this section, we will derive a scaling limit result for the super-replication costs from the previ-
ous section, letting the number of trading periods N over the time span [0,1] tend to infinity while
re-scaling the time between trades as 1/N . For the price fluctuations we now focus on a binomial
model where � = {−1,+1}{1,2,... } with coordinate maps ξn(ω) = ωn indicating the upwards and
downwards movements of the fundamental asset value for scenario ω = (ωn)n=1,2,... ∈ �. The
filtration (Fn)n=1,2,... is generated by these coordinate maps and we assume P to be the measure
under which ξ1, ξ2, . . . are i.i.d. with P[ξn = −1] = P[ξn = +1] = 1/2. Assuming an additive
model for the fundamental asset price we let, with the usual square root scaling,

P N
t � p0 + σ√

N

[Nt]∑
n=1

ξn, 0 ≤ t ≤ 1, (3.1)

where p0 ∈ R is the initial fundamental asset price and σ > 0 the asset’s volatility. The price
impact parameters ι ≥ 0, r ∈ (0,1] and δ > 0 are kept constant as we re-scale. As a result, the
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same resilience effect is obtained over ever shorter time periods 1/N , implying a high-resilience
limit in our scaling.

The main result of this paper is a scaling limit theorem for the super-replication price of payoff
profiles h for which we will need the following regularity assumption.

Assumption 3.1. The functional h : D[0,1] → R is nonnegative and Lipschitz continuous with
respect to the Skorohod metric

d(p,q)� inf
χ

{
sup

0≤t≤1

∣∣t − χ(t)
∣∣+ sup

0≤t≤1

∣∣p(t) − q
(
χ(t)

)∣∣}, p, q ∈ D[0,1],

where the infimum is over all strictly increasing continuous time changes χ : [0,1] → [0,1] with
χ(0) = 0 and χ(1) = 1.

Observe that the maps p → p(1), p → sup0≤t≤T p(t) are Lipschitz continuous with respect
to the above Skorohod metric. Hence, call options, put options and lookback options are covered
in our setup; knock-out features, however, will typically lead to discontinuities not covered by
our assumption.

This puts us in a position to state our limit theorem:

Theorem 3.2. For a payoff profile h satisfying Assumption 3.1, the super-replication costs
πN(h(P N)) in the N -period model, N = 1,2, . . . , have the high-resilience scaling limit

lim
N

πN
(
h
(
P N

)) = sup
ν∈D

EPW

[
h
(
P ν

)− rδ

8σ 2(2 − r)

∫ 1

0

∣∣ν2
t − σ 2

∣∣2 dt

]
− P0x0 − ι

2
x2

0 ,

where D is the set of all bounded, nonnegative progressively measurable processes ν on the
Wiener space (�W ,F W, (F W

t )0≤t≤1,P
W) with Wiener process W and where

P ν
t � p0 +

∫ t

0
νs dWs, 0 ≤ t ≤ 1.

The preceding theorem identifies the scaling limit of our discrete-time super-replication prices
in the form of a convex risk measure. This measure assigns to a model, identified through its
volatility profile ν, a penalty that is determined by its local variances’s L2-distance from the
reference variance σ 2. Interestingly, this is also the scaling limit that emerges from price impact
models with purely temporary impact, albeit with a different weight; see [5,10,12].

The connection between transient and temporary impact for high-resilience limits has been
observed before in [17] who prove convergence in probability for the value processes. Our result
complements this with a first rigorous result in the context of super-replication.

On a technical level, it is worth mentioning that, to the best of our knowledge, our proof
below is the first purely probabilistic approach which allows one to obtain a scaling limit result
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with fully quadratic temporary costs. As a result, we are able to cover also sufficiently regular,
path-dependent options, thus extending beyond the vanilla option case covered by the viscosity
solution techniques of Gökay and Soner [12]. The key challenge here is to find a setting where
one can prove tightness for a suitable sequence of dual variables. This challenge is met by a
judiciously chosen set of constrained hedging strategies in our proof of the upper bound.

3.1. Proof of the lower bound

In this section, we will prove

lim inf
N

πN
(
h
(
P N

)) ≥ sup
ν∈D

EPW

[
h
(
P ν

)− rδ

8σ 2(2 − r)

∫ 1

0

∣∣ν2
t − σ 2

∣∣2 dt

]
− P0x0 − ι

2
x2

0 . (3.2)

Let us start by observing that, by the density arguments of Lemma 7.3 in [10], the above supre-
mum coincides with the one taken over the class D0 of volatility profiles ν ∈ D which are
bounded away from zero and Lipschitz in the sense that for some constant C > 0 we have

νt (ω) ≥ 1/C,∣∣νt (ω) − νt ′
(
ω′)∣∣ ≤ C

(∣∣t − t ′
∣∣+ sup

s∈[0,1]
∣∣ω(s) − ω′(s)

∣∣)
for t, t ′ ∈ [0,1], ω,ω′ ∈ C[0,1]. For any such ν, the seminal paper [14] constructs probabilities
with martingales “close” to the random walk P N which in distribution converge to P ν = p0 +∫ .

0 νs dWs as summarized in the following lemma.

Lemma 3.3. For any ν ∈ D0, there is a sequence of probability measures QN on (�,FN) and
(Fn)n=0,...,N -predictable processes αN = (αN

n )n=1,...,N , N = 1,2, . . . , such that for some con-
stant C > 0 independent of N we have

1. |αN
n | ≤ C, |αN

n − αN
n−1| ≤ C/

√
N , n = 1, . . . ,N ;

2. MN
0 � P0, MN

n � P N
n/N + αN

n ξn/
√

N , n = 1, . . . ,N , is a QN -martingale;

3. Law((P N
[Nt], α

N
[Nt])0≤t≤1 | QN) → Law((P ν

t , (ν2
t − σ 2)/(2σ))0≤t≤1 | PW) weakly on

D[0,1] as N ↑ ∞.

Proof. Adjusting for the additive setting considered here, this follows exactly as in Kusuoka’s
original approach for the multiplicative geometric random walk setting from [14]. �

With the above approximation result and the representation of liquidity costs (2.4), (2.5) at
hand, we are now in a position to prove (3.2). Indeed, take QN and αN as in the preceding
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lemma and observe that, for any N -period strategy X = (Xn)n=0,...,N with XN = 0, we can
estimate

−EQN

[
N∑

m=1

P N
(m−1)/N (Xm − Xm−1)

]

= −EQN

[
N∑

m=1

(
P N

(m−1)/N − MN
N

)
(Xm − Xm−1) + MN

N (XN − x0)

]

= −EQN

[
N∑

m=1

(
P N

(m−1)/N − MN
m−1

)
(Xm − Xm−1)

]
+ MN

0 x0

≤ EQN

[
N∑

m=1

|αN
m−1|√
N

|Xm − Xm−1|
]

+ MN
0 x0

= EQN

[
N∑

m=1

|αN
m−1|√
N

δ
(
ζX
m − (1 − r)ζX

m−1

)]+ P0x0,

where we used the martingale property of MN along with XN = 0 for the second identity and
the second property of αN listed in Lemma 3.3 for the estimate. Hence, for X ∈ X with XN = 0
which super-replicates h(P N) in the sense that ξX

N ≥ h(P N) we can estimate

EQN

[
h
(
P N

)]
≤ EQN

[
ξX
N

]
= ξ0 −EQN

[
N∑

m=1

P N
(m−1)/N (Xm − Xm−1) + ι

2

(
X2

N − x2
0

)+ κX
N

]

≤ ξ0 + P0x0 + ι

2
x2

0

+ δ
αN

0√
N

ζ0 − 1

2
(ζ0)

2

+ δEQN

[ ∑
1≤m<N

( |αN
m−1|√
N

− (1 − r)
|αm|√

N

)
ζX
m − 1 − (1 − r)2

2

(
ζX
m

)2
]

+ δEQN

[
αN

N−1√
N

ζX
N − 1

2

(
ζX
N

)2
]
.
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Using the estimate aζ − c
2ζ 2 ≤ a2/(2c) in each of the last three lines and rearranging terms

yields

ξ0 + P0x0 + ι

2
x2

0 + δ(αN
0 )2

2N
+ δEQN

[
(αN

N−1)
2

2N

]

≥ EQN

[
h
(
P N

)]− δEQN

[ ∑
1≤m<N

(|αN
m−1| − (1 − r)|αm|)2

2(1 − (1 − r)2)N

]

≥ EQN

[
h
(
P N

)]− δ

2(1 − (1 − r)2)
EQN

[
1

N

∑
1≤m<N

(
r
∣∣αN

m−1

∣∣+ C/
√

N
)2
]
,

where in the last estimate we used the first property of αN from Lemma 3.3. The same property
also yields the uniform boundedness of αN , N = 1,2, . . . , and so the third property listed in
Lemma 3.3 in conjunction with the regularity assumption 3.1 on h thus allows us to pass to the
limit N ↑ ∞ in the above estimate to conclude that

lim inf
N

πN
(
h
(
P N

))+ P0x0 + ι

2
x2

0

≥ EPW

[
h
(
P ν

)]− δ

2(1 − (1 − r)2)
EPW

[∫ 1

0

(
r
ν2
s − σ 2

2σ

)2

ds

]
= EPW

[
h
(
P ν

)− δr

8(2 − r)σ 2

∫ 1

0

(
ν2
s − σ 2)2

ds

]
.

This yields the desired lower bound (3.2).

3.2. Proof of the upper bound

We will prove the upper bound first for the case

x0 = ζ0 = 0

and reduce the general case to this one in the end.
For the upper bound

lim sup
N

πN
(
h
(
P N

)) ≤ sup
ν∈D

EPW

[
h
(
P ν

)− rδ

8σ 2(2 − r)

∫ 1

0

∣∣ν2
t − σ 2

∣∣2 dt

]
(3.3)

we first note that super-replication prices with transient impact are dominated by super-
replication prices in a suitable model with purely temporary impact as in [8]:

Lemma 3.4. For any N = 1,2, . . . , we have

πN
(
h
(
P N

)) ≤ π̂N
(
h
(
P N

))
,



Scaling limits for super-replication with transient price impact 2185

where π̂N (h(P N)) is the super-replication price in the model with full resilience r̂ � 1 and
market depth δ̂ � rδ/(2 − r).

Proof. Consider the cost term κX
n from (2.4) and observe that with ζ0 = 0,

(1 − r)

n∑
m=1

ζX
m−1|Xm − Xm−1|

= 1 − r

δ

n∑
m=1

∑
1≤l<m

(1 − r)m−1−l |Xl − Xl−1||Xm − Xm−1|

≤ 1 − r

δ

n∑
m=1

∑
1≤l<m

(1 − r)m−1−l 1

2

(|Xl − Xl−1|2 + |Xm − Xm−1|2
)

= 1 − r

δ

n∑
m=1

1

2

(
m−1∑
l=1

(1 − r)m−1−l +
n−1∑
l=m

(1 − r)l−m

)
|Xm − Xm−1|2

≤ 1 − r

δ

n∑
m=1

( ∞∑
k=0

(1 − r)k

)
|Xm − Xm−1|2

= 1 − r

δr

n∑
m=1

|Xm − Xm−1|2.

As a result the cost term κX
n in the original model can be estimated by

κX
n ≤

(
1 − r

δr
+ 1

2δ

) n∑
m=1

|Xm − Xm−1|2 = κ̂X
n ,

where κ̂X is the cost term for the fully resilient model with r̂ = 1 and depth δ̂ = rδ/(2 − r).
The costs in this auxiliary model being higher, the super-replication of any claim cannot be less
expensive than in the original model and we obtain our assertion. �

For (3.3), it thus suffices to prove

lim sup
N

π̂N
(
h
(
P N

)) ≤ sup
ν∈D

EPW

[
h
(
P ν

)− δ̂

8σ 2

∫ 1

0

∣∣ν2
t − σ 2

∣∣2 dt

]
.

For this asymptotic analysis, we will work with a family of space-time discretizations of our
price process. Specifically, we let, for any ε > 0, the sequence of partitions τN,ε = (τ

N,ε
k )k=0,1,...,

N = 1,2, . . . , be given by τ
N,ε
0 � 0 and

τ
N,ε
k � inf

{
t ≥ τ

N,ε
k−1 : ∣∣P N

t − P N

τ
N,ε
k−1

∣∣ ≥ ε or
∣∣t − τ

N,ε
k−1

∣∣ ≥ ε2}∧ (
1 − N−2/3)
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for k = 1,2, . . . . With τN,ε we associate the following discretization of P N :

P
N,ε
t �

∑
k=1,2,...

P N

τ
N,ε
k−1

1[τN,ε
k−1,τ

N,ε
k )

(t) + P N
1−N−2/3 1[1−N−2/3,1](t), 0 ≤ t ≤ 1.

Our next lemma reveals that, under our regularity assumptions on h, the super-replication price
of h(P N) in the N -step model is controlled by the super-replication price of a particular quadratic
claim on P N,ε and a knock-out variant of the claim h applied to P N,ε that only generates a payoff
if this underlying does not fluctuate “too much”:

Lemma 3.5. Let c = c(λ) > 0 be such that h(p) ≤ λ2(‖p − p0‖2∞ + c), p ∈ D[0,1] (observe
that c(λ) exists since Assumption 3.1 implies that h(p) has at most linear growth in ‖p −p0‖∞).
Then, for any ε > 0 and λ ∈ (0,1), the constant K = K(ε,λ)� [c/(ελ)2] + 1 is large enough to
ensure that for sufficiently large N we have

π̂N
(
h
(
P N

)) ≤ 3Lε + (1 − λ)π̂N
(
HN,ε,K/(1 − λ)

)+ λπ̂N
(
λQN,ε

)
, (3.4)

where L is the Lipschitz constant from Assumption 3.1 and where

HN,ε,K � h
(
P N,ε

)
1{τN,ε

K =1−N−2/3},

QN,ε � sup
0≤t≤1

∣∣P N,ε
t − P0

∣∣2 +
∑

k=1,2,...

(∣∣P N

τ
N,ε
k

− P N

τ
N,ε
k−1

∣∣2 + ∣∣τN,ε
k − τ

N,ε
k−1

∣∣). (3.5)

Proof. From the definitions of L and P N,ε and the regularity of h, it follows that, for sufficiently
large N ,

h
(
P N

) ≤ 3Lε + h
(
P N,ε

)
. (3.6)

For K = K(ε,λ) as defined above, we have furthermore

h(p) ≤ λ2
(

sup
0≤t≤1

∣∣p(t) − p0
∣∣2 + Kε2

)
, p ∈ D[0,1]. (3.7)

From the definition of τ
N,ε
k , k = 0,1, . . . , we get in addition that

Kε2 ≤
K∑

k=1

(∣∣P N

τ
N,ε
k

− P N

τ
N,ε
k−1

∣∣2 + ∣∣τN,ε
k − τ

N,ε
k−1

∣∣) on
{
τ

N,ε
K < 1 − N− 2

3
}
. (3.8)

Combining (3.7) and (3.8) gives

h
(
P N,ε

) ≤ HN,ε,K + λ2QN,ε. (3.9)

Convexity of the wealth dynamics (2.3) implies convexity of the super-replication cost functional,
and so (3.9) yields

π̂N
(
h
(
P N,ε

)) ≤ (1 − λ)π̂N
(
HN,ε,K/(1 − λ)

)+ λπ̂N
(
λQN,ε

)
.

Together with (3.6), this implies (3.4). �
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Our next lemma shows that the super-replication price of λQN,ε is easy to control (at least for
small λ ∈ (0,1)) and so its contribution to (3.4) vanishes as λ ↓ 0:

Lemma 3.6. There exists λ0 > 0 such that for any ε > 0, λ ∈ [0, λ0] and N = 1,2, . . . we have

π̂N
(
λQN,ε

) ≤ λ
(
1 + 36σ 2).

Proof. Let a, b, d, e > 0 and consider a portfolio strategy with initial capital ξ0 = a and a (pre-
dictable) trading strategy of the form which for n from [Nτ

N,ε
k−1] + 1 to [Nτ

N,ε
k ], k = 1,2, . . . , is

given by

Xn = −b max
i=0,...,k−1

(
P N

τ
N,ε
i

− p0
)+ b max

0≤i≤k−1

(
p0 − P N

τ
N,ε
i

)
− d

(
P N

τ
N,ε
k−1

− p0
)+ e

(
P N

(n−1)/N − p0
)
,

and which is 0 for n from [N(1 − N−2/3)] + 1 to N . In order to estimate the corresponding
portfolio value at the maturity date, we apply Proposition 2.1 in [1] for p = 2. We notice that for
p = 2 this proposition holds true for any sequence of real numbers, including negative numbers.
We apply this pathwise Doob’s inequality for

sk � ±(
P N

τ
N,ε
k

− p0
)
, k = 1,2, . . . .

Moreover, we will use the elementary identity

j∑
k=1

yk(yk+1 − yk) = 1

2

(
y2
j+1 − y2

1 −
j∑

k=1

(yk+1 − yk)
2

)

with yk = P N

τ
N,ε
k−1

− p0 and also with yk = P N
(k−1)/N − p0. By the well-known inequalities

(z1 + z2)
2 ≤ 2

(
z2

1 + z2
2

)
, (z1 + z2 + z3 + z4)

2 ≤ 4
(
z2

1 + z2
2 + z2

3 + z2
4

)
,

the result then is

ξX
N = a +

N∑
n=1

Xn

(
P N

n/N − P N
(n−1)/N)

)− 1

2̂δ

N∑
n=1

|Xn − Xn−1|2

≥ a + b

4

(
max

0≤t≤1
P

N,ε
t − p0

)2 − b
∣∣P N,ε

1 − p0
∣∣2

+ b

4

(
p0 − min

0≤t≤1
P

N,ε
t

)2 − b
∣∣P N,ε

1 − p0
∣∣2

+ d

2

∑
k=1,2,...

∣∣P N

τ
N,ε
k

− P N

τ
N,ε
k−1

∣∣2 − d

2

∣∣P N,ε
1 − p0

∣∣2
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+ e

2

∣∣P N,ε
1 − P0

∣∣2 − e

2
σ 2

− 2

δ̂

(
e2σ 2 + (

2b2 + d2) ∑
k=1,2,...

∣∣P N

τ
N,ε
k

− P N

τ
N,ε
k−1

∣∣2)

− 1

2̂δ
(2b + d + e)2

(
σ√
N

+ max
0≤t≤1

∣∣P N,ε
t − p0

∣∣)2

.

Here, the last two lines give an estimate for the transaction costs (including the liquidation costs)
which correspond to our trading strategy.

It follows that

ξX
N ≥ a − σ 2

(
e

2
+ 2e2

δ̂
+ (2b + d + e)2

δ̂

)
+

(
b

4
− (2b + d + e)2

δ̂

)
sup

0≤t≤1

∣∣P N,ε
t − p0

∣∣2
+ e − 4b − d

2

∣∣P N,ε
1 − p0

∣∣2
+

(
d

2
− 4b2 + 2d2

δ̂

) ∑
k=1,2,...

∣∣P N

τ
N,ε
k

− P N

τ
N,ε
k−1

∣∣2.
Let b = 8λ, d = 4λ, e = 4b + d = 36λ and a = λ + eσ 2 = λ(1 + 36σ 2). Then for sufficiently
small λ we get

ξX
N ≥ λ + λ sup

0≤t≤1

∣∣P N,ε
t − P0

∣∣2 + λ
∑

k=1,2,...

∣∣P N

τ
N,ε
k

− P N

τ
N,ε
k−1

∣∣2 ≥ λQN,ε

and the result follows. �

The proof of the upper bound thus relies on an understanding how to super-replicate the claims
HN,ε,K/(1−λ). Notice that these claims depend on the values of their underlying at only a fixed
number K of sampling times. Such claims turn out to allow for a particularly convenient duality
estimate for their super-replication prices:

Lemma 3.7. Let G be a claim of the form G = g((τ
N,ε
k ,P N

τ
N,ε
k

)k=0,...,K) for some measurable,

bounded, nonnegative function g = g((tk,pk)k=0,...,K). Then, for any ε, η > 0, we can find for
sufficiently large N a probability QN on (�,FN) (also depending on ε, η and g) such that for
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the filtration (F N,ε
k )k=0,...,K generated by (τ

N,ε
k ,P

N,ε

τ
N,ε
k

)k=0,...,K we have

π̂N (G) ≤ 1

4
ησ 2δ̂ +EQN [G]

− δ̂

8σ 2
EQN

[
K∑

k=1

(EQN [(P N

τ
N,ε
k

)2 − (P N

τ
N,ε
k−1

)2 | F N,ε
k−1 ]

EQN [η + τ
N,ε
k − τ

N,ε
k−1 | F N,ε

k−1 ] − σ 2
)2(

η + τ
N,ε
k − τ

N,ε
k−1

)]
.

(3.10)

In addition, under QN , (P N

τ
N,ε
k

)k=0,...,K is close to being a martingale in the sense that

EQN

[
K∑

k=1

∣∣EQN

[
P N

τ
N,ε
k

− P N

τ
N,ε
k−1

| F N,ε
k−1

]∣∣] ≤ (‖G‖∞ + η
)
/ logN. (3.11)

Proof. Fix ε > 0 and N ∈ {1,2, . . . }. Rather than looking among all strategies in X for a cost-
effective super-hedge, we will consider a suitably constrained class. To this end, denote by A the
class of pairs (φk,ψk)k=1,...,K of (F N,ε

k )k=0,...,K -predictable processes such that |φk|, |ψk| ≤
logN for k = 1, . . . ,K . Each such pair induces a strategy (X

(φ,ψ)
n )n=1,...,N ∈ X in the N -step

model that we can define piecewise on [[Nτ
N,ε
k−1], [Nτ

N,ε
k ]] for k = 1, . . . ,K as follows: If τ

N,ε
k−1 <

1 − N−1/2, the duration τ
N,ε
k − τ

N,ε
k−1 of the kth period is at least of order N1/2 and we thus can

subdivide the interval [[Nτ
N,ε
k−1], [Nτ

N,ε
k ]) into two parts. On the first (short) subinterval of length

N1/3 we trade at constant speed into a position holding φk + ψkP
N

τ
N,ε
k−1

risky assets; in the periods

n afterwards, we hold the position φk + ψkP
N
n until the stopping time [Nτ

N,ε
k ] + 1 when the

next iteration of this recipe proceeds with k + 1 instead of k while k < K . If τ
N,ε
k−1 ≥ 1 − N−1/2

or when we have completed the K th such iteration, we complete the construction of the strategy
by liquidating the obtained position in N1/3 steps and staying flat until the end.

Let us analyze the profits and losses and also the costs accruing from this strategy. For this,
note that, due to the random walk dynamics (3.1), we have∑

l<m≤n

P N
m−1
N

(
P N

m
N

− P N
m−1
N

) = 1

2

((
P N

n
N

)2 − (
P N

l
N

)2 − σ 2 n − l

N

)
.

Moreover, note that P N is uniformly bounded on [0, τ
N,ε
K ] by |p0|+Kε+σ , so that, in particular,

X(φ,ψ) is of size O(logN). Therefore, the profit and loss due to fluctuations in the fundamental
value incurred by the above strategy is up to a term of order O(logN/N1/6) (accounting for the
transition period of length N1/3 when a position change of at most order logN is accomplished
while the underlying moves in steps of order 1/

√
N ) given by

K∑
k=1

φk

(
P N

τ
N,ε
k

− P N

τ
N,ε
k−1

)+
K∑

k=1

ψk

1

2

((
P N

τ
N,ε
k

)2 − (
P N

τ
N,ε
k−1

)2 − σ 2(τN,ε
k − τ

N,ε
k−1

))
. (3.12)
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At the same time, the logarithmic bounds on the allowed positions ensure that the costs are

κ̂X(φ,ψ)

N = 1

2̂δ

K∑
k=1

σ 2ψ2
k

(
τ

N,ε
k − τ

N,ε
k−1

)+ O
(
log2 N/N1/3), (3.13)

where the O-term accounts for the O(N1/3(logN/N1/3)2) = O(log2 N/N1/3) costs for the
gradual position build-up of the first N1/3 steps of each period k = 1, . . . ,K and for the
O(log2 N/N1/3) costs resulting from the one possible jump at the end of this initial build-up
which is at most of size O(N1/3 logN/

√
N) = O(logN/N1/6); the running costs in the second

leg of each trading period k = 1, . . . ,K are reflected by the sum in (3.13).
It follows that, for large enough N , we will have

π̂N (G) ≤ o(1) + π̃N (G), (3.14)

where π̃N (G) denotes the super-replication price of the claim G when restricting to strategies
X(φ,ψ) as above with profits and losses given by (3.12) and trading costs given by the sum in
(3.13).

Observing that (3.12) is linear in φ and recalling the constraint |φ| ≤ logN , we get from classi-
cal linear super-replication duality with convexly constrained strategy sets (cf. [11], Theorem 4.1
in connection with Example 2.3) that for any fixed ψ -component we have

π̃N (G) ≤ sup
Q

EQ

[
Gψ − logN

K∑
k=1

∣∣EQ

[
P N

τ
N,ε
k

− P N

τ
N,ε
k−1

| F N,ε
k−1

]∣∣], (3.15)

where the supremum is taken over the set of all measures Q on (�,FN) and where

Gψ �G −
K∑

k=1

ψk

1

2

((
P N

τ
N,ε
k

)2 − (
P N

τ
N,ε
k−1

)2 − σ 2(τN,ε
k − τ

N,ε
k−1

))

+ 1

2̂δ

K∑
k=1

σ 2ψ2
k

(
τ

N,ε
k − τ

N,ε
k−1

)
denotes the claim that remains to be super-hedged by suitably choosing φ when the ψ -component
is fixed.

For E(Q,ψ) denoting the unconditional expectation in (3.15), it is readily checked that
ψ �→ E(Q,ψ) is convex for any fixed Q and that Q �→ E(Q,ψ) is concave for any ψ fixed.
Observing that the domains of Q and ψ can easily be identified with convex and compact sub-
sets in Euclidean space, we can thus invoke the Minimax Theorem (see, e.g., Theorem 45.8 in
[19]) to obtain

π̃N (G) ≤ inf
ψ

sup
Q

E(Q,ψ) = sup
Q

inf
ψ

E(Q,ψ).
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In conjunction with (3.14), we therefore can find a QN on (�,FN) such that

π̂N (G) ≤ o(1) + inf
ψ

E
(
QN,ψ

)
. (3.16)

In order to control the latter infimum, observe that the terms in E(QN,ψ) involving ψk contribute

EQN

[
σ 2

2̂δ
ψ2

k

(
τ

N,ε
k − τ

N,ε
k−1

)− ψk

1

2

((
P N

τ
N,ε
k

)2 − (
P N

τ
N,ε
k−1

)2 − σ 2(τN,ε
k − τ

N,ε
k−1

))]
≤ EQN

[
σ 2

2̂δ
ψ2

kEQN

[
η + τ

N,ε
k − τ

N,ε
k−1 | F N,ε

k−1

]
− 1

2
ψkEQN

[(
P N

τ
N,ε
k

)2 − (
P N

τ
N,ε
k−1

)2 − σ 2(η + τ
N,ε
k − τ

N,ε
k−1

) | F N,ε
k−1

]]
+ sup

�

{
−σ 2

2̂δ
�2η + 1

2
�σ 2η

}
, (3.17)

where η > 0 is arbitrary and where we used that ψk is F N,ε
k−1 -measurable. The minimum over

such ψk in the last expectation is attained for

ψ∗
k =

δ̂EQN [(P N

τ
N,ε
k

)2 − (P N

τ
N,ε
k−1

)2 − σ 2(η + τ
N,ε
k − τ

N,ε
k−1) | F N,ε

k−1 ]
2σ 2EQN [η + τ

N,ε
k − τ

N,ε
k−1 | F N,ε

k−1 ] ,

which is uniformly bounded in N for η > 0 due to the uniform bound on P N up to time τN
K . In

particular, |ψ∗
k | ≤ logN for sufficiently large N . The corresponding minimum is

− δ̂

8σ 2
EQN

[EQN [(P N

τ
N,ε
k

)2 − (P N

τ
N,ε
k−1

)2 − σ 2(η + τ
N,ε
k − τ

N,ε
k−1) | F N,ε

k−1 ]2

EQN [η + τ
N,ε
k − τ

N,ε
k−1 | F N,ε

k−1 ]
]

= − δ̂

8σ 2
EQN

[(EQN [(P N

τ
N,ε
k

)2 − (P N

τ
N,ε
k−1

)2 | F N,ε
k−1 ]

EQN [η + τ
N,ε
k − τ

N,ε
k−1 | F N,ε

k−1 ] − σ 2
)2(

η + τ
N,ε
k − τ

N,ε
k−1

)]
.

Now, we just need to combine these contribution to E(QN,ψ∗) with estimate (3.16) and the fact
that the supremum in (3.17) is ησ 2δ̂/8 to derive the claimed estimate (3.10).

For the remaining estimate (3.11), consider ψ ≡ 0 in the estimate (3.16) for π̂N (G). Since by
absence of arbitrage at the same time π̂N (G) ≥ 0, we can conclude, at least for large enough N ,

0 ≤ η +EQN

[
G − logN

K∑
k=1

∣∣EQN

[
P N

τ
N,ε
k

− P N

τ
N,ε
k−1

| F N,ε
k−1

]∣∣],

which gives (3.11). �
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The claims HN,ε,K/(1 − λ) of (3.5) are of the form required for the previous lemma. This
yields an upper bound for super-replication prices which, however, still depends on N and only
involves a process which is almost a martingale along the times of its jumps. To get a more
convenient upper bound, it will be useful to consider processes on a slightly expanded time
horizon, namely on [0,1 + λ] rather than [0,1]. The payoff function h can be rescaled to h1+λ :
D[0,1 + λ] → R simply by letting, for p ∈ D[0,1 + λ],

h1+λ(p) � h
([0,1] � t �→ p

(
t (1 + λ)

))
.

Now, consider, for ε,λ > 0 fixed and K = K(ε,λ) as in Lemma 3.5, the class Dε,λ of measurable
processes D on some probability space (�D,F D,PD) of the form

Dt =
K∑

k=1

Dθk−1 1[θk−1,θk)(t) + (DθK
+ σWt−θK

)1[θK,1+λ](t) (3.18)

such that, for k = 1, . . . ,K , we have

D0 = p0, |Dθk
− Dθk−1 | ≤ 2ε, (3.19)

θ0 = 0,
λ

K
≤ θk − θk−1 ≤ λ

K
+ ε2, (3.20)

and

Dθk−1 = ED
[
Dθk

| F D
θk−1

]
, (3.21)

where (F D
t )0≤t≤1+λ denotes the filtration generated by D and where W is a Brownian motion

independent of F D
θK

under PD . It will also be convenient to associate with each such D the
process

ζD
t �

K∑
k=1

EPD [(Dθk
)2 − (Dθk−1)

2 | F D
θk−1

]
EPD [θk − θk−1 | F D

θk−1
] 1[θk−1,θk)(t) + σ 21[θK,1+λ](t),

which, for later use, we observe is bounded for any fixed λ > 0, ε < 1/λ. Indeed, combin-
ing (3.21), (3.19) and (3.20) with K = [(c/ελ)2] + 1 implies∣∣ζD

t

∣∣ ≤ 4ε2

λ/K
∨ σ 2 ≤ 4(c + 1)

λ3
∨ σ 2. (3.22)

With this notation, we get the following duality estimate:

Lemma 3.8. For any ε,λ > 0 and with K = K(ε,λ) as in Lemma 3.5, we have

π̂N
(
HN,ε,K/(1 − λ)

)
≤

(
2 + 1

4
σ 2δ̂

)
λ

K
+ sup

D∈Dε,λ

EPD

[
h1+λ(D)

1 − λ
− δ̂

8σ 2

∫ 1+λ

0

(
ζD
t − σ 2)2

dt

]
(3.23)

for sufficiently large N .
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Proof. Fix ε,λ > 0 and let K � K(ε,λ) and η � λ/K . We will use the notation from Lemma 3.7
and assume henceforth that N is large enough for this lemma’s assertion to hold true. With
G� HN,ε,K and τk � τ

N,ε
k , k = 0, . . . ,K , we furthermore define, again for k = 0, . . . ,K ,

θN
k � τ

N,ε
k + kη,

DN

θN
k

� p0 +
k∑

j=1

(
P N

τ
N,ε
j

−EQN

[
P N

τ
N,ε
j

| F DN

θN
j−1

])
,

to specify via (3.18) a process D = DN along with a probability PD � QN that is contained
in Dε,λ. Indeed, the martingale-like property (3.21) is immediate as are the constraints on the
intervention times (3.20). The increment restriction (3.19) holds since P N

τ
N,ε
k

is within ε of the

F DN

θN
k−1

-measurable quantity P N

τ
N,ε
k−1

due to the definition τ
N,ε
k . Moreover, it is easy to check that

max
k=0,...,K

∣∣P N,ε

τ
N,ε
k

− DN

θN
k

∣∣ ≤ K∑
k=1

∣∣EQN

[
P N

τ
N,ε
k

− P N

τ
N,ε
k−1

| F N,ε
k−1

]∣∣ (3.24)

and

max
k=0,...,K

∣∣∣∣τN,ε
k + λk/K

1 + λ
− τ

N,ε
k

∣∣∣∣ ≤ λ.

Therefore, on the event {τN,ε
K = 1} we can estimate the Skorohod-distance

d
(
P N,ε,DN

(1+λ)·.
) ≤ λ +

K∑
k=1

∣∣EQN

[
P N

τ
N,ε
k

− P N

τ
N,ε
k−1

| F N,ε
k−1

]∣∣
so that by Assumption 3.1 on h and (3.11) we get

EQN

[
HN,ε,K

] ≤ EQN

[
h1+λ

(
DN

)]
+ LEQN

[
λ +

K∑
k=1

∣∣EQN

[
P N

τ
N,ε
k

− P N

τ
N,ε
k−1

| F N,ε
k−1

]∣∣]

≤ EQN

[
h1+λ

(
DN

)]+ L
(
λ + ∥∥HN,ε,K

∥∥∞ + η
)
/ logN

≤ EQN

[
h1+λ

(
DN

)]+ O

(
1

logN

)
, (3.25)

where the latter estimate is due to the simple bound

HN,ε,K ≤ h(p0) + Ld
(
P N,ε,p0

) ≤ h(p0) + LKε on
{
HN,ε,K > 0

}
.
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Next, from (3.11), (3.24) and the fact that DN,P N are uniformly bounded in N we obtain

EQN

(∫ 1+λ

0

(
ζDN

t − σ 2)2
dt

)

= EQN

(
K∑

k=1

(EQN [(DN

τ
N,ε
k

)2 − (DN

τ
N,ε
k−1

)2 | F N,ε
k−1 ]

EQN [η + τ
N,ε
k − τ

N,ε
k−1 | F N,ε

k−1 ] − σ 2
)2(

η + τ
N,ε
k − τ

N,ε
k−1

))

≤ EQN

(
K∑

k=1

(EQN [(P N

τ
N,ε
k

)2 − (P N

τ
N,ε
k−1

)2 | F N,ε
k−1 ]

EQN [η + τ
N,ε
k − τ

N,ε
k−1 | F N,ε

k−1 ] − σ 2
)2(

η + τ
N,ε
k − τ

N,ε
k−1

))

+ O

(
1

logN

)
. (3.26)

Using (3.25) and (3.26) in the estimate (3.10) provided by Lemma 3.7 it thus follows that
π̂N (HN,ε,K/(1 − λ)) cannot be larger than the right-hand side of (3.23) for sufficiently
large N . �

Letting ε ↓ 0 in the above expression will be made possible by the following tightness result:

Lemma 3.9. For λ > 0 fixed, any sequence Dm ∈ D1/m,λ, m = 1,2, . . . , contains a subse-
quence along which Law(Dm,

∫ .

0 ζDm

s ds | PDm
) converges weakly on D[0,1 + λ] to Law(M,

〈M〉 | PM) for some continuous martingale M = (Mt)0≤t≤1+λ on a suitable probability space
(�M,F M,PM).

Proof. Let Km � K(1/m,λ) as in Lemma 3.5 and denote by (θm
k )k=0,...,Km the times associated

with Dm via (3.18)–(3.21); let furthermore Pm � PDm
denote the associated probability. For any

m = 1,2, . . . , we denote by {D̂m
t }1+λ

t=0 the continuous linear interpolation of Dm; observe that

after time θm
K , this amounts to D̂m

t � Dm
θm
K

+σWt−θm
K

where W is a Brownian motion independent

of F Dm

θm
K

.

We will verify the Kolmogorov tightness criterion for these processes D̂m, m = 1,2, . . . . So,
take m ∈ {1,2, . . . } and fix 0 ≤ t1 < t2 ≤ 1 + λ. Define the random times

ηi = Km ∧ min
{
k ∈ {

0, . . . ,Km
} : θm

k ≥ ti
}
, i = 1,2.

The discrete-time process {Dm
θm
k
}k=0,...,Km is a martingale with respect to the filtration generated

by (θm
k ,Dm

θm
k
)k=0,...,Km and η1, η2 are stopping times with respect to this filtration. Thus, from

the Burkholder–Davis–Gundy inequality,

EPm

[∣∣Dm
θm
η2

− Dm
θm
η1

∣∣4] ≤ O(1)EPm

[( ∑
j=η1+1,...,η2

∣∣Dm
θm
j

− Dm
θm
j−1

∣∣2)2]
≤ O

(
m−4)EPm

[|η2 − η1|2
]
, (3.27)
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where the last inequality follows from (3.19) which ensures that the jumps of Dm are bounded
by 2/m.

Next, since the time between two subsequent jumps is at least λ/Km = O(1/m2) and the
jumps of Dm are bounded by 2/m, we obtain that the size of the (random) slope for the linear
interpolation process D̂m is at most of order O(m). This together with the fact that the time
between two subsequent jumps is less than or equal to λ/Km + 1/m2 yields∣∣D̂m

t2
− D̂m

t1

∣∣
≤ ∣∣D̂m

t2∧θm
K

− D̂m
t1∧θm

K

∣∣+ σ |Wt2∨θm
K

− Wt1∨θm
K
|

≤ 1{t2>t1+1/m2}
∣∣Dm

θm
η2

− Dm
θm
η1

∣∣
+ 2O(m)

(
(t2 − t1) ∧ (

λ/Km + 1/m2))+ σ |Wt2∨θm
K

− Wt1∨θm
K
|. (3.28)

Using again that the time between two subsequent jumps is at least λ/Km = O(1/m2), we ob-
tain that if t2 > t1 + 1/m2 then η2 − η1 = O(m2)(t2 − t1). Thus, from (3.27)–(3.28) and the
elementary inequalities

(t2 − t1) ∧ (
λ/Km + 1/m2) ≤ O(1/m)

√
t2 − t1,

(z1 + z2 + z3)
4 ≤ 81

(
z4

1 + z4
2 + z4

3

)
,

we obtain EPm [|D̂m
t2

− D̂m
t1

|4] = O((t2 − t1)
2) and tightness follows.

From Prokhorov’s theorem we conclude that there exists a subsequence (still denoted by m)
and a continuous process M = (Mt)0≤t≤1+λ that converges in law to some continuous process
M on a suitable probability space (�M,F M,PM). The obvious inequality sup0≤t≤1+λ |D̂m

t −
Dm

t | ≤ 2/m yields the same convergence also for Dm.
Let us argue next that M is a martingale with respect to its own filtration. Fix m, let

(F m
t )0≤t≤1+λ be the usual (right continuous and complete) filtration generated by Dm and con-

sider the (RCLL) martingale

D̃m
t = EPm

[
Dm

1+λ | F m
t

]
, 0 ≤ t ≤ 1 + λ.

Recall that the time between two subsequent jumps is bounded from below. Hence,

D̃m
θm
k

= EPm

[
Dm

θm
Km

| Fθm
k

] = Dm
θm
k
, k = 0,1, . . . ,Km, (3.29)

where the last equality follows from (3.21). From (3.29) and the estimate

max
k=1,...,Km

∣∣Dm
θm
k

− Dm
θm
k−1

∣∣ ≤ 2/m

we get ‖D̃m − Dm‖∞ ≤ 4/m. Thus, the martingales D̃m, m = 1,2, . . . , are uniformly integrable
and converge weakly to M . From Theorem 5.3 in [20] we conclude that M is a (continuous)
martingale.
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Now, we prove that (Dm,
∫ ·

0 ζDm

s ds) converges in law to (M, 〈M〉). For any m = 1,2, . . . ,
let the quadratic variation of the martingale D̃m be denoted by ([D̃m]t )0≤t≤1+λ. Theorem 5.5
in [20] then yields the converge in law of (D̃m, [D̃m]) to (M, 〈M〉). Thus, in order to complete
the proof, it sufficient to establish that

lim
m→∞EPm

[
sup

0≤t≤1+λ

∣∣∣∣∫ t

0
ζDm

s ds − [
D̃m

]
t

∣∣∣∣] = 0. (3.30)

To that end, note that by the Burkholder–Davis–Gundy inequality

EPm

[
max

k=1,...,Km

([
D̃m

]
θm
k

− [
D̃m

]
θm
k−1

)2
]

≤
Km∑
k=1

EPm

[([
D̃m

]
θm
k

− [
D̃m

]
θm
k−1

)2]

≤ O(1)

Km∑
k=1

EPm

[
sup

θm
k−1≤t≤θm

k

∣∣D̃m
t − D̃m

θm
k−1

∣∣4]
≤ O(1)KmO

(
1/m4) = O

(
1/m2). (3.31)

Next, observe that ([D̃m]θm
k

− ∫ θm
k

0 ζDm

s ds)k=0,...,Km is a martingale. Hence, applying first the
Doob–Kolmogorov inequality and Ito’s isometry and finally also (3.20), (3.22), we conclude
(3.31)

EPm

[
max

k=0,...,≤Km

([
D̃m

]
θm
k

−
∫ θm

k

0
ζDm

s ds

)2]

≤ 4EPm

[
Km∑
k=1

([
D̃m

]
θm
k

− [
D̃m

]
θm
k−1

+
∫ θm

k

θm
k−1

∣∣ζDm

s

∣∣ds

)2
]

≤ 8EPm

[
Km∑
k=1

([
D̃m

]
θm
k

− [
D̃m

]
θm
k−1

)2

]

+ 8Km
∥∥ζDm∥∥2

∞
(
λ/Km + 1/m2)2

= O
(
1/m2). (3.32)

Finally, by combining (3.20), (3.22) and applying the Jensen inequality for (3.31)–(3.32) we get

EPm

[
sup

0≤t≤1+λ

∣∣∣∣∫ t

0
ζDm

s ds − [
D̃m

]
t

∣∣∣∣]

= EPm

[
sup

0≤t≤θm
Km

∣∣∣∣∫ t

0
ζDm

s ds − [
D̃m

]
t

∣∣∣∣]
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≤ ∥∥ζDm∥∥∞
(
λ/Km + 1/m2)

+EPm

[
max

k=1,...,Km

∣∣[D̃m
]
θm
k

− [
D̃m

]
θm
k−1

∣∣]
+EPm

[
max

k=0,...,Km

∣∣∣∣∫ θm
k

0
ζDm

s ds − [
D̃m

]
θm
k

∣∣∣∣]
= O(1/m)

and (3.30) follows. �

We will need the following stability result.

Lemma 3.10. Let (�,F , (Ft ),P) be an arbitrary filtered probability space and suppose h sat-
isfies Assumption 3.1. Then the function

F(z) = sup
M

E

[
z1h(M) − z2

∫ 1

0

(
d〈M〉t

dt
− z3

)2

dt

]
, z = (z1, z2, z3) ∈ (0,∞)3,

where the supremum is taken over all continuous martingales M = (Mt)0≤t≤1 starting in M0 =
p0 that have a quadratic variation 〈M〉 which is absolutely continuous with bounded density
d〈M〉t

dt
.

Proof. It is sufficient to prove the statement for the function

F̂ (z) � F(z) + z2z
2
3

= sup
M

E

[
z1h(M) − z2

∫ 1

0

(
d〈M〉t

dt

)2

dt + 2z2z3〈M〉1

]
. (3.33)

From the Doob–Kolmogorov inequality, the Jensen inequality and the estimate h(p) ≤
‖p − p0‖2∞ + c for c = c(1) (as defined in Lemma 3.5) we obtain

E

[
z1h(M) − z2

∫ 1

0

(
d〈M〉t

dt

)2

dt + 2z2z3〈M〉1

]

≤ z1c + (4z1 + 2z2z3)E〈M〉1 − z2E

[∫ 1

0

(
d〈M〉t

dt

)2

dt

]

≤ z1c + (4z1 + 2z2z3)

√
E

[∫ 1

0

(
d〈M〉t

dt

)2

dt

]
− z2E

[∫ 1

0

(
d〈M〉t

dt

)2

dt

]
. (3.34)

On the other hand by taking M ≡ p0 we obtain F̂ ≥ 0 (recall that h is nonnegative). Hence, on
the right hand side of (3.33) we can restrict the supremum to the set of martingales for which the
right hand size of (3.34) is nonnegative.
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We conclude that for a bounded set O ⊂ R3 with infz∈O z2 > 0 there exists � = �(O) such
that for any z ∈ O we have

F̂ (z) = sup
M

E

[
z1h(M) − z2

∫ 1

0

(
d〈M〉t

dt

)2

dt + 2z2z3〈M〉1

]
,

where the supremum is taken over the class M� of continuous martingales as in the formulation
of this lemma which satisfy in addition that

E

[∫ 1

0

(
d〈M〉t

dt

)2

dt

]
≤ �.

In particular, we obtain that F̂ (z) < ∞. By applying again the Doob–Kolmogorov inequality and
the Jensen inequality it follows that for any z, z̃ ∈ O we have∣∣F̂ (z) − F̂ (z̃)

∣∣
≤ sup

M∈M�

(
E

[
z1h(M) − z2

∫ 1

0

(
d〈M〉t

dt

)2

dt + 2z2z3〈M〉1

]

−E

[
z̃1h(M) − z̃2

∫ 1

0

(
d〈M〉t

dt

)2

dt + 2z̃2z̃3〈M〉1

])
≤ |z1 − z̃1|(c + 4

√
�) + |z2 − z̃2|� + 2|z2z3 − z̃2z̃3|

√
�

and continuity follows. �

We now have all the pieces in place that we need for the

Completion of the proof of the upper bound

Fix λ > 0. For m = 1,2, . . . , choose Dm ∈ D1/m,λ that get within 1/m of the supremum in (3.23)
for ε = 1/m. For this sequence, let Mλ be a continuous martingale on (�λ,F λ,Pλ) as in
Lemma 3.9. By Skorohod’s representation theorem, we can find copies of Dm, m = 1,2, . . . , and
Mλ (which to alleviate notation we denote by the same symbols) with the same respective dis-
tributions but specified jointly on a suitable probability space (�,F ,P) such that almost surely
(Dm,

∫ .

0 ζDm

s ds) converges uniformly to (Mλ, 〈Mλ〉) as m ↑ ∞. From (3.19) we have Mλ
0 = p0

and from (3.22) the quadratic variation 〈Mλ〉 is absolutely continuous and the volatility process
d〈Mλ〉t

dt
is bounded.

Now, use the regularity of h as imposed by Assumption 3.1 to conclude

lim
m

E
[
h1+λ

(
Dm

)] = E
[
h1+λ

(
Mλ

)]
by dominated convergence. Moreover, we can estimate

lim inf
m

E

[∫ 1+λ

0

(
ζDm

t − σ 2)2
dt

]
≥ E

[∫ 1+λ

0

(
d〈Mλ〉t

dt
− σ 2

)2

dt

]
. (3.35)
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Indeed, observing that the ζDm
are uniformly bounded for m > 1/λ (cf. (3.22)), we can ap-

ply Lemma A1.1 in [9] to get ζ̃ m ∈ conv(ζDm
, ζDm+1

, . . . ), m = 1,2, . . . , converging P ⊗ dt-
almost everywhere to some process ζ . In fact, ζ = d〈Mλ〉/dt because by dominated convergence∫ .

0 ζt dt = limm

∫ .

0 ζ̃ m
t dt = limm

∫ .

0 ζDm

t dt = 〈Mλ〉. As a consequence, the estimate (3.35) holds

by the convexity of ζ �→ E[∫ 1+λ

0 (ζt − σ 2)2 dt] and Fatou’s lemma.
As K(1/m,λ) → ∞ for m ↑ ∞, it now follows from Lemma 3.8 that, for any λ > 0,

lim sup
m

lim sup
N

π̂N
(
HN,1/m,K(1/m,λ)/(1 − λ)

)
≤ E

[
h1+λ(M

λ)

1 − λ
− δ̂

8σ 2

∫ 1+λ

0

(
d〈Mλ〉t

dt
− σ 2

)2

dt

]

= E

[
h(M̃λ)

1 − λ
− δ̂

8σ 2(1 + λ)

∫ 1

0

(
d〈M̃λ〉t

dt
− σ 2(1 + λ)

)2

dt

]
, (3.36)

where M̃λ is the martingale given by M̃λ
t = Mλ

(1+λ)t , 0 ≤ t ≤ 1.
By applying Lemma 3.10 we see that for λ ↓ 0 the expectation in (3.36) cannot be larger than

supM E[h(M) − δ̂

8σ 2

∫ 1
0 (

d〈M〉t
dt

− σ 2)2 dt] where the supremum is taken over all the continuous
martingales M = (Mt)0≤t≤1 considered in Lemma 3.10. Using the randomization technique of
Lemma 7.2 in [10], we thus find that

lim sup
λ↓0

lim sup
m

lim sup
N

π̂N
(
HN,1/m,K(1/m,λ)/(1 − λ)

)
is dominated by the supremum on the right hand side of (3.3). In view of the estimate (3.4) from
Lemma 3.5 in conjunction with Lemma 3.6, this implies the desired upper bound (3.3) for the
case x0 = 0 and ζ0 = 0.

For the case where x0 �= 0 or ζ0 > 0 we need to establish that

lim sup
N

πN
(
h
(
P N

)) ≤ sup
ν∈D

EPW

[
h
(
P ν

)− rδ

8σ 2(2 − r)

∫ 1

0

∣∣ν2
t − σ 2

∣∣2 dt

]
− P0x0 − ι

2
x2

0 . (3.37)

For the N -step market we use the first N1/3 steps to liquidate with a constant speed the initial
number of shares x0. The result is that after N1/3 steps, the portfolio value will be P0x0 + ι

2x2
0 +

O(N−1/6) and the spread will be bounded by ζ0 + x0
δ

. The number of shares is zero.
In the next N1/3 steps we do not trade at all, and so the spread will become of order

O((1 − r)N
1/3

). Observe that for any δ̃ > δ, we have that for sufficiently large N ,

δ
(
z + O

(
(1 − r)N

1/3))2 ≤ δ̃z2 + (1 − r)N
1/4

for all z ≥ 0.

From Lemma 2.1 we conclude that the limsup of the original prices πN(h(P N)) is less than or
equal to the limsup of the superhedging prices which correspond to the market depth δ̃ > δ, the
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same resilience r and an initial position x̃0 = ζ̃0 = 0 minus P0x0 + ι
2x2

0 . Thus, by taking δ̃ ↓ δ

and applying (3.3) (for δ̃ instead of δ) and by using Lemma 3.10, we obtain (3.37). Let us notice
that we should apply (3.3) for a shift in time of the original price process P N . Since the shift
in time is of order O(N1/3) and h is Lipschitz continuous, the difference between the original
payoff h(P N) and the modified one is of order O(N1/3N−1/2) = O(N−1/6) which is vanishing
in the limit N → ∞.
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