
Bernoulli 26(3), 2020, 1989–2020
https://doi.org/10.3150/19-BEJ1180

On estimation of nonsmooth functionals of
sparse normal means
O. COLLIER1,3,* , L. COMMINGES2,3,† and A.B. TSYBAKOV3,‡

1MODAL’X, Université Paris-Nanterre. E-mail: *olivier.collier@parisnanterre.fr
2CEREMADE, Université Paris-Dauphine PSL. E-mail: †comminges@ceremade.dauphine.fr
3CREST, ENSAE. E-mail: ‡alexandre.tsybakov@ensae.fr

We study the problem of estimation of Nγ (θ) = ∑d
i=1 |θi |γ for γ > 0 and of the �γ -norm of θ for γ ≥ 1

based on the observations yi = θi + εξi , i = 1, . . . , d, where θ = (θ1, . . . , θd ) are unknown parameters,
ε > 0 is known, and ξi are i.i.d. standard normal random variables. We find the non-asymptotic minimax rate
for estimation of these functionals on the class of s-sparse vectors θ and we propose estimators achieving
this rate.
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1. Introduction

In recent years, there has been a growing interest in statistical estimation of non-smooth func-
tionals (cf. Cai and Low [1], Jiao et al. [9], Wu and Yang [15,16], Han et al. [7,8], Carpentier
and Verzelen [2], Fukuchi and Sakuma [6]). Some of these papers deal with the normal means
model (cf. Cai and Low [1], Carpentier and Verzelen [2]) addressing the problems of estimation
of the �1-norm and of the sparsity index, respectively. In the present paper, we analyze a fam-
ily of nonsmooth functionals including, in particular, the �1-norm. We establish non-asymptotic
minimax optimal rates of estimation on the classes of sparse vectors and we construct estimators
achieving these rates.

Assume that we observe

yi = θi + εξi, i = 1, . . . , d, (1)

where θ = (θ1, . . . , θd) is an unknown vector of parameters, ε > 0 is a known noise level, and ξi

are i.i.d. standard normal random variables. We consider the problem of estimating the function-
als

Nγ (θ) =
d∑

i=1

|θi |γ , γ > 0, and ‖θ‖γ =
(

d∑
i=1

|θi |γ
)1/γ

, γ ≥ 1,

assuming that the vector θ is s-sparse, that is, θ belongs to the class

B0(s) = {
θ ∈R

d : ‖θ‖0 ≤ s
}
.

Here, ‖θ‖0 denotes the number of nonzero components of θ and s ∈ {1, . . . , d}.
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Set nγ (θ) = Nγ (θ) for 0 < γ ≤ 1 and nγ (θ) = ‖θ‖γ for γ > 1. We measure the accuracy of
an estimator T̂ of Nγ (θ) by the maximal quadratic risk over B0(s):

sup
θ∈B0(s)

Eθ

[(
T̂ − nγ (θ)

)2]
.

Here and in the sequel, we denote by Eθ the expectation with respect to the joint distribution Pθ

of (y1, . . . , yd) satisfying (1).
In this paper, we propose rate-optimal estimators in a non-asymptotic minimax sense, that is,

estimators T̂ ∗
γ such that

sup
θ∈B0(s)

Eθ

[(
T̂ ∗

γ − nγ (θ)
)2]� inf

T̂

sup
θ∈B0(s)

Eθ

[(
T̂ − nγ (θ)

)2] := Rs,d (ε, γ ),

where inf
T̂

denotes the infimum over all estimators and, for two quantities a and b possibly de-
pending on s, d , ε, γ , we write a � b if there exist positive constants c′, c′′ that may depend only
on γ such that c′ ≤ a/b ≤ c′′. We establish the following explicit non-asymptotic characteriza-
tion of the minimax risk:

Rs,d (ε, γ ) �
{

ε2γ s2 logγ
(
1 + d/s2), if s ≤ √

d and 0 < γ ≤ 1,

ε2γ s2log−γ
(
1 + s2/d

)
, if s >

√
d and 0 < γ ≤ 1,

(2)

and

Rs,d (ε, γ ) �
{

ε2s2/γ log
(
1 + d/s2), if s ≤ √

d and γ > 1,

ε2d1/γ , if s >
√

d and γ ∈ E,
(3)

where E is the set of all even integers. We also prove that, in the remaining case s >
√

d and
γ > 1 such that γ /∈ E, we have

cε2s2/γ log1−2γ
(
1 + s2/d

)≤ Rs,d (ε, γ ) ≤ c̄ε2s2/γ log−1(1 + s2/d
)

(4)

for some positive constants c, c̄.
The case s = d , γ = ε = 1 was studied in Cai and Low [1], where it was proved that

Rd,d(1,1) = inf
T̂

sup
θ∈Rd

Eθ

[(
T̂ − N1(θ)

)2]� d2

logd
.

It was also claimed in Cai and Low [1] that Rs,d (1,1) � s2/(logd) for s ≥ dβ with β > 1/2,
which agrees with the corresponding special case of (2).

We see from (2) and (3) that, for the general sparsity classes B0(s) there exist two different
regimes with an elbow at s � √

d . We call them the sparse zone and the dense zone. The estima-
tion methods for these two regimes are quite different. In the sparse zone, where s is smaller than√

d , we show that one can use suitably adjusted thresholding to achieve optimality. In this zone,
rate optimal estimators can be obtained based on the techniques developed in Collier et al. [3]
to construct minimax optimal estimators of linear and quadratic functionals. In the dense zone,
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where s is greater than
√

d , we use another approach. We follow the general scheme of estima-
tion of non-smooth functionals from Lepski et al. [10] and our construction is especially close in
the spirit to Cai and Low [1]. Specifically, we consider the best polynomial approximation of the
function |x|γ in a neighborhood of the origin and plug in unbiased estimators for each power in
the expression of this polynomial. Outside of this neighborhood, for i such that |yi | is, roughly
speaking, greater than the “noise level” of the order of ε

√
logd , we use |yi |γ as an estimator

of |θi |γ . The main difference from the estimator suggested in Cai and Low [1] for γ = 1 lies in
the fact that, for the polynomial approximation part, we need to introduce a block structure with
exponentially increasing blocks and carefully chosen thresholds depending on s. This is needed
to achieve optimal bounds for all s in the dense zone and not only for s = d or s comfortably
greater than

√
d as in Cai and Low [1].

In the present work, the variance ε2 of the noise and the sparsity parameter s need to be
known exactly. We conjecture that adaptation to ε2 can be done without loss of efficiency in the
sparse zone s ≤ √

d . In the dense zone, the optimal rate can deteriorate dramatically when ε2 is
unknown as shown in Comminges et al. [5] for the case γ = 2. This contrasts with the results for
linear functionals. Indeed, in Collier et al. [4] it is proved that, for linear functionals, adaptation
to ε2 can be done without loss of efficiency, and adaptation to s only brings a logarithmically
small deterioration of the rate.

This paper is organized as follows. In Section 2, we introduce the estimators and state the upper
bounds for their risks. Section 3 provides the matching lower bounds. The rest of the paper is
devoted to the proofs. In particular, some useful results from approximation theory are collected
in Section 6.

2. Definition of estimators and upper bounds for their risks

In this section, we propose two different estimators, for the dense and sparse regimes defined
by the inequalities s2 ≥ 4d and s2 < 4d , respectively. Recall that, in the Introduction, we used
the inequalities s ≥ √

d and s <
√

d , respectively, to define the two regimes. The factor 4 that
we introduce in the definition here is a matter of convenience for the proofs. We note that such
a change does not influence the final result since the optimal rate (cf. (3)) is the same, up to a
constant, for all s such that s � √

d .

2.1. Dense zone: s2 ≥ 4d

We first study the problem of estimation of nγ (θ) in the dense zone. Two estimators will be
proposed – the first one that achieves optimality when γ is not an even integer, and the second
one for even integer γ . They are derived from two estimators of Nγ (θ) that we are going to
define now.

We first present the estimator of Nγ (θ) that will be used when γ is not an even integer. For
any positive integer K , we denote by Pγ,K(·) the best approximation of |x|γ by polynomials of
degree at most 2K on the interval [−1,1], that is

max
x∈[−1,1]

∣∣|x|γ − Pγ,K(x)
∣∣= min

G∈P2K

max
x∈[−1,1]

∣∣|x|γ − G(x)
∣∣,
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where P2K is the class of all real polynomials of degree at most 2K . Since |x|γ is an even
function, it suffices to consider approximation by polynomials of even degree. The quality of the
best polynomial approximation of |x|γ is described by Lemma 7 in Section 6.

We denote by aγ,2k the coefficients of the canonical representation of Pγ,K :

Pγ,K(x) =
K∑

k=0

aγ,2kx
2k, x ∈ R,

and by Hk(·) the kth Hermite polynomial

Hk(x) = (−1)kex2/2 dk

dxk
e−x2/2, k ∈ N, x ∈R.

To construct our first estimator in the dense zone, we use the sample duplication device, that
is, we transform yi into randomized observations y1,i , y2,i as follows. Let z1, . . . , zd be i.i.d.
random variables such that zi ∼N (0, ε2) and z1, . . . , zd are independent of y1, . . . , yd . Set

y1,i = yi + zi, y2,i = yi − zi, i = 1, . . . , d.

Then, y1,i ∼ N (θi, σ
2), y2,i ∼ N (θi, σ

2) for i = 1, . . . , d , where σ 2 = 2ε2 and the random
variables (y1,1, . . . , y1,d , y2,1, . . . , y2,d ) are mutually independent.

Define the estimator of Nγ as follows:

N̂γ =
d∑

i=1

ξγ (y1,i , y2,i ) (5)

where

ξγ (u, v) =
L∑

l=0

P̂γ,Kl,Ml
(u)1σ tl−1<|v|≤σ tl + |u|γ 1|v|>σtL,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̂γ,K,M(u) =
K∑

k=1

σ 2kaγ,2kM
γ−2kH2k(u/σ),

Kl = 4lc log
(
s2/d

)
,

Ml = 2l+1σ

√
2 log

(
s2/d

)
,

tl = 2l
√

2 log
(
s2/d

)
, t−1 = 0,

L is the smallest integer such that 2L ≥ 3
√

log(d)/ log
(
s2/d

)
.

(6)

Here and in what follows 1{·} denotes the indicator function, and c > 0 is a constant that will be
chosen small enough (see the proof of Theorem 1 below).

The next theorem provides an upper bound on the risk of N̂γ as estimator of Nγ (θ) in the
dense zone.
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Theorem 1. Let the integers d and s ∈ {1, . . . , d} be such that s2 ≥ 4d and let γ > 0. Then for
any θ ∈ B0(s) the estimator defined in (5) satisfies

Eθ

[(
N̂γ − Nγ (θ)

)2]≤ C

(
ε2γ s2

logγ (s2/d)
+ ε2s2/γ

log(s2/d)
‖θ‖2γ−2

γ 1γ>1

)

where C > 0 is a constant depending only on γ .

Inspection of the proof in Section 4.1 shows that the block structure of the estimator is needed
to retrieve the sharp logarithmic factor logγ (s2/d) in the rate for all s ≥ 2

√
d . If s is substantially

greater than
√

d , for example, da < s < d for some a > 1/2, then this logarithmic factor is
equivalent to logγ (d), and it is enough to use the estimator with only two blocks in order to
obtain the result.

Although Theorem 1 is valid for all γ > 0 it will be useful for us only when γ is not an even
integer since there exist estimators achieving better rates in the dense zone for even integers γ .
We now provide a construction of such an estimator.

Indeed, assume more generally that γ is an integer, not necessarily even. We now use the sam-
ple duplication device as above but instead of creating two independent randomized samples, we
create γ independent randomized samples (yi,m,1, . . . , d), m = 1, . . . , γ , with variance multi-
plied by γ :

yi,m = θi + ε
√

γ ξi,m,

where ξi,m are i.i.d. standard normal random variables (see Nemirovski [11] for details).
We can now estimate the value

∑d
i=1 θ

γ

i by

Ñγ =
d∑

i=1

γ∏
m=1

yi,m. (7)

Since E(
∏γ

m=1 yi,m) = θ
γ

i we find immediately that Ñγ is an unbiased estimator of
∑d

i=1 θ
γ

i :

E

(
d∑

i=1

γ∏
m=1

yi,m

)
=

d∑
i=1

θ
γ

i .

If γ is an even integer,
∑d

i=1 θ
γ

i = Nγ (θ). The risk of Ñγ admits the following bound.

Theorem 2. Let γ be an integer. Then, for any θ ∈R
d we have

Eθ

[(
Ñγ −

d∑
i=1

θ
γ

i

)2]
≤ C

(
ε2γ d + ε2‖θ‖2γ−2

2γ−2

)

where C > 0 is a constant depending only on γ . In particular, if γ is an even integer we have
here

∑d
i=1 θ

γ

i = Nγ (θ).
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Note that this theorem is valid for any sparsity s but we will use it only in the dense zone since
in the sparse zone there exist better estimators achieving the optimal rate, cf. Section 2.2 below.

As a consequence of Theorems 1 and 2, we obtain the following result for estimation of the
norm ‖θ‖γ .

Theorem 3. (i) Let the integers d and s ∈ {1, . . . , d} be such that s2 ≥ 4d and let γ > 1. Set
n̂γ = |N̂γ |1/γ , where N̂γ is defined in (5). Then

sup
θ∈B0(s)

Eθ

[(
n̂γ − ‖θ‖γ

)2]≤ C
ε2s2/γ

log(s2/d)
, (8)

where C > 0 is a constant depending only on γ .
(ii) Let γ be an even integer. Set ñγ = |Ñγ |1/γ , where Ñγ is defined in (7). Then

sup
θ∈Rd

Eθ

[(
ñγ − ‖θ‖γ

)2]≤ Cε2d1/γ , (9)

where C > 0 is a constant depending only on γ .

We will prove below that the second bound of Theorem 3 cannot be improved in a minimax
sense, and that the first is optimal up to a possible logarithmic factor. Note that, in the dense
zone s2 ≥ 4d considered in Theorem 3(i), the right-hand side of (9) is of smaller order than the
right-hand side of (8). This privileged position of even powers γ can be explained by the fact that
the even power functionals Nγ (θ) admit unbiased estimators converging with much faster rates
than the estimators for other values of γ , for which the functionals Nγ (θ) are not smooth.

2.2. Sparse zone: s2 ≤ 4d

If s belongs to the sparse zone s2 ≤ 4d , we use the estimator

N̂∗
γ =

d∑
i=1

{|yi |γ − εγ αγ

}
1y2

i >2ε2 log(1+d/s2), (10)

where

αγ = E(|ξ |γ 1ξ2>2 log(1+d/s2))

P(ξ2 > 2 log(1 + d/s2))
for ξ ∼N (0,1).

The next theorem establishes an upper bound on the risk of this estimator.

Theorem 4. Let the integers d and s ∈ {1, . . . , d} be such that s2 ≤ 4d and γ > 0. Then for any
θ ∈ B0(s) the estimator defined in (10) satisfies

Eθ

[(
N̂∗

γ − Nγ (θ)
)2]≤ C

(
ε2γ s2 logγ

(
1 + d/s2)+ ε2s2/γ ‖θ‖2γ−2

γ 1γ>1
)
,

where C > 0 is a constant depending only on γ .
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Note that the estimator N̂∗
γ can be viewed as an example of applying the following routine

developed in Collier et al. [3]. We start from the direct estimator
∑d

i=1 |yi |γ and we threshold
every term in this sum. This estimator being biased, we center every term by its mean under the
assumption that there is no signal. Finally, we choose the value of the threshold that makes the
best compromise between the first and second type errors in the support estimation problem. As
opposed to the dense zone, we do not invoke the polynomial approximation. In fact, one can
notice that the polynomial approximation is only useful in a neighborhood of 0 but in the sparse
zone we renounce estimating small instances of θi .

Finally, we derive a consequence of Theorem 4 for estimation of the functional ‖θ‖γ .

Theorem 5. Let the integers d and s ∈ {1, . . . , d} be such that s2 ≤ 4d and γ > 1. Set n̂∗
γ =

|N̂∗
γ |1/γ , where N̂∗

γ is defined in (10). Then

sup
θ∈B0(s)

Eθ

[(
n̂∗

γ − ‖θ‖γ

)2]≤ Cε2s2/γ log
(
1 + d/s2)

where C > 0 is a constant depending only on γ .

3. Lower bounds

We denote by L the set of all monotone non-decreasing functions � : [0,∞) → [0,∞) such that
�(0) = 0 and � 
≡ 0.

Theorem 6. Assume that γ > 0. Let s, d be integers such that s ∈ {1, . . . , d} and let �(·) be any
loss function in the class L. There exist positive constants c1 and c2 depending only on γ and
�(·) such that, for φ = εγ s log

γ
2 (1 + d/s2),

inf
T̂

sup
θ∈B0(s)∩{‖θ‖γ ≤φ1/γ }

Eθ �
(
c1φ

−1
∣∣T̂ − Nγ (θ)

∣∣)≥ c2,

where inf
T̂

denotes the infimum over all estimators.

The proof is omitted since it follows the lines of the proof of the lower bound in Collier et al.
[3], Theorem 1, with the only difference that L(θ) = ∑d

i=1 θi should be replaced by
∑d

i=1 θ
γ

i .
The fact that the result is valid not only over B0(s) but also over the intersection of B0(s) with
Bγ := {‖θ‖γ ≤ φ1/γ } is granted since the support of the prior measure used in the proof of the
lower bound in Collier et al. [3], Theorem 1, is included in Bγ for any γ > 0.

As a corollary of Theorem 6, we obtain the following lower bound.

Theorem 7. Assume that γ > 1. Let s, d be integers such that s ∈ {1, . . . , d} and let �(·) be any
loss function in the class L. There exist positive constants c1 and c2 depending only on γ and
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�(·) such that

inf
T̂

sup
θ∈B0(s)

Eθ �
(
c1
(
εs1/γ log1/2(1 + d/s2))−1∣∣T̂ − ‖θ‖γ

∣∣)≥ c2,

where inf
T̂

denotes the infimum over all estimators.

Although Theorems 6 and 7 are valid with no restriction on s ∈ {1, . . . , d}, they yield subopti-
mal bounds in the dense zone. We now turn to the minimax lower bounds with better rates in the
dense zone. We state them in the next three theorems of this section.

Theorem 8. Assume that 0 < γ ≤ 1. Let s, d be integers such that s ∈ {1, . . . , d} and let
�(·) be any loss function in the class L. There exist positive constants c1, c2 and c3 depend-
ing only on γ and �(·) and a constant C̄ ≥ 4 depending only on γ such that, if s2 ≥ C̄d and
φ = c3ε

γ s log− γ
2 (s2/d), then

inf
T̂

sup
θ∈B0(s)

Eθ �
(
c1φ

−1
∣∣T̂ − Nγ (θ)

∣∣)≥ c2,

where inf
T̂

denotes the infimum over all estimators.

We are now in a position to derive the result on the minimax rate for 0 < γ ≤ 1 announced
in (2). It is not hard to see that it follows from Theorems 1, 4, 6 and 8 with �(u) = u2.

Next, the minimaxity of the rate in the first line of (3) is granted by Theorems 5 and 7 while
the second line of (3) follows from Theorem 3(ii) and the next lower bound.

Theorem 9. Assume that γ is an even integer. Let s, d be integers such that s ∈ {1, . . . , d} and
s ≥ √

d . Let �(·) be any loss function in the class L. Then there exist positive constants c1 and c2

depending only on γ and �(·) such that

inf
T̂

sup
θ∈B0(s)

Eθ �
(
c1
(
εd

1
2γ
)−1∣∣T̂ − ‖θ‖γ

∣∣)≥ c2 (11)

where inf
T̂

denotes the infimum over all estimators.

In conclusion, we have the following corollary.

Corollary 1. The minimax risk on B0(s) with loss function �(u) = u2 satisfies (2) and (3).

Finally, we deduce (4) from Theorem 3(i) and the following lower bound.

Theorem 10. Assume that γ > 1 is not an even integer. Let s, d be integers such that s ∈
{1, . . . , d} and let �(·) be any loss function in the class L. There exist positive constants c1 and c2

depending only on γ and �(·) and a constant C̄ ≥ 4 depending only on γ such that, if s2 ≥ C̄d ,
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then

inf
T̂

sup
θ∈B0(s)

Eθ �

(
c1

(
εs1/γ

logγ−1/2(s2/d)

)−1∣∣T̂ − ‖θ‖γ

∣∣)≥ c2 (12)

where inf
T̂

denotes the infimum over all estimators.

4. Proofs of the upper bounds

Throughout the proofs, we denote by C positive constants that can depend only on γ and may
take different values on different appearances.

4.1. Proof of Theorem 1

Denote by S the support of θ . We start with a bias-variance decomposition

(
N̂γ − Nγ (θ)

)2 ≤ 4

(∑
i∈S

Eθ ξγ (y1,i , y2,i ) −
∑
i∈S

|θi |γ
)2

+ 4

(∑
i∈S

ξγ (y1,i , y2,i ) −
∑
i∈S

Eθ ξγ (y1,i , y2,i )

)2

+ 4

(∑
i /∈S

Eθ ξγ (y1,i , y2,i )

)2

+ 4

(∑
i /∈S

ξγ (y1,i , y2,i ) −
∑
i /∈S

Eθ ξγ (y1,i , y2,i )

)2

leading to the bound

Eθ

[(
N̂γ − Nγ (θ)

)2]≤ 4

(∑
i∈S

Bi

)2

+ 4
∑
i∈S

Vi

+ 4d2 max
i /∈S

B2
i + 4d max

i /∈S
Vi, (13)

where Bi = Eθ ξγ (y1,i , y2,i ) − |θi |γ is the bias of ξγ (y1,i , y2,i ) as an estimator of |θi |γ and Vi =
Varθ (ξγ (y1,i , y2,i )) is its variance. We now bound separately the four terms in (13). We will
show that the first two terms are smaller than

C

(
σ 2γ s2log−γ

(
s2/d

)+ σ 2

log(s2/d)

(∑
i∈S

|θi |γ−1
)2

1γ>1 + σ 2
d∑

i=1

|θi |2γ−21γ>1

)
(14)
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while the last two terms are smaller than Cσ 2γ s2 log−γ (s2/d). This proves the theorem since,
by Hölder inequality, for any θ ∈ B0(s) and γ > 1 we have

(∑
i∈S

|θi |γ−1
)2

≤ s2/γ ‖θ‖2γ−2
γ , (15)

and

d∑
i=1

|θi |2γ−2 ≤ s1/γ

(
d∑

i=1

|θi |2γ

) γ−1
γ

≤ s1/γ ‖θ‖2γ−2
γ . (16)

1◦. Bias for i /∈ S. For i /∈ S using Lemma 2, we obtain

|Bi | = σγ E|ξ |γ P
(|ξ | > tL

)≤ Cσγ e−t2
L/2, ξ ∼ N (0,1).

The last exponential is smaller than 1/d by the definition of tL, so that

d2 max
i /∈S

B2
i ≤ Cσ 2γ d ≤ C

σ 2γ s2

logγ (s2/d)
. (17)

2◦. Variance for i /∈ S. If i /∈ S, then

Vi ≤
L∑

l=0

EP̂ 2
γ,Kl,Ml

(σ ξ)P
(|ξ | > tl−1

)+ σ 2γ E|ξ |2γ P
(|ξ | > tL

)
, ξ ∼N (0,1). (18)

The last term in (18) is bounded from above as in item 1◦. Next, in view of Lemma 3,

EP̂ 2
γ,K0,M0

(σξ) ≤ Cσ 2γ 62K0

(M0/σ)4−2γ
≤ Cσ 2γ logγ

(
s2/d

)( s2

d

)2c log 6

≤ Cσ 2γ logγ
(
s2/d

)√ s2

d

if c is chosen such that 2c log 6 ≤ 1/2. Here, we use the assumption s2 ≥ 4d . For l ≥ 1, we use
Lemma 3 to obtain

EP̂ 2
γ,Kl,Ml

(σ ξ)P
(|ξ | > tl−1

)≤ Cσ 2γ 62Kl e−t2
l−1/2

(Ml/σ )4−2γ
≤ Cσ 2γ 4γ l logγ

(
s2/d

)( s2

d

)(2c log 6−1/4)4l

≤ Cσ 2γ 4γ l logγ
(
s2/d

)( s2

d

)−4l /8
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if we chose c such that 2c log 6 ≤ 1/8. In conclusion, under this choice of c, using the fact that
s2 ≥ 4d , we get

d max
i /∈S

Vi ≤ Cσ 2γ d logγ
(
s2/d

)√ s2

d
≤ Cσ 2γ s2

logγ (s2/d)
. (19)

3◦. Bias for i ∈ S. If i ∈ S, the bias has the form

Bi =
L∑

l=0

EP̂γ,Kl,Ml
(X)P

(
σ tl−1 < |X| ≤ σ tl

)+ E|X|γ P
(|X| > σtL

)− |θi |γ ,

where X ∼ N (θi, σ
2). We will analyze this expression separately in three different ranges of

values of |θi |.
3.1◦. Case 0 < |θi | < 2σ t0. In this case, we use the bound

|Bi | ≤ max
l

∣∣EP̂γ,Kl,Ml
(X) − |θi |γ

∣∣+ ∣∣E|X|γ − |θi |γ
∣∣P(|X| > σtL

)
,

where X ∼N (θi, σ
2). Since |θi | ≤ Ml for all l, we can use Lemma 4 to obtain

∣∣EP̂γ,Kl,Ml
(X) − |θi |γ

∣∣≤ C

(
Ml

Kl

)γ

≤ Cσγ

logγ /2(s2/d)
. (20)

In addition, using Lemma 1 and the inequalities tL > 3t0 ≥ 3|θi |/(2σ), 3
√

2 log(d) ≤ tL ≤
6
√

2 log(d) we get

∣∣E|X|γ − |θi |γ
∣∣P(|X| > σtL

)≤ C
(
σγ + σ 2|θi |γ−21|θi |>σ

)
P
(|ξ | > tL − |θi |/σ

)
≤ Cσγ

(
1 + (

logγ /2 d
)
1γ>2

)
P
(|ξ | > tL/3

)≤ Cσγ

logγ /2(s2/d)

where ξ ∼N (0,1). It follows that

s2 max
i:0<|θi |<2σ t0

B2
i ≤ Cσ 2γ s2

logγ (s2/d)
. (21)

3.2◦. Case 2σ t0 < |θi | ≤ 2σ tL. Let l0 ∈ {1, . . . ,L − 1} be the integer such that σ tl0 < |θi | ≤
σ tl0+1. We have

|Bi | ≤
l0−1∑
l=0

∣∣EP̂γ,Kl,Ml
(X) − |θi |γ

∣∣ · P
(
σ tl−1 < |X| ≤ σ tl

)

+ max
l≥l0

∣∣EP̂γ,Kl,Ml
(X) − |θi |γ

∣∣+ ∣∣E|X|γ − |θi |γ
∣∣, (22)
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where X ∼N (θi, σ
2). Analogously to (20), we find

max
l≥l0

∣∣EP̂γ,Kl,Ml
(X) − |θi |γ

∣∣≤ Cσγ

logγ /2(s2/d)
.

Next, Lemma 1 and the fact that |θi | > 2σ t0 = 2σ
√

2 log(s2/d) imply

∣∣E|X|γ − |θi |γ
∣∣≤ Cσ 2|θi |γ−2 ≤ C

(
σγ

logγ /2(s2/d)
1γ≤1 + σ |θi |γ−1√

log(s2/d)
1γ>1

)
. (23)

Finally, we consider the first sum on the right-hand side of (22). Notice that

P
(
σ tl−1 < |X| ≤ σ tl

)≤ e
− θ2

i

8σ2 , l = 0, . . . , l0 − 1,

since |θi | > σtl0 ≥ 2σ tl for l < l0. Using these inequalities and Lemma 5 we get

l0−1∑
l=0

∣∣EP̂γ,Kl,Ml
(X)

∣∣ · P
(
σ tl−1 < |X| ≤ σ tl

)≤ Cσγ

l0−1∑
l=0

6KlK
1+γ /2
l e(c−1)θ2

i /(8σ 2)

≤ Cσγ

l0−1∑
l=0

t
2+γ

l e(c log 6+c−1)t2
l /2.

Choose c > 0 such that c log 6 + c < 1/4. As tl = 2l
√

2 log(s2/d), this yields

l0−1∑
l=0

∣∣EP̂γ,Kl,Ml
(X)

∣∣ · P
(
σ tl−1 < |X| ≤ σ tl

)≤ Cσγ e−(1/2) log(s2/d)

≤ Cσγ

logγ /2(s2/d)
.

Furthermore,

l0−1∑
l=0

|θi |γ P
(
σ tl−1 < |X| ≤ σ tl

)≤ l0|θi |γ e
− θ2

i

8σ2

≤ C log

(
θ2
i

2σ 2 log(s2/d)

)
|θi |γ e

− θ2
i

8σ2

≤ Cσγ e
− θ2

i

16σ2 , (24)

where we have used that |θi | > σtl0 = σ2l0
√

2 log(s2/d). Since l0 ≥ 1, this also implies that (24)
does not exceed

Cσγ

logγ /2(s2/d)
.
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Combining the above arguments yields

( ∑
i∈S:2σ t0<|θi |≤2σ tL

Bi

)2

≤ C

(
σ 2γ s2

logγ (s2/d)
+ σ 2

log(s2/d)

(∑
i∈S

|θi |γ−1
)2

1γ>1

)
. (25)

3.3◦. Case |θi | > 2σ tL. Recall that the bias Bi has the form

Bi =
L∑

l=0

EP̂γ,Kl,Ml
(X)P

(
σ tl−1 < |X| ≤ σ tl

)+ E|X|γ P
(|X| > σtL

)− |θi |γ ,

where X ∼N (θi, σ
2). Using Lemma 5 we get∣∣∣∣∣

L∑
l=0

EP̂γ,Kl,Ml
(X)P

(
σ tl−1 < |X| ≤ σ tl

)∣∣∣∣∣≤ max
l=0,...,L

∣∣EP̂γ,Kl,Ml
(X)

∣∣P(|X| ≤ σ tL
)

≤ Cσγ 6KLK
1+γ /2
L ecθ2

i /(8σ 2)e−θ2
i /(8σ 2)

≤ Cσγ (logd)1+γ /269c logde9(c−1) logd

and the last upper bound is smaller than Cσγ log−γ /2(s2/d) if c > 0 is small enough. On the
other hand, using (23) we find that∣∣E|X|γ P

(|X| > σtL
)− |θi |γ

∣∣≤ ∣∣E|X|γ − |θi |γ
∣∣+ |θi |γ P

(|X| ≤ σ tL
)

≤ C

(
σγ

logγ /2(s2/d)
1γ≤1 + σ |θi |γ−1√

log(s2/d)
1γ>1

)
+ 2|θi |γ e

− θ2
i

8σ2

≤ C

(
σγ

logγ /2(s2/d)
+ σ |θi |γ−1√

log(s2/d)
1γ>1

)
.

Finally, we get

( ∑
i∈S:|θi |>2σ tL

Bi

)2

≤ C

(
σ 2γ s2

logγ (s2/d)
+ σ 2

log(s2/d)

(∑
i∈S

|θi |γ−1
)2

1γ>1

)
. (26)

4◦. Variance for i ∈ S. We consider the same three cases as in item 3◦ above. For the first two
cases, it suffices to use a coarse bound granting that, for all i ∈ S,

Vi ≤ Eθ

[
ξ2
γ (y1,i , y2,i )

]

=
L∑

l=0

EP̂ 2
γ,Kl,Ml

(X)P
(
σ tl−1 < |X| ≤ σ tl

)+ E|X|2γ P
(|X| > σtL

)
(27)

where X ∼N (θi, σ
2).



2002 O. Collier, L. Comminges and A.B. Tsybakov

4.1◦. Case 0 < |θi | < 2σ t0. In this case, we deduce from (27) that

Vi ≤ max
l=0,...,L

EP̂ 2
γ,Kl,Ml

(X) + E|X|2γ ,

where X ∼ N (θi, σ
2). Lemma 4 and the fact that E|X|2γ ≤ C(σ 2γ + σ 2|θi |2γ−2 + |θi |2γ ) (cf.

Lemma 1) imply

Vi ≤ C
(
M

2γ

L 28KL + σ 2γ + |θi |2γ
)

≤ C
(
σ 2γ logγ (d)d72c log 2 + σ 2γ logγ

(
s2/d

))
.

Hence, choosing c > 0 small enough and using the assumption s ≥ 2
√

d , we conclude that

s max
i:0<|θi |<2σ t0

Vi ≤ Cσ 2γ s2

logγ (s2/d)
. (28)

4.2◦. Case 2σ t0 < |θi | ≤ 2σ tL. As in item 3.2◦ above, we denote by l0 ∈ {1, . . . ,L − 1} the
integer such that σ tl0 < |θi | ≤ σ tl0+1. We deduce from (27) that

Vi ≤ max
l=0,...,l0−1

EP̂ 2
γ,Kl,Ml

(X)P
(|X| ≤ σ tl0−1

)+ max
l=l0,...,L

EP̂ 2
γ,Kl,Ml

(X) + E|X|2γ ,

where X ∼ N (θi, σ
2). The second and third terms on the right-hand side are controlled as in

item 4.1◦, with the only difference that now we have E|X|2γ ≤ C(σ 2γ +|θi |2γ ) ≤ Cσ 2γ logγ (d).
For the first term, we find using Lemma 5 that, for X ∼N (θi, σ

2),

max
l=0,...,l0−1

EP̂ 2
γ,Kl,Ml

(X)P
(|X| ≤ σ tl0−1

)
≤ Cσ 2γ

[
(σ/M0)

4−2γ + (σ/Ml0−1)
4−2γ

]
62Kl0−1ec log(1+4/c)θ2

i /(4σ 2)e−θ2
i /(8σ 2)

≤ Cσ 2γ logγ (d)e
(c log 6+4c log(1+4/c)−1/2)t2

l0−1 . (29)

Choosing c > 0 small enough allows us to obtain the desired bound

s max
i:2σ t0<|θi |≤2σ tL

Vi ≤ Cσ 2γ s2

logγ (s2/d)
. (30)

4.3◦. Case |θi | > 2σ tL. We first note that, for X ∼N (θi, σ
2):

Var
(|y1,i |γ 1|y2,i |>σtL

)= P
(|X| > σtL

)[
Var

(|X|γ )+ (
E|X|γ )2P

(|X| ≤ σ tL
)]

≤ C
[
σ 2|θi |2γ−2 + |θ |2γ

i P
(|X| ≤ σ tL

)]
,

where we have used the inequalities Var(|X|γ ) ≤ Cσ 2|θi |2γ−2 and (E|X|γ )2 ≤ E|X|2γ ≤
C(σ 2|θi |2γ−2 + |θi |2γ ) ≤ C|θi |2γ that are valid due to Lemma 1 and to the fact that |θi | > σ .
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Thus, we obtain

Vi ≤ 2Var

(
L∑

l=0

P̂γ,Kl,Ml
(y1,i )1σ tl−1<|y2,i |≤σ tl

)
+ 2Var

(|y1,i |γ 1|y2,i |>σtL

)

≤ 2
L∑

l=0

EP̂ 2
γ,Kl,Ml

(X)P
(
σ tl−1 < |X| ≤ σ tl

)+ C
[
σ 2|θi |2γ−2 + |θi |2γ P

(|X| ≤ σ tL
)]

≤ C
(

max
l=0,...,L

EP̂ 2
γ,Kl,Ml

(X)P
(|X| ≤ σ tL

)+ σ 2γ + σ 2|θi |2γ−21γ>1 + |θi |2γ P
(|X| ≤ σ tL

))

since for 0 < γ ≤ 1 we have |θi |2γ−2 ≤ σ 2γ−2 due to the fact that |θi | > σ . In the last display,
the term maxl=0,...,L EP̂ 2

γ,Kl,Ml
(X)P(|X| ≤ σ tL) is controlled via an argument analogous to (29)

while

|θi |2γ P
(|X| ≤ σ tL

)≤ |θi |2γ P
(|ξ | ≥ |θi |/(2σ)

)≤ 2|θi |2γ e
− θ2

i

8σ2 ≤ Cσ 2γ , ξ ∼N (0,1),

due to the fact that tL < |θi |/(2σ). This allows us to conclude that

∑
i∈S:|θi |>2σ tL

Vi ≤ C

(
σ 2γ s2

logγ (s2/d)
+ σ 2

d∑
i=1

|θi |2γ−21γ>1

)
. (31)

The result of the theorem follows now from (13), (17), (19), (21), (25), (26), (28), (30), and (31).

4.2. Proof of Theorem 2

Set σ∗ = ε
√

γ . Since yi,m are mutually independent with Eθ [∏γ

m=1 yi,m] = θ
γ

i we have

Eθ

[(
γ∏

m=1

yi,m − θ
γ

i

)2]
= Eθ

[
γ∏

m=1

y2
i,m

]
− θ

2γ

i = (
θ2
i + σ 2∗

)γ − θ
2γ

i

=
γ∑

j=1

(
γ

j

)
θ

2(γ−j)

i σ
2j∗ ≤ C

(
σ 2∗ θ

2(γ−1)

i + σ
2γ∗
)
.

The theorem follows from this inequality and the fact that

Eθ

[(
Ñγ − Nγ (θ)

)2]= Eθ

[(
d∑

i=1

{
γ∏

m=1

yi,m − θ
γ

i

})2]
=

d∑
i=1

Eθ

[(
γ∏

m=1

yi,m − θ
γ

i

)2]
.
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4.3. Proof of Theorem 3

Proof of part (i). Set φ = εγ s log−γ /2(s2/d). First, assume that ‖θ‖γ ≥ φ1/γ . Then, using the
inequality |a − b| |b|γ−1 ≤ |aγ − bγ |, ∀a, b > 0, and Theorem 1 we get

Eθ

(
n̂∗

γ − ‖θ‖γ

)2 ≤ Eθ (N̂
∗
γ − Nγ (θ))2

‖θ‖2γ−2
γ

≤ C

(
φ2 + ε2s2/γ

log(s2/d)
‖θ‖2γ−2

γ

)(‖θ‖2γ−2
γ

)−1

≤ C

(
φ2/γ + ε2s2/γ

log(s2/d)

)
≤ Cφ2/γ ,

which is the desired bound. Next, assume that ‖θ‖γ < φ1/γ . Using the inequality |a − b| ≤
|aγ − bγ |1/γ , ∀a, b > 0, Jensen’s inequality, and Theorem 1 we get

Eθ

[(
n̂∗

γ − ‖θ‖γ

)2]≤ Eθ

[∣∣N̂∗
γ − Nγ (θ)

∣∣2/γ ]
≤ C

(
φ2 + ε2s2/γ

log(s2/d)
‖θ‖2γ−2

γ

)1/γ

≤ C

(
φ2 + ε2s2/γ

log(s2/d)
φ2−2/γ

)1/γ

≤ Cφ2/γ .

Proof of part (ii). We follow the same lines as the proof of part (i) but now we set φ = εγ d1/2.
If ‖θ‖γ ≥ φ1/γ we use the inequality |a − b| |b|γ−1 ≤ |aγ − bγ |, ∀a, b > 0, Theorem 2 and the
fact that ‖θ‖2γ−2 ≤ ‖θ‖γ for γ ≥ 2 to obtain

Eθ

(
n̂∗

γ − ‖θ‖γ

)2 ≤ Eθ (N̂
∗
γ − Nγ (θ))2

‖θ‖2γ−2
γ

≤ C
(
φ2 + ε2‖θ‖2γ−2

2γ−2

)(‖θ‖2γ−2
γ

)−1 ≤ C
(
φ2/γ + ε2)≤ Cφ2/γ ,

which is the desired bound. On the other hand, if ‖θ‖γ < φ1/γ the inequality |a − b| ≤ |aγ −
bγ |1/γ , ∀a, b > 0, Jensen’s inequality, Theorem 2 and the fact that ‖θ‖2γ−2 ≤ ‖θ‖γ for γ ≥ 2
yield

Eθ

[(
n̂∗

γ − ‖θ‖γ

)2]≤ Eθ

[∣∣N̂∗
γ − Nγ (θ)

∣∣2/γ ]
≤ C

(
φ2 + ε2‖θ‖2γ−2

2γ−2

)1/γ ≤ Cφ2/γ .



Nonsmooth functional estimation 2005

4.4. Proof of Theorem 4

Denoting by S the support of θ we have

N̂∗
γ − Nγ (θ) =

∑
i∈S

{|yi |γ − εγ αγ − |θi |γ
}−

∑
i∈S

{|yi |γ − εγ αγ

}
1y2

i ≤2ε2 log(1+d/s2)

+
∑
i /∈S

{|yi |γ − εγ αγ

}
1y2

i >2ε2 log(1+d/s2),

so that

Eθ

[(
N̂∗

γ − Nγ (θ)
)2]≤ 4Eθ

[(∑
i∈S

{|yi |γ − |θi |γ
})2]

+ 2γ+2ε2γ s2 logγ
(
1 + d/s2)

+ 4ε2γ s2α2
γ + 4dε2γ E

[(|ξ |γ − αγ

)21ξ2>2 log(1+d/s2)

]
where ξ ∼N (0,1). Using Lemma 1, we get

Eθ

[(∑
i∈S

{|yi |γ − |θi |γ
})2]

=
∑
i∈S

Eθ

[(|yi |γ − |θi |γ
)2]+

∑
i,j∈S,i 
=j

(
Eθ |yi |γ − |θi |γ

)(
Eθ |yj |γ − |θj |γ

)

≤ C

(
ε2γ s + ε4

∑
|θi |>ε

|θi |2γ−4
)

+ C

(
ε2γ s2 + ε4

( ∑
|θi |>ε

|θi |γ−2
)2)

≤ C

(
ε2γ s2 + ε2

d∑
i=1

|θi |2γ−21γ≥1 + ε2

(
d∑

i=1

|θi |γ−1

)2

1γ≥1

)

≤ C
(
ε2γ s2 + ε2s2/γ ‖θ‖2γ−2

γ 1γ≥1
)

where we have used (15) and (16). Next, we use the fact that, for ξ ∼ N (0,1) and any x > 0,
a ≥ 0,

E
(|ξ |a1|ξ |>x

) ≤ Cxa−1e−x2/2,

P
(|ξ | > x

) ≥ C(1 + x)−1e−x2/2,

where C depends only on a. Choosing x = √
2 log(1 + d/s2) ≥ √

2 log(5) (as d ≥ 4s2), we
obtain

αγ ≤ C
xγ−1e−x2/2

x−1e−x2/2
≤ C logγ /2(1 + d/s2)



2006 O. Collier, L. Comminges and A.B. Tsybakov

The same property implies that

E
[(|ξ |γ − αγ

)21ξ2>2 log(1+d/s2)

]≤ 2E
(|ξ |2γ 1ξ2>2 log(1+d/s2)

)+ 2α2
γ P

(
ξ2 > 2 log

(
1 + d/s2))

≤ C
s2

d
logγ

(
1 + d/s2).

Combining the above inequalities proves the theorem.

4.5. Proof of Theorem 5

We act as in the proof of Theorem 3 with suitable modifications. Namely, set φ = εγ s ×
logγ /2(s2/d). If ‖θ‖γ ≥ φ1/γ then using Theorem 4 we get

Eθ

(
n̂∗

γ − ‖θ‖γ

)2 ≤ Eθ (N̂
∗
γ − Nγ (θ))2

‖θ‖2γ−2
γ

≤ C
(
φ2 + ε2s2/γ ‖θ‖2γ−2

γ

)(‖θ‖2γ−2
γ

)−1

≤ C
(
φ2/γ + ε2s2/γ

)≤ Cφ2/γ .

On the other hand, if ‖θ‖γ < φ1/γ then using Theorem 4 we get

Eθ

[(
n̂∗

γ − ‖θ‖γ

)2]≤ Eθ

[∣∣N̂∗
γ − Nγ (θ)

∣∣2/γ ]≤ C
(
φ2 + ε2s2/γ ‖θ‖2γ−2

γ

)1/γ

≤ C
(
φ2 + ε2s2/γ φ2−2/γ

)1/γ ≤ Cφ2/γ .

5. Lemmas for the proof of Theorem 1

Lemma 1. If X ∼N (ϑ,σ 2) and γ > 0, then∣∣E(|X|γ )− |ϑ |γ ∣∣≤ C
(
σγ 1|ϑ |≤σ + σ 2|ϑ |γ−21|ϑ |>σ

)
,

Var
(|X|γ )≤ C

(
σ 2γ 1|ϑ |≤σ + σ 2|ϑ |2γ−21|ϑ |>σ

)
.

Proof. Set for brevity

g(x) = |x|γ , bγ = E
(|X|γ )− |ϑ |γ .

First, note that if |ϑ | ≤ σ we have |bγ | ≤ Cσγ . Now, consider the case |ϑ | > σ . Then,

|bγ | ≤ 1√
2πσ

[∣∣∣∣
∫

|x|>|ϑ |/2

(
g(x + ϑ) − g(ϑ)

)
e
− x2

2σ2 dx

∣∣∣∣
+
∣∣∣∣
∫

|x|≤|ϑ |/2

(
g(x + ϑ) − g(ϑ)

)
e
− x2

2σ2 dx

∣∣∣∣
]
.



Nonsmooth functional estimation 2007

We now bound separately the two terms on the right-hand side of this inequality. Using the
second order Taylor expansion of g around ϑ and the symmetry of the Gaussian distribution, we
get

∣∣∣∣
∫

|x|≤|ϑ |/2

(
g(x + ϑ) − g(ϑ)

)
e
− x2

2σ2 dx

∣∣∣∣≤ 1

2

∫
|x|≤|ϑ |/2

max
|u|≤|ϑ |/2

∣∣g′′(ϑ + u)
∣∣x2e

− x2

2σ2 dx

≤ C|ϑ |γ−2
∫

|x|≤|ϑ |/2
x2e

− x2

2σ2 dx ≤ Cσ 3|ϑ |γ−2.

On the other hand, the first integral in the bound for |bγ | is smaller than

C

∫
|x|>|ϑ |/2

{|x|γ + |ϑ |γ }e− x2

2σ2 dx

≤ Cσγ+1
∫

|t |>|ϑ |/(2σ)

|t |γ e− t2
2 dt + Cσ |ϑ |γ

∫
|t |>|ϑ |/(2σ)

e− t2
2 dt

≤ Cσγ+1 |ϑ |γ−1

σγ−1
e
− ϑ2

8σ2 + Cσ 2|ϑ |γ−1e
− ϑ2

8σ2

≤ Cσ 2|ϑ |γ−1e
− ϑ2

8σ2 .

Combining the above inequalities yields the desired bound for the bias. The bound on the vari-
ance follows immediately since

Var
(|X|γ )= E

(|X|2γ
)− (

E|X|γ )2 = b2γ + |ϑ |2γ − [
bγ + |ϑ |γ ]2 ≤ b2γ . �

Lemma 2. Let ϑ ∈R and X ∼N (ϑ,1). For any k ∈ N, the k-th Hermite polynomial satisfies

EHk(X) = ϑk,

EH 2
k (X) ≤ kk

(
1 + ϑ2/k

)k
.

The proof of this lemma can be found in Cai and Low [1].

Lemma 3. Let P̂γ,K,M be defined in (6) with parameters K = Kl and M = Ml for some l ∈
{0, . . . ,L} and small enough c > 0. If X ∼N (0, σ 2), then

EP̂ 2
γ,K,M(X) ≤ Cσ 2γ 62K

(M/σ)4−2γ
,

where C > 0 is a constant depending only on γ .
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Proof. Recall that, for the Hermite polynomials, E(Hk(ξ)Hj (ξ)) = 0 if k 
= j and ξ ∼N (0,1).
Using this fact and then Lemmas 8 and 2, we obtain

EP̂ 2
γ,K,M(X) = M2γ

K∑
k=1

a2
γ,2k(σ/M)4kEH 2

2k(X/σ)

≤ C62KM2γ
K∑

k=1

(2k)2k(σ/M)4k.

Moreover, since σ 2/M2 = c/(8K) we have

K∑
k=1

(2k)2k(σ/M)4k ≤ 4σ 4

M4
+

∑
2≤k≤log(M/σ)

(σ/M)4k
(
2 log(M/σ)

)2k

+
∑

log(M/σ)<k≤K

(c/4)2k ≤ Cσ 4

M4
(32)

if c is small enough. The result follows. �

Lemma 4. Let P̂γ,K,M be defined in (6) with parameters K = Kl and M = Ml for some l ∈
{0, . . . ,L} and small enough c > 0. If X ∼N (ϑ,σ 2) with |ϑ | ≤ M , then

∣∣EP̂γ,K,M(X) − |ϑ |γ ∣∣≤ C

(
M

K

)γ

,

EP̂ 2
γ,K,M(X) ≤ CM2γ 28K,

where C > 0 is a constant depending only on γ .

Proof. To prove the first inequality of the lemma, it is enough to note that, due to Lemma 2,

EP̂γ,K,M(X) =
K∑

k=1

aγ,2kM
γ−2kϑ2k (33)

and to apply Lemma 7. For the second inequality, we use the bound

EP̂ 2
γ,K,M(X) ≤ M2γ

(
K∑

k=1

σ 2k|aγ,2k|M−2k
√

EH 2
2k(X/σ)

)2

. (34)

Thus Lemmas 8 and 2 together with the relations |ϑ | ≤ M and K = (c/8)M2/σ 2 imply that, for
small enough c > 0,

EP̂ 2
γ,K,M(X) ≤ CM2γ 62K

(
K∑

k=1

M−2k
(
2M2)k)2

≤ CM2γ 28K.
�
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Lemma 5. Let P̂γ,K,M be defined in (6) with parameters K = Kl and M = Ml for some l ∈
{0, . . . ,L} and small enough c > 0. If X ∼N (ϑ,σ 2) with |ϑ | > 2σ tl , then∣∣EP̂γ,K,M(X)

∣∣≤ Cσγ 6KK1+γ /2ecϑ2/(8σ 2),

EP̂ 2
γ,K,M(X) ≤ Cσ 2γ (σ/M)4−2γ 62Kec log(1+4/c)ϑ2/(4σ 2),

where C > 0 is a constant depending only on γ .

Proof. To prove the first inequality of the lemma, we use (33) and Lemma 8 to obtain

∣∣EP̂γ,K,M(X)
∣∣≤ CMγ K6K

(
ϑ2

M2

)K

.

Recall that M2 = 8σ 2K/c and |ϑ | > M by assumption of the lemma. Thus,

Mγ K6K

(
ϑ2

M2

)K

≤ Cσγ K1+γ /26KeK log(ϑ2/M2)

and the result follows since K log(ϑ2/M2) = cM2/8σ 2 log(ϑ2/M2) ≤ cϑ2/8σ 2.
We now prove the second inequality of the lemma. Using (34) and then Lemmas 8 and 2 we

get

EP̂ 2
γ,K,M(X) ≤ CM2γ 62K

(
K∑

k=1

(σ/M)2k(2k)k
(

1 + ϑ2

2σ 2k

)k
)2

.

As M2 = 8σ 2K/c and |ϑ | > M , we have

ϑ2

2σ 2k
≥ M2

2σ 2K
= 4

c
≥ 2

for c > 0 small enough. Using this remark and the fact that the function x → x−1 log(1 + x) is
decreasing for x ≥ 2 we obtain

k log

(
1 + ϑ2

2σ 2k

)
≤ c log(1 + 4/c)ϑ2

8σ 2
.

Therefore,

EP̂ 2
γ,K,M(X) ≤ CM2γ 62Kec log(1+4/c)ϑ2/(4σ 2)

(
K∑

k=1

(σ/M)2k(2k)k

)2

.

Finally, the result follows by noticing that, by an argument analogous to (32), we have

K∑
k=1

(σ/M)2k(2k)k ≤ Cσ 2

M2
.

�
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6. Some facts from approximation theory

We start with a proposition relating moment matching to best polynomial approximation. It is
similar to several results used in the theory of estimation of non-smooth functionals starting
from Lepski et al. [10]. There exist different techniques to prove such results for specific exam-
ples. Thus, the proof in Lepski et al. [10] is based on Riesz representation of linear operators,
while Wu and Yang [15] provide an explicit construction using Lagrange interpolation. Here,
for completeness we give a short proof for a relatively general setting based on optimization
arguments.

Let f : [−1,1] → R be a continuous even function. Consider the accuracy of best polynomial
approximation of f :

δK(f ) = inf
G∈PK

max
x∈[−1,1]

∣∣f (x) − G(x)
∣∣

where PK is the class of all real polynomials of degree at most K .

Proposition 1. Let f : [−1,1] → R be a continuous even function. For any even integer K ≥ 1,
there exist two probability measures μ̃0 and μ̃1 on [−1,1] such that

(i) μ̃0 and μ̃1 are symmetric about 0;
(ii)

∫
t lμ̃0(dt) = ∫

t lμ̃1(dt) for l = 0,1, . . . ,K ;
(iii)

∫
f (t)μ̃1(dt) − ∫

f (t)μ̃0(dt) = 2δK(f ).

Proof. Denote by Psym the set of all probability measures on [−1,1] that are symmetric about 0,
and by P2 be the set of all signed measures on [−1,1] with total variation not greater than 2. For
K = 2m, we have

sup
(ν0,ν1)∈Psym×Psym:∫ t l dν0(t)=

∫
t l dν1(t),l=0,...,K

(∫ 1

−1
f (x)dν0(x) −

∫ 1

−1
f (x)dν1(x)

)

= sup
μ∈P2:

∫
t2ldμ(t)=0,l=0,...,m

∫ 1

−1
f (x)dμ(x)

= sup
μ∈P2

inf
α∈Rm+1

∫ 1

−1

(
f (x) −

m∑
l=0

αlx
2l

)
dμ(x)

= inf
α∈Rm+1

sup
μ∈P2

∫ 1

−1

(
f (x) −

m∑
l=0

αlx
2l

)
dμ(x)

= 2 min
α∈Rm+1

max
x∈[−1,1]

∣∣∣∣∣f (x) −
m∑

l=0

αlx
2l

∣∣∣∣∣= 2δK(f ), (35)

where the third equality follows from Sion’s minimax theorem, and the second equality uses the
fact that f is an even function, so that the maximum over μ ∈ P2 in the second line of (35)
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is equal to the maximum over symmetric μ ∈ P2 satisfying the same moment constraints. Let
(ν∗

0 , ν∗
1 ) be the pair of probability measures attaining the maximum in the first line of (35). The

proposition follows by setting μ̃i = ν∗
i , i = 0,1. �

As an immediate corollary of Proposition 1 for f (x) = |x|γ , we obtain the following result.

Lemma 6. For any even integer K ≥ 1 and any M > 0, γ > 0, there exist two probability mea-
sures μ̃0 and μ̃1 on [−M,M] such that

(i) μ̃0 and μ̃1 are symmetric about 0;
(ii)

∫
t l μ̃0(dt) = ∫

t l μ̃1(dt) for l = 0,1, . . . ,K ;
(iii)

∫ |t |γ μ̃1(dt) − ∫ |t |γ μ̃0(dt) = 2Mγ δK,γ .

For the function f (x) = |x|γ , the asymptotically exact behavior of the best polynomial approx-
imation δK,γ as K → ∞ is well known, see, for example, Timan [13], Theorem 7.2.2, implying
the following lemma.

Lemma 7. If γ > 0 is not an even integer, then there exist positive constants c∗ and C∗ depend-
ing only on γ such that

c∗K−γ ≤ δK,γ ≤ C∗K−γ , ∀K ∈N.

Finally, the next lemma provides a useful bound for the coefficients aγ,2k in the canonical
representation of the best approximation polynomial:

Pγ,K(x) =
K∑

k=0

aγ,2kx
2k, x ∈ R. (36)

Lemma 8. Let Pγ,K(·) be the best approximation polynomial of degree 2K for |x|γ on [−1,1].
Then the coefficients aγ,2k in (36) satisfy

|aγ,2k| ≤ C6K, k = 0, . . . ,K,

where C > 0 is a constant depending only on γ .

This lemma is an immediate corollary of the following more general fact, which is a con-
sequence of Szegö’s theorem on the minimal eigenvalue of a lacunary version of the Hilbert
matrix.

Proposition 2. Let P(x) =∑N
k=0 akx

k be a polynomial such that |P(x)| ≤ 1 for all x ∈ [−1,1].
Then there exists an absolute constant C > 0 such that

|ak| ≤ C(
√

2 + 1)N

for all k ∈ {0, . . . ,N}.
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Proof. We have

∫ 1

−1

(
N∑

k=0

akx
k

)2

dx = 2
N∑

i,j=0

aiaj

i + j + 1
1i+j even. (37)

It is easy to see that the quadratic form in (37) is positive definite for all N . Furthermore, as
shown by Szegö [12], the minimal eigenvalue λmin(N) of this quadratic form satisfies

λmin(N) = 29/4π3/2N1/2(
√

2 − 1)2N+3(1 + o(1)
)

as N → ∞.

Therefore, there exists an absolute constant C0 > 0 such that λmin(N) ≥ C0(
√

2−1)2N for all N .
This inequality and (37) imply that

C0(
√

2 − 1)2N
N∑

k=0

a2
k ≤ 1

and hence maxk=0,...,N |ak| ≤ C
1/2
0 (

√
2 − 1)−N . �

7. Construction of the priors for the proof of Theorem 8

The proof of Theorem 8 will be based on Theorem 2.15 in Tsybakov [14]. It proceeds by bound-
ing the minimax risk from below by the Bayes risk with the prior measures on θ that we are
going to define in this section.

In what follows we set

� =
√

log

(
s2

d

)
, M = ε�, (38)

and we denote by K the smallest even integer such that

K ≥ 3

2
e log

(
s2

d

)
= 3

2
e�2. (39)

We will also write for brevity

B = B0(s).

In what follows, unless stated otherwise, μ̃0 and μ̃1 are the probability measures satisfying
Lemma 6 where M is defined in (38) and K is the smallest even integer for which (39)
holds.

For i = 0,1, the probability measure μi is defined as the distribution of random vector θ ∈ R
d

with components θj having the form θj = εjηj , j = 1, . . . , d , where εj is a Bernoulli random



Nonsmooth functional estimation 2013

variable with P(εj = 1) = s/(2d), ηj is distributed according to μ̃i , and (ε1, . . . , εd, η1, . . . , ηd)

are mutually independent.
Let P0 and P1 be the mixture probability measures defined by the relation

Pi (A) =
∫
Rd

Pθ (A)μi(dθ), i = 0,1,

for any measurable set A. The densities of P0 and P1 with respect to the Lebesgue measure on
R

d have the form

f0(x) =
d∏

i=1

h(xi) and f1(x) =
d∏

i=1

g(xi), x = (x1, . . . , xd) ∈R
d,

respectively, where for x ∈R we set

h(x) = s

2d
ϕ0(x) +

(
1 − s

2d

)
ϕ(x)

and

g(x) = s

2d
ϕ1(x) +

(
1 − s

2d

)
ϕ(x)

with

ϕi(x) =
∫
R

ϕ(x − t)μ̃i(dt), i = 0,1, (40)

where we denote by ϕ(·) the density of the N (0, ε2) distribution.
Note that the measures μ0 and μ1 are not supported in B . We associate to them two probability

measures μ0,B and μ1,B supported in B and the corresponding mixture measures defined by

μi,B(A) = μi(A ∩ B)

μi(B)
, Pi,B(A) =

∫
Rd

Pθ (A)μi,B(dθ), i = 0,1,

for any measurable set A.

8. Proof of Theorem 8

Since we have �(t) ≥ �(a)1t>a for any a > 0, it is enough to prove the theorem for the indicator
loss �(t) = 1t>a . Introduce the following notation:

mi =
∫
Rd

Nγ (θ)μi(dθ), v2
i =

∫
Rd

(
Nγ (θ) − mi

)2
μi(dθ), i = 0,1.
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Note that Lemmas 6 and 7 imply:

m1 − m0 = d

(∫
Rd

|θ1|γ μ1(dθ) −
∫
Rd

|θ1|γ μ0(dθ)

)

= s

2

(∫ M

−M

|t |γ μ̃1(dt) −
∫ M

−M

|t |γ μ̃0(dt)

)

= sMγ δK,γ ≥ c∗s(M/K)γ ≥ C1
εγ s

�γ
, (41)

where C1 > 0 is a constant depending only on γ .
Let V (P,Q) denote the total variation distance between two probability measures P and Q.

For any u > 0 and any c ∈R we have, using Theorem 2.15 in Tsybakov [14],

inf
T̂

sup
θ∈B0(s)

Pθ

(∣∣T̂ − Nγ (θ)
∣∣≥ u

)≥ 1 − V ′

2
, (42)

where

V ′ = V (P0,B,P1,B) + μ0,B

(
Nγ (θ) ≥ c

)+ μ1,B

(
Nγ (θ) ≤ c + 2u

)
.

We now apply (42) with the parameters

c = m0 + 3v0, u = m1 − m0

4
.

By Chebyshev–Cantelli inequality,

μ0
(
Nγ (θ) ≥ c

)≤ v2
0

v2
0 + (c − m0)2

= 1

10
. (43)

Next, since the measures μ̃0 and μ̃0 are supported in [−M,M],

max
(
v2

0, v2
1

)≤ dM2γ = dε2γ �2γ . (44)

Thus, we may write

max(v0, v1) ≤
(√

d

s
�2γ

)
εγ s

�γ
,

where, for C̄ large enough,
√

d
s

�2γ =
√

d
s

logγ ( s2

d
) ≤ C1/12 (recall that s2 ≥ C̄d by assumption).

Therefore,

max(v0, v1) ≤ C1

12

εγ s

�γ
. (45)
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It follows from (41), (45) and Chebyshev–Cantelli inequality that

μ1
(
Nγ (θ) ≤ c + 2u

)= μ1

(
Nγ (θ) − m1 ≤ −m1 + m0

2
+ 3v0

)

≤ μ1

(
Nγ (θ) − m1 ≤ −m1 − m0

2
+ 3v0

)

≤ μ1

(
Nγ (θ) − m1 ≤ −C1

4

εγ s

�γ

)
≤ 1

10
. (46)

By Lemma 9, we have μi(B) ≥ 7/8, i = 0,1. Combining these inequalities with (43) and (46)
we immediately conclude that

μ0,B

(
Nγ (θ) ≥ c

)+ μ1,B

(
Nγ (θ) ≤ c + 2u

)≤ 8/35. (47)

Next, we consider the total variation distance V (P0,B,P1,B). Using Lemma 9 we get that, for C̄

large enough,

V (P0,B,P1,B) ≤ V (P0,B,P0) + V (P0,P1) + V (P1,P1,B)

≤ V (P0,P1) + μ0
(
Bc

)+ μ1
(
Bc

)
≤ V (P0,P1) + 1/4

≤
√

χ2(P1,P0)/2 + 1/4

≤ (
√

2 + 1)/4, (48)

where the last two inequalities are due to Pinsker’s inequality and Lemma 11, respectively. Com-
bining (42), (47) and (48) we get that, if s2 ≥ C̄d for C̄ > 0 large enough, there exists a constant
C > 0 depending only on γ such that

inf
T̂

sup
θ∈B0(s)

Pθ

(∣∣T̂ − Nγ (θ)
∣∣≥ C

εγ s

�γ

)
>

1

16
.

This completes the proof.

9. Lemmas for the proof of Theorem 8

Lemma 9. For i = 0,1, we have

V (Pi ,Pi,B) ≤ μi

(
Bc

)
. (49)

Furthermore, there exists an absolute constant C̄ > 0 such that, for any s2 ≥ C̄d ,

μi

(
Bc

)≤ 1/8, i = 0,1. (50)
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Proof. We can use, for example, Lemma 4 in Comminges et al. [5]. Repeating its argument
we get that V (Pi ,Pi,B) ≤ μi(B

c) = P(B(d, s
2d

) > s) ≤ e− s
16 where B(d, s

2d
) is the binomial

random variable with parameters d and s
2d

. �

Lemma 10. Let μ̃0 and μ̃1 be two probability measures on [−M,M] satisfying the moment
matching property (ii) of Lemma 6 with some K ≥ 1. Let ϕ0 and ϕ1 be defined in (40) where ϕ is
the density of N (0, ε2) distribution. Then

∫
(ϕ0(x) − ϕ1(x))2

ϕ(x)
dx ≤

∞∑
k=K+1

�2k

k!

where � = M/ε.

Proof. By rescaling, it suffices to consider the case ε = 1, M = �. Introducing the notation
Ei (k) = ∫

tkμ̃i(dt), i = 0,1, it is straightforward to check that

∫
(ϕ0(x) − ϕ1(x))2

ϕ(x)
dx =

∫
eϑϑ ′

μ̃1(dϑ)μ̃1
(
dϑ ′)

+
∫

eϑϑ ′
μ̃0(dϑ)μ̃0

(
dϑ ′)

− 2
∫

eϑϑ ′
μ̃1(dϑ)μ̃0

(
dϑ ′)

=
∞∑

k=0

1

k!
((
E1(k)

)2 + (
E0(k)

)2 − 2E1(k)E0(k)
)

=
∞∑

k=0

1

k!
(
E1(k) −E0(k)

)2
.

It remains to notice that E1(k) = E0(k) for k = 0, . . . ,K , by property (ii) of Lemma 6, and
|E1(k) −E0(k)| ≤ �2k for all k. �

Lemma 11. If s2 ≥ 4d , then

χ2(P1,P0) < 1/4.

Proof. Since P0 and P1 are product measures we have

χ2(P1,P0) =
(

1 +
∫

(g − h)2

h

)d

− 1,
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cf., for example, Tsybakov [14], page 86. It follows from the definition of g and h and from
Lemma 10 that

∫
(g − h)2

h
≤ 1

1 − s
2d

(
s

2d

)2 ∫
(ϕ1 − ϕ0)

2

ϕ
≤ 2

(
s

2d

)2 ∞∑
k=K+1

�2k

k! .

Using the inequalities k! ≥ (k/e)k and 1 + x ≤ ex we get

χ2(P1,P0) ≤ exp

(
s2

2d

∞∑
k=K+1

(
e�2

k

)k
)

− 1.

Recall that K ≥ 3e�2/2 and K − 2 < 3e�2/2. Thus,

s2

2d

∞∑
k=K+1

(
e�2

k

)k

≤ s2

2d

∞∑
k=K+1

(2/3)k = s2

d
(2/3)K

<
4s2

9d
exp

(
3e log(2/3)L2/2

)= 4

9

(
s2

d

)a

where a = 1 + 3e log(2/3)/2 < −0.6. Since s2 ≥ 4d we get χ2(P1,P0) ≤ exp(40.4/9) − 1 <

1/4. �

10. Proof of Theorems 7 and 9

Theorems 7 and 9 are obtained as corollaries of Theorem 6 thanks to the following lemma.

Lemma 12. Let γ > 1. Then, for any φ > 0, any θ ∈ R
d such that ‖θ‖γ ≤ φ1/γ , and any esti-

mator T̂ ≥ 0,

Pθ

(∣∣T̂ − ‖θ‖γ

∣∣≥ φ1/γ
)≥ Pθ

(∣∣T̂ γ − ‖θ‖γ
γ

∣∣≥ Cφ
)
.

Proof. Since ‖θ‖γ ≤ φ1/γ we have

∣∣T̂ − ‖θ‖γ

∣∣= ∣∣T̂ − ‖θ‖γ

∣∣1{T̂ >2φ1/γ } + ∣∣T̂ − ‖θ‖γ

∣∣1{T̂ ≤2φ1/γ }

≥ φ1/γ 1{T̂ >2φ1/γ } + ∣∣T̂ − ‖θ‖γ

∣∣1{T̂ ≤2φ1/γ }

≥ φ1/γ 1{T̂ >2φ1/γ } + |T̂ γ − ‖θ‖γ
γ |

γ max(T̂ (γ−1)/γ ,‖θ‖γ−1
γ )

1{T̂ ≤2φ1/γ }

≥ φ1/γ 1{T̂ >2φ1/γ } + |T̂ γ − ‖θ‖γ
γ |

2γ−1γφ(γ−1)/γ
1{T̂ ≤2φ1/γ }
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where we have used the inequality |xγ −yγ | ≤ γ max(xγ−1, yγ−1)|x−y|, ∀x, y > 0. This yields
the result of the lemma with C = 2γ−1γ . �

It suffices to prove Theorems 7 and 9 for the indicator loss �(t) = 1t≥a , a > 0, and to consider
the infimum only over non-negative estimators T̂ ≥ 0 since the estimated functional is non-
negative. It follows from Lemma 12 that

inf
T̂ ≥0

sup
θ∈B

Pθ

(∣∣T̂ − ‖θ‖γ

∣∣≥ φ1/γ
)≥ inf

T̂ ′≥0
sup
θ∈B

Pθ

(∣∣T̂ ′ − ‖θ‖γ
γ

∣∣≥ Cφ
)
,

where B = B0(s) ∩ {‖θ‖γ ≤ φ1/γ }. The result of Theorem 7 follows immediately from this
inequality with φ = cεγ s logγ /2(1+d/s2) and Theorem 6. Here, c is a sufficiently small positive
number. To prove Theorem 9, it suffices to apply Theorem 6 with s being the minimal integer
greater than or equal to

√
d and to use the fact that the classes B0(s) are nested.

11. Proof of Theorem 10

The proof is analogous to that of Theorem 8 subject to a modification that we detail here. Let c

and u be as in the proof of Theorem 8:

c = m0 + 3v0, u = m1 − m0

4
.

Define

c′ = c1/γ , u′ = (c + 2u)1/γ − c1/γ

2
.

Analogously to (42), we obtain from Theorem 2.15 in Tsybakov [14] that

inf
T̂

sup
θ∈B0(s)

Pθ

(∣∣T̂ − ‖θ‖γ

∣∣≥ u′)≥ 1 − V ′

2
, (51)

where

V ′ = V (P0,B,P1,B) + μ0,B

(‖θ‖γ ≥ c′)+ μ1,B

(‖θ‖γ ≤ c′ + 2u′).
Note that this value is equal to V ′ defined in the proof of Theorem 8. Hence, V ′ is bounded from
above exactly as in the proof of Theorem 8 and to complete the proof of Theorem 10 we only
need to check that u′ ≥ Cεs1/γ log1/2−γ (s2/d), which is the desired rate. Using the inequality
|xγ − yγ | ≤ γ max(xγ−1, yγ−1)|x − y|, ∀x, y > 0, we get

u′ ≥ 2u

γ (c + 2u)(γ−1)/γ
.

Next, due to (41), (44) and the assumption that s ≥ 2
√

d , we have

c + 2u = m1 + m0

2
+ 3v0 ≤ sMγ + 3

√
dMγ ≤ 3sMγ = 3sεγ �γ .
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Moreover, (41) implies that u ≥ (C1/4)sεγ �−γ . Thus, u′ ≥ Cεs1/γ �1−2γ and we conclude by
recalling the definition of �.
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