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We consider a long-memory stationary process, defined not through a moving average type structure, but
by a flow generated by a measure-preserving transform and by a multiple Wiener–Itô integral. The flow
is described using a notion of mixing for infinite-measure spaces introduced by Krickeberg (In Proc. Fifth
Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Prob-
ability Theory, Part 2 (1967) 431–446 Univ. California Press). Depending on the interplay between the
spreading rate of the flow and the order of the multiple integral, one can recover known central or non-
central limit theorems, and also obtain joint convergence of multiple integrals of different orders.
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1. Introduction

A stationary sequence {X(n)} is said to have long memory, or long-range dependence, if a quan-
tity measuring dependence decays slowly as the time lag increases so that some nonstandard
scaling behavior arises. Typically, long memory is associated with a power decay of the co-
variance Cov[X(n),X(0)], like nβ−1 as n → ∞ with β ∈ (0,1), so that the sum

∑N
n=1 X(n)

scales in the order N1/2+β/2 as N → ∞. Note that the magnitude of the fluctuations of the sum∑N
n=1 X(n) is larger than the standard order N1/2 under weak dependence. The phenomenon

of long memory has attracted a lot of attention in probability and statistics. On the probability
side, long memory gives rise to various non-standard limit theorems leading to interesting scaling
limits; on the statistics side, time series data exhibiting long memory is often found in real-life
contexts whose analysis typically requires procedures quite different from the weakly dependent
cases. For more information about long memory, we refer to the recent monographs Giraitis et al.
[14], Beran et al. [6], Samorodnitsky [43], Pipiras and Taqqu [40] and the references therein.

There are various models which exhibit long memory. To generate long memory, a typical
way is to introduce some moving-average structure with coefficients decaying slowly, like a
power law. For example, one of the most popular long-memory model considered in statistics
(e.g., Granger and Joyeux [16]), is the long-memory linear process, given by

X(n) =
∞∑

j=−∞
fn+j εj ,
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where {εj } is a centered i.i.d. random sequence, and fj decays slowly as j → ±∞. One may
consider a similar model (e.g., Brockwell and Marquardt [9])

X(n) =
∫
R

f (n + x)M(dx), (1)

where M(·) is a homogeneous independently scattered random measure (or say a Lévy process),
and f (x) is a function that decays slowly as x → ±∞.

There has been recently some interest in long-memory models where the power-law decay of
dependence is generated in a different manner, one involving infinite ergodic theory (Aaronson
[1]). To motivate, we rewrite (1) as

X(n) =
∫
R

f
(
T nx

)
M(dx), (2)

where T : R → R is the shift operator x → x + 1, which preserves the Lebesgue measure. The
flow {T n} is totally dissipative on R, since any point leaving a subset of R will not return to this
subset again. Note that in this setting, the long memory of {X(n)} is due to a function f which
decays slowly on a “large” part of the space. It is not due to the flow {T n} since this flow does
not return and thus has no “memory”.

We now consider a setup which reverses the preceding roles of f and {T n}, that is, f will
now be supported on a “small” piece of the space, while {T n} will generate the memory using
a suitable mode of return behavior. In general, let (E,E,μ) be a measure space, where μ is a
σ -finite measure on the σ -field E . We make the important assumption:

μ(E) = +∞. (3)

Let T : E → E be a measurable transformation which preserves the measure μ, that is, μT −1 =
μ. Consider

X(n) =
∫

E

f
(
T nx

)
M(dx), (4)

where M is an independently scattered random measure with control measure μ, and where f is
a suitable function. We do not have a moving average structure as in (1). To generate an infinitely-
lasting memory, we require {T n} to be conservative, that is, the total return count to a set A ∈ E
with μ(A) > 0, is infinite, namely

∞∑
n=1

1A

(
T nx

) = ∞

for a.e. x ∈ A. On the other hand, we also want the memory to vanish as n → ∞ eventually. This
is where the infinite measure assumption (3) plays a key role. To see this, suppose a starting point
x is chosen at random using the probability measure PA(·) := μ(· ∩ A)/μ(A). Consider the first
return time τA(x) = inf{n ∈ Z+, x ∈ A, T nx ∈ A} and assume that T is ergodic. Then by Kac’s
formula (Item 1.1.5 of Aaronson [1]), the expected return time EτA is infinite. In a probabilistic
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language, the flow {T n} is null-recurrent, namely, while the returns happen infinitely often, they
are so sparse that the expected return time is infinite.

Concrete examples of the aforementioned dynamical system (E,E,μ,T ) can be found in
Example 4.1 and 4.2 below. In Example 4.1, the space is E = [0,1] and μ has an explicit density
(22) with respect to the Lebesgue measure. The density has a power-law behavior around the
origin, which is the fixed point of T . In Example 4.2, the space E is the path space of a null-
recurrent Markov chain and T is the shift operator. The transition probability of the Markov
chain has a power-law decay.

We also assume that the function f is supported on a set G ∈ E with 0 < μ(G) < ∞. The set G

has a small size in contrast to μ(E) = ∞. In addition, the set G needs to satisfy some condition to
ensure the desired specific long memory property for {X(n)}. For example, G can be the Darling-
Kac set (p. 123 of Aaronson [1]) or the uniform set considered in Owada and Samorodnitsky [35],
or the uniformly returnning set considered in Owada [34]. In all these setups, the strength of the
memory is characterized by a parameter β ∈ (0,1). The precise descriptions of these sets are
technical, while loosely speaking, they imply that the return count

∑N
n=1 1A(T nx) averaged over

x ∈ G diverges to infinity like Nβ as N → ∞.
Some recent studies considered limit theorems for {X(n)} in (4) where the random measure

M(·) has infinite variance. Owada and Samorodnitsky [35] and Jung et al. [20] established limit
theorems for the sum

∑N
n=1 X(n). Owada and Samorodnitsky [36], Lacaux and Samorodnitsky

[24] and Samorodnitsky and Wang [44] considered limit theorems for the extreme maxN
n=1 X(n).

Owada [34] considered a limit theorem for the sample autocovariance of X(n). See also Chap-
ter 9 of Samorodnitsky [43] for some introductory discussion on these topics.

So far the studies have focused on limit theorems for the linear integral model in (4). We
consider here a nonlinear analog involving a multiple stochastic integral:

X(n) =
∫ ′

Ek

f
(
T nx1, . . . , T

nxk

)
M(dx1) . . .M(dxk), (5)

where M(·) is a Gaussian measure, and the prime ′ on the integral sign excludes integration
on the diagonals xp = xq , p �= q . In this case, X(n) belongs to the so-called Wiener chaos of
order k (see, e.g., Peccati and Taqqu [37]). This choice makes sense in view of the fruitful line
of research relating long memory to multiple stochastic integrals, starting from Rosenblatt [41],
Taqqu [46,47], Dobrushin and Major [11], etc.

The goal is to recover limit theorems for the sum
∑N

n=1 Xn using the mixing framework of
Krickeberg [23]. We shall show that depending on the interplay between the parameter β that
characterizes the “spreading rate” of T , and the order of integrals m in (5), we can recover limit
theorems involving multiple Wiener–Itô integrals with long memory, namely, obtain as a scaling
limit either Brownian motion or a Hermite process. A joint convergence involving both Brownian
motion and Hermite processes is also established. We mention that a recent work Bai et al. [3]
considered a limit theorem for the sum

∑N
n=1 Xn when the random measure M(·) in (5) has

infinite variance.
The argument of this paper is developed using three main steps:

Step 1: We develop in Section 2 the relevant ergodic-theoretic framework and use it to relate
the kernel f in (5) to simple functions with special structures. This step is of special
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interest: a mixing condition on an infinite-measure space due to Krickeberg [23] is
introduced to generate data with long memory.

Step 2: We show in Lemma 5.4 that the desired limit theorems hold if they hold for these
special simple functions.

Step 3: We show in Proposition 5.5 that the limit theorems do hold for these special simple
functions.

The paper is organized as follows: In Section 2, we introduce the mixing framework of Kricke-
berg, where we define the space (E,E,μ) and the transform T : E → E. The main results in-
volving the multiple integrals are stated in Section 3. Some examples of Krickeberg mixing are
given in Section 4. The proofs are found in Section 5.

2. Krickeberg mixing

In this section, we give some background to the main results of Section 3, focusing mainly on the
mixing framework in Krickeberg [23]. The section is organized as follows. We start with some
motivating discussion and then state the key assumption, namely Assumption 2.1, which involves
the mixing condition (7) stated below. Equivalent formulations of Assumption 2.1 are given in
Proposition 2.5. The extension to the product measure space is given in Proposition 2.6. Lemma
2.9 then provides the key approximation tool used in the proof of the main results in Section 3.

2.1. Motivation

Let (E,E,μ) be a measure space, where μ a measure on the σ -field E . Let T : E → E be a
measurable mapping which preserves the measure μ, namely, μT −1 = μ. When μ(E) < ∞, the
transform T is said to be mixing if

lim
n→∞μ

(
A ∩ T −nB

) = μ(A)μ(B), for all A,B ∈ E . (6)

When μ(E) = +∞, however, even the following weaker requirement: there exists a fixed se-
quence ρn ∈ (0,∞) termed spreading rate, typically tending to infinity as n → ∞, such that

lim
n→∞ρnμ

(
A ∩ T −nB

) = μ(A)μ(B) (7)

holds for all A,B ∈ E , is usually too stringent. This is because there are sets A and B for which
it does not hold. This is due to the existence of the weakly wandering sets when T is ergodic (i.e.,
T −1A = A ⇒ μ(A) = 0 or μ(Ac) = 0). A set A ∈ E is said to be weakly wandering if there is
a subsequence {nk} with 0 = n0 < n1 < n2 < · · · such that T −nkA are disjoint, k = 0,1,2, . . ..
The existence of such a set A with positive measure invalidates (7). Indeed, take B = A, and
we have μ(A ∩ T −nkB) = μ(A ∩ T −nkA) = μ(∅) = 0, k = 1,2, . . .. Hence, (7) cannot hold.
By Hajian and Kakutani [17] (see also Eigen et al. [13]), a weakly wandering set with positive
measure always exists when T is ergodic and μ(E) = +∞.

On the other hand, extending an early example of Hopf [18], Krickeberg [23] formulated the
mixing relation (7) by introducing a topological structure on (E,E). This bears a resemblance
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to the necessity of introducing a topological context when developing the theory of weak con-
vergence of measures. Krickeberg [23] then restricted the relation (7) to sets A and B whose
boundaries have zero μ measures.

2.2. Basic assumptions

We will use a variant of the setup of Krickeberg [23]. For convenience, we work with a topologi-
cal assumption, that is, Polish space, which is stronger, but more common, than that in Krickeberg
[23], while still retaining all the concrete examples.

Recall that a Polish space is a topological space whose topology can be induced by a complete
(Cauchy sequence converges) and separable (contains a countable dense subset) metric. Below
for a subset A of a Polish space, Ā denotes its closure, Å denotes its interior, and ∂A = Ā \ Å

denotes its boundary. A set A is said to be a μ-continuity set if μ(∂A) = 0, or equivalently, 1A is
μ-a.e. continuous, that is, the set of discontinuity points of 1A has zero μ measure. The notation
an ∼ bn means limn→∞ an/bn = 1 in what follows.

Assumption 2.1. Let (E,E,μ) be a measure space, where μ is an atomless σ -finite measure on
the σ -field E with μ(E) = +∞. Let T : E → E be a measurable mapping which preserves the
measure μ, namely, μT −1 = μ. Suppose that there exists G ∈ E with μ(G) ∈ (0,∞), so that
G is a Polish space with EG := E ∩ G being the associated Borel σ -field, such that the mixing
relation (7) holds for any μ-continuity sets A,B ∈ EG with a positive sequence

ρn ∼ cT n1−β, β ∈ (0,1), (8)

where cT > 0 is a constant which does not depend on A or B .

A number of remarks and consequences of these assumptions are given below.

Remark 2.2. In Assumption 2.1, relation (7) involves μ-continuity sets A and B in EG. Note that
the μ-continuity is with respect to the Polish topology of the subspace G, and strictly speaking,
we are referring to μG-continuity with μG being the restriction of μ to EG. To simplify notation,
we shall still use μ in place of μG. Note in particular that under Assumption 2.1, the relation
(7) holds if A = B = G since the whole space G is both open and closed and is thus always a
μ-continuity set.

Remark 2.3. Some examples satisfying Assumption 2.1 will be provided in Section 4. See also
Krickeberg [23], Thaler [48], Kesseböhmer and Slassi [22] Gouëzel [15] and Melbourne and
Terhesiu [26].

Remark 2.4. A more general case where cT in (8) is replaced by a slowly varying function (see
Bingham et al. [7]), for example, a logarithm, can be considered as well. We focus on the case
(8) for simplicity and also because it is typically found in examples.
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Throughout the paper we shall use the following convention: any function f defined on a sub-
set (e.g., G) will be extended to the full space (e.g., E) by assuming zero value on the complement,
whenever this is necessary to make sense of a statement.

The next proposition provides some equivalent descriptions of the mixing relation (7).

Proposition 2.5. Let G, EG and (ρn) be as in Assumption 2.1, where G is Polish with Borel
σ -field EG. Then the following three statements are equivalent:

(1) The mixing relation (7) holds for any μ-continuity sets A,B ∈ EG;
(2) For any bounded and μ-a.e. continuous functions f1, f2 on G, we have

lim
n→∞ρn

∫
E

f1 · (f2 ◦ T n
)
dμ = μ(f1)μ(f2); (9)

(3) There exists a collection C ⊂ EG satisfying the following properties:
(a) C is a π -system (namely, A,B ∈ C ⇒ A ∩ B ∈ C) containing G.
(b) C generates the Polish topology of G in the sense that for any open U ⊂ G and any

x ∈ U , there exists A ∈ C so that x ∈ Å ⊂ A ⊂ U .
(c) Any A ∈ C is a μ-continuity set.
(d) For any A,B ∈ C, the mixing relation (7) holds with the spreading rate (ρn).

The proof is similar to the arguments sketched on P.435 of Krickeberg [23]. We include a proof
in Section A.1 below for the sake of completeness.

The next step is to consider a product space. Recall that G is Polish. Let Gk = G × · · · × G

be the product space associated with the product topology, which is also a Polish space. Let Ek
G

be the product σ -field of EG, which is also the Borel σ -field generated by the product subspace
topology on Gk (e.g., Lemma 6.4.2 of Bogachev [8]). Let μk be the product measure defined on
Ek . Define (Cartesian) product transformation

Tk(x1, . . . , xk) := (T x1, . . . , T xk). (10)

Proposition 2.6. If Assumption 2.1 holds for (E,E,μ,T ,G,ρn), then it also holds if the former
is replaced by (Ek,Ek,μk, Tk,G

k,ρk
n).

The proof of Proposition 2.6 is included in Section A.2 below.
In view of Propositions 2.6 and 2.5(2), under Assumption 2.1 we have the following product

space version of (9):

lim
n→∞ρk

n

∫
Ek

f1 · (f2 ◦ T n
k

)
dμk = μk(f1)μ

k(f2), (11)

where f1, f2 are bounded μk-a.e. continuous functions on Gk .

2.3. Approximations

We now introduce a class of approximation functions. It is used in the proof of Proposition 2.5
in Section A.1 below, and also in the proof of the key reduction Lemma 5.4 in Section 5.1.
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Definition 2.7. A function g : Gk → R is said to be an elementary function, if it is a finite linear
combination of indicators of k-products of μ-continuity sets in EG, namely,

g(x1, . . . , xk) =
J∑

j=1

aj 1A1,j ×···×Ak,j
(x1, . . . , xk) =

J∑
j=1

aj 1A1,j
(x1) × · · · × 1Ak,j

(xk), (12)

where J ∈ Z+, aj ’s are some real constants and Ai,j ∈ EG with μ(∂Ai,j ) = 0. A set A ∈ Ek
G is

said to be an elementary set, if 1A is an elementary function.

Remark 2.8. Any elementary function is μk-a.e. continuous in view of

∂(B1 × · · · × Bk) = (∂B1 × B̄2 × · · · × B̄k) ∪ · · · ∪ (B̄1 × · · · × B̄k−1 × ∂Bk). (13)

Moreover, the class of elementary functions forms a vector space, and in addition, if f and g are
elementary, then so is f · g. Using this one can check that if A,B ∈ Ek

G are elementary sets, then
so are A ∩ B , A \ B and A ∪ B .

Lemma 2.9. Let f be a bounded μ-a.e. continuous function on Gk . Then for any ε > 0, there
exist elementary functions g1, g2 in the sense of Definition 2.7, such that g1 ≤ f ≤ g2 and
|μk(f ) − μk(gi)| < ε, i = 1,2.

The proof of Lemma 2.9 is included in Section A.3 below.
For a real-valued function f defined on a space E, the notation ‖f ‖∞ = sup{|f (x)| : x ∈ E}

denotes its supremum norm. The proof of Lemma 2.9 above also yields the following conse-
quence.

Corollary 2.10. Given a bounded and μ-a.e. continuous f on Gk , for any ε > 0, there exists
μk-continuity set Gε ∈ Ek

G, and an elementary function fε on Gk , such that∥∥(f − fε)1Gε

∥∥∞ < ε, ‖fε‖∞ ≤ ‖f ‖∞, and μk
(
Gk \ Gε

)
< ε. (14)

The proof of Corollary 2.10 can be found in Section A.4 below.

3. Limit theorems

We start with a brief introduction to multiple Wiener–Itô integrals. Let (E,E,μ) be the atomless
σ -finite measure space. Let W(·) be a Gaussian random measure on (E,E) with control measure
μ, which satisfies

EW(A)W(B) = μ(A ∩ B)

for any A,B ∈ E . Let k,p, q ∈ Z+. For a function f ∈ L2(μk) = L2(Ek,Ek,μk), the space of
square-integrable real-valued functions defined on the product measure space (Ek,Ek,μk), one
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can define the multiple Wiener–Itô integral

Ik(f ) =
∫ ′

Ek

f (x1, . . . , xk)W(dx1) . . .W(dxk),

where the prime ′ indicates the exclusion of the diagonals xp = xq , p �= q . Due to the off-diagonal
nature of the multiple integral, we have EIk(f ) = 0. In addition, one can symmetrize f without
changing Ik(f ), and hence the symmetry of f is often assumed without loss of generality. If
symmetric f ∈ L2(μp), g ∈ L2(μq), then the covariance

EIp(f )Iq(g) =
{

k!〈f,g〉L2(μk), if p = q = k;
0 if p �= q.

(15)

The collection of random variables {Ik(f ) : f ∈ L2(μk)} forms an L2 subspace and is called the
k-th Wiener chaos with respect to W(·). For more details about multiple Wiener–Itô integrals,
we refer the reader to Major [25] and Peccati and Taqqu [37].

In the case where E =R, E is Borel and μ is Lebesgue, one can consider the following process
defined by a multiple Wiener–Itô integral (Dobrushin [10], Taqqu [47]):

Zk,H (t) = ck,H

∫ ′

Rk

∫ t

0

k∏
i=1

(s − xi)
(H−1)/k−1/2
+ ds W(dx1) . . .W(dxk), (16)

where ck,H is a constant to ensure Var[Zk,H (1)] = 1. We call Zk,H (t) the standard Hermite
process. The process Zk,H (t) also admits other representations (Pipiras and Taqqu [39]).

From now on, we adopt the setup in Section 2, in particular, we shall suppose Assumption 2.1,
which involves the measure-preserving dynamic system (E,E,μ,T ) and the finite-measure Pol-
ish subspace G. Let f be a symmetric bounded μk-a.e. continuous function on Gk (following
the convention made in Section 2, it is extended to Ek \ Gk by assuming zero value). Then by
the measure-preserving property of T , we have f ◦T n

k ∈ L2(μk), n ∈ Z+, where Tk is as in (10).
Then one can define a strictly stationary sequence on the k-th Wiener chaos as follows:

X(n) = Ik

(
f ◦ T n

k

) =
∫ ′

Ek

f
(
T nx1, . . . , T

nxk

)
W(dx1) . . .W(dxk), (17)

where W(·) has control measure μ. The stationarity of (X(n))n≥1 is shown in Lemma 5.1 below.
The second-order structure of X(n) can be readily clarified. In particular, EX(n) = 0, and by

(15),

EX(n)X(0) = k!
∫

Gk

f
(
T nx1, . . . , T

nxk

)
f (x1, . . . , xk)μ(dx1) . . .μ(dxk)

∼ k!μk(f )2ρ−k
n ∼ k!c−k

T μk(f )2nk(β−1), (18)
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where the the first asymptotic equivalence in (18) follows from Proposition 2.6, and the second
follows from (8). The goal is to establish limit theorems of the form

SN(t) = 1

A(N)

[Nt]∑
n=1

X(n) ⇒ Z(t), t ∈ [0,1], (19)

as N → ∞, where ⇒ stands for weak convergence in D[0,1] under the uniform metric (our
limits admit continuous sample paths), and [x] stands for the integer part of x.

In view of (18), one sees that
∑

n EX(n)X(0) is summable if and only if k(1 − β) > 1. The
summability of the covariance is typically viewed as an indication of short memory, whereas the
absence of summability is typically viewed as an indication of long memory. This explains the
case division in our main result Theorem 3.1 below.

Theorem 3.1. Under Assumption 2.1, suppose that f in (17) is a symmetric bounded and μ-a.e.
continuous function on Gk (setting f = 0 on Ek \ Gk), where G is as in Assumption 2.1. Then
we have the following three results:

(a) If k(1 − β) > 1 and σ 2 = ∑
n EX(n)X(0) �= 0, then (19) holds with

Z(t) = B(t), A(N) = σN1/2,

where B(t) is the standard Brownian motion.
(b) If k(1 − β) = 1 and μk(f ) = ∫

Gk f dμk �= 0, then (19) holds with

Z(t) = B(t), A(N) = 2−1/2μk(f )c
−k/2
T

(
k!N ln(N)

)1/2
,

where B(t) is the standard Brownian motion.
(c) If 0 < k(1 − β) < 1, and μk(f ) = ∫

Gk f dμk �= 0 then (19) holds with

Z(t) = Zk,H (t), A(N) = μk(f )c
−k/2
T

(
k!H(2H − 1)

)1/2
NH ,

where Zk,H (t) is the standard Hermite process in (16) with Hurst index H = 1 − k(1 −
β)/2.

Theorem 3.1 is proved in Section 5.2.

Remark 3.2. Note that in case (c), when k = 1, one has H > 1/2 if β > 0, and H < 1 if β < 1.
In fact, 2H −2 = β −1. More generally, for any k ≥ 1, 0 < k(1−β) < 1 corresponds to k(2H −
2) + 1 > 0, which corresponds to a classical condition involving Hermite rank for convergence
to the Hermite processes Zk,H (t) (Taqqu [47]).

Remark 3.3. As pointed out by an anonymous referee, it is possible to establish the convergence
rate of the marginal distribution of SN(1) to a standard normal distribution in cases (a) and (b) of
Theorem 3.1. See Nourdin and Peccati [30]. This involves an analysis of the third and the fourth
moments of SN(1), which will be considered in a future study.
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We can also obtain a joint convergence involving all the cases in Theorem 3.1. In particular,
let

Xj(n) =
∫ ′

E
kj

fj

(
T nx1, . . . , T

nxkj

)
W(dx1) . . .W(dxkj

), j = 1, . . . , J. (20)

In (20), although possibly different orders kj ’s and different symmetric bounded a.e. continuous
functions fj ’s on Gkj are involved in different Xj ’s, we have the same underlying measure space
(E,E,μ), the same transformation T (with the same values of β), the same Gaussian random
measure W(·) and the same finite-measure subspace G.

Theorem 3.4. Suppose SN,j (t) is as in (19) corresponding to Xj(n) with the normalization as
given in Theorem 3.1. Assume that

J1 = {
j : (1 − β)kj > 1

}
, J2 = {

j : (1 − β)kj = 1
}

and J3 = {
j : 0 < (1 − β)kj < 1

}
(J2 and J3 can be empty), and denote the vector process SN,Js (t) = (SN,j (t), j ∈ Js), s = 1,2,3.
Then we have the joint convergence in D[0,1]|J1|+|J2|+|J3|,(

SN,J1(t),SN,J2(t),SN,J3(t)
) ⇒ (

BJ1(t),BJ2(t),ZJ3(t)
)
,

where the three limit components BJ1(t), BJ2(t), ZJ3(t) are independent. BJ1(t) and BJ2(t) are
each vector Brownian motions with the covariance between two components i, j ∈ J1 or i, j ∈ J2
given by

EBi(s)Bj (t) = (s ∧ t)1{ki=kj }, (21)

and ZJ3(t) is a vector of Hermite processes in (16) with orders kj and Hj = 1 − kj (1 − β)/2,
j ∈ J3, which are defined by the same Gaussian random measure W(·).

Theorem 3.4 is proved in Section 5.5.

Remark 3.5. Note that because of the multiplicative constants in the normalization A(N), every
component of the limit has variance 1 at t = 1. The covariance structure (21) implies that within
the case (a) or within case (b), the limit Brownian motions are identical for integrals of the same
order, and independent between integrals of different orders.

4. Examples

We first present an example from Thaler [48], p. 108, which satisfies Assumption 2.1 in Section 2.

Example 4.1. Let (E = [0,1],E = B), where B denotes the Borel σ -field. Fix a number p > 1.
Let

hp(x) = 1

xp
+ 1

(1 + x)p
, x ∈ (0,1], (22)
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and define a measure μ on E by

μ(dx) = hp(x)dx.

The measure μ has thus a power behavior around the origin. Since the density hp(x) > 0,
the measure μ is equivalent to the Lebesgue measure. On the other hand, we have μ(E) =∫ 1

0 hp(x)dx = ∞ since p > 1 so that the integrability of hp(x) breaks down near x = 0.
Now we introduce the transformation T . The particular choice of μ will ensure that T is

measure preserving. Indeed, consider the following function defined on [0,1]:

gp(x) = x

(
1 +

(
x

1 + x

)p−1

− xp−1
)1/(1−p)

,

which is related to the density function hp through the differential equation:

d

dx
gp(x) = gp(x)php(x), x ∈ (0,1). (23)

Note that gp maps [0,1] monotonically to [0,2] since d
dx

gp is positive on (0,1). Define now the
transformation T = Tp on [0,1] by

Tp(x) := gp(x) (mod 1). (24)

The density hp(x) after the transformation (24), because of mod 1 in (24), is[
hp

(
g−1

p (x)
) d

dx
g−1

p (x)

]
+

[
hp

(
g−1

p (1 + x)
) d

dx
g−1

p (1 + x)

]
. (25)

Since d
dx

g−1
p (x) = 1/g′

p(g−1
p (x)), the relations (22) and (23) imply that the expression (25),

which involves a change of variable, is exactly equal to hp(x). Hence, the density after the
transformation is still hp(x), which means that the transformation Tp is μ-preserving.

To understand the nature of the dynamics of the system, note that the point x = 0 is known as
an indifferent fixed point of the system, namely, Tp(0) = gp(0) = 0 and T ′

p(0+) = g′
p(0+) = 1.

Hence starting at a point near x = 0, the trajectory of {T n} tends to trapped near x = 0 for a
while. So the successive visits to a set away from x = 0 tends to be sparse (see Figure 1).

Now choose G = [ε,1], for some ε ∈ (0,1). By Corollary 1 on p. 115 of Thaler [48] and our
Proposition 2.5, Assumption 2.1 in Section 2 holds with

β = p−1 ∈ (0,1).

Therefore under this setup, any symmetric Riemann integrable function f on Gk = [ε,1]k is
bounded and λk-a.e. (or equivalently μk-a.e.) continuous. Hence, such a function satisfies the
condition in Theorem 3.1.

Finally, we mention that the explicit example presented above falls within the class of dynami-
cal systems satisfying assumptions (i)–(iv) in Thaler [48]. In addition, such a class of systems on
[0,1] further belongs to a well-studied class called AFN systems (Zweimüller [49,50]), which has
multiple indifferent fixed points in general. See Gouëzel [15] and Melbourne and Terhesiu [26]
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Figure 1. Example 4 with β = 0.75. Top: graph of x versus T (x); Bottom: trajectory of {T n(0.2)}.

for sufficient conditions for an AFN system to satisfy Assumption 2.1. For a general AFN sys-
tem, G may be chosen to be a disjoint union of closed intervals which are located away from
the indifferent fixed points, and f in Theorem 3.1 again can be chosen as a Riemann integrable
function on Gk which is a union of hyperrectangles in [0,1]k .

The next example concerns Markov chains. We refer to, for example, Durrett [12] Chapter 6
for all the common notions and facts regarding Markov chains that we will use below.

Example 4.2. Consider E = SN, the space of S-valued functions defined on N = {0,1,2, . . .},
where S is an infinite countable set. We equip S with the discrete topology. Then the countable
product space E is a Polish space known as the Baire space, where a topological base of E can
be formed by cylinder sets each of the form

A = {
x ∈ SN : x(n1) = i1, . . . , x(nm) = im

}
, 0 ≤ n1 < · · · < nm, il ∈ S,m ∈N. (26)

See Moschovakis [27], Section 1A. The Borel σ -field E on E thus coincides with the cylindrical
σ -field on SN. Define the shift operator T : E → E, T (x(n))n∈N = (x(n + 1))n∈N.
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Now suppose that we have an aperiodic, irreducible and null-recurrent Markov chain X =
(Xn)n≥0 with transition probabilities (p(i, j))i,j∈S . Let π be the unique invariant measure of the
chain, so that

∑
i∈S π(i)p(i, j) = π(j), π(j) > 0 for all j ∈ S and satisfies the normalization

condition π(o) = 1, where o ∈ S is a distinguished state. The null-recurrence assumption entails
that π(S) = ∑

i∈S π(i) = ∞.
Now we define a measure on E as:

μ(·) =
∑
i∈S

π(i)P i(·),

where for each i, P i(·) is a probability measure defined on E of a Markov chain starting at i at
time zero. Then μ is invariant with respect to the shift operator T . Note that μ(E) = ∞ since∑

i∈S π(i)P i(E) = ∑
i∈S π(i) = π(S) = ∞.

The assumptions on the chain imply that μ({x}) = 0 for any x ∈ E, namely, μ has no atoms.
Indeed, suppose without loss of generality that x(0) = o. By recurrence, one can assume that
the path x visits o infinitely often. Let p(k) = P(Xk = o, Xi �= o, i = 1, . . . , k − 1|X0 = o).
Note that

∑∞
k=1 p(k) = 1 by recurrence, and supk≥1 p(k) < 1 since the chain is irreducible and

aperiodic. Let the successive visit times of o by x be k1, k1 + k2, k1 + k2 + k3, . . ., where ki, i ∈
Z+. Then using the Markov property,

μ
({x}) ≤ P o(X1 �= o, . . . ,Xk1−1 �= o,Xk1 = o,Xk1+1 �= o, . . .Xk1+k2−1 �= o,Xk1+k2 = o, . . .)

=
∞∏
i=1

p(ki) = 0.

Now let G = {x ∈ E : x(0) = o}, which as a subspace of E, is again Polish with Borel σ -field
EG. Let

C = {A ∩ G : A is a cylinder set as in (26)} ∪ {∅}.
We shall show that the Assumption 2.1 holds by using the paradigm in Proposition 2.5(3). Again
in view of Moschovakis [27], Section 1A, the π -system C is a topological base for G. So (a) and
(b) of Proposition 2.5(3) hold, since each set in C is open. In addition, in view of the discrete
topology, each set in C is closed as well. Hence the boundaries of sets in C are empty. So (c) in
Proposition 2.5(3) holds. For (d), let A,B ∈ C be respectively A = {x ∈ SN : x(0) = o, x(n1) =
i1, . . . , x(nr) = ir } and B = {x ∈ SN : x(0) = o, x(m1) = j1, . . . , x(ms) = js}, where 0 < n1 <

· · · < nr , 0 < m1 < · · · < ms , i
, j
 ∈ S. Since x(0) = o, the cylinder sets A and B are in C.
When n is large enough so that n > nr , we have by the Markov property that

μ
(
A ∩ T −nB

) = p(n1)(o, i1)

[
r−1∏

=1

p(n
+1−n
)(i
, i
+1)

]

× p(n−nr )(ir , o)p(m1)(o, j1)

[
s−1∏

=1

p(m
+1−m
)(j
, j
+1)

]

= μ(A)p(n−nr )(ir , o)μ(B), (27)
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where p(k)(·, ·) is the k-step transition probability. Let us now focus on the factor p(n−nr )(ir , o).
Assume for some constant c > 0 that

p(n)(o, o) ∼ cnβ−1, (28)

as n → ∞. Then

lim
n

p(n−1)(o, o)

p(n)(o, o)
= 1.

In view of Orey [33], we obtain the so-called strong ratio limit property:

lim
n

p(n−m)(s, o)

p(n)(o, o)
= 1 (29)

for any s ∈ S and m ∈N. Then (27) implies

lim
n

1

p(n)(o, o)
μ

(
A ∩ T −nB

) = μ(A)μ(B).

We conclude that (d) of Proposition 2.5(3) holds with

ρn = 1

p(n)(o, o)

when n is large enough so that p(n)(o, o) > 0.
We can now specify the function f in Theorem 3.1 which must be symmetric bounded and

μk-a.e. continuous on Gk . We note that any function f on Gk which depends only on a finite
number of coordinates of Ek is continuous. This is because in this case, for any open U ∈ R,
f −1U can be expressed as a union of sets in Ck , where Ck forms a topological base for Gk . On
the other hand, it is also possible to choose a symmetric bounded continuous function on Gk

depending on infinitely many coordinates, for example,

f (x1, . . . , xk) = 1{x1(0)=···=xk(0)=o}
∞∑

n=1

∑k
j=1 1{xj (n)=o}

2n
.

5. Proofs of the main results

First, we build some intermediate steps towards Theorem 3.1. The notation and setup will follow
those in Section 2. In particular, we consider the infinite-measure space (E,E,μ) with a subspace
G as in Assumption 2.1. Below c and ci will denote generic constants whose values may change
from line to line.
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5.1. Reduction

Lemma 5.1. The sequence X(n) defined in (17) is strictly stationary.

Proof. For every ε > 0, we choose fε and Gε as in Corollary 2.10 satisfying (14). Let

Rε = Gk \ Gε,

which satisfies μk(Rε) < ε. Recall the original process X(n) is given in (17), and we define
another stationary sequence using the same random measure W(·) as

Xε(n) =
∫ ′

Ek

fε

(
T nx1, . . . , T

nxk

)
W(dx1) . . .W(dxk). (30)

Then Xε(n) is stationary since by Theorem 7.26 and 3.4 of Janson [19], Xε(n) is a measurable
function of a multivariate stationary Gaussian process as in (43) below. Consider the difference
Yε(n) = X(n) − Xε(n). Then using (15), the fact Gε ⊂ Gk , as well as (14), we have

EYε(n)2 = k!‖f − fε‖2
L2(μk)

≤ 3k!(∥∥(f − fε)1Gε

∥∥2
L2(μk)

+ ‖f 1Rε‖2
L2(μk)

+ ‖fε1Rε‖2
L2(μk)

)
≤ 3k!(ε2μk

(
Gk

) + 2ε‖f ‖2∞
) → 0

as ε → 0. So the stationarity of X(n) follows from that of Xε(n). �

We claim that the tightness of {SN(t)} in (19) immediately follows if the convergence of the
finite-dimensional distributions of SN(t) has been established. To prove this, we shall apply
Lemma 2.1 of Taqqu [46] recalled below.

Lemma 5.2 (Lemma 2.1 of Taqqu [46]). Let X(n) be a strictly stationary sequence and let
A(N) = NH L(N), where H ∈ (0,1], and L(N) is a slowly varying function (cf. Bingham et al.
[7]) as N → ∞. Let SN(t) = 1

A(N)

∑[Nt]
n=1 X(n). Then the tightness of {SN(t)} in D[0,1] under

the uniform metric follows from the following conditions: as N → ∞
ESN(1)2 = O(1), (31)

and for some p > 1/2H ,

E
∣∣SN(1)

∣∣2p = O
((
ESN(1)2)p)

. (32)

Lemma 5.3. Suppose in either of the three cases of Theorem 3.1, the finite-dimensional distribu-
tions of normalized sum process SN(t) in (19) converge to those of the limit process Z(t). Then
the tightness of {SN(t)} in D[0,1] under the uniform metric holds.

Proof. The strict stationarity of X(n) follows from Lemma 5.4 below. We want to apply Lemma
5.2, for which we need to check conditions (31) and (32).
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First, note that SN(t) also belongs to a kth Wiener chaos by linearity. The convergence in
finite-dimensional distributions assumed implies that the sequence of random variables {SN(1)}
is tight. By Lemma 2.1 (b) of Nourdin and Rosiński [31], one has

sup
N

ESN(1)2 < ∞.

Hence, (31) holds. In addition, for arbitrarily large p > 0, we have by Theorem 3.50 of Janson
[19] that

E
∣∣SN(1)

∣∣2p ≤ Cp

(
E

∣∣SN(1)
∣∣2)p

for some constant Cp which depends only on p. Hence (32) also holds. The proof is complete. �

The following is the key reduction lemma.

Lemma 5.4. Suppose the function f defining the stationary sequence X(n) in (17) is restricted
to the class of elementary functions in Definition 2.7, and for any such function f , the weak
convergence in either of the three cases in Theorem 3.1 holds. Then Theorem 3.1 also holds in
full generality, namely, the weak convergence in either of the three cases holds for any symmetric
bounded and μ-a.e. continuous function f on Gk .

Proof. In view of Lemma 5.3, we only need to consider the convergence of finite-dimensional
distributions. Let Xε(n) and Yε(n) be as in the proof of Lemma 5.1 above. Then

1

A(N)

N∑
n=1

Yε(n) = 1

A(N)

N∑
n=1

X(n) − 1

A(N)

N∑
n=1

Xε(n).

A standard computation using stationarity leads to

E

∣∣∣∣∣ 1

A(N)

N∑
n=1

Yε(n)

∣∣∣∣∣
2

= 1

A(N)2

∑
|n|<N

(
N − |n|)EYε(n)Y (0). (33)

Next by (14), we have∣∣μk(fε) − μk(f )
∣∣ ≤ μk

(|fε − f |) ≤ μk
(|f − fε |1Gε

) + μk
(|f − fε |1Rε

)
≤ εμk

(
Gk

) + 2‖f ‖∞μk(Rε) → 0 (34)

as ε → 0. So in view of a triangular approximation argument (e.g., Lemma 4.2.1 of Giraitis et al.
[14]), if one shows that

lim
ε→0

lim sup
N→∞

E

∣∣∣∣∣ 1

A(N)

N∑
n=1

Yε(n)

∣∣∣∣∣
2

→ 0, (35)

then the proof is concluded.
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• We first treat the case (a): k(1 − β) > 1. In this case, A(N) = σ−1N1/2 and thus from (33)
we have

E

∣∣∣∣∣ 1

A(N)

N∑
n=1

Yε(n)

∣∣∣∣∣
2

≤ c

∞∑
n=−∞

∣∣EYε(n)Yε(0)
∣∣,

where the constant c does not depend on ε. We shall use the Dominated Convergence theorem to
show that the right-hand side above tends to zero as ε → 0. Since both f and fε have supports
within Gk , then for n ≥ 0, using (15) we have∣∣EYε(n)Yε(0)

∣∣ ≤ k!
∫

Gk

[(|f − fε |
)(

T n
k x

)][(|f − fε |
)
(x)

]
μk(dx)

= k!
∫

Gε

[(|f − fε |
)(

T n
k x

)][(|f − fε |
)
(x)

]
μk(dx)

+ k!
∫

Rε

[(|f − fε |
)(

T n
k x

)][(|f − fε |
)
(x)

]
μk(dx). (36)

In view of (14), applying the bound |f − fε |1Gε < ε1Gε to the first term in (36), and applying
the bound |f − fε |1Rε ≤ 2‖f ‖∞1Rε to the second term in (36), we have∣∣EYε(n)Yε(0)

∣∣ ≤ k![(ε2μk
(
Gε ∩ T −n

k Gε

) + 4‖f ‖2∞μk
(
Rε ∩ T −n

k Rε

)]
(37)

≤ k![ε2 + 4‖f ‖2∞
)
μk

(
Gk ∩ T −n

k Gk
)]

(38)

≤ cμk
(
Gk ∩ T −n

k Gk
)
, (39)

where the constant c > 0 does not depend on ε or n, and in the inequality (38), we have used
Rε ⊂ Gk and Gε ⊂ Gk . Then by Assumption 2.1 and in particular (7) (see also Remark 2.2),
we have as n → ∞ that μk(Gk ∩ T −n

k Gk) ∼ ρ−k
n μk(Gk)2, which is summable over n ≥ 0 since

ρ−k
n ∼ c−k

T nk(β−1) by (8) and k(β − 1) < −1. In addition, since Gε ⊂ Gk and μk(Rε) → 0 as
ε → 0, the right-hand side of (37) converges to 0 as ε → 0. So by the Dominated Convergence
theorem with the summable bound (39), one has as ε → 0 that

∞∑
n=−∞

∣∣EYε(n)Yε(0)
∣∣ → 0.

Therefore, the relation (35) holds in case (a) of Theorem 3.1.
• We now treat cases (b) and (c): k(1 − β) ≤ 1. Since f − fε is again bounded and a.e.

continuous on Gk , by (11) we have∣∣EYε(n)Yε(0)
∣∣ ≤ k!

∫
Gk

[(|f − fε |
)(

T n
k x

)][(|f − fε |
)
(x)

]
μk(dx)

∼ ρ−k
n k!μk

(|f − fε |
)2

, (40)

where δε := μk(|f − fε |)2 → 0 as ε → 0 by (34).
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In the case (b): k(1 − β) = −1, ρ−k
n = c−k

T n−1. So for some constants ci ’s that do not depend
on ε or N , we have by (33) and (40) that

lim sup
N→∞

E

∣∣∣∣∣ 1

A(N)

N∑
n=1

Yε(n)

∣∣∣∣∣
2

≤ c1 lim sup
N→∞

(lnN)−1
∑

|n|<N

∣∣EYε(n)Yε(0)
∣∣

≤ c2δε lim
N→∞(lnN)−1

N∑
n=1

n−1 = c3δε,

which tends to zero as ε → 0. Hence, (35) holds in this case.
Case (c) where 0 < k(1 − β) < 1 can be shown similarly, namely, we have

lim sup
N→∞

E

∣∣∣∣∣ 1

A(N)

N∑
n=1

Yε(n)

∣∣∣∣∣
2

≤ c1δε lim
N→∞Nk(1−β)−1

N∑
n=1

nk(β−1) = c2δε.

Note that the arguments for case (b) and (c) rely on the divergence of
∑N

n=1 ρ−k
n and they

cannot be applied to case (a). �

5.2. Proof of Theorem 3.1

After the reduction lemmas of this section, Theorem 3.1 reduces to the following proposi-

tion, which will be proved in the subsections below. Let
f.d.d.−→ denote convergence of finite-

dimensional distributions.

Proposition 5.5. Let X(n) be as in (17) where f is an elementary function (Definition 2.7) on
Gk which is also symmetric.

(a) If k(1 − β) > 1, then as N → ∞,

1

N1/2

[Nt]∑
n=1

X(n)
f.d.d.−→ σB(t),

where B(t) is the standard Brownian motion and σ 2 = ∑
n EX(n)X(0).

(b) If k(1 − β) = 1, then as N → ∞,

c
k/2
T

(k!N ln(N))1/2

[Nt]∑
n=1

X(n)
f.d.d.−→ √

2μk(f )B(t),

where B(t) is the standard Brownian motion and μk(f ) = ∫
Ek f dμk .
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(c) If k(1 − β) < 1, then as N → ∞,

c
k/2
T

(k!H(2H − 1))1/2NH

[Nt]∑
n=1

X(n)
f.d.d.−→ μk(f )Zk,H (t)

where Zk,H (t) is the standard Hermite process with Hurst index H = 1 − k(1 − β)/2.

The proposition is proved in the following two subsections.

5.3. Proof of Proposition 5.5(a) and (c)

The proof of Proposition 5.5 can be facilitated by the Fourth Moment theorem developed by
Nualart and Peccati [32] and Peccati and Tudor [38]. We state the version involving multivariate
convergence and contraction based on Theorem 5.2.7 and Theorem 6.2.3 of Nourdin and Peccati
[29]. First some notation: recall that Ik(f ) denotes a multiple Wiener–Itô integral, where f ∈
L2(μk). For symmetric f ∈ L2(μp) and g ∈ L2(μq), p,q ≥ 1, we define the r-contraction,
0 ≤ r ≤ min(p, q) as

(f ⊗r g)(x1, . . . , xp+q−2r )

=
∫

Er

f (y1, . . . , yr , x1, . . . , xp−r )g(y1, . . . , yr , xp−r+1, . . . , xp+q−2r )μ(dy1) . . .μ(dyr),

which if r = 0 the notation ⊗0 simply denotes the tensor product.

Proposition 5.6. Let k1, . . . , km ≥ 1. Suppose that fj,n ∈ L2(μkj ) are symmetric, j = 1, . . . ,m

and m,n ∈ Z+. Let Un = (Ik1(f1,n), . . . , Ikm(fm,n)), where Iki
(·)’s denote multiple Wiener–Itô

integrals defined by the same Gaussian measure on the same σ -finite atomless measure space.
Assume as n → ∞, we have

1. EIki
(fi,n)Ikj

(fj,n) → �ij for some non-negative definite matrix � = (�i,j );
2. ‖fj,n ⊗r fj,n‖L2(μ

2kj −2r
)
→ 0, r = 1, . . . , kj − 1, for all kj ≥ 2, j = 1, . . . ,m.

Then Un
d→ N(0,�) as n → ∞.

In addition, under condition 1 above, the following three statements are equivalent: (i) con-

dition 2 above holds; (ii) the marginal convergence Iki
(fi,n)

d→ N(0,�ii) holds as n → ∞,

i = 1, . . . ,m; (iii) the multivariate convergence Un
d→ N(0,�) as n → ∞ holds.

We also need the notion of Hermite rank of a multivariate function. Let Z = (Zj )1≤j≤d ∈ R
d

be a d-variate centered Gaussian vector, d ∈ Z+. Let G(·) : Rd → R be a measurable function
such that EG(Z)2 < ∞ and EG(Z) = 0. As with (2.2) of Arcones [2], the Hermite rank k of
G with respect to the distribution of Z can be defined in either of the following two equivalent
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ways:

k = inf

{
τ ∈ Z+ : ∃ lj with

d∑
j=1


j = τ and E

(
G(Z)

d∏
j=1

Hlj (Zj )

)
�= 0

}
(41)

= inf
{
τ ∈ Z+ : ∃ d-variate polynomial P of degree τ with E

(
G(Z)P (Z)

) �= 0
}
, (42)

where Hl(x) = (−1)nex2/2 dl

dxl e
−x2/2 is the lth order Hermite polynomial. Note that if L :

R
d → R

d is a one-to-one linear transform, then the Hermite rank of G ◦ L−1 with respect to
the Gaussian vector LZ has the same Hermite rank as the Hermite rank of G with respect
to Z. This can be seen from (42) since {P ◦ L : P is a d-variate polynomial of degree τ } =
{d-variate polynomials of degree τ }.

Proof of Proposition 5.5 (a) and (c). Since f is elementary, it is of the form (12). Applying
Theorem 7.26 and 3.4 of Janson [19], we have

X(n) =
∫ ′

Ek

J∑
j=1

aj 1A1,j ×···×Ak,j

(
T nx1, . . . , T

nxk

)
W(dx1) . . .W(dxk)

=
J∑

j=1

aj

∫ ′

Ek

1A1,j

(
T nx1

)
. . .1Ak,j

(
T nxk

)
W(dx1) . . .W(dxk)

=
J∑

j=1

ajFj

(
Z1,j (n) . . .Zk,j (n)

)
, (43)

where Z(n) := (Zi,j (n)) := (
∫
E

1Ai,j
(T nx)W(dx))1≤i≤k,1≤j≤J is a kJ -variate stationary Gaus-

sian process, and Fj :Rk → R is a k-variate polynomial, and

F(·) :=
J∑

j=1

ajFj (·) : RkJ → R

has Hermite rank k (cf. (41) or (42)) with respect to the distribution of Z(n). We are thus in the
setup of De Naranjo [45] and Arcones [2]. In addition, in view of (7) in the context of Assumption
2.1, as n → ∞, one has

EZi,j (n)Zp,q(0) = μ
(
T −nAi,j ∩ Ap,q

) ∼ ρ−1
n μ(Ai,j )μ(Ap,q)

∼ c−1
T nβ−1μ(Ai,j )μ(Ap,q), (44)

and the same asymptotic relation holds for EZi,j (−n)Zp,q(0) as n → ∞.
In the case of (a) where k(1 − β) > 1, note that

∑+∞
n=−∞ |EZi,j (n)Zp,q(0)| ≤ c ×∑+∞

n=1 n−k(1−β) < ∞. Then by Theorem 4 of Arcones [2], at any single fixed t > 0 the marginal



Limit theorems for long-memory flows on Wiener chaos 1493

distributions of SN(t) := 1
N1/2

∑[Nt]
n=1 X(n) converges weakly to the marginal distribution σB(t)

as N → ∞. To extend the marginal convergence to the joint convergence of finite-dimensional
distributions, in view of the last part of Proposition 5.6 above, it suffices to show the convergence
of covariance structure:

lim
N→∞ESN(s)SN(t) = σ 2(s ∧ t).

By Lemma 4.1 of Bai and Taqqu [4], the preceding line will follow from∣∣EX(n)X(0)
∣∣ ≤ cn−k(1−β), n ≥ 1, (45)

where the right-hand side above is summable. Indeed, (45) is a consequence of (18).
Now we turn to case (c) where k(1 − β) < 1. By a Gram–Schmidt orthonormalizing linear

transformation L : RkJ → R
kJ and setting Z̃(n) := (Z̃ij (n))1≤i≤k,1≤j≤J := LZ(n), one can en-

sure that EZ̃i,j (n)Z̃p,q(n) = 1{(i, j) = (p, q)} for any n (recall stationarity). Then G := F ◦L−1

still has Hermite rank k with respect to the distribution of Z̃(n) (see the discussion following (42))
and we have

X(n) = G
(
Z̃(n)

)
. (46)

Suppose Z̃ij (n) = ∑
u,v 
ij (u, v)Zuv(n) for some real coefficients 
ij (u, v), 1 ≤ i, u ≤ k, 1 ≤

j, v ≤ J . By (44) and linearity we have as |n| → ∞ that

EZ̃i,j (n)Z̃p,q(0) ∼ c−1
T |n|β−1

(∑
u,v


ij (u, v)μ(Au,v)

)(∑
u,v


pq(u, v)μ(Au,v)

)
. (47)

We shall now apply Theorem 2 on p. 238 of De Naranjo [45] (see also Theorem 6 of Arcones
[2]). Note that, in general, De Naranjo [45] allows a Hermite-like process in the limit whose
multiple integral representation has possibly different Gaussian random measures. Only when
these Gaussian random measures are identical, we get the Hermite process. To show this, in view
of (H3.1.1) and (H1.1.1) of De Naranjo [45], we set

Lij,pq(n) = n1−β
EZ̃i,j (n)Z̃p,q(0),

Lij (n) = n1−β
EZ̃i,j (n)Z̃i,j (0),

Lpq(n) = n1−β
EZ̃p,q(n)Z̃p,q(0),

which, in view of (47), have limits

c−1
T

(∑
u,v


ij (u, v)μ(Au,v)

)(∑
u,v


pq(u, v)μ(Au,v)

)
,

c−1
T

(∑
u,v


ij (u, v)μ(Au,v)

)(∑
u,v


ij (u, v)μ(Au,v)

)
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and

c−1
T

(∑
u,v


pq(u, v)μ(Au,v)

)(∑
u,v


pq(u, v)μ(Au,v)

)
respectively as n → ∞. Thus the limit in (H3.1.1) of De Naranjo [45] is

Kij,pq = lim
n→∞

Lij,pq(n)√
Lij (n)Lpq(n)

= 1.

Hence, in view of (3.2.1) of De Naranjo [45] and the formula before Lemma 3.3 in De Naranjo
[45], all the cross-component control (spectral) measures in (3.3.1) of De Naranjo [45]1 satisfy-
ing the scaling property (3.3.2) there are identical to each other. This entails that the Gaussian
random measures are identical in the multiple integral representation of the limit. At last, note
that in view of (18) above and Proposition 2.2.5 of Pipiras and Taqqu [40], the particular constant
coefficient chosen in the normalization ensures that

Var

[
c
k/2
T

μk(f )(k!H(2H − 1))1/2NH

N∑
n=1

X(n)

]
→ 1.

�

5.4. Proof of Proposition 5.5 (b)

Because part (b) of Proposition 5.5 involves the critical case, the proof is particularly delicate.

Proof of Proposition 5.5 (b). We shall apply Proposition 5.6. In view of condition 1 of Propo-
sition 5.6, we first need to show that the covariance structure of

SN(t) := c
k/2
T

(k!N ln(N))1/2

[Nt]∑
n=1

X(n)

converges to that of
√

2μk(f )B(t). Observe that by polarization, one has for fixed 0 ≤ s ≤ t that

ESN(t)SN(s) = 1

2

[
ESN(t)2 +ESN(s)2 −E

(
SN(t) − SN(s)

)2]
∼ 1

2

[
ESN(t)2 +ESN(s)2 −ESN(t − s)2]

as N → ∞, where the asymptotic equivalence can be justified by the fact that |[Nt] − [Ns] −
[N(t − s)]| ≤ 3, X(n) is stationary and N ln(N) → ∞. So it suffices to show that

ESN(t)2 → 2tμk(f )2, t > 0.

1Gi and Gj in (3.3.1) of De Naranjo [45] should instead be G0
i

and G0
j

respectively.
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Indeed, by (18), since k(1 − β) = −1,

γ (n) := EX(n)X(0) ∼ k!μk(f )2ρ−k
n ∼ k!c−k

T μk(f )2n−1

as n → ∞. Then as with (33), we have

E

[
m∑

n=1

X(n)

]2

= m
∑

|n|<m

γ (n) −
∑

|n|<m

|n|γ (n).

For an ∼ n−1 as n → ∞, we have
∑m

n=1 an ∼ lnm as m → ∞. So as m → ∞ we have

m
∑

|n|<m

an ∼ 2m lnm,
∑

|n|<m

|n|an ∼ 2m.

Thus

ESN(t)2 ∼ 2k!c−k
T [Nt] ln[Nt]μk(f )2

c−k
T k!N lnN

→ 2tμk(f )2. (48)

We are left to check the contraction condition 2 in Proposition 5.6. For simplicity we take
t = 1, and the argument is similar otherwise. Then ignoring some multiplicative constant we
consider

SN := 1√
N lnN

N∑
n=1

X(n)

=
∫ ′

Ek

1√
N lnN

N∑
n=1

f
(
T nx1, . . . , T

nxk

)
W(dx1) . . .W(dxk)

=: Ik(GN).

Let R = {A ∈ EG : μ(∂A) = 0}, the collection of μ-continuity sets in EG. Note that G ∈ R. To
check

‖GN ⊗r GN‖L2 → 0 as N → ∞, r = 1, . . . , k − 1,

by (12) and a triangle inequality, it suffices to check for any A1, . . . ,Ak ∈R and B1, . . . ,Bk ∈R,
as N → ∞, we have∫

E2k−2r

μ(dx1) . . .μ(dx2k−2r )

×
[∫

Er

μ(dy1) . . .μ(dyr)

×
(

1√
N lnN

N∑
n1=1

1A1×···×Ak

(
T n1y1, . . . , T

n1yr , T
n1x1, . . . , T

n1xk−r

))
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×
(

1√
N lnN

N∑
n2=1

1B1×···×Bk

(
T n2y1, . . . , T

n2yr, T
n2xk−r+1, . . . , T

n2x2k−2r

))]2

→ 0. (49)

Using the relation Ai,Bi ⊂ G (see Assumption 2.1), i = 1, . . . , k, it suffices to show (49) with
Ai ’s and Bi ’s replaced by G. By the measure-preserving property of T , for m ≥ n,

μ
(
T −nG ∩ T −mG

) = μ
(
T −n

(
G ∩ T n−mG

)) = μ
(
G ∩ T n−mG

)
.

Define for k ∈ Z that

γ (k) := μ
(
G ∩ T −|k|G

)
.

In view of the mixing condition (7) and (8), we have

γ (k) ∼ μ(G)2ρ−1
|k| ∼ μ(G)2c−1

T |k|β−1 (50)

as |k| → ∞. After expanding the square in (49) where Ai ’s and Bi ’s have been replaced by G,
and then applying (50), the expression in (49) is bounded by

1

(N lnN)2

N∑
n1,n2,n3,n4=1

γ (n1 − n2)
rγ (n3 − n4)

rγ (n1 − n3)
k−rγ (n2 − n4)

k−r

≤ c

(N lnN)2

N∑
n1,n2,n3,n4=1

|n1 − n2|r(β−1)

0 |n3 − n4|r(β−1)

0

× |n1 − n3|(k−r)(β−1)

0 |n2 − n4|(k−r)(β−1)

0

=: c

(N lnN)2

N∑
n1,n2,n3,n4=1

g(n1, n2, n3, n4) (51)

where |n|0 := |n| if n �= 0 and |0|0 := 1. Note that since 0 < r < k, and k(β − 1) = −1, we have
r(β − 1) ∈ (−1,0) and (k − r)(β − 1) ∈ (−1,0).

The goal is to show the bound (51) vanishes as N → ∞. The rest of the proof is similar to the
proof of Theorem 3.3 of Bai and Taqqu [5] and we only provide a sketch. In particular, when the
sum in (51) is over distinct n1, . . . , n4, we have∑

1≤n1,n2,n3,n4≤N, ni �=nj for i �=j

g(n1, n2, n3, n4)

= N4+2k(β−1)

×
∑

1≤n1,n2,n3,n4≤N, ni �=nj for i �=j

g(n1/N,n2/N,n3/N,n4/N)
1

N4
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≤ cN2
∫

[0,1]4
dx1 dx2 dx3 dx4|x1 − x2|r(β−1)|x3 − x4|r(β−1)

× |x1 − x3|(k−r)(β−1)|x2 − x4|(k−r)(β−1),

where for the last inequality we have used the fact k(β − 1) = −1 and applied an integral ap-
proximation of the sum (see the arguments below (3.8) of Bai and Taqqu [5] for details). The
integrability of the last integral holds by Lemma 3.9 of Bai and Taqqu [5]. Hence, the additional
logarithmic factor makes (51) vanish when the sum is over distinct n1, n2, n3, n4.

Similarly, when the sum in (51) is over n1, n2, n3, n4 with only three of them distinct, for
example, if n1 = n2 and ni �= nj for 2 ≤ i �= j ≤ 4, then∑

1≤n2,n3,n4≤N, ni �=nj for i �=j

g(n2, n2, n3, n4)

= N3+(2k−r)(β−1)
∑

1≤n2,n3,n4≤N, ni �=nj for i �=j

g(n2/N,n2/N,n3/N,n4/N)
1

N3

≤ cN1+r(1−β)

∫
[0,1]3

dx2 dx3 dx4|x3 − x4|r(β−1)|x2 − x3|(k−r)(β−1)|x2 − x4|(k−r)(β−1),

where r(1 − β) < 1. So the sum (51) vanishes in this case as well.
When the sum in (51) is over n1, n2, n3, n4 with only two or less of them distinct, one can

simply bound g by 1 and then the summation yields N2 or N respectively, and (51) obviously
vanishes as N → ∞ in either of these cases. �

5.5. Proof of Theorem 3.4

A crucial ingredient of the proof is the following result.

Proposition 5.7. Let p1, . . . , pr , q1, . . . , qs be positive integers such that pi ≥ qj for any i =
1, . . . , r and j = 1, . . . , s. Suppose

(Xn,Yn) := (X1,n . . . ,Xr,n, Y1,n, . . . , Ys,n)

:= (
Ip1(f1,n), . . . , Ipr (fr,n), Iq1(g1,n), . . . , Iqs (gs,n)

)
,

where Ipi
(·)’s and Iqj

(·)’s denote multiple Wiener–Itô integrals defined by the same Gaussian

measure on the same σ -finite atomless measure space. Suppose that as n → ∞, Xn
d→ X

for some Gaussian random vector X, and Yn
d→ Y for some random vector Y. In addition,

limn E[Xi,nYj,n] = 0, i = 1, . . . , r , j = 1, . . . , s (which trivially holds if pi > qj ). Then the joint

convergence (Xn,Yn)
d→ (X,Y) holds with independent X and Y.

Remark 5.8. This is Theorem 4.7 of Nourdin and Rosiński [31], but with the moment determi-
nacy restriction on the limit removed due to Nourdin et al. [28].
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Proof of Theorem 3.4. The tightness in D[0,1]J follows from tightness of each component in
D[0,1] concluded by Theorem 3.1 (see, e.g., Lemma 1 of Bai and Taqqu [4]). We only need to
establish convergence of finite-dimensional distributions. We shall only provide an outline.

First, note that going from case (a) to (b) in Theorem 3.1, the order k of the multiple integral
must strictly decrease since β is fixed. We thus claim that Proposition 5.7 allows us to treat the
joint convergence involving case (a), (b) and (c) of Theorem 3.1 separately. Indeed, assuming
the joint convergence within each case (a), (b) and (c), one can first use Proposition 5.7 to con-
clude joint convergence of (b) (Gaussian limit) and (c) with asymptotic independence, and then
similarly joint convergence of (a) (Gaussian limit) with (b) and (c).

For the joint convergence within case (a) or within case (b) where the limit is Gaussian, ac-
cording to Proposition 5.6, the conclusion follows from the convergence of finite-dimensional
distributions of each component to those of a Brownian motion, which holds by Theorem 3.1,
and the convergence of the covariance structure cross different components. The latter can be
shown by some routine computation using (11). See, for example, the proof of Lemma 2 of Bai
and Taqqu [4] for case (a), and the derivation of (48) in the proof of Proposition 5.5 for case
(b). One gets identical Brownian motions if the orders are the same and independent Brownian
motions if they are different, as indicated in (21).

For the joint convergence within the non-central limit case (c), again by a reduction argument
as Lemma 5.4, it suffices to focus on the case where each fj in (20) is an elementary func-
tion in the sense of Definition 2.7. Then one follows the argument in the proof of Proposition
5.5 (c) to relate to limit theorems for functions of multivariate Gaussian processes considered
in De Naranjo [45]. The difference is that in (46), one has instead a vector-valued function G

now, and hence needs an extension of De Naranjo [45] to joint convergence of the normalized
sums of all the vector components. Such an extension can be achieved by similar arguments as
in Bai and Taqqu [4]. The key is an extension of Lemma 4.1 of De Naranjo [45] to the case
involving multiple integrals of different orders as was done in the proof of Lemma 6 in Bai and
Taqqu [4]. �

Appendix: Proofs of results in Section 2

The appendix section includes the proofs of the technical results in Section 2.

A.1. Proof of Proposition 2.5

Proof. First, we show (3) ⇒ (1). Let D be the minimal class of subsets of G containing C
which is closed under (i) finite unions of disjoint sets and (ii) proper set differences. Then by
a variant of Dynkin’s theorem, the class D is the field generated by C. Since D is minimal, we
have D ⊂ EG. In addition, the class of μ-continuity subsets of G also forms a field containing C.
Then we have both D ⊂ EG and any set in D is μ-continuous. Next, one can verify directly that
the set operations (i) and (ii) preserve (7). This by minimality of D, implies that the relation (7)
holds for any A,B ∈ D. Next, since μ(·) restricted on the Polish subspace G is tight (Kallenberg
[21], Theorem 16.3), for any A ∈ EG and any ε > 0, there exists a compact K ⊂ A, such that
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μ(A \ K) < ε. Due to the compactness and (b), there exists D1 ∈ D which is a finite union of
sets in C, so that K ⊂ D1 ⊂ Å. This, together with a similar argument with A replaced by G \ A,
entails the existence of D1,D2 ∈ D, such that D1 ⊂ A ⊂ D2 and |μ(Di) − μ(A)| < ε, i = 1,2.
Similarly for another μ-continuity set B ∈ EG, one can find the corresponding D′

1,D
′
2 ∈ D, so

that D′
1 ⊂ B ⊂ D′

2 and |μ(D′
i ) − μ(B)| < ε, i = 1,2. Then the relation (7) for A, B can be

deduced by the already established relation (7) for D1, D′
1 and that for D2, D′

2 through letting
n → ∞ in

ρnμ
(
D1 ∩ T −nD′

1

) ≤ ρnμ
(
A ∩ T −nB

) ≤ ρnμ
(
D2 ∩ T −nD′

2

)
, (A.1)

and then letting ε → 0. Hence, the mixing relation (7) not only holds for A,B ∈ C as stated in
part (d), but also for μ-continuity A,B ∈ EG as stated in Assumption 2.1.

For (1) ⇒ (3), it suffices to choose C in (3) to consist of all the μ-continuity sets in EG.
In particular to verify (3)(b), one can choose A to be an open and μ-continuous ball under a
metrization.

To show (1) ⇒ (2), observe that one can express (7) as (9) by using indicator functions 1A

and 1B , and hence by linearity, the relation holds for f1, f2 which are finite linear combinations
of indicators of μ-continuity sets in EG. Then it extends to general non-negative bounded a.e.
continuous f1, f2 by an approximation similar to (A.1) via Lemma 2.9. Indeed, we have

ρn

∫
g1 · (h1 ◦ T n

)
dμ ≤ ρn

∫
f1 · (f2 ◦ T n

)
dμ ≤ ρn

∫
g2 · (h2 ◦ T n

)
dμ,

where the functions g1 and g2 are chosen as in Lemma 2.9 (in the case k = 1) which satisfy
g1 ≤ f1 ≤ g2, and similarly for h1 and h2 which satisfy h1 ≤ f2 ≤ h2. At last, it extends to f1
and f2 with general signs by linearity, since each bounded a.e. continuous function f on G can
be written as a difference of two non-negative bounded a.e. continuous functions, for example,
by f = (f + ‖f ‖∞) − ‖f ‖∞.

The implication (2) ⇒ (1) follows by letting f1 = 1A and f2 = 1B . �

A.2. Proof of Proposition 2.6

Proof. The claim can be verified via Proposition 2.5(3) with the choice of π -system Cp :=
{B1 × · · · × Bk : Bi ∈ EG, μ(∂Bi) = 0}. In particular, (a) and (c) of Proposition 2.5(3) can be
verified using (13) and the fact ∂(A ∩ B) ⊂ ∂(A ∩ B) ⊂ ∂A ∪ ∂B . (b) follows from the fact that
C̊p := {B1 × · · · × Bk ∈ Cp : Bi is open} forms a basis for the topology of Gp (see the proof of
Lemma 2.9 below). (d) can be directly verified on Cp . �

A.3. Proof of Lemma 2.9

Proof. Suppose the topology of G is induced by a metric d and set B(x, δ) = {y ∈ G : d(x, y) <

δ}, δ > 0. For x = (x(1), . . . , x(k)) ∈ Gk and δ > 0, define the neighborhood

Bk(x, δ) = B
(
x(1), δ

) × · · · × B
(
x(k), δ

)
.
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Let C ⊂ Gk be the set of continuity points of f on Gk , and fix ε > 0. Then for every x ∈ C, since
f is continuous at x, there exists δ(x) > 0 such that

ω
(
x, δ(x)

) := sup
{∣∣f (y1) − f (y2)

∣∣ : y1, y2 ∈ Bk

(
x, δ(x)

)} ≤ ε.

Furthermore, since ∂B(x(i), δ) = {y ∈ G : d(x, y) = δ} are disjoint for different δ’s and μ(G) <

∞, the set �i := {δ > 0 : μ(∂B(x(i), δ)) > 0} is at most countable, i = 1, . . . , k. So by fur-
ther adjusting δ(x) to a smaller value within ∩k

i=1�
c
i if necessary, we can assume that each

B(x(i), δ(x)) is μ-continuous, i = 1, . . . , k, namely, Bk(x, δ(x)) is elementary.
Next, note that the product space Gk is also separable. Recall that a separable metric space is

second-countable (see, e.g., Rudin [42], Exercise 2.23) and thus Lindelöf (every open cover has
a countable subcover). Since {ω(x, δ(x)) : x ∈ C} forms an open cover of C, hence there exist
xn ∈ C and δn > 0, such that

⋃∞
n=1 Bk(xn, δn) ⊃ C, where each Bk(xn, δn) is elementary and

ω(xn, δn) < ε. Let GN = ⋃N
n=1 Bk(xn, δn) and choose N large enough so that

μk
(
Gk \ GN

) = μk(C \ GN) < ε. (A.2)

Decompose Dn by forming Dn = Bk(xn, δn) \ (∪n−1
i=1 Bk(xi, δi)). Observe that each Dn remains

an elementary set (see Remark 2.8). Then define

g1(x) =

⎧⎪⎪⎨⎪⎪⎩
N∑

n=1

inf
{
f (x) : x ∈ Dn

}
1Dn if x ∈ GN,

inf
{
f (x) : x ∈ Gk

}
if x ∈ Gk \ GN,

(A.3)

so that g1 ≤ f1, and define similarly g2 by replacing inf’s with sup’s above. Then g1 and g2 are
elementary functions satisfying g1 ≤ f ≤ g2. Since Dn ⊂ Bk(xn, δn) and ω(xn, δn) < ε, we have∥∥(f − g1)1GN

∥∥∞ = sup
x∈GN

(
f (x) − g1(x)

) ≤ ε (A.4)

and thus

μk
(
(f − g1)1GN

) ≤ εμk(GN) ≤ εμk
(
Gk

)
. (A.5)

On the other hand, for x ∈ Gk \ GN , we have∥∥f (x) − g1(x)
∥∥∞ ≤ ‖f ‖∞ + ‖g1‖∞ ≤ 2‖f ‖∞

so that

μk
(
(f − g1)1Gk\GN

) ≤ 2‖f ‖∞μk
(
Gk \ GN

) ≤ 2‖f ‖∞ε. (A.6)

Therefore combining (A.5) and (A.6), we have

μk(f − g1) ≤ ε
(
μk

(
Gk

) + 2‖f ‖∞
)
.

Similarly, the same inequality holds for μk(g2 − f ). �
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A.4. Proof of Corollary 2.10

Proof. Let fε and Gε be g1 and GN respectively in (A.3). The first inequality follows from
(A.4). The second inequality follows from the definition of g1 in (A.3). The last inequality fol-
lows from (A.2). �
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