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A well-known drawback of �1-penalized estimators is the systematic shrinkage of the large coefficients
towards zero. A simple remedy is to treat Lasso as a model-selection procedure and to perform a second
refitting step on the selected support. In this work, we formalize the notion of refitting and provide ora-
cle bounds for arbitrary refitting procedures of the Lasso solution. One of the most widely used refitting
techniques which is based on Least-Squares may bring a problem of interpretability, since the signs of the
refitted estimator might be flipped with respect to the original estimator. This problem arises from the fact
that the Least-Squares refitting considers only the support of the Lasso solution, avoiding any informa-
tion about signs or amplitudes. To this end, we define a sign consistent refitting as an arbitrary refitting
procedure, preserving the signs of the first step Lasso solution and provide Oracle inequalities for such esti-
mators. Finally, we consider special refitting strategies: Bregman Lasso and Boosted Lasso. Bregman Lasso
has a fruitful property to converge to the Sign-Least-Squares refitting (Least-Squares with sign constraints),
which provides with greater interpretability. We additionally study the Bregman Lasso refitting in the case
of orthogonal design, providing with simple intuition behind the proposed method. Boosted Lasso, in con-
trast, considers information about magnitudes of the first Lasso step and allows to develop better oracle
rates for prediction. Finally, we conduct an extensive numerical study to show advantages of one approach
over others in different synthetic and semi-real scenarios.
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1. Introduction

Least absolute shrinkage and selection operator (Lasso), introduced by Tibshirani [20], became
a popular method in high dimensional statistics due to competitive numerical solvers (as it is a
convex program) and fruitful statistical guaranties [2,15]. However, the shrinkage of large mag-
nitudes towards zero, observed in practice, may affect the overall conclusion about the model.
Different remedies were proposed to overcome this affect, all of them having their advantages
and disadvantages. For instance, one may consider a non-convex penalty instead of the �1 reg-
ularization [11,13,25]: this approach increases a computational complexity and might be not
applicable in large-scale scenarios. Another way to avoid the underestimation of the coefficients
is to perform the second least-squares refitting step based on the first step Lasso solution [1,16]:
such an approach brings the problem of interpretability, since the coefficients may switch signs
with respect to the original Lasso solution. A lot of theoretical and applied works are devoted to
the study of least-squares refitting of an arbitrary first step estimator [1,9,10,16].
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Unlike such approaches, we are rather interested in general refitting strategies of the Lasso
estimator. We provide a natural definition of what general refitting is, in the sense that we aim
at reducing the data-fitting term of the original Lasso estimator. Moreover, since our initial (first
step) estimator is the Lasso, our approach allows us to use previous theoretical analysis provided
for Lasso to derive guarantees for a wide class of refitting (second step) strategies. In Section 2,
we introduce notation, used throughout the article, and the basic Lasso theory is partly covered
in Section 3. Readers who are familiar with the Lasso theory may skip Section 3 and proceed to
the following sections. Section 4, is concerned with our theoretical framework, where we define
a refitting strategy as an estimator which reaches a lower mean square error (MSE), compared
to the first step Lasso solution. For this family of refitting strategies, we show that the rates for
prediction are bounded by the Lasso rates plus an �1-norm of difference between Lasso estima-
tor and the refitted vector. Inspired by this result we propose to use an additional information,
provided by the Lasso solution, for refitting. It leads to a least-squares refitting with constraints,
to avoid an explosion of the refitted coefficients. This estimator can be seen as Boosted Lasso
strategy (see Section 4.2 and more particularly Lemma 3) allows us to develop better prediction
bounds compared to the classical Lasso bounds.

Additionally, we propose another family of refitting strategies in Section 4.1, which restricts
the possibility to switch signs with respect to the first step Lasso solution in addition to lower
MSE. For every refitting strategy in this family, we provide a unified oracle inequality stated in
Theorem 3 showing minimax rates under the same assumptions as oracle inequalities for Lasso.
We introduce Bregman Lasso, which can be seen as a generalization of Bregman Iterations [18,
19], widely used method in compressed sensing settings and has a strong connection with the
method proposed by Brinkmann et al. [4]. Analyzing the Bregman Lasso in case of denoising
model (Section 4.3.2) we provide useful insights on the proposed method. Additionally, we show
that Bregman Lasso is a refitting strategy converging to Sign-Least-Squares Lasso, which can be
tracked back in [4]. This estimator restricts the possibility to flip signs, minimizing MSE mean-
while. For Bregman Lasso, we conduct an intensive analysis in the orthogonal design case which
is of independent interest and that exhibits some interesting interpretation of this method, and
makes some analogies between Bregman Lasso and well-known existing thresholding methods
(such as soft/hard/firm-thresholding).

Finally, we conduct an extensive numerical study of different post-Lasso refitting strategies
to show advantages of different estimators in various scenarios. Let us conclude this section by
summarizing our main contributions, in this paper we aim at:

• defining formally a refitting Lasso estimator,
• introducing specific refitting methods that exploit particular properties, such as preserving

the Lasso signs, constraining the coefficients amplitudes, etc.,
• providing oracle inequalities for particular refitting strategies, such as Bregman iteration,

Sign-Least-Squares refitting and the Boosted refitting,
• providing further understanding of the Bregman Iterations [18].

Proofs that are not presented in the main body of the article are gathered in the supplemental
article [7].
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2. Framework and notation

The standard Euclidean norm is written ‖ · ‖2, the �1-norm ‖ · ‖1, and the �∞-norm ‖ · ‖∞. For
any integer d ∈ N, we denote by [d] the set {1, . . . , d} and by Q� the transpose of a matrix Q,
and Id ∈ R

d×d is the identity matrix of size d . For two real numbers a, b ∈ R we defined by
a ∨ b the maximum between a and b. For any vectors a, b ∈ R

p we denote by 〈a, b〉 = a�b the
Euclidean inner product and by a 	 b the element wise (Hadamard) product of two vectors. Our
approach is valid for a broad class of models, but to avoid digression, we study the prediction
performance of the Lasso and refitting strategies only for Gaussian linear regression models with
deterministic design. More specifically, we consider n random observations y1, . . . , yn ∈ R and
fixed covariates x1, . . . , xn ∈ R

p . We further assume that there is a regression vector β∗ ∈ R
p

which satisfies the following relation:

y = Xβ∗ + ε, ε ∼N
(
0, σ 2In

)
, (1)

where y = (y1, . . . , yn)
� ∈ R

n is the response vector and X = (x1, . . . , xn)
� ∈ R

n×p the design
matrix. We additionally assume, that the columns of X are normalized in such a way that for all
j ∈ [p] we have ‖Xj‖2

2 = n, where Xj is j th column of the matrix X. For any set E ⊂ [p], we
denote by Ec the complement to E (i.e., E ∪ Ec = [p]) and by XE the matrix obtained from
the matrix X by erasing all the columns whose indexes are not in E. Similarly, for any β ∈ R

p

we write βE to denote the vector obtained from β by erasing all the components whose indexes
are not in E. For all vectors β ∈ R

p we write supp(β) ⊂ [p] for the support of the vector β ,
that is, supp(β) = {j ∈ [p] : βj �= 0}. For every real-valued function f : Rp �→ R we say that
g ∈ R

p is a subgradient of f at x ∈ R
p if f (y) ≥ f (x) + 〈g, y − x〉 for all y ∈ R

p . The set of
all subgradients of f at x ∈ R

p is called subdifferential of f at x ∈ R
p and written as ∂f (x).

We also remind, that the subdifferential of the �1-norm ∂‖·‖1 is a set valued vector function
sign(·) = (sign(·)1, . . . , sign(·)p)�, defined element-wise by

∀β ∈ R
p,∀j ∈ [p], sign(β)j =

⎧⎪⎨
⎪⎩

{1}, βj > 0,

{−1}, βj < 0,

[−1,1], βj = 0.

(2)

Also, we assume that the unknown vector β∗ is sparse, that is, supp(β∗) = S has small cardinality
s compared to n and p. To estimate β∗, we first minimize the negative log-likelihood with �1
penalty [20], which is equivalent for a fixed λ > 0 to the following optimization problem

β̂ ∈ arg min
β∈Rp

1

2n
‖y − Xβ‖2

2 + λ‖β‖1. (3)

We also remind the Karush–Kuhn–Tucker (KKT) conditions for Eq. (3):

Lemma 1 (KKT conditions for Lasso). The Karush–Kuhn–Tucker conditions [3] for the Lasso
problem Eq. (3) read as follows: 0 ∈ λ sign(β̂) − 1

n
X�(y − Xβ̂), or equivalently: there exists

ρ̂ ∈ sign(β̂), such that 1
n
X�(y − Xβ̂) = λρ̂.
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3. Lasso theory

In this section, we provide one of the classical Lasso oracle inequalities. To this end, we introduce
the restricted eigenvalue condition [2], a widely used assumption on the design matrix X.

Definition 1 (Bickel et al. [2]). We say that X ∈ R
n×p satisfies the Restricted Eigenvalue condi-

tion RE(c0, s), where c0 > 0 and s ∈ [p], if ∃κ(c0, s) > 0 such that for all J ⊂ [p] with |J | ≤ s

we have for all 
 ∈ R
p

‖
Jc‖1 ≤ c0‖
J ‖1 =⇒ ‖X
‖2
2

n‖
J ‖2
2

≥ κ2(c0, s).

We also state below some classical concentration bound on tail of sup of Gaussian random
variables.

Lemma 2. Let ε ∼N (0, σ 2In) and X ∈R
n×p be such that ∀j ∈ [p] we have ‖Xj‖2

2 = n, hence
with probability at least 1 − δ we have

∥∥X�ε/n
∥∥∞ ≤ λ/2,

where λ = 2σ
√

2 log (p/δ)/n.

The following theorem is a starting point of our analysis, whose proof is recalled in the sup-
plemental article [7]. We mention that similar techniques of the proof can be found in [8,14].

Theorem 1. If the design matrix X ∈R
n×p satisfies the restricted eigenvalue condition RE(3, s)

and λ = 2σ
√

2 log (p/δ)/n for every δ ∈ (0,1), then with probability 1 − δ the following bound
holds

1

n

∥∥X
(
β∗ − β̂

)∥∥2
2 ≤ 9λ2s

4κ2(3, s)
,

where β̂ is a Lasso solution with tuning parameter λ.

4. Refitting strategies

Underestimation of large coefficients by Lasso and other �1-penalized estimators have long been
well known by practitioners, and simple remedies have been proposed on case by case analysis.
One of such approaches is Least-Squares refitting – widely used in high-dimensional regression
to reduce the bias of the coefficients and consists in performing a least-squares re-estimation of
the non-zero coefficients of the solution. Such a procedure is theoretically analyzed by Belloni
and Chernozhukov [1] applied to an arbitrary first-step estimator. Lederer [16], showed that blind
Least-Squares refitting of the Lasso solution is not advised in all possible scenarios and developed
a refitting criteria. Deledalle et al. [9,10] are mostly concerned with the practical aspects of
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refitting and provide efficient numerical procedures to perform refitting simultaneously along
with the original estimator. In contrast, here we are interested in arbitrary refitting of the Lasso
solution, which allows to exploit Lasso theory to provide new insights. In this section, we study
a general framework for refitting techniques. We define a refitting of a Lasso solution β̂ as:

Definition 2. Let β̂ = β̂(λ) be a Lasso solution with regularization λ. We call a vector β̄ =
β̄(β̂,X,y) a refitting of the Lasso β̂ if it reduces the original loss function, namely if:

‖y − Xβ̄‖2 ≤ ‖y − Xβ̂‖2. (4)

Several known refitting strategies are falling inside of this framework, for instance, Least-
Squares Lasso and Relaxed Lasso [17]. Relaxed Lasso was introduced by Meinshausen [17] and
is defined for any positive λ and φ ∈ [0,1] as a solution to the following convex problem:

β̄λ,φ ∈ arg min
β:supp(β)⊂supp(β̂λ)

1

2n
‖y − Xβ‖2

2 + φλ‖β‖1, (5)

where β̂λ is the first step Lasso solution with parameter λ. To see that the relaxed Lasso in Eq.
(5) is a refitting strategy in the sense of Definition 2 it is sufficient to notice that:

1

2n

∥∥y − Xβ̄λ,φ
∥∥2

2 + φλ
∥∥β̄λ,φ

∥∥
1 ≤ 1

2n

∥∥y − Xβ̂λ
∥∥2

2 + φλ
∥∥β̂λ

∥∥
1;

1

2n

∥∥y − Xβ̂λ
∥∥2

2 + λ
∥∥β̂λ

∥∥
1 ≤ 1

2n

∥∥y − Xβ̄λ,φ
∥∥2

2 + λ
∥∥β̄λ,φ

∥∥
1.

Summing these inequalities and using the fact that λ − λφ ≥ 0, we obtain the required condition
in Definition 2.

We emphasize, that one should not expect a superior performance of a refitting from Defini-
tion 2, since the only information available for β̄ is the mean square error. Additionally notice,
that the least-squares solution is obviously a refitting strategy for every Lasso solution, which
justifies the previous remark. However, defining and analyzing such a family provides with in-
teresting insights and serves as the step towards more thoughtful refitting strategies which are
discussed in Section 4.2.

Theorem 2. For λ = 2σ
√

2 log (p/δ)/n, where δ ∈ (0,1) is arbitrary, with probability 1 − δ the
following bound holds

1

n

∥∥X
(
β∗ − β̄

)∥∥2
2 ≤ 1

n

∥∥X
(
β∗ − β̂

)∥∥2
2 + λ‖β̄ − β̂‖1,

where β̄ is a refitting of Lasso solution β̂ .

Previous theorem shows, that by controlling the �1-distance between refitting and Lasso so-
lution, one might obtain satisfying performance, we discuss this idea in Section 4.2. In what
follows, we consider specific refitting methods in order to refine prediction error bounds. First,
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we consider the sign consistent refitting family that shares the same sign vector as the initial
Lasso estimator. Then, we develop the Boosted Lasso, a refitting method that aims at reducing
the �1 distance with the initial Lasso estimator. Finally, we introduce the Bregman Lasso, which
somehow generalizes the Bregman Iterations [18] by adding some flexibility on the tuning pa-
rameters. We also highlight its connections with the Sign-Least-Squares Lasso, a particular sign
consistent refitting strategy.

4.1. Sign consistent refitting strategies

Previous section is concerned with an arbitrary refitting strategy, which only uses the information
about the mean square error of the Lasso solution. Here, we are interested in a more sophisticated
family of refitting strategies, which additionally exploits the information provided by the sign
of the Lasso solution. Such an approach has some similarities with the methods introduced by
Brinkmann et al. [4], even thought the authors had a different motivation.

Definition 3. Let β̂ = β̂(λ) be a Lasso solution with regularization λ. We call a β̄ = β̄(β̂,X,y)

sign-consistent refitting of the Lasso solution β̂ if

‖y − Xβ̄‖2 ≤ ‖y − Xβ̂‖2 (refitting), (6)

1

n
X�(y − Xβ̂) ∈ λ sign(β̄) (sign-consistency). (7)

Remark 1. The sign consistency property in Definition 3 ensures that a sign-consistent refitting
vector β̄ satisfies for all j ∈ [p] the following conditions

• if n−1X�
j (y − Xβ̂) = λ, hence β̄j ≥ 0;

• if n−1X�
j (y − Xβ̂) = −λ, hence β̄j ≤ 0;

• if n−1|X�
j (y − Xβ̂)| < λ, hence β̄j = 0.

Notice, that the equations in the previous remark are exactly the first-order optimality condi-
tions for the Lasso problem written component-wise. The next theorem shows that the definition
of the sign-refitting allows to develop oracle rates without any additional assumptions, except
classical ones used for Lasso bounds.

Theorem 3. If the design matrix X ∈R
n×p satisfies the restricted eigenvalue condition RE(3, s)

and λ = 6σ
√

2 log (p/δ)/n for some δ ∈ (0,1), then with probability 1 − δ the following bound
holds

1

n

∥∥X
(
β∗ − β̄

)∥∥2
2 + 1

n

∥∥X
(
β∗ − β̂

)∥∥2
2 ≤ λ2s

(
9

κ2(3, s)
+ 16

κ2(1, s)

)
,

where β̄ is a sign-consistent refitting of Lasso solution β̂ .
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The proof of this theorem is based on Definition 3, to be more precise, we can use an additional
equality due to the sign-consistency property in Eq. (7), that is:

1

n
(β̄ − β̂)�X�(y − Xβ̂) = λ〈β̄ − β̂, ρ̂〉 = λ

(‖β̄‖1 − ‖β̂‖1
)
.

This relation holds, since two estimators β̂ (Lasso) and β̄ (sign-refitting) share the same subgra-
dient. Hence, we are able to reuse proof techniques similar to the one of Theorem 1 to provide
an oracle inequality.

4.2. Boosted Lasso

Notice that to prove Theorem 2, we used only the refitting property Definition 2, one of the
possible candidates is the following refitting step

β̄ ∈ arg min
β∈


1

2n
‖y − Xβ‖2

2, (8)

where 
 = {β ∈ R
p : ‖β − β̂‖1 ≤ ŝλ} and ŝ = | supp(β̂)|. Intuitively, the Lasso coefficients are

shrunk towards zero by a value proportional to the tuning parameter λ. Since there are ŝ non-
zero coefficient in the Lasso solution, the proposed refitting strategy tries to “unshrink” ŝ non-
zero coefficients. As we measure the “shrinkage” factor globally with the �1-norm, it is natural
(inspired by the orthogonal design) to set this factor as ŝλ. This motivates our choice of the
feasible set 
. This estimator is legitimate following results given in [2], Theorem 7.2.

Theorem 4 (Bickel et al. [2]). If the design matrix X ∈ R
n×p satisfies the restricted eigenvalue

condition RE(3, s) and λ = 2σ
√

2 log (p/δ)/n for some δ ∈ (0,1), then with probability 1 − δ

the following bound holds

ŝ ≤ 9sφmax

κ2(3, s)
, (9)

where φmax is the maximal eigenvalue of X�X/n.

The proof of this theorem is a direct application of Theorem 7.2 in [2] together with Theorem 1
to bound 1

n
‖X(β∗ − β̂)‖2

2, we then omit it here. For the estimator, described in Eq. (8), we can
state the following result, which relies on using both Theorem 4 and Theorem 2:

Corollary 1. If the design matrix X ∈R
n×p satisfies the restricted eigenvalue condition RE(3, s)

and λ = 2σ
√

2 log (p/δ)/n for some δ ∈ (0,1), then with probability 1 − δ the following bound
holds

1

n

∥∥X
(
β∗ − β̄

)∥∥2
2 ≤ λ2s

κ2(3, s)

(
9

4
+ 9φmax

)
.
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Note that the control over the magnitudes of the coefficients allows to develop desirable rates
for the refitted estimator. The description of the set 
 in the definition of the refitting (8) motivates
us to consider the following Boosted Lasso estimator [6].

Definition 4 (Boosted Lasso). For any λ1, λ2 > 0 we call β̂λ1,λ2 a Boosted Lasso refitting if it
is a solution of

β̂λ1,λ2 ∈ arg min
β∈Rp

1

2n
‖y − Xβ‖2

2 + λ2
∥∥β − β̂λ1

∥∥
1, (10)

where β̂λ1 is the Lasso solution with tuning parameter λ1.

Remark 2. Indeed, procedure (10) consists in applying the Twicing method [22] to the Lasso,
which is is equivalent to a two-step boosting approach. To see that, let 
̂ = β − β̂ . Then, with a
change of variable we get:


̂ ∈ arg min

∈Rp

1

2n

∥∥(
y − Xβ̂λ1

) − X

∥∥2

2 + λ2‖
‖1, (11)

and finally β̂λ1,λ2 = 
̂ + β̂λ1 .

It is known result that in the Lasso case there exists a critical value λ1,max = ‖X�y/n‖∞ such
that β̂λ1 = 0 iff λ1 ≥ λ1,max, due to the previous remark, the Boosted Lasso can be written as a
Lasso problem and we can give the result of the same nature.

Proposition 1. If λ1 < λ1,max, then the solution of Boosted Lasso satisfies: β̂λ1,λ2 = β̂λ1 iff
λ2 ≥ λ1. Moreover, if λ1 ≥ λ1,max, then the Boosted Lasso estimator is simply the Lasso estimator
with tuning parameter λ2.

Control over the �1-norm of the difference, allows to develop oracle inequality with minimax
rates (Corollary 1), similar result but somehow stronger can be shown for the regularized version
(Boosted Lasso).

Lemma 3. For any β̂λ1 on the event {‖ε�X/n‖∞ ≤ λ1/2} we have:

1

n

∥∥X
(
β∗ − β̂λ1,λ2

)∥∥2
2 + (2λ2 − λ1)

∥∥β̂λ1,λ2 − β̂λ1
∥∥

1 ≤ 1

n

∥∥X
(
β∗ − β̂λ1

)∥∥2
2. (12)

Combining Lemma 3 and Theorem 1 we can state the following corollary.

Corollary 2. If the design matrix X ∈R
n×p satisfies the restricted eigenvalue condition RE(3, s)

and λ1 = 2σ
√

2 log (p/δ)/n for some δ ∈ (0,1), then with probability 1 − δ the following bound
holds

1

n

∥∥X
(
β∗ − β̄

)∥∥2
2 + (2λ2 − λ1)‖β̄ − β̂‖1 ≤ 9λ2

1s

4κ2(3, s)
,

where β̄ = β̂λ1,λ2 is a boosting refitting of Lasso solution β̂ = β̂λ1 .
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The Boosted Lasso is obviously a refitting strategy, and the previous result shows that it is
worth refitting in terms of prediction error. Moreover, Proposition 1 and Corollary 2 suggest to
select λ2 ∈ (λ1/2, λ1), such a choice allows to improve the Lasso prediction accuracy with high
probability. Besides, the result can be applied iteratively as it does not depend on the choice of
β̂λ1 , hence it works for any iteration step.

Remark 3. A possible extension of the Boosted Lasso is the Boosted Support Lasso:

β̄λ1,λ2 ∈ arg min
β:supp(β)⊂supp(β̂λ1 )

1

2n
‖y − Xβ‖2

2 + λ2
∥∥β − β̂λ1

∥∥
1, (13)

this estimator is inspired by the Relaxed Lasso in Eq. (5) and the Boosted Lasso in Eq. (10).
Interestingly, both Lemma 3 and Corollary 2 hold for the Boosted Support Lasso refitting and
follow completely identical proof.

4.3. Bregman Lasso

We first remind the definition of the Bregman divergence associated with the �1-norm.

Definition 5 (Bregman divergence for the �1-norm). For any z,w ∈ R
p and any ρ ∈ ∂‖w‖1,

the Bregman divergence for the �1-norm is defined as

Dρ
�1

(z,w) = ‖z‖1 − ‖w‖1 − 〈ρ, z − w〉 ≥ 0, ρ ∈ ∂‖w‖1. (14)

In [18], the authors proposed the Bregman Iterations procedure, originally designed to improve
iso-TV results. In Lasso case, Bregman Iterations has the following expression: for a fixed λ > 0,
initializing with ρ̂0 = β̂0 = 0p ,

β̂k ∈ arg min
β∈Rp

1

2n
‖y − Xβ‖2

2 + λDρ̂k−1
�1

(β, β̂k−1),

s.t. ρ̂k = ρ̂k−1 + 1

λn
X�(y − Xβ̂k),

(15)

where Dρ
�1

(·, ·) is the Bregman divergence defined in Eq. (14). The Bregman Iterations can be
seen as a discretization of Bregman Inverse Scale Space (ISS), which is analyzed by Osher et
al. [19], who provided statistical guarantees for the ISS dynamic. One of the drawbacks of such
an approach is the iterative nature of the algorithm: one need to tune the number of iterations k

and the regularization parameter λ > 0. In the recent work by Brinkmann et al. [4], the authors
proposed another closely related algorithm, which for a given Lasso solution β̂λ1 , performs the
following refitting

β̄ ∈ arg min
β∈Rp

1

2n
‖y − Xβ‖2

2

s.t. Dρ̂λ1

�1

(
β, β̂λ1

) = 0.

(16)
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Unlike the previous approaches, in this section we consider the Lasso solution β̂λ1 and the fol-
lowing Bregman Lasso refitting strategy, defined as the following.

Definition 6 (Bregman Lasso). For any λ1, λ2 > 0 we call β̂λ1,λ2 a Bregman Lasso refitting a
solution of

β̂λ1,λ2 ∈ arg min
β∈Rp

1

2n
‖y − Xβ‖2

2 + λ2Dρ̂λ1

�1

(
β, β̂λ1

)
, (17)

where β̂λ1 is a Lasso solution with tuning parameter λ1 and Dρ̂λ1

�1
(·, ·) is the Bregman divergence

given in Eq. (14).

Considering the particular case of orthogonal design, we show in Section 4.3.2 that Bregman
Lasso refitting is a generalization of both approaches. In particular for this design, the Bregman
Lasso refitting can recover Bregman Iterations for any k. Also, Bregman Lasso is computation-
ally more appealing since it only requires evaluating two Lasso problems, while the Bregman
Iterations would require k evaluations.

We start by introducing some basic properties of the Bregman divergence associated with the
�1-norm.

Lemma 4. Let z,w ∈ R
p , and denote ρ ∈ ∂‖w‖1 a subgradient of the �1-norm evaluated at

w ∈R
p , therefore the following properties hold independent of the choice of ρ

1. z �→ Dρ
�1

(z,w) is convex for all w,

2. Dρ
�1

(z,w) = ‖z‖1 − 〈ρ, z〉,
3. 0 ≤ Dρ

�1
(z,w) ≤ 2‖z‖1,

4. Dρ
�1

(z,w) = ∑p

i=1 |zi |− ziρi = ∑p

i=1 D
ρi

�1
(zi,wi), where zi , wi , ρi are the ith components

of z, w, ρ,
5. if sign(z) = sign(w), therefore Dρ

�1
(z,w) = 0.

There is a simple geometrical interpretation of Bregman divergence, associated with the �1-
norm, which is illustrated by Figure 1. According to Property 2 of Lemma 4, Bregman divergence
in Eq. (17) can be evaluated as

Dρ̂λ1

�1

(
β, β̂λ1

) = ‖β‖1 − 〈
ρ̂λ1, β

〉
,

where ρ̂λ1 is a fixed subgradient of the �1-norm evaluated at β̂λ1 . Since, the subdifferential of the
�1-norm is not uniquely defined when evaluated at zero, it is important to fix the way to pick a
subgradient. Possible, and probably the most obvious way to evaluate the subgradient is to write
the KKT conditions for Problem (17) and fix ρ̂λ1 as follows

ρ̂λ1 = 1

λ1n
X�(

y − Xβ̂λ1
)
. (18)

Starting from here we stick to this choice of the subgradient.
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Figure 1. Geometrical interpretation of Bregman divergence. On the left plot the subgradient is uniquely
defined and the Bregman divergence equals 2|z|. On the right plot the subgradient is a set, therefore the
Bregman divergence can be any number from 0 to 2|z| depending on the choice of ρ.

Proposition 2. With the choice of the subgradient as in Eq. (18) and setting ȳ = y + λ2
λ1

(y −
Xβ̂λ1), the Bregman Lasso refitting step can be evaluated as

β̂λ1,λ2 ∈ arg min
β∈Rp

1

2n
‖ȳ − Xβ‖2

2 + λ2‖β‖1. (19)

Proposition 2 suggests that one can easily compute the Bregman Lasso refitting based on
some Lasso solver using a modified response vector. Moreover, it is important to notice that the
Bregman refitting is a particular instance of our proposed framework. In particular the following
result holds.

Proposition 3. Bregman Lasso refitting is a refitting strategy in the sense of Definition 2.

Theorem 5. If the design matrix X ∈ R
n×p satisfies the restricted eigenvalue condition RE(3, s)

and λ1 = 1+2r
r

2σ
√

2 log (p/δ)/n for some δ ∈ (0,1), then with probability 1 − δ the following
bound holds:

r + 2

r

1

n

∥∥X
(
β∗ − β̄

)∥∥2
2 + 1

n

∥∥X
(
β∗ − β̂

)∥∥2
2 ≤ λ2

1s

κ2(1, s)
+ 9λ2

1s

4κ2(3, s)
,

where r = λ2/λ1 and β̄ = β̂λ1,λ2 is a Bregman refitting of Lasso solution β̂ = β̂λ1 .

The proof can be found in the supplemental article [7], however, let us mention that an impor-
tant step in the proof is to obtain the following inequality:

∥∥X(β̂ − β̄)
∥∥2

2 + ‖y − Xβ̄‖2
2 ≤ ‖y − Xβ̂‖2

2, (20)

which quantifies the improvement for the data-fitting term. Several interesting consequences can
be mentioned based on Theorem 5: first notice that the oracle inequality depends weakly on
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the second parameter λ2, which indicates that the Bregman refitting is not sensitive to the second
parameter; also, the rate on the right hand side 9λ2s/4κ2(3, s) is matching the Lasso upper bound
up to a constant term (to the cost of a lower probability).

Remark 4. A careful analysis of the proof suggests a stronger result: under the assumptions of
Theorem 5, with probability 1 − δ at least one of the following inequalities holds:

r + 2

r

1

n

∥∥X
(
β∗ − β̄

)∥∥2
2 + 1

n

∥∥X
(
β∗ − β̂

)∥∥2
2 ≤ 9λ2

1s

4κ2(3, s)
,

1

n

∥∥X
(
β∗ − β̂

)∥∥2
2 ≤ 9λ2

1s

4κ2(1, s)
,

where r = λ2/λ1 and β̄ = β̂λ1,λ2 is the Bregman refitting of the Lasso solution β̂ = β̂λ1 . Note
that although one cannot tell apart which one of these two inequalities holds, the prediction
bounds are improved in both cases. In case the first inequality is true and the classical Lasso
bound is tight the Bregman refitting improves on the Lasso. In case the second inequality holds
then the Lasso bound from Theorem 1 can be improved using a better constant κ2(1, s) instead
of κ2(3, s), which can differ significantly.

4.3.1. Geometrical interpretation

It is known that (3) can be equivalently written in the following form

β̂T1 ∈ arg min
β∈Rp

1

2n
‖y − Xβ‖2

2

s.t. ‖β‖1 ≤ T1,

(21)

for some T1 = T1(λ1) ≥ 0. Similarly, we can write the Bregman Lasso refitting step Eq. (17) in
the constrained form as

β̂T1,T2 ∈ arg min
β∈Rp

1

2n
‖y − Xβ‖2

2

s.t. Dρ̂T1

�1

(
β, β̂T1

) ≤ T2,

(22)

where β̂T1 is a solution of the constrained version given in Eq. (21). The choice T2 = 0 is con-
sidered in [4], which corresponds to λ2 being large enough in Eq. (17). To provide a geometrical
intuition we consider the simple case where n = p = 2. We denote by ρ̂T1 the subgradient of the
�1-norm evaluated at the first-step estimator β̂T1 . Assume, that the first-step estimator is given,
therefore we consider two principal scenarios (case with negative values could be obtained sym-
metrically):

• When β̂
T1
1 > 0, β̂

T1
2 = 0, the feasible set of Problem (22) is given by

{
(β1, β2)

� ∈R×R : |β1| − β1 + |β2| − ρ̂
T1
2 β2 ≤ T2

}
.
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Figure 2. Feasible set of the first and the refitting steps. Here, the ellipses are levels of the objective function
and β̂LS is the least squares estimator. Geometry of the feasible set for the refitting step is described in terms
of T2 and the subgradient ρ̂T1 .

Notice that any positive value for β1 is admissible in this case. We illustrate this phe-
nomenon on Figure 2(a), Figure 2(b) and Figure 2(c) for various values of T2.

• When β̂
T1
1 > 0, β̂

T1
2 > 0, the feasible set of Problem (22) is given by

{
(β1, β2)

� ∈R×R : |β1| − β1 + |β2| − β2 ≤ T2
}
.

Notice that every pair (β1, β2)
� ∈ R

+ × R
+ is inside of the feasible set. We illustrate this

phenomenon on Figure 2(d).

In the Lasso case, if T1 = 0 there is only one trivial solution β̂T1 = 0, this is not the case
for the refitting step. Indeed, if T2 = 0 the feasible set of the refitting step might be non-trivial,
depending on the first step Lasso solution. More precisely, if there exists j1 ∈ [p], such that
β̂

T1
j1

�= 0 the feasible set of the refitting step always contains {β : βj1 ≤ 0, βj2 = 0 ∀j2 �= j1} or

{β : βj1 ≥ 0, βj2 = 0 ∀j2 �= j1}, depending on sign(β̂
T1
j1

).
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4.3.2. Orthogonal design

In this section, we investigate some important properties of the algorithm in Eq. (17) for the
denoising model (i.e., we drop the statistical convention and instead assume that n = p and
X = Ip) y = β∗ + ε, where y,β∗ ∈ R

p , ε ∼ N (0, σ 2Idp). The following estimators correspond
to Eq. (3) and Eq. (17), respectively

β̂λ1 = arg min
β∈Rp

1

2
‖y − β‖2

2 + λ1‖β‖1, (23)

β̂λ1,λ2 = arg min
β∈Rp

1

2
‖y − β‖2

2 + λ2
(‖β‖1 − 〈

ρ̂λ1 , β
〉)
, (24)

where the subgradient ρ̂λ1 is given by Eq. (18) and simplifies to

ρ̂λ1 = y − β̂λ1

λ1
. (25)

We remind that for orthogonal design, the Lasso estimator is simply a soft-thresholding version
of the observation β̂λ1 = ST(y,λ1), where ST(·, ·) is defined component-wise for any j ∈ [p]
by: ST(y,λ1)j = sign(yj )(|yj | − λ1)+.

The next proposition shows that the subgradient follows the signs of y.

Proposition 4. For all λ1 > 0 we have sign(yj ) = sign(ρ̂
λ1
j ), ∀j ∈ [p].

The following results states that the Bregman refitting also enjoys close properties to the Lasso
but thresholds a translated response vector. This relation can be obviously proved using Eq. (19)
of Proposition 2, which establishes that the Bregman Lasso can be seen as Lasso solution applied
to a modified signal.

Proposition 5. The solution of the Bregman Lasso refitting step in Eq. (24) relies on the soft-
threshold operator and reads: β̂λ1,λ2 = ST(y + λ2ρ̂

λ1, λ2).

It is worth mentioning, that in the Lasso case, there exists a so called λ1,max, which is the
smallest value of regularization parameter for which the solution β̂λ1 = 0 for all λ1 > λ1,max.
However, even though the refitting step can be formulated as Lasso problem, there is not such
parameter λ2,max. It can be counter intuitive on the first sight, but since the parameter λ2 is
present inside the data-fitting term, it becomes clear that such extreme value does not exist.

In the sequel, we provide another interpretation of the Bregman Lasso refitting in terms of firm-
thresholding operator, introduced and analyzed by Gao and Bruce [12]. We additionally mention,
that the firm-thresholding operator is the solution of the least squares problem penalized with
MCP regularization [25] (for orthogonal design), which is a non-convex problem. Additionally,
the firm-thresholding operator outperforms soft/hard-threshold in terms of bias-variance trade-
off, see [12] for theoretical and numerical analysis.
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Figure 3. The solution of the refitting step is equivalent to the MCP penalty. Extreme cases include both
hard and soft threshold operators.

Proposition 6. The solution of the Bregman Lasso refitting step in case of orthogonal design is
given by: β̂λ1,λ2 = FT(y,λH ,1 + λ1

λ2
), where λH = (1/λ1 + 1/λ2)

−1 and the firm-thresholding
operator FT is defined for μ > 0, γ > 1 component-wise for any j ∈ [p] by:

FT(y,μ,γ )j =
⎧⎨
⎩

γ

γ − 1
ST(yj ,μ), |yj | ≤ μγ,

yj , |yj | > μγ.
(26)

In the Bregman Lasso (orthogonal) case μ = λH and γ = 1 + λ1/λ2 = λ1/λH .

Remark 5. We notice the following behavior of the solution, described in Proposition 6:

• β̂λ1,λ2 → HT(y,λ1), when λ2 → ∞,
• β̂λ1,λ2 → ST(y,λ2), when λ1 → ∞.

These properties are illustrated on Figures 3(a) and 3(b) for several values of λ1 and λ2.

We would like to emphasize that the Bregman Lasso refitting formulated in the orthogonal
case, that is, Eq. (26), coincides with the Firm Thresholding [12]. In the extreme case where
λ2 → ∞, one recovers the Hard Thresholding. Note that these two cases are connected to non-
convex regularizations corresponding to the MCP [25] and the �0. For the sake of completeness,
we additionally provide the analysis for the Bregman Iterations (orthogonal case) in the form
of Eq. (15) to give insights on our motivation to consider two-step iteration with two tuning
parameters λ1, λ2. Similar analysis can be found in [23,24]. Following the proof of Proposition 5
one can prove by induction that the following result holds for the Bregman Iterations defined in
Eq. (15).

Proposition 7. For any λ > 0 and k > 0, the Bregman Iteration Eq. (15) is given by

β̂k+1 = ST(y + λρ̂k, λ).



3190 E. Chzhen, M. Hebiri and J. Salmon

We also prove that for every k > 1, firm-thresholding yields to Bregman Iterations.

Proposition 8. For any λ > 0 and k > 0, the solution generated by the Bregman Iterations Eq.
(15) is given by

β̂k+1 = FT

(
y,

λ

k + 1
,
k + 1

k

)
=

⎧⎪⎨
⎪⎩

(k + 1)ST

(
y,

λ

k + 1

)
, if |yj | ≤ λ

k
,

yj if |yj | > λ

k
.

Analyzing the previous result helps motivating the introduction of the Bregman Lasso refit-
ting in the form of Eq. (17). Indeed, for orthogonal design, Bregman Lasso refitting generalizes
Bregman Iterations Eq. (15) in the sense that for each pair (k, λ) there exists a pair (λ1 = λ

k−1 ,
λ2 = λ) such that β̂k = β̂λ1,λ2 . In particular, Bregman Lasso refitting includes all possible solu-
tion of Bregman Iterations Eq. (15), while the reverse is not true, for instance, when k is not an
integer.

5. Sign-Least-Squares Lasso

In this section, we provide some generalizations of the results obtained in Section 4.3.2. We first
notice that in the case of orthogonal design, discussed in Section 4.3.2, for a given vector y, there
exists a value of the regularization parameter λ2 such that, the refitting step Eq. (17) is equivalent
to hard-thresholding. One might expect that for the case of arbitrary design there exists such a
value of λ2 that the refitting step Eq. (17) is equivalent to a Least-Squares refitting on the support
obtained via the first Lasso type step as it adds a sign constraints. Yet, the estimator obtained via
the refitting step slightly differs from the simple Least-Squares refitting. To state our main result
of this section, let us introduce some notation. Consider ρ̂λ1 , defined in Eq. (18), we define the
equicorrelation set [21] as

Eλ1 = E
(
ρ̂λ1

) = {
j ∈ [p] : ∣∣ρ̂λ1

j

∣∣ = 1
}
. (27)

We will omit λ1 in Eλ1 and write E instead for simplicity. We associate the following Sign-
Least-Squares Lasso refitting step with the equicorrelation set given by Eq. (27).

Definition 7 (Sign-Least-Squares Lasso). For any λ1 > 0 we call β̂SLS a Sign-Least-Squares
Lasso refitting if it satisfies β̂SLS

Ec = 0 and

β̂SLS
E ∈ arg min

βE∈R|E|:ρ̂λ1
E 	βE≥0

1

2n
‖y − XEβE‖2

2, (28)

where |E| is the cardinality of E and ρ̂λ1 is the Lasso subgradient defined in Eq. (18).

Notice, that the refitting is performed on the equicorrelation set and not on the support of the
Lasso solution. Possible motivation to consider the equicorrelation set instead of the support can
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be described by uniqueness issues of the Lasso [21], while the equicorrelation set (and the signs)
is always uniquely defined.

Proposition 9. The Sign-Least-Squares Lasso is a sign consistent refitting strategy of the Lasso
solution β̂λ1 in the sense of Definition 3.

Proof. Notice that we have the relation {βE ∈ R
|E| : ρ̂

λ1
E 	 βE ≥ 0} = {βE ∈ R

|E| : ρ̂λ1 ∈
sign(β)}, and using Remark 1 we conclude. �

We believe that the introduced Sign-Least-Squares refitting of the Lasso is an interesting and
simple alternative to the Least-Squares Lasso. Indeed, both methods achieve similar theoretical
guarantees and their computational costs are equivalent (since the estimated supports are gener-
ally small). Moreover, the Sign-Least-Squares refitting of the Lasso might be more appealing to
practitioners since confusing signs switches are no longer possible.

5.1. Bregman Lasso as Sign-Least-Squares Lasso

In this section, we provide connections between the Bregman Lasso and the Sign-Least-Squares
Lasso. Since Problem (28) is convex and Slater’s condition is satisfied therefore the KKT condi-
tions state [3] that there exist β̂SLS

E ∈ R
|E| and μ̂ ∈R

|E|
+ , such that

⎧⎪⎪⎨
⎪⎪⎩

1

n
X�

E

(
y − XEβ̂SLS

E

) + ρ̂
λ1
E 	 μ̂ = 0,

μ̂ 	 β̂SLS
E 	 ρ̂

λ1
E = 0,

μ̂ ≥ 0,

(29)

so that we can provide the following connection.

Theorem 6. For any signal vector y ∈ R
n and any design matrix X ∈ R

n×p there exists λ0 > 0
such that for any λ2 ≥ λ0 the solution of the refitting step Eq. (17) is given by β̂λ1,λ2 = β̂SLS.

The proof the this theorem is below. However we mention that it states that given λ1 > 0,
Bregman Lasso and Sign-Least-Squares Lasso often coincide. The value of the parameter λ0 in
Theorem 6 is explicit and can be found at the end of the following proof.

Proof. We start by writing the KKT conditions for Bregman Lasso, Eq. (17):

⎧⎪⎪⎨
⎪⎪⎩

ρ̂
λ1
E + 1

λ2n
X�

E

(
y − XEβ̂

λ1,λ2
E − XEc β̂

λ1,λ2
Ec

) ∈ sign
(
β̂

λ1,λ2
E

)
,

ρ̂
λ1
Ec + 1

λ2n
X�

Ec

(
y − XEβ̂

λ1,λ2
E − XEc β̂

λ1,λ2
Ec

) ∈ sign
(
β̂

λ1,λ2
Ec

)
.

(30)

These are necessary and sufficient conditions for a vector β to be a solution of Bregman Lasso
(17). Therefore, it is sufficient to check if the vector defined as β̂λ1,λ2 = β̂SLS satisfies Eq. (30)
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for some λ2. Substituting β̂
λ1,λ2
E = β̂SLS

E and β̂
λ1,λ2
Ec = 0 we arrive at

⎧⎪⎪⎨
⎪⎪⎩

ρ̂
λ1
E + 1

λ2n
X�

E

(
y − XEβ̂SLS

E

) ∈ sign
(
β̂SLS

E

)
,

ρ̂
λ1
Ec + 1

λ2n
X�

Ec

(
y − XEβ̂SLS

E

) ∈ sign(0).

(31)

Since β̂SLS
E satisfies the KKT conditions, given in Eq. (29), this yields to

⎧⎪⎪⎨
⎪⎪⎩

ρ̂
λ1
E 	

(
1|E| − 1

λ2
μ̂

)
∈ sign

(
β̂SLS

E

)
,

ρ̂
λ1
Ec + 1

λ2n
X�

Ec

(
y − XEβ̂SLS

E

) ∈ sign(0),

(32)

where 1|E| = (1, . . . ,1)� ∈R
|E|. We notice that the second line in Eq. (32) can be satisfied for λ2

large enough, since for each j ∈ Ec we have |ρ̂λ1
j | < 1 and β̂SLS

E does not depend on the value of
λ2. Denote λ the smallest λ2 such that the second condition in Eq. (32) is satisfied. Now, notice
that the first line can be studied element-wise, hence we study two distinct cases, where we take
j ∈ E.

• μ̂j = 0 =⇒ ρ̂
λ1
j ∈ sign(β̂SLS

E )j , which holds due to the definition of β̂SLS
E ,

• μ̂j > 0
(29)=⇒ (β̂SLS

E )j = 0 =⇒ if λ2 ≥ μ̂j then |ρ̂λ1
j (1 − μ̂j

λ2
)| ≤ 1 and Eq. (32) is satisfied.

Setting λ0 = λ ∨ μ̂max, where μ̂max = max|E|
j=1{μ̂j } concludes the proof. �

Combining Theorems 5 and 6 we can state the following corollary, which provides an oracle
inequality for the Sign-Least-Squares Lasso.

Corollary 3. If the design matrix X ∈R
n×p satisfies the restricted eigenvalue condition RE(3, s)

and λ = 5σ
√

2 log (p/δ)/n for some δ ∈ (0,1), then with probability 1 − δ the following bound
holds:

1

n

∥∥X
(
β∗ − β̄

)∥∥2
2 + 1

n

∥∥X
(
β∗ − β̂

)∥∥2
2 ≤ λ2s

κ2(1, s)
+ 9λ2s

4κ2(3, s)
,

where β̄ is the Sign-Least-Squares Lasso solution associated with β̂ = β̂λ.

6. Experiments

To evaluate each scenario, we consider the following ‘oracle’ performance measures (in the sense
that in practice one can not evaluate them):

• Prediction: ‖X(β∗ − β̂)‖2
2;

• Estimation: ‖β∗ − β̂‖1;
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Table 1. Description of considered estimators in the experiments. The subgradient ρ̂λ1 , associated with the
Lasso solution, is evaluated according to Eq. (18) with β̂λ1 = β̂Lasso. For the Relaxed Lasso, the parameter
φ belongs to the interval (0,1)

Lasso [20] β̂Lasso ∈ arg minβ∈Rp
1

2n
‖y − Xβ‖2

2 + λ1‖β‖1

LSLasso [1] β̂LSLasso ∈ arg min
β:supp(β)⊂supp(β̂Lasso)

1
2n

‖y − Xβ‖2
2

SLSLasso [4] β̂SLSLasso ∈ arg minβ:β	ρ̂λ1 ≥0
1

2n
‖y − Xβ‖2

2

Boosted Lasso β̂Boosted ∈ arg minβ∈Rp
1

2n
‖y − Xβ‖2

2 + λ2‖β − β̂Lasso‖1

Bregman Lasso β̂Bregman ∈ arg minβ∈Rp
1

2n
‖y − Xβ‖2

2 + λ2(‖β‖1 − 〈ρ̂λ1 , β〉)
Relaxed Lasso β̂Relaxed ∈ arg min

β:supp(β)⊂supp(β̂Lasso)
1

2n
‖y − Xβ‖2

2 + φλ1‖β‖1

• Predicted sparsity: | supp(β̂)|;
• True Positive: |{j ∈ [p] : β∗

j �= 0 and β̂j �= 0}|;
• False Positive: |{j ∈ [p] : β∗

j = 0 and β̂j �= 0}|;
• Hamming: 1

p
|{j ∈ [p] : False Positive or False Negative or False Sign}|,

where β∗
j = 0 and β̂j �= 0︸ ︷︷ ︸

False Positive

, β∗
j �= 0 and β̂j = 0︸ ︷︷ ︸

False Negative

, sign(β∗
j ) �= sign(β̂j )︸ ︷︷ ︸
False Sign

.

All except one measures used in our evaluation are standard and are widely considered by var-
ious authors. We additionally study Hamming loss, which allows to capture information about
miss predicting the sign of the underlying β∗. However, one should keep in mind that the intro-
duced Hamming treats False Positive, False Negative and False Sign mistakes equally. Further-
more, the estimators that we consider are described in Table 1.

To report our results, we present boxplots for each scenario and performance measure over
one hundred experiment replicas. During each simulation run we perform 3 fold cross-validation
over a predefined one dimensional grid of 50 points, spread equally on logarithmic scale from
0.01 · ‖X�y/n‖∞ to ‖X�y/n‖∞ for λ1, or two dimensional grid of 50 × 50 points for λ1, λ2 on
the same scale. For the Relaxed Lasso the parameter φ is chosen over a uniform grid of 50 points
laying in the interval (0.001,0.999). We finally select the tuning parameters achieving the best
3-fold cross-validation performance in terms of MSE, since in practice one does not have access
to the underlying β∗.

6.1. Synthetic data

In our synthetic experiments, we generated the design matrix X ∈ R
n×p as follows

Xj = √
n

κζ + (1 − κ)ξj

‖κζ + (1 − κ)ξj‖2
, (33)

where ζ, ξ1, . . . , ξp ∼ N (0, Ip) are independent standard normal vectors. The level of correla-
tions between the covariates is determined by the parameter κ ∈ [0,1]. We additionally consider
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Figure 4. Synthetic dataset: low correlation scenario.

a noise vector ε ∼N (0, In) and set the underlying vector as

β∗ = (1, . . . ,1︸ ︷︷ ︸
s

,0, . . . ,0︸ ︷︷ ︸
p−s

)� ∈R
p.

Hence, each scenario in the synthetic data section is described by the following parameters:
number of observations: n, number of features: p, sparsity level of β∗: s, level of correlations:
κ , noise level: σ . We fix n = 40, p = 200, s = 4, σ = 0.5 and use the following values of cor-
relations κ = 0.3;0.5;0.7, representing low, average and high correlation settings respectively.
The results are reported on Figure 4, Figure 5 and Figure 6. We first notice that the Boosted
Lasso does not give any significant improvement over the Lasso. Other four refitting strategies
can improve the first step Lasso solution. In case of modest correlations inside the design matrix,
the improvement can be considered as significant. Moreover, the Sign-Least-Squares Lasso out-
performs the Least-Squares Lasso and the Bregman Lasso in average, in addition to the greater
interpretability due to the sign preserving properties. The Relaxed Lasso performance is on par
with the one of the Least-Squares Lasso. However, the former requires an additional tuning pa-
rameter to be calibrated.

6.2. Semi-real data

For our experimental study, we generate semi-real datasets, following an approach presented in
[5]. The data are generated from the model Eq. (1), where the design matrix X is obtained from
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Figure 5. Synthetic dataset: average correlation scenario.

Figure 6. Synthetic dataset: high correlation scenario.
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Table 2. Description of the parameters for semi-real dataset simulation

Settings

Signal to noise ration (SNR) 2 8
Number of covariates (p) 200 1000
Underlying sparsity (s) 5 20
Correlations settings Normal High

the leukemia dataset with n = 72. We consider the following 4 parameters to describe the settings
of our experiments: p – number of covariates, s – sparsity of the vector β∗, SNR – signal to noise
ratio, and the correlation settings – way to generate support of the vector β∗. All the plots are
averaged over hundred runs of the simulation process with fixed values of parameters given in
Table 2. During each simulation round, we choose the first p columns from the leukemia dataset.
Additionally we set the signal to noise ratio, defined as SNR = ‖Xβ∗‖2√

nσ 2
, to control the noise

level σ 2 in the model Eq. (1). Moreover the true cardinality of β∗ is set to s and each non-zero
component of β∗ is set to 1 or −1 with equal probabilities. Finally, the support of the vector
β∗ is formed following two scenarios: normal correlations and high correlations. For normal
correlations, we choose randomly s components out of p and for high correlations scenario,
the first component is chosen randomly and the remaining s − 1 having the highest Pearson
correlation with the first one. Additional scenarios can be found in the supplemental article [7],
in the main text we provide only three cases due to the space limitation.

On Figure 7 we notice that in the low noise (SNR = 8) and very sparse (s = 5) scenario the
overall performance is similar to the synthetic dataset, discussed above.

Meanwhile, the conclusion is different for Figure 8, where the noise level (SNR = 2) and the
sparsity level (s = 20) are high. In this scenario, we observe that simple Lasso outperforms in
average all the refitting strategies in terms of estimation error and the TP rate, Boosted Lasso
provides with better prediction rate and the Sign-Least-Squares Lasso and the Relaxed Lasso
achieves better results in terms of all the other measures. We additionally emphasize, that the
Least-Squares Lasso shows large variance and might fail to improve the estimation in some
cases.

Similar conclusions as for previous scenario can be made for Figure 9, where the sparsity level
(s = 20) is still high, but the noise level is reduced (SNR = 8).

We conclude by pointing out that performing or not performing the refitting depends on the
measure of interest and on the underlying (unknown in practice) scenario. Boosted Lasso agrees
with our theoretical results, as it only improves the Lasso estimator in terms of prediction, but
it fails to improve any other measure except True Positive rate (due to higher output sparsity).
Least-Squares Lasso may show an undesirable performance in some scenarios and bring the
problem of interpretability. Sign-Least-Squares Lasso and Bregman Lasso showed consistent and
satisfying performance, however Sign-Least-Squares Lasso outperforms both the Bregman Lasso
and the Least-Squares Lasso in average. We additionally emphasize that our results are valid for
cross-validation on MSE. Other choices are possible (BIC, AIC, AVp) and may possibly provide
with different overall conclusion.
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Figure 7. Leukemia dataset with p = 200, SNR = 8, s = 5, normal correlations scenario.

Figure 8. Leukemia dataset with p = 1000, SNR = 2, s = 20, normal correlations scenario.
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Figure 9. Leukemia dataset with p = 1000, SNR = 8, s = 20, normal correlations scenario.

Conclusion
In this article, we introduced a simple framework to provide additional statistical guarantees
on the refitting and sign-consistent refitting of Lasso solutions. We demonstrated that every sign-
consistent refitting strategy satisfies an oracle inequality under the same assumptions as the Lasso
bounds. We theoretically analyzed two refitting strategies: Boosted Lasso and Bregman Lasso,
which are easy to implement as they require only Lasso solver. It appeared that the Bregman
Lasso converges to the Sign-Least-Squares Lasso, a particular refitting strategy with sign pre-
serving properties. Experimental results show the advantages of sign-consistent strategies over
the simple Least-Squares Lasso. Possible extension of this work is to consider other families
of the refitting strategies by either taking into account an additional information provided by the
Lasso or replacing the sign-preserving property. Another interesting road is to use our framework
to provide oracle inequalities for estimation error and feature selection.
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Supplement to “On Lasso refitting strategies” (DOI: 10.3150/18-BEJ1085SUPP; .pdf). We
provide proofs and additional experimental results.
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