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We establish general conditions under which Markov chains produced by the Hamiltonian Monte Carlo
method will and will not be geometrically ergodic. We consider implementations with both position-
independent and position-dependent integration times. In the former case, we find that the conditions for
geometric ergodicity are essentially a gradient of the log-density which asymptotically points towards the
centre of the space and grows no faster than linearly. In an idealised scenario in which the integration time
is allowed to change in different regions of the space, we show that geometric ergodicity can be recovered
for a much broader class of tail behaviours, leading to some guidelines for the choice of this free parameter
in practice.
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1. Introduction

This paper deals with ergodic properties of Markov chains produced by the Hamiltonian (or Hy-
brid) Monte Carlo method (HMC), a technique for approximating high dimensional integrals
through stochastic simulation [18]. Iterative algorithms of this type are widely used in (for exam-
ple) statistics and machine learning [2,22], inverse problems [46], and molecular dynamics [1].
In many of these settings a prior distribution can be constructed for an unknown quantity, and
after conditioning on some observed data, Bayes’ theorem gives a posterior – to extract relevant
information from this typically high-dimensional integrals must be evaluated.

A popular approach to such problems is to simulate a Markov chain whose limiting distribution
is the posterior, and compute long-run averages (e.g., [42]). Provided the chain is ergodic, then a
Law of Large Numbers exists for these. Several Markov chain Monte Carlo (MCMC) methods
of this nature have been proposed in the literature, and many are well understood theoretically
(e.g., [43,44]). HMC has proven an empirical success, with numerous authors noting its superior
performance in a variety of settings (e.g., [22]) and high performance software available for its
implementation [14]. Comparatively few rigorous results, however, exist to justify this. Indeed,

1350-7265 © 2019 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/18-BEJ1083
mailto:samuel.livingstone@ucl.ac.uk
mailto:simonbyrne@gmail.com
mailto:betanalpha@gmail.com
mailto:m.girolami@warwick.ac.uk
mailto:m.girolami@imperial.ac.uk


3110 Livingstone, Betancourt, Byrne and Girolami

the absence of such analysis has been noted on more than one occasion [15,17]. The major
contribution of this work is to establish general scenarios under which geometric ergodicity can
and cannot be established for Markov chains produced by common HMC implementations.

Consider a Borel space (X,B). In this article we focus on the case X = R
d . We define a

Markov chain (Xn)n≥0 on (X,B) through an initial distribution δx(·) and a family of mappings
fθ : X → X, indexed by θ defined on the Borel space (�,Bθ ) and with associated law γ (·) (e.g.,
[16]). A transition kernel P : X ×B → [0,1] can then be induced through the relation

P(x,A) =
∫

1A

(
fθ (x)

)
γ (dθ),

for any A ∈ B. Constructing a Markov chain for which some distribution of interest π(·) is
invariant is not very difficult, owing to the Metropolis–Hastings algorithm [25,36], in which the
family {fθ , θ ∈ �} is given by

fθ (x) :=
{

gξ (x) u < α
(
x,gξ (x)

)
,

x otherwise,

where θ = {ξ,u} in this case, with u ∼ U [0,1], and {gξ , ξ ∈ 	} is a family of ‘candidate’ maps,
with ξ ∼ μ(·). A candidate transition kernel is induced as Q(x,A) = ∫

1A(gξ (x))μ(dξ) for any
A ∈ B. If π(·) and Q(x, ·) admit densities π(x) and q(x, y), then the ‘acceptance probability’
α : X × X → [0,1] can be defined as follows. Let S := {(x, y) ∈ X2 : π(x)q(x, y) > 0}. Then for
(x, y) ∈ S we set

r(x, y) := π(y)q(y, x)

π(x)q(x, y)
, (1)

and set r(x, y) := 0 otherwise. Then α(x, y) := 1 ∧ r(x, y). A more general definition is given
in Proposition 1 of [48]. The resulting chain (Xn)n≥0 is reversible with respect to π(·).

Simple choices for the family {gξ , ξ ∈ 	} result in Markov chains which are intuitive and
convenient to analyse. In the random walk case gξ (x) = x + ξ , with 	 = X and μ(·) a centred,
symmetric distribution [47]. For the Metropolis-adjusted Langevin algorithm (MALA) gξ (x) =
x + h∇ logπ(x)/2 + √

hξ , with μ(·) a standard Gaussian measure on 	 = X, h > 0 a constant,
∇ the gradient operator and π(x) the Lebesgue density of π(·). The former is in some sense
a naive choice, while the latter is an Euler–Maruyama scheme for the diffusion governed by
dXt = ∇ logπ(Xt) dt +√

2dWt , for which π(·) is invariant under suitable regularity conditions
(see, e.g., [44]). In both cases, proposals are local (only depending on analytic information at the
current point), and x is combined with ξ linearly, with added complexity coming only through
the (typically nonlinear) α. As a result, simple bounds on α allow stochastic stability properties
such as π -irreducibility to be deduced straightforwardly, and rates of convergence for different
forms of π(·) are also well-understood in both cases [43,44].

The HMC method can also be considered within the above framework, as outlined in [7]. The
algorithm is designed to exploit the measure-preserving properties of Hamiltonian flow (e.g.,
[32]), which can be induced provided the state space for the chain is a symplectic manifold (e.g.,
[31]). The space X can be made symplectic by doubling the dimension, introducing auxiliary
momentum variables p which follow some user-specified distribution. A Hamiltonian function
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can then be constructed on the resulting phase space which preserves a distribution for (x,p), the
x-marginal of which will be π(·). At each step of the Markov chain, a fresh value for p is drawn
from its conditional distribution given the current x state, and then the relevant Hamiltonian flow
is approximated for T units of time to produce the next proposed move. The resulting proposal
map is

gξ (x) = Prx ◦ ϕT (x,p), (2)

where Prx denotes the projection operator onto the x coordinate, ϕT the approximate flow for T

units of time, and ξ = {T ,p}. Typically the distribution for p is chosen to be a d-dimensional
Gaussian. If the law of p does not depend on x, then the Störmer–Verlet (or leapfrog) numerical
integrator is typically used to approximate the flow, with ε > 0 chosen as the integrator step-size
and L the number of ‘leapfrog steps’ (meaning T = Lε). The choice of T is a point of ambiguity;
often it is set to be some fixed value, however heuristics have also been suggested for choosing
this dynamically (e.g., [26]). For T = ε (meaning L = 1) in fact HMC reduces to MALA. In
general, however, for L > 1 (2) will be a nonlinear function of p, making analysis of the method
challenging, particularly in the case of a dynamic T .

Our main contribution is to establish conditions under which common HMC implementations
produce a geometrically ergodic Markov chain. We also establish instances where convergence
will not be geometric, meaning the sampler may perform poorly in practice. We first consider the
case where the choice of integration time T is chosen independently of the current position, and
show that here the nonlinear terms in gξ (x) can be bounded in probability as the norm ‖x‖ → ∞
under suitable assumptions, meaning that geometric convergence essentially occurs for HMC in
the same scenarios as for MALA, when the tails of π(x) are uniformly exponential or lighter, but
no lighter than that of a Gaussian density. We then consider an idealised scheme in which T is
chosen as a function of the current position, and show that in this case geometrically converging
chains can be constructed for a much broader class of targets. Although the latter results are
in an idealised case, they do offer some practical guidelines for the choice of integration time,
which can be used to examine some commonly used heuristics in the literature as well as suggest
alternatives.

1.1. Literature review

The HMC method was first introduced in lattice field theory [18], as a hybrid of two differing ap-
proaches to molecular simulation introduced in [1] and [36], respectively. A statistically-oriented
review is given in [38]. Several extensions have been suggested. A generalized scheme in which
the momentum is only partially refreshed was introduced in [27] (see also [40]). Other extensions
have been proposed to allow more directed motion and reduced rejections (e.g., [12]). A dynamic
approach to tuning the integration time parameter was introduced through the ‘No-U-Turn Sam-
pler’ of [26], which is now implemented in the Stan software [14]. An extension showing how
to implement the sampler on a Riemannian manifold which is globally diffeomorphic to R

d is
given in [23] (see also [5]), and to embedded manifolds with closed form geodesics in [11].

Theoretical study of MCMC methods is in the main focused on two themes: convergence to
equilibrium and asymptotic variance. The first is often understood through upper bounding some
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suitable discrepancy between the nth iterate of the Markov chain and its limiting distribution, as a
function of n. When the discrepancy is taken as either the Total Variation or V -norm distance (for
some suitable Lyapunov function V : X → [1,∞)), then the drift and minorisation conditions
popularised in [37] can be used to show that the distance to equilibrium decreases geometrically
in n (we elaborate in Section 3). If such a bound holds then for reversible chains a central limit
theorem exists for long-run averages of L2(π) functionals (e.g., [42]). We take this approach
here. Note that such techniques rely crucially on the chain being ψ -irreducible for some σ -finite
measure ψ(·).

For HMC, [13] establish that if the potential energy U(x) = − logπ(x) is bounded above,
continuous and has bounded derivative then the algorithm will produce a π -irreducible chain.
The result holds for both the exact flow and the leapfrog integrator variants of HMC. Typically
the boundedness assumption on U(x) will only be satisfied when X is compact. The authors
also show that π -irreducibility can be established more broadly if the integration time is chosen
stochastically. More recently, [9] consider a continuous-time version of HMC in which the inte-
gration step-size is randomly sampled from an Exponential distribution. Under the assumption
that Hamilton’s equations can be exactly integrated, they prove that the algorithm will produce
a geometrically ergodic Markov chain whenever the tails of π(x) decay at a Gaussian rate or
faster. The method of the authors is to relate HMC to underdamped Langevin dynamics, the er-
godic properties of which are established in [35]. By contrast, we relate HMC to overdamped
Langevin dynamics, as analysed in [44]. Although at first this may seem less natural, in fact it
allows us to paint a broad picture of when the algorithm as used in practice will and will not
produce a geometrically ergodic Markov chain. In [45] some practical approximations are given
for convergence bounds under a positive curvature assumption on the underlying chain. We dis-
cuss these further in Section 7. We comment further on connections between HMC and Langevin
dynamics in the supplementary material [33].

Asymptotic variances of long-run averages from Markov chains are often considered via
analysing the expected squared jump distance E[(Xi+1 − Xi)

2]; at equilibrium this can then
be optimised over the various parameters of the dynamics. Careful study of this quantity can also
indicate how algorithm performance depends on d . In the case of HMC such analysis has been
performed [3], suggesting that the method scales more favourably than other approaches with
dimension, and a larger optimal acceptance rate is attained.

Recently a HMC has been generalised to the context of sampling on spaces of infinite di-
mension [4]. Due to the frequent singularity of measures in such spaces, it is often necessary to
characterise distance to equilibrium here through other metrics than Total Variation. Such anal-
ysis is beyond the scope of this paper, though we note that recent work in the context of MALA
in [21] and [19] are useful pre-cursors in this direction.

1.2. Notation

Let (X,B) denote a Borel space. Here we restrict attention to X = R
d (and write ‖x‖ for

the Euclidean norm of x ∈ X). For functions f,g : R≥0 → R≥0 let f (x) � g(x) mean that
limx→∞ f (x)/g(x) = c for some c < ∞. Throughout let π(·) be a finite ‘target’ measure, and
π(x) the corresponding Lebesgue density for some x ∈ X, and let L(·) be a distribution de-
fined over Z+. We will denote Lebesgue measure on R

d with μL(·), the Dirac point mass at
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x with δx(·) and the standard Gaussian measure with μG(·). We write P : X × B → [0,1] to
denote a Markov transition kernel, meaning P(x, ·) is a probability measure for any x ∈ X
and P(·,A) is measurable for any A ∈ B. P acts to the left on measures through μP(·) :=∫

μ(dx)P (x, dy) and to the right on functions through Pf (x) := ∫
f (y)P (x, dy). We let

P n(x, ·) := ∫
P n−1(x, dy)P (y, ·) and say π(·) is invariant for P if πP (·) = π(·).

Denote the Total Variation distance between two distributions μ(·) and ν(·) on (X,B) as
‖μ(·) − ν(·)‖TV := sup|f |≤1 |Eμf − Eνf |. We say π(·) is a limiting distribution for P if
‖P n(x, ·) − π(·)‖TV → 0 as n → ∞, for π -a.e. x ∈ X. Recall that an invariant distribution π(·)
will be the unique limiting measure if P is both π -irreducible and aperiodic (e.g. [47]). We
note that the convergence results presented here could equivalently be shown under the V -norm
distance [41].

2. Overview of main results

The majority of results in this paper concern the version of HMC which is typically used in
practice, in which the ‘integration time’ for a typical proposal is chosen independently of the
current position in the chain. In this scenario, we have the following result.

Theorem 2.1. If Assumptions A1 (on page 3118), A2 (on page 3125) and A3 (on page 3127)
hold, then a Markov chain produced by the Hamiltonian Monte Carlo method (outlined in Algo-
rithm 1) will be geometrically ergodic.

Assumption A1 introduces a controlled degree of randomness into the integration time pa-
rameter, which ensures ergodicity of the HMC transition kernel. Instead of establishing π -
irreducibility directly on on the multiple step HMC transition, we make a simple stochasticity
assumption on the integration time parameter, which allows much of the technical difficulty to
be sidestepped. Assumption A2 imposes conditions on the distribution from which expectations
are desired, essentially restricting the tail behaviour to be lighter than a Laplacian but no lighter
than a Gaussian distribution. This is to ensure that when the chain is very far from the ‘centre’
of the space then typical proposals will bring it back to regions where probability mass concen-
trates. Assumption A3 relates to the Metropolis–Hastings acceptance rate, ensuring that this does
not behave undesirably, in the sense that desirable proposals are often rejected. We make these
arguments precise in Section 5.

We also present the following conditions under which Markov chains produced using HMC
will not be geometrically ergodic.

Theorem 2.2. If either of the following hold, then HMC will not produce a geometrically ergodic
Markov chain:

(i) lim‖x‖→∞ ‖∇U(x)‖
‖x‖ = ∞ and (18) and (19) are satisfied.

(ii) There is an M < ∞ such that ‖∇U(x)‖ ≤ M for all x ∈ X, and Eπ [es‖x‖] = ∞ for every
s > 0.
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The first of these scenarios in essence covers the case where the distribution of interest has
lighter tails than those of a Gaussian distribution. In this case explicit numerical solvers for
Hamilton’s equations typically become unstable in some regions of the state space. The second
is concerned with ‘heavy tailed’ distributions, in which the resulting Hamiltonian flow can be
slow, precluding a geometric rate of convergence.

To give some intuition for these results, we consider the Exponential Family class of models
first introduced in [44] and denoted E(β,α), in which π(x) ∈ C1(R) and for all |x| > M for
some M < ∞ it holds that

π(x) ∝ exp
(−α|x|β)

for some α,β > 0 and any x ∈ R. Different choices of β correspond to different tail behaviours,
with larger values resulting in ‘lighter’ tails. For β ≥ 1 the density is log-concave, and the specific
choices β = 1 and β = 2 correspond to Laplace and Gaussian distributions.

Corollary 2.3. For the exponential family class of models E(β,α), under assumption A1 the
following results hold:

(i) For 1 ≤ β ≤ 2, the Hamiltonian Monte Carlo method will produce a geometrically ergodic
chain (for small enough ε in the β = 2 case).

(ii) If β < 1 or β > 2, then the Hamiltonian Monte Carlo method will not produce a geomet-
rically ergodic chain.

Proof. See page 3127. �

The results are analogous to those found for the Metropolis-adjusted Langevin algorithm in
[44]. A key finding of this work is that when the integration time parameter is chosen in a manner
which is independent of the current position, then the two methods essentially coincide in terms
of presence or absence of geometric ergodicity. In other words, taking more than a single leapfrog
step in the method will not result in a chain ‘becoming’ geometrically ergodic, even though it
may still improve the speed of convergence.

We also consider an idealised version of the method in Section 6, in which the integration time
is allowed to depend on the current position in a prescribed way. This scheme was designed to
mimic several more recent versions of HMC (e.g., [26]) which are commonly used in modern
software packages (e.g., [14]). For a specific one-dimensional class of smooth exponential family
models, we find the following theorem.

Theorem 2.4. For the one-dimensional class of distributions with densities of the form

π(x) ∝ exp
(−β−1(1 + x2)β/2)

,

then the idealised Hamiltonian Monte Carlo method introduced in Section 6 will produce a geo-
metrically ergodic Markov chain for any choice of β > 0.

The positive result in the case where β > 2 is an artefact of the assumption that Hamilton’s
equations can be exactly solved in the idealised scheme - this result would disappear if a typical
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explicit numerical solver were used instead. However, the findings for the case β < 1 suggest
that there are advantages to using an position-dependent integration time in the presence of heavy
tails. We discuss this in more detail in Section 7.

3. Preliminaries

The approach taken here to establishing geometric convergence was popularised in the mono-
graph [37]. A key observation first shown in that work is the following.

Theorem 3.1. Consider a π -irreducible aperiodic Markov chain with state space (X,B) and
transition kernel P . If there exists a π -a.e. finite Lyapunov function V : X → [1,∞] with ‘small’
level sets, such that the condition PV (x) ≤ λV (x) + b1Cω(x) holds for some λ < 1, b < ∞ and
some set Cω := {x : V (x) ≤ ω} with ω < ∞, then ∃ρ < 1 and a π -a.e. finite M : X → [0,∞]
such that ∥∥P n(x, ·) − π(·)∥∥TV ≤ M(x)ρn. (3)

Recall that a set C ∈ B is called ‘small’ if there is a t < ∞, a measure ν(·) defined on (X,B)

and an ε > 0 such that ∀x ∈ C and ∀A ∈ B it holds that P t (x,A) ≥ εν(A) (see, e.g., [42]).
We are concerned here with specific forms of P .

Definition 3.2. We say P is of the Metropolis–Hastings type if

P(x, dy) = α(x, y)Q(x, dy) + r(x)δx(dy), (4)

where Q is a Markov kernel, α(x, y) is defined in (1) and r(x) = 1 − ∫
α(x, y)Q(x, dy).

The following was shown in [43] when P is of the form (4).

Proposition 3.3. If π(·) and Q(x, ·) admit Lebesgue densities π(x) and q(y|x), π(x) is bounded
away from 0 and ∞ on compact sets, and there exists δq > 0 and εq > 0 such that, for every x,

‖x − y‖ ≤ δq =⇒ q(y|x) ≥ εq,

then the Metropolis–Hastings chain with candidate density q(y|x) is π -irreducible and aperi-
odic, and all compact sets are small.

Corollary 3.4. If P is of Metropolis–Hastings type and the conditions of Proposition 3.3 are
satisfied, then (3) holds if and only if

lim sup
‖x‖→∞

PV (x)

V (x)
< 1, (5)

for some Lyapunov function V .
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Showing a lack of geometric ergodicity typically requires careful study of the distribution
of return times to small sets. The following result of [43], however, provides a straightforward
method for doing this for Metropolis–Hastings kernels.

Proposition 3.5. If P is of Metropolis–Hastings type, then (3) fails to hold if ess sup r(x) = 1.

Lack of geometric ergodicity can also be established in some cases using the following result
of [29].

Proposition 3.6. If for any η > 0 there is a δ > 0 such that

P
(
x,Bδ(x)

)
> 1 − η, (6)

where Bδ(x) := {y ∈ X : ‖x − y‖ < δ}, then P can be geometrically ergodic only if Eπ [eβ‖x‖] <

∞ for some β > 0.

If P is of Metropolis–Hastings type, it is straightforward to verify that Q(x,Bδ(x)) > 1 − η

ensures (6), meaning we only need consider the candidate kernel in these cases.

4. Hamiltonian Monte Carlo

We give a brief introduction here. For a more detailed account see [38] or [7]. We consider
probability densities of the form π(x) ∝ e−U(x) for some U : X → [0,∞). If we view U(x) =
− logπ(x) as a ‘potential’ energy in a physical system, it is natural to consider the larger phase
space and construct the Hamiltonian

H(x,p) = U(x) + 1

2
ptM−1p, (7)

where p denotes a d-dimensional ‘momentum’ variable, M a d × d ‘mass’ matrix and
ptM−1p/2 the ‘kinetic’ energy (other forms of kinetic energy are also possible, see, for ex-
ample, [23]). Provided U(x) is differentiable, we can evolve the coordinates (xt ,pt ) through
time in such a way that H(xt ,pt ) = H(xt+s ,pt+s) for any t, s ∈R using Hamilton’s equations

dpt

dt
= −∂H

∂x
,

dxt

dt
= ∂H

∂p
. (8)

Solving (8) results in Hamiltonian flow. To put this presentation into the framework introduced
in Section 1, we can consider constructing a measure-preserving map fθ : X → X by setting
the input to be x0, choosing a momentum variable p0, solving (8) for T units of time and then
projecting back down onto X to produce xT . The parameters θ = {p0, T } define the behaviour
of a single map fθ , and how they are chosen define the behaviour of the Markov chain produced
by iterating the process of randomly selecting a θ and then applying the resulting map fθ to the
current point to produce the next.
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Algorithm 1 Hamiltonian Monte Carlo, single iteration
Require: xi−1, ε ≥ 0, L(·)

Set x0 ← xi−1, draw p0 ∼ N(0,M), L ∼ L(·), set T ← Lε

Draw u ∼ U [0,1]
Set δ ← H(x0,p0) − H ◦ ϕT (x0,p0),
if log(u) < δ then

Set xi ← Prx ◦ ϕT (x0,p0)

else
Set xi ← xi−1

end if

Of course, it is often not possible to solve (8) exactly, so numerical methods are needed.
Fortunately, the rich geometric structure of Hamiltonian systems allows the construction of
symplectic integrators, which possess attractive long term numerical stability properties (e.g.,
[32]), meaning that for appropriate Hamiltonians the approximate solution of (8) is such that
H(xt ,pt ) ≈ H(x0,p0) for all t < η, where η � 0. The standard choice when the Hamiltonian is
of the form (7) is the Störmer–Verlet or leapfrog scheme, in which (xLε,pLε) is generated from
(x0,p0) using L steps of the recursion

pt+ ε
2

= pt − ε

2
∇U(xt ),

xt+ε = xt + εM−1pt+ ε
2
,

pt+ε = pt+ ε
2
− ε

2
∇U(xt+ε),

for some step-size ε > 0. Although the resulting approximate flow map ϕLε(x0,p0) :=
(xLε,pLε) no longer preserves π(·), it can be used as a proposal mechanism within the
Metropolis–Hastings framework (e.g., [38]). The full method is shown in Algorithm 1.

Remark 4.1. From this point forward, we assume M = I for ease of exposition but without loss
of generality.

4.1. The marginal chain

To use the techniques of [37], it is helpful to express the HMC transition in such a way that when
‖x‖ is large it is clear how the chain will behave. Although it is typically presented as a map on
the larger phase space, HMC can simply be thought of as a Markov chain on X, and we will find
this representation useful in relation to the above. In this case the candidate map gξ is given by
the following proposition, which can be straightforwardly be derived using classical results (see,
e.g., [10]).
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Proposition 4.2. The HMC candidate map can be written

xLε = x0 − Lε2

2
∇U(x0) − ε2

L−1∑
i=1

(L − i)∇U(xiε) + Lεp0. (9)

where p0 ∼ N(0, I ), L is the number of leapfrog steps and ε the integrator step-size. With this
choice, the acceptance probability will be

α(x0, xLε) = 1 ∧ π(xLε)

π(x0)
exp

(
1

2
‖p0‖2 − 1

2
‖pLε‖2

)
, (10)

where

pLε = p0 − ε

2
∇U(x0) − ε

L−1∑
i=1

∇U(xiε) − ε

2
∇U(xLε). (11)

Proposition 4.2 highlights the previously noted relationship between HMC and MALA quite
explicitly, as setting L = 1 means the third term on the right-hand side of (9) disappears, leaving
the MALA proposal x0 − ε2∇U(x0)/2 + εp0. It also highlights why taking L > 1 proposes a
greater challenge, as for each xiε with i ≥ 1 this term will typically be a nonlinear transformation
of x0 and p0. As p0 is stochastic, then ε2 ∑L−1

i=1 (L − i)∇U(xiε) will be also, but its distribution
will often be intractable.

5. Results for an position-independent integration time

In this section, we make the assumption that the distribution L(·) for the number of leapfrog
steps L does not depend on the current position. This is relaxed in Section 6.

5.1. π -Irreducibility

It is known (e.g., [13]) that establishing π -irreducibility is not so straightforward in the case of
HMC as for Metropolis–Hastings methods based on random walks or Langevin diffusions. The
canonical example where the system becomes reducible is integrating the harmonic oscillator
over precisely one period (e.g., [32]). We show this in the supplementary material [33].

The observation noted here and elsewhere that HMC in the case L = 1 corresponds to MALA,
for which irreducibility is established in [44], can be exploited to alleviate these issues and es-
tablish π -irreducibility of HMC under the following assumption.

A1 The distribution L(·) is such that PL[L = 1] > 0, and for any fixed (x0,p0) ∈ R
2d and

ε > 0, and that there is an s < ∞ such that EL[es‖xLε‖] < ∞.

When assumption A1 holds then the fact that HMC produces an ergodic Markov chain can be
straightforwardly invoked from existing MALA results [44]. The idea of randomising the inte-
gration time is commonly recommended for practical applications of the method (e.g., [23,38]),
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and more theoretical motivation for doing so is given in [6]. The finite exponential expectation
condition is needed to ensure that the Lyapunov function used to prove geometric ergodicity is
valid. One simple way to ensure this in practice (under the additional assumptions imposed on the
potential U in the next subsection) is that PL[L > l] = 0 for some fixed l < ∞, though weaker
conditions than this are also possible.

Remark 5.1. Assumption A1 can be viewed as the discrete time analogue to the the exponential
integration time assumption made in [9], and in many respects serves a similar purpose. Similar
conditions are also exploited to prove π−irreducibility results in [13].

Remark 5.2. In fact, before the final publication of the present work, it was shown in [20] that
π -irreducibility can indeed be established without using assumption A1, but instead considering
the HMC chain using a fixed number of leapfrog steps L ≥ 1, under suitable assumptions and
using appropriate techniques. We refer the interested reader to that work for details.

5.2. Geometric ergodicity

We first present here some seemingly abstract conditions under which the HMC method produces
a geometrically ergodic Markov chain. We then give some natural assumptions on the potential
U(x) under which these hold.

We present the results of this section conditioned on a fixed choice of the number of leapfrog
steps L, for ease of exposition. Note that the required drift conditions shown hold for a fixed L,
then under A1 they will hold when possible values for L are averaged over according to L(·), so
this does not affect the generality of the results.

Notation. We introduce some further notation for this section. Let Iδ(x) := {y ∈ X : ‖y‖ ≤
‖x‖δ} for some 1/2 < δ < 1. In the case δ = 1, we will simply write I (x). Let

mL,ε(x0,p0) := x0 − Lε2∇U(x0)/2 − ε2
L−1∑
i=1

(L − i)∇U(xiε)

denote the ‘mean’ next candidate position (xLε − Lεp0), and

ψL,ε(x0,p0) := Lε2∇U(x0)/2 + ε2
L−1∑
i=1

(L − i)∇U(xiε)

denote the proposal ‘drift’ (implying mL,ε(x0,p0) = x0 −ψL,ε(x0,p0)). We will also sometimes
write h := ε2/2 in a most likely futile attempt to keep things readable.

Theorem 5.3. The HMC method produces a geometrically ergodic Markov chain if assumption
A1 holds, and in addition both

lim sup
‖x0‖→∞,‖p0‖≤‖x0‖δ

(∥∥mL,ε(x0,p0)
∥∥ − ‖x0‖

)
< −√

2Lεη(d), (12)
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where η(d) := �((d + 1)/2)/�(d/2), and

lim‖x0‖→∞

∫
R(x0)∩I (x0)

Q(x0, dy) = 0, (13)

where R(x0) := {y ∈ X : α(x0, y) < 1} denotes the ‘potential rejection region’ and I (x0) := {y ∈
X : ‖y‖ ≤ ‖x0‖} the ‘interior’ of x0.

Proof. Take V (x) = es‖x‖ for some s > 0 and write A(x0) := R(x0)
c . Then we can write

PV (x0)

V (x0)
=

∫
A(x0)

es(‖y‖−‖x0‖)Q(x0, dy) +
∫

R(x0)

es(‖y‖−‖x0‖)α(x0, y)Q(x0, dy)

+
∫

R(x0)

(
1 − α(x0, y)

)
Q(x0, dy)

=
∫
Rd

es(‖y‖−‖x0‖)Q(x0, dy) +
∫

R(x0)

(
1 − es(‖y‖−‖x0‖))(1 − α(x0, y)

)
Q(x0, dy)

≤
∫

es(‖y‖−‖x0‖)Q(x0, dy) +
∫

R(x0)∩I (x0)

Q(x0, dy).

The last integral asymptotes to zero as ‖x0‖ → ∞ by (13). Writing xLε(p0) to indicate that xLε

depends on p0, the first integral can be written∫
Iδ(x0)

es(‖xLε(p0)‖−‖x0‖)μG(dp0) +
∫

Iδ(x0)
c

es(‖xLε(p0)‖−‖x0‖)μG(dp0). (14)

Noting that ‖xLε(p0)‖ ≤ ‖mL,ε(x0,p0)‖ + Lε‖p0‖ for large enough ‖x0‖ and using (12) above
then setting ξ(x0) := sup‖p0‖≤‖x0‖δ (‖mL,ε(x0,p0)‖ − ‖x0‖) we can write∫

Iδ(x0)

es(‖xLε‖−‖x0‖)μG(dp0) ≤ esξ(x0)

∫
Iδ(x0)

esLε‖p0‖μG(dp0).

The last integral can be bounded above by the moment generating function of a Chi-
distributed random variable with d degrees of freedom, and so equals elog(1+s

√
2Lεη(d)+o(s)) ≤

es
√

2Lεη(d)+o(s). Therefore by (12), the integral asymptotes to a quantity which is strictly less
than one if s > 0 is chosen to be suitably small.

It remains to show that the right-hand integral in (14) becomes negligibly small as ‖x0‖ → ∞.
It follows from (9) and (A4.4.1) that ‖xLε‖ ∈ O(max(‖x0‖,‖p0‖)). This means that for some
constants C ∈R and for p0 ∈ Iδ(x0)

c and ‖x0‖ large enough we can write

exp

(
s‖xLε‖ − s‖x0‖ − 1

2
‖p0‖2

)
≤ exp

(
c max

(‖x0‖,‖p0‖
) − 1

2
‖p0‖2

)

= exp

(
‖p0‖

(
C

max(‖x0‖,‖p0‖)
‖p0‖ − ‖p0‖

))

≤ exp
(‖p0‖

(
C‖x0‖1−δ − ‖p0‖

))
.
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Provided δ > 1/2, then for ‖x0‖ large enough C‖x0‖1−δ − ‖x0‖δ < −1, meaning

exp
(‖p0‖

(
C‖x0‖1−δ − ‖p0‖

)) ≤ exp
(−‖p0‖

)
,

meaning ∫
Iδ(x0)

c

es(‖xLε‖−‖x0‖)μG(dp0) ≤
∫

Iδ(x0)
c

e−‖p0‖μG(dp0) ≤ 2e−‖x0‖δ

,

which becomes negligibly small as ‖x0‖ → ∞, as required. �

Theorem 5.3 is a generalisation of Theorem 4.1 in [44] to the HMC case. The nontriviality
involved in this extension is accounting for the randomness induced into mL,ε(x0,p0) from p0.

5.2.1. Requirements for (12) to be satisfied

In the case L = 1 (12) corresponds to

∥∥x0 − h∇U(x0)
∥∥ − ‖x0‖ < −√

2εη(d) (15)

whenever ‖x0‖ > M for some M < ∞. The statements in this section give three simple con-
ditions which establish this are also sufficient to establish (12) when L ≥ 2. The main result is
stated below. The crucial consequence of this is that controlling the behaviour of ‘global move’
updates produced by HMC when L > 1 can be done through only ‘local’ knowledge, meaning
analytic information at the current point x0.

Theorem 5.4. For any L ≥ 1 (12) holds if the following conditions are met

(SC1.1) lim‖x0‖→∞ ‖∇U(x0)‖ = ∞,
(SC1.2) lim inf‖x0‖→∞ 〈∇U(x0),x0〉‖∇U(x0)‖‖x0‖ > 0,

(SC1.3) lim‖x0‖→∞ ‖∇U(x0)‖‖x0‖ = 0.

In addition, if (SC1.3) is replaced by

(SC1.3b) lim sup‖x0‖→∞
‖∇U(x0)‖‖x0‖ = Sl ,

for some Sl < ∞, then there is an ε0 ∈ (0,∞) such that the same result holds provided ε ∈
(0, ε0).

Proof. This is restated as Proposition 5.10 and Proposition 5.11 below, which follow from the
preceding lemmas. �

The conditions of the result are intuitive. Condition (SC1.2) ensures that the gradient asymp-
totically ‘points inwards’, while (SC1.1) and (SC1.3) ensure that ‖∇U(x0)‖ grows but at an
asymptotically sublinear rate. We begin with a straightforward observation.
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Proposition 5.5. Sufficient conditions such that

lim sup
‖x0‖→∞

(∥∥x0 − h∇U(x0)
∥∥ − ‖x0‖

)
< 0

are:

(SC1.2a) lim sup‖x0‖→∞(
h2‖∇U(x0)‖2−2h〈∇U(x0),x0〉

2‖x0‖ ) < −√
2εη(d),

(SC1.3) lim‖x0‖→∞ ‖∇U(x0)‖‖x0‖ = 0.

Proof. First note that ‖x0 − h∇U(x0)‖ = √‖x0‖2 + h2‖∇U(x0)‖2 − 2h〈∇U(x0), x0〉. Recall
the generalised Bernoulli inequality: if y > −1 and r ∈ [0,1] then (1 + y)r ≤ 1 + ry. Setting
r := 1/2, a(x0) := ‖x0‖2 and b(x0) := h2‖∇U(x0)‖2 − 2h〈∇U(x0), x0〉 then we have

a(x0)
r

(
1 + b(x0)

a(x0)

)r

≤ a(x0)
r

(
1 + b(x0)

2a(x0)

)

= ‖x0‖ + h2‖∇U(x0)‖2 − 2h〈∇U(x0), x0〉
2‖x0‖ .

This will be strictly less than ‖x0‖ in the limit as ‖x0‖ → ∞ provided b(x0)/a(x0) > −1. Noting
that

b(x0)

a(x0)
= h2‖∇U(x0)‖2 − 2h〈∇U(x0), x0〉

‖x0‖2
>

h2‖∇U(x0)‖2 − 2h‖∇U(x0)‖‖x0‖
‖x0‖2

,

then it suffices to see that under (SC1.3) the right-hand side can be made arbitrarily close to zero
by taking ‖x0‖ large enough. �

We can also recover some more intuitive sufficient conditions.

Corollary 5.6. A more intuitive condition which implies (SC1.2a) conditional on (SC1.3) and
(SC1.1) is

(SC1.2) lim‖x0‖→∞ 〈∇U(x0),x0〉‖∇U(x)‖‖x0‖ > 0.

Proof. Using (SC1.1) and (SC1.2) gives

lim‖x0‖→∞
〈∇U(x0), x0〉

‖x0‖ = ∞.

For large enough ‖x0‖ this implies(
h2‖∇U(x0)‖

2‖x0‖ − h〈∇U(x0), x0〉
2‖∇U(x0)‖‖x0‖

)
< −

√
2εη(d)

‖∇U(x0)‖

=⇒ lim sup
‖x0‖→∞

(
h2‖∇U(x0)‖2 − 2h〈∇U(x0), x0〉

2‖x0‖
)

< −√
2εη(d).

�
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From now on we refer to (SC1.1), (SC1.2) and (SC1.3) combined as (SC1.1)–(SC1.3). Next,
we show that these same conditions are sufficient for (12) to hold.

Lemma 5.7. Under the following conditions (12) holds:

(i) lim inf‖x0‖→∞,‖p0‖≤‖x0‖δ (
‖ψL,ε‖2−2〈ψL,ε,x0〉

‖x0‖2 ) > −1,

(ii) lim sup‖x0‖→∞,‖p0‖≤‖x0‖δ (
‖ψL,ε‖2−2〈ψL,ε,x0〉

2‖x0‖ ) < 0.

Proof. Using the generalised Bernoulli inequality as above gives the result. �

Next we relate the conditions of Lemma 5.7 to criteria that only depend on the current point
x0. The following lemmas give a starting point.

Lemma 5.8. Provided ‖p0‖ ≤ ‖x0‖δ and (SC1.3) holds then we have the following

(i) For any η > 0 there is an Mη < ∞ such that whenever ‖x0‖ > Mη it holds that (1 −
η)‖x0‖ ≤ ‖xε‖ ≤ (1 + η)‖x0‖,

(ii) ‖∇U(xε)‖ = o(‖x0‖),
(iii) ‖pε‖ ∈ o(‖x0‖).

Proof. (i) Noting that ‖xε‖ = ‖x0 − h∇U(x0) + εp0‖ gives

(1 − δ)‖x0‖ ≤ ‖x0‖ − h
∥∥∇U(x0)

∥∥ − ε‖x0‖δ

≤ ∥∥x0 − h∇U(x0) + εp0
∥∥

≤ ‖x0‖ + h
∥∥∇U(x0)

∥∥ + ε‖x0‖δ

≤ (1 + δ)‖x0‖.
(ii) We have from (i) and (SC1.3) that for any γ > 0 there is an Mγ < ∞ such that whenever

‖x0‖ > Mγ /(1 − δ) then ‖∇U(xε)‖/‖xε‖ < γ . This implies using (i) that ‖∇U(xε)‖/‖x0‖ <

γ (1 − δ), and since γ (1 − δ) can be made arbitrarily small then the result follows.
(iii) ‖pε‖ = ‖p0 − ε∇U(x0)/2 − ε∇U(xε)/2‖ ≤ ‖p0‖ + ε‖∇U(x0)‖/2 + ε‖∇U(xε)‖/2,

which is ∈ o(‖x0‖) using (i) and (ii) and the fact that ‖p0‖ ≤ ‖x0‖δ . �

Lemma 5.9. Provided ‖p0‖ ≤ ‖x0‖δ and (SC1.3) holds then for any L < ∞ and each i ∈
{0, . . . ,L − 1} the following hold

(i) For any η > 0 there is an Mη < ∞ such that whenever ‖x0‖ > Mη it holds that (1 −
η)‖x0‖ ≤ ‖xiε‖ ≤ (1 + η)‖x0‖,

(ii) ‖∇U(xiε)‖ ∈ o(‖x0‖),
(iii) ‖piε‖ ∈ o(‖x0‖),
(iv) ‖ψL,ε‖ ∈ o(‖x0‖).

Proof. The results follow iteratively for each i using the same approach as in the previous
Lemma. For the case i = 2 then noting that ‖x2ε‖ = ‖xε − h∇U(xε) + εpε‖, then (i) in this
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case follows from Lemma 5.8. It follows that ‖∇U(x2ε)‖ ∈ o(‖x0‖) and ‖p2ε‖ ∈ o(‖x0‖) by an
analogous argument to this lemma. Given this then it can be shown that (i) holds for i = 3, and
then (ii) and (iii) by the same logic, and the argument can be iterated as many times as is needed.
The last claim follows trivially from the second. �

Proposition 5.10. Under (SC1.1)–(SC1.3) then for any L < ∞ the conditions of Lemma 5.7 are
satisfied.

Proof. First we show (i). Writing x∗ := arg maxi∈0,...,L−1{‖∇U(xiε)‖}, then we have ‖ψL,ε‖ ≤
Lε2 ∑L−1

i=0 ‖∇U(xiε)‖ ≤ L2ε2‖∇U(x∗)‖, which implies

‖ψL,ε‖2

‖x0‖2
≤ L4ε4‖∇U(x∗)‖2

(1 − η)2‖x∗‖2

which can be made arbitrarily small by taking ‖x0‖ large enough using (SC1.3). Noting that
‖ψL,ε‖/‖x0‖ ≥ 〈ψL,ε, x0〉/‖x0‖2 ≥ −‖ψL‖/‖x0‖, then an analogous argument can be used to
show that −2〈ψL,x0〉/‖x0‖2 will also tend to zero as ‖x0‖ → ∞.

(ii) First note from above that lim‖x0‖→∞ ‖ψL,ε‖2/(L2ε2‖∇U(x∗)‖‖x0‖) = 0. By an anal-
ogous argument to that used in the proof of Corollary 5.6, it is clear therefore that (ii) holds
if

lim sup
‖x0‖→∞

( ‖ψL,ε‖2

L2ε2‖∇U(x∗)‖‖x0‖ − 〈ψL,ε, x0〉
L2ε2‖∇U(x∗)‖‖x0‖

)
< −√

2Lεη(d)

which in turn holds if the statement

lim‖x0‖→∞
〈ψL,ε, x0〉

‖x0‖ = ∞

does. The numerator can be decomposed as

〈ψL,ε, x0〉 ≥
L−1∑
i=0

ci

〈∇U(xiε), x0
〉

=
L−1∑
i=0

ci

〈∇U(xiε), xiε

〉 + L−1∑
i=0

ci

〈∇U(xiε), x0 − xiε

〉
,

where each ci = (L− i)ε2 for i ≥ 1 and c0 = Lε2/2. The second of these terms is o(‖∇U(x∗)‖ ×
‖x0‖) using the Cauchy–Schwarz inequality and Lemma 5.9 (which shows that ‖x0 − xiε‖ ∈
o(‖x0‖)), and so this term vanishes if divided by ‖∇U(x∗)‖‖x0‖. The first term divided by
the same quantity will be strictly positive as each term in the sum is ≥ 0 using (SC1.3) and
Lemma 5.9, and at least one of them is > 0 since it will correspond to x∗. Using (SC1.1) estab-
lishes that 〈ψLε, x0〉/‖x0‖ → ∞ as ‖x0‖ → ∞, proving the result. �

The condition (SC1.3) allows clarity in the proofs, but precludes the natural boundary case of
distributions with Gaussian tails. The following proposition addresses this.
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Proposition 5.11. If (SC1.1)–(SC1.2) hold and in addition

(SC1.3b) lim sup‖x0‖→∞
‖∇U(x0)‖‖x0‖ = Sl

for some constant Sl < ∞, then there is an ε0 ∈ (0,∞) such that for any choice of ε ∈ (0, ε0) the
conditions of Lemma 5.7 are satisfied.

Proof. We simply note that the term 〈ψL,ε, x0〉 ∈ O(ε2), while ‖ψL,ε‖2 ∈ O(ε4), so that the
proofs of the preceding lemmas can be straightforwardly modified when (SC1.3) is replaced by
(SC1.3b) by choosing a small enough value of ε that the inner product dominates the square
norm. We omit the details of this. �

The sensitivity to the choice of ε in this case is well known in this scenario as a potential
source of numerical instabilities, and choosing ε < 1/Sl is recommended to alleviate such issues
(e.g., [32]). We conclude this subsection with the following assumption that we require for a
geometrically ergodic Markov chain produced by the HMC method, which is a natural conclusion
of the preceding results.

A2 The potential U(x) satisfies either (SC1.1)–(SC1.3), or it satisfies (SC1.1)–(SC1.3b) and
ε is chosen to be suitably small that the conditions of Lemma 5.7 are satisfied.

Remark 5.12. Condition (SC1.1) precludes densities for which ‖∇U(x)‖ → c for some 0 < c <

∞. Often geometric ergodicity will still hold in this case, as we demonstrate in Corollary 2.3,
however a different argument is required to that presented above.

It remains to consider (13), which reflects the role of the acceptance rate in the HMC method.
We turn to this next.

5.2.2. Discussion of (13)

In [44], the authors note that (13) applied to the MALA transition xε = x − ε2∇U(x)/2 + εp0

can be viewed as the restriction that for xε ∈ I (x0)

U(x0) − U(xε) − Û1 ≥ ε2

8

(∥∥∇U(xε)
∥∥2 − ∥∥∇U(x0)

∥∥2)
,

where Û1 := 〈x0 − xε,∇U(xε) + ∇U(x0)〉/2 denotes the ‘trapezium’ estimate for the line in-
tegral U(x0) − U(xε) = ∫ x0

xε
∇U(z)dz. We can extend this intuition to HMC and arrive at the

following natural generalisation of the same condition.

Proposition 5.13. The acceptance rate for HMC will satisfy the ‘inwards acceptance’ property
(13) if whenever xLε ∈ I (x0) then in the limit as ‖x0‖ → ∞ it holds that

U(x0) − U(xLε) − ÛL ≥ 1

2L2ε2

(∥∥ψR
L,ε

∥∥2 − ‖ψL,ε‖2), (16)
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where ÛL := 〈x0 − xLε,∇U(x0) + ∇U(xLε) + 2
∑L−1

i=1 ∇U(xiε)〉/(2L) denotes the quadrature
rule estimate for the line integral

∫ xLε

x0
∇U(z)dz based on L trapezia and the forward and reverse

drift components are given by

ψL,ε := Lε2

2
∇U(x0) + ε2

L−1∑
i=1

(L − i)∇U(xiε), ψR
L,ε := Lε2

2
∇U(xLε) + ε2

L−1∑
i=1

i∇U(xiε).

Proof. We first note that we can write p0 = 1
Lε

(xLε − x0 + ψL,ε), and that using reversibility of
the leapfrog integrator, we can also write pLε = 1

Lε
(xLε − x0 − ψR

L,ε). The log acceptance ratio
can therefore be written

U(x0) − U(xLε) + 1

2L2ε2

(‖xLε − x0 + ψL,ε‖2 − ∥∥xLε − x0 − ψR
L,ε

∥∥2)
.

We require this quantity to be ≥ 0. This is equivalent to the requirement

U(xLε) − U(x0) ≤ 1

2L2ε2

(‖xLε − x0 + ψL,ε‖2 − ∥∥xLε − x0 − ψR
L,ε

∥∥2)
.

We can rewrite the right-hand side of the above expression as

1

2L2ε2

(
2
〈
xLε − x0,ψL,ε + ψR

L,ε

〉 + ‖ψL,ε‖2 − ∥∥ψR
L,ε

∥∥2)
,

and then note that

ψL,ε + ψR
L,ε = Lε2

2

(
∇U(x0) + ∇U(xLε) + 2

L−1∑
i=1

∇U(xiε)

)
.

Substituting this into the inequality and simplifying gives the result. �

The requirement (16) can sometimes be established using convexity arguments. In the expo-
nential family class of Corollary 2.3, for example, setting xi := xLε + i(x0 − xLε)/L, when
1 ≤ β < 4/3 one can show as |x0| → ∞ that ÛL

a.s.−−→ (x0 − xLε)(∇U(x0) + ∇U(xLε) +
2
∑L−1

i=1 ∇U(xi))/(2L), the regular trapezium rule estimate for
∫ x0
xLε

∇U(z)dz = U(x0) −
U(xLε). Since ∇U(x) is concave/convex for x positive/negative then the trapezium rule gives
an underestimate for the integral as |x0| → ∞, and hence the left-hand side of (16) will be pos-
itive, while it is also possible to show that the right-hand side is negative in this case (using
arguments given in the proof of Corollary 2.3). We omit the details of this.

There is some discussion in [44] of relaxations of (13) to the requirement that α(x0, xε) ≥ δ

for some δ > 0 if ‖xε‖ ≤ ‖x0‖, which are also applicable to the HMC case and would relax the
inequality (16) to some degree. In essence, the key role of the ‘inwards acceptance’ property
(13) (among the class of potentials which satisfy A2) is to limit the degree of oscillation in the
tails of the density e−U(x), which can potentially mean that too many proposals xLε for which
the chosen Lyapunov function V (xLε)/V (x0) < 1 are rejected to establish a geometric bound
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of the form (3). Similar requirements to (13) are needed for many Markov chain Monte Carlo
methods which rely on the Metropolis–Hastings construction (e.g. [28,43,44]). The issues are
discussed in some detail in the case of the Random Walk Metropolis in [28]. It is possible that
choosing the more natural (but less pliable) Lyapunov function V (x) = esU(x) for some s > 0
would remove the need for (13) here, owing to the ergodic nature of the proposal kernel. We
leave such explorations for future work.

The preceding discussion leads to the following assumption that we require for geometric
ergodicity here.

A3 The chain satisfies the ‘inwards acceptance’ property (13) which can equivalently be for-
mulated as (16).

Assumptions A1–A3 together are sufficient to establish a geometric bound.

Proof of Corollary 2.3. Part (ii) is a direct consequence of Theorem 2.2 For part (i), we consider
three cases separately.

First consider β ∈ (1,2), meaning 1 > β − 1 > 0. Since ∇U(x) = αβsgn(x)|x|β−1 then A2
holds. It remains to establish A3. We let x0 → ∞ but an analogous argument holds as x0 → −∞
by symmetry. Note that xε = x0 − ε2αβsgn(x0)|x0|β−1/2 + εp0 will clearly satisfy (1 − δ)x0 <

xε < x0 with probability reaching one in the limit for any δ > 0. Similarly (1 − δ)x0 < x2ε =
xε − ε2αβsgn(x0)|x0|β−1 − ε2αβsgn(xε)|xε|β−1/2 + εp0 < xε in the same asymptotic regime.
Iterating the argument reveals that (1 − δ)x0 < xLε < · · · < xε < x0 with probability tending to
one as x0 → ∞. Hence, a.s. the proposal will be ‘inwards’, as will each intermediate point in the
trajectory. To establish geometric convergence we must show that these inwards proposals are
accepted with probability tending to one as x0 → ∞. A Taylor series expansion of the difference
in Hamiltonians for large enough x0 gives

H(x0,p0) − H(xLε,pLε) = L2ε4

8
(αβ)3(β − 1)x

3β−4
0 + o

(
x3β−4).

Since the leading order term is strictly positive then the result is proved. A detailed derivation
is provided in the supplementary material [33].

In the case β = 1, then as x0 → ∞ the proposal in fact a.s. becomes xLε = x0 − Lε2/2 +
Lεp0, which resembles that of a random walk with inwards drift. Here the acceptance rate a.s.
becomes one as the leapfrog integrator becomes exact provided the zero boundary is not crossed,
and hence the scheme is geometrically ergodic following Theorem 16.0.1 and the argument of
Section 16.1.3 in Chapter 16 of [37]. Again a similar argument holds as x0 → −∞.

In the case β = 2 following Example 3.5 in [3], setting θ := arccos(1 − αε2) the pro-
posal becomes xLε = cos(θL)x0 + sin(θL)p0/

√
2α(1 − αε2/2),which will be inwards provided

| cos(θL)| < 1, which will be true for suitably small ε. Similarly provided p0 = o(x0) then the
difference in Hamiltonian values will be

H(x0,p0) − H(xLε,pLε) =
(

1 − cos2(θL) − 2α

(
1 − α

ε2

2

)
sin2(θL)

)
x2

0 + o
(
x2

0

)
.
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The x2
0 coefficient will be positive provided (1 + 2α − α2ε2) sin2(θL) > 0 which will also be

true for small enough ε, hence as x0 → ±∞ A3 holds and since A2 does also then the result is
proven. �

5.3. Necessary conditions for geometric ergodicity

Next, we highlight the importance of the growth assumptions we have made on the potential, by
showing two general scenarios in which HMC will not produce geometrically ergodic Markov
chains.

5.3.1. Light tails

We begin with the case where the gradient term may grow at a faster than linear rate, meaning
that the resulting system of equations (8) is ‘stiff’, in the sense that the derivatives can change
very rapidly over small time scales, which can pose a challenge to explicit numerical integrators.
We show in Theorem 5.14 that in this scenario a Markov chain produced by the HMC method
can exhibit undesirable behaviour.

Theorem 5.14. If it holds that

lim‖x‖→∞
‖∇U(x)‖

‖x‖ = ∞, (17)

and that there is a fixed C < ∞ such that whenever ‖y‖ ≥ 2‖x‖ ≥ C then∥∥∇U(y)
∥∥ ≥ 3

∥∥∇U(x)
∥∥, (18)

and it also holds that

lim
‖x‖→∞,‖y‖≥2L‖x‖

(
U(x) − U(y) − 1

2
‖x‖2

)
= −∞, (19)

then the Hamiltonian Monte Carlo method with fixed integration time T = Lε does not produce
a geometrically ergodic Markov chain for any choice T > 0.

Proof. Lemmas 5.15 and 5.16 below establish that in this case ‖xLε‖ ≥ 2L‖x0‖, and Lemma 5.17
shows that this will result in α(x0, xLε) tending to zero as ‖x0‖ → ∞ provided ‖p0‖ ≤ ‖x0‖δ

for some δ < 1, allowing Proposition 3.5 to be evoked. To conclude we simply note that
P(‖p0‖ ≤ ‖x0‖δ) → 1 as ‖x0‖ → ∞, establishing the result. �

The conditions (18) and (19) limit the amount that the potential can oscillate as it approaches
∞, and are introduced to prevent tail oscillations in gradient from making the behaviour of the
method too unpredictable to analyse sensibly. They are very lenient and should be satisfied for
the vast majority of statistical models of interest for which (17) holds. Below we establish several
intermediate results, the first two of which relate to the values of ‖xLε‖ when ‖x0‖ is large in
this scenario.



On the geo. erg. of HMC 3129

Lemma 5.15. If (17) holds, then there exists an η < ∞ such that for all ‖x0‖ > η and any
‖p0‖ ≤ ‖x0‖δ for some δ < 1, it holds that ‖xε‖ > 2‖x0‖.

Proof. Taking norms after a single leapfrog step gives

‖xε‖ =
∥∥∥∥x0 − ε2

2
∇U(x0) + εp0

∥∥∥∥ ≥ ε2

2

∥∥∇U(x0)
∥∥ − ‖x0‖ − ε‖p0‖.

Dividing by ‖x0‖ gives

‖xε‖
‖x0‖ ≥ ε2

2

‖∇U(x0)‖
‖x0‖ − 1 − ε

‖p0‖
‖x0‖ . (20)

Using (17), we can choose an x0 such that the first term on the right-hand side is larger than
6/ε2, and the last term can be made negligibly small as ‖p0‖ ≤ ‖x0‖δ for some δ < 1, which
establishes the result. �

Lemma 5.16. If (17) holds, then there exists an η < ∞ such that for all ‖x0‖ > η and any
‖p0‖ ≤ ‖x0‖δ for some δ < 1, it holds that ‖xLε‖ ≥ 2L‖x0‖.

Proof. We proceed iteratively. First, note that

x2ε = xε − ε2∇U(xε) − ε2

2
∇U(x0) + εp0.

Using this, we have

‖x2ε‖
‖xε‖ ≥ ε2

2

‖∇U(xε)‖
‖xε‖ − ε2

2

‖∇U(x0)‖
‖xε‖ − 1 − ε

‖p0‖
‖xε‖ .

Showing the right-hand side is ≥ 2 amounts to upper bounding the middle term, or equivalently
lower bounding its reciprocal. We have

2‖xε‖
ε2‖∇U(x0)‖ ≥ ε2‖∇U(x0)‖ − 2‖x0‖ − 2ε‖p0‖

ε2‖∇U(x0)‖ ≥ 1 − δ (21)

for some δ > 0 which can be made arbitrarily small by choosing ‖x0‖ large enough.
Next, we have

‖x3ε‖
‖x2ε‖ ≥ ε2

2

‖∇U(x2ε)‖
‖x2ε‖ − ε2

2

‖∇U(x0)‖
‖x2ε‖ − ε2 ‖∇U(xε)‖

‖x2ε‖ − 1 − ε
‖p0‖
‖x2ε‖ .

Here the right-hand side will be ≥ 2 provided the middle two terms can be bounded above. For
the first we lower bound the reciprocal, using (21) gives

2

ε2

‖x2ε‖
‖∇U(x0)‖ ≥ 2

ε2

‖xε‖
‖∇U(x0)‖ ≥ 1 − δ.
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For the second we have

‖x2ε‖
ε2‖∇U(xε)‖ ≥ 1 − ‖xε‖

ε2‖∇U(xε)‖ − ‖∇U(x0)‖
2‖∇U(xε)‖ − ‖p0‖

ε‖∇U(xε)‖ .

The second and last terms on the right hand side can be made arbitrarily small by choosing ‖x0‖
large enough. Evoking (18) gives

‖∇U(x0)‖
2‖∇U(xε)‖ ≤ 1

6
,

which therefore shows that ‖x3ε‖ ≥ 2‖x2ε‖. An entirely analogous argument can be used to show
that ‖xiε‖ ≥ 2‖x(i−1)ε‖ for any fixed i, establishing the result. �

The next result shows that as a result of the fact that ‖xLε‖ ≥ 2L‖x0‖ when ‖x0‖ is large
enough, then the acceptance rate will approach 0 in the limit as ‖x0‖ → ∞.

Lemma 5.17. If (17), (18) and (19) hold, then for any δ < 1 it holds that

lim
‖x0‖→∞,‖p0‖≤‖x0‖δ

α(x0, xLε) = 0.

Proof. Recall that

α(x0, xLε) = 1 ∧ exp

(
U(x0) − U(xLε) + 1

2
‖p0‖2 − 1

2
‖pLε‖2

)
.

Note that

‖pLε‖ ≥ ε

2

∥∥∇U(xLε)
∥∥ − ε

L−1∑
i=1

∥∥∇U(xiε)
∥∥ − ε

2

∥∥∇U(x0)
∥∥ − ‖p0‖

≥ ε

2

∥∥∇U(xLε)
∥∥ − ε

L∑
i=1

(
1

3

)i∥∥∇U(xLε)
∥∥ − ‖p0‖

= ε

2

(
1 − 2

L∑
i=1

(
1

3

)i
)∥∥∇U(xLε)

∥∥ − ‖p0‖,

where (18) is used for the second line. The term inside the bracket can be bounded below by
some fixed constant γL > 0, for any fixed L < ∞. Squaring the result gives

‖pLε‖2 ≥
(

εγL

2

∥∥∇U(xLε)
∥∥ − ‖p0‖

)2

= ε2γ 2
L

4

∥∥∇U(xLε)
∥∥2 + ‖p0‖2 − εδL

∥∥∇U(xLε)
∥∥‖p0‖,
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which implies that

‖p0‖2 − ‖pLε‖2 ≤ εγL

∥∥∇U(xLε)
∥∥(

‖p0‖ − εγL

4

∥∥∇U(xLε)
∥∥)

.

Noting that ‖p0‖ ≤ ‖x0‖δ and that for any M < ∞ we can choose an ‖x0‖ large enough that

εγL

4

∥∥∇U(xLε)
∥∥ ≥ M‖xLε‖ ≥ 2L‖x0‖,

then it follows that ‖p0‖2 − ‖pLε‖2 ≤ −‖x0‖2. Using this, then simply evoking (19) gives the
result. �

5.3.2. Heavy tails

In the case where π(x) has ‘heavier than exponential’ tails in some direction the HMC method
can also exhibit slow convergence, as lim inf‖x‖→∞ ‖∇U(x)‖ = 0. Intuitively the problem here
is that when ‖x‖ is large then the gradient provides insufficient drift back into the ‘centre’ of the
space, meaning the chain can exhibit random walk behaviour and hence convergence can be very
slow. Theorem 5.18 makes this intuition rigorous.

Theorem 5.18. If ‖∇U(x)‖ < M for all x ∈ X, then a necessary condition for the Hamiltonian
Monte Carlo method to produce a geometrically ergodic Markov chain is∫

es‖x‖π(dx) < ∞

for some s > 0.

Proof. From Proposition 3.6, it is sufficient to show that for any ε > 0 there is a δ > 0 such that
Q(x,Bδ(x)) > 1 − ε for all x ∈ X. Using equation (9) if x0 is the current point in the chain then

‖xLε − x0‖ =
∥∥∥∥∥Lεp0 − Lε2

2
∇U(x0) − ε2

L−1∑
i=1

(L − i)∇U(xiε)

∥∥∥∥∥.

Applying the triangle inequality and then the global bound on ‖∇U(x)‖ gives

‖xLε − x0‖ ≤ Lε2

2
M + Mε2L(L − 1)

2
+ Lε‖p0‖.

As p0 follows a centred Gaussian distribution with fixed covariance then Chebyshev’s inequality
gives the result. �

In fact, in this case the lack of geometric ergodicity is a property of the flow itself, rather than
being a consequence of numerical instabilities as in Theorem 5.14, as shown by the following
result.
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Proposition 5.19. Theorem 5.18 still holds even if an exact integrator is available for Hamilton’s
equations.

Proof. Using Hamilton’s equations, we have

xT − x0 =
∫ T

0
ps ds =

∫ T

0

[
p0 −

∫ s

0
∇U(xu) du

]
ds. (22)

Taking the norm and using the upper bound gives

‖xT − x0‖ ≤ T ‖p0‖ −
∫ T

0

∫ s

0

∥∥∇U(xu)
∥∥duds ≤ T ‖p0‖ + CT 2/2,

and again Chebyshev’s inequality gives the result. �

The class of models for which ‖∇U(x)‖ is bounded and
∫

es‖x‖π(dx) < ∞ for some s > 0 is
comparatively narrow, essentially comprising U(x) = C‖x‖ + b(x), where C < ∞ and b : X →
R is some appropriately regular function which is bounded both above and below.

6. Results for an position-dependent integration time

An important free parameter in HMC is the integration time T , which we have previously as-
sumed to be independent of the current position. The representation (9) does however suggest
that allowing this to change can have some benefits. If the candidate map is viewed as

xLε = x0 + DRIFT(x0,p0, T ) + Lεp0,

then if the ‘DRIFT’ function becomes negligible for large ‖x0‖ and fixed T , then it can be in-
creased in magnitude by making T larger. We make this simple intuition rigorous for an idealised
algorithm on the particular one-dimensional Exponential Family class of models with densities
of the form

π(x) ∝ exp
(−β−1(1 + x2)β/2)

, (23)

for some fixed β > 0. Here any contour Cx0,p0 := {(x,p) : H(x,p) = H(x0,p0)} consists of a
single closed path, and the flow is periodic from any fixed starting point. We additionally assume
that the period length ζx0,p0 > 0 is known, and that we have an exact integrator for Hamilton’s
equations. This means that we need not concern ourselves with the acceptance probability (we
discuss this issue in Section 7).

At iteration i (with x0 = xi−1), the dynamic HMC implementation we consider consists of re-
sampling p0 ∼ N(0,1), and then setting xi = Prx ◦ϕτ (x0,p0), where τ ∼ U [0, ζx0,p0 ]. In words,
we flow along the Hamiltonian for τ units of time, where τ is a uniform random variable with
maximum value ζx0,p0 (note that ϕζx0,p0

(x0,p0) = (x0,p0)).
Firstly, note that π -irreducibility is more straightforward to see here. To reach any set A ∈ B

with π(A) > 0, we first consider the single contour Cx0,p0 , and specifically the component of this
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contour that is connected to (x0,p0). Let Cx0 be the projection of this component onto X. Then
any nonempty set A′ ⊂ Cx0 has positive probability of occurring, as the next point is chosen from
a density with support all of Cx0 . As the contours are composed of single components, and cover
the entire space, then for any A, the probability of choosing a contour for which this argument
can be applied is greater than zero. We provide a figure in the supplementary material to offer
more intuition [33].

We introduce some additional notation in this section. We define the microcanonical expecta-
tion of a real-valued function f (xt ,pt ), where (xt ,pt ) = ϕt (x0,p0), i.e. the solution to (8) for t

units of time initialised at (x0,p0), as

〈
f (x0,p0)

〉 := ζ−1
x0,p0

∫ ζx0,p0

0
f (xs,ps) ds. (24)

This is simply the time expectation of f from uniformly sampling across Cx0,p0 .
We first introduce a result from the Physics literature (e.g., [24]) which relates the kinetic and

potential energies.

Theorem 6.1 (Virial Theorem). Under Hamiltonian flow (xs,ps) = ϕs(x0,p0) we have〈
x0∇U(x0)

〉 = 〈
p2

0

〉
. (25)

Proof. Define the virial function Gt = xtpt . From the fundamental theorem of Calculus, we
have

〈Ġ0〉 = Gζx0,p0
− G0

ζx0,p0

= 0,

where Ġt := dGt/dt . In this case

Ġt = xt ṗt + pt ẋt = −xt∇U(xt ) + p2
t ,

meaning 〈
x0∇U(x0)

〉 = 〈
p2

0

〉
,

as required. �

We can now state and prove the main result of this section.

Theorem 6.2. For the one-dimensional Exponential Family class of distributions with density
given by (23), the dynamic Hamiltonian Monte Carlo method produces a geometrically ergodic
Markov chain for any value of β > 0.

Proof. Note that by conservation of the Hamiltonian, we have∫ 〈
U(x0) + p2

0/2
〉
μG(dp0) =

∫
H(x0,p0)μ

G(dp0) = U(x0) + 1/2. (26)
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Choose the Lyapunov function V (x) = U(x) + xU ′(x) + 1. Using Theorem 6.1, we can rewrite
the above expression

PV (x0) = U(x0) + 3/2.

Note also that for any η > 0 there is an Mη < ∞ such that whenever |x0| > Mη

(1 + η)U(x0) ≥ U(x0) + 3/2.

The proof will be complete if we can find a λ < 1 such that (1 + η)U(x0) ≤ λV (x0) for suitably
large |x0|. Now x0U

′(x0) → βU(x0) here as |x0| → ∞, meaning that there is an M < ∞ such
that whenever |x0| > M

x0U
′(x0)/2 ≥ βU(x0)/2 − 1.

Taking |x0| ≥ max(Mη,M) we can therefore re-write the inequality of interest (1 + η)U(x0) ≤
λV (x0) as

(1 + η)U(x0) ≤ λ(1 + β/2)U(x),

which will be true if

λ ≥ 1 + η

1 + β/2
.

Choosing η < β/2 ensures λ < 1 and also gives the desired inequality PV (x0) ≤ λV (x0) when-
ever |x0| > max(Mη,M), showing that the resulting Markov chain will be geometrically er-
godic. �

7. Discussion

We have established conditions under which geometric ergodicity will and will not hold for
Markov chains produced by the Hamiltonian Monte Carlo method. Here we discuss how our
results can be extended in various ways, as well as how they translate to standard implementations
in widely used software [14].

7.1. Dynamic implementations

Allowing the integration time in HMC to depend on the current point in the chain without an
exact integrator will typically mean that some adjustments to α(x0, xT ) must be made to ensure
that π(·) is still preserved. The reason is that the approximate flow map ϕT may no longer be
reversible, as if T1 := T (x0,p0) and T2 := T (xT ,pT ) then ϕ−1

T2
◦ ϕT1 will typically not be the

identity map if T1 �= T2. The two possible ways of changing the integration time T = Lε are to
adjust either L or ε. Increasing L requires more computations per transition, while this is not
necessarily true for ε. In the No-U-Turn sampler a binary tree approach is introduced to ensure
preservation of detailed balance when L is altered in different parts of the space [26]. We are
not aware of any implementations involving adjustment of ε, however it is likely that similar
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modifications to α(x0, xT ) are possible here also. Adjusting ε may be a sensible option in some
cases, as the leapfrog method is known to ‘almost’ preserve the modified Hamiltonian

H̃ (x,p) = H(x,p) +
(

1

12
pt∇ t∇U(x)p − 1

24
∇U(x)t∇U(x)

)
ε2 + O

(
ε4),

as shown for example in [32]. When π(x) is not log-concave in the tails and hence the elements
of ∇U and ∇ t∇U become negligible as ‖x‖ → ∞, this implies that ε can be increased for larger
‖x‖ without compromising on numerical accuracy.

7.2. Extension to other integrators

The fixed integration time results in Section 5 refer specifically to the leapfrog integrator imple-
mentation of HMC (aside from Proposition 5.19). It should be possible to use the same approach
when analysing other explicit symplectic integrators, however for schemes which rely on implicit
methods (e.g., [23]) then composing multiple steps of the integrator as in Proposition 4.2 cannot
be done so cleanly. Implicit methods are needed when the Hamiltonian is nonseparable, and can
often resolve stiffness issues such as those characterised in Theorem 5.14.

To construct ergodicity results for the most general version of Hamiltonian Monte Carlo (i.e.
without restricting attention to R

n) we note that there are many ways to construct drift conditions
in line with the purely geometric framework introduced in [7]. We also point out that for the
one-dimensional Exponential Family, choosing the Riemannian metric G(x) = ‖∇2U(x)‖ and
employing the approach of [23] is mathematically equivalent to applying the transformation x′ =
sgn(x)‖x‖β/2 with corresponding density

π
(
x′) ∝ ∥∥x′∥∥2/(β−1) exp

(−x′2/β2).
This new density will have Gaussian tails for any β > 0, suggesting a well-behaved sampler can
be constructed. Further discussion on the relationship between geometric Markov chain Monte
Carlo methods and parameter transformations is given in [34].

7.3. Honest bounds

Geometric ergodicity is often called a qualitative bound, as an explicit upper bound on the ge-
ometric rate ρ is not established when using the techniques of [43]. With some modifications,
however, quantitative bounds can be constructed (e.g., [30]). We have refrained from doing this
here, as these bounds are also often too conservative to be of use in practice [30].

Monte Carlo estimates for nonasymptotic quantitative bounds using the Ricci curvature ap-
proach of [39] are applied to Hamiltonian Monte Carlo in [45]. We note that the applicability
of these bounds relies on the assumption of positive curvature in some Wasserstein distance for
the underlying Markov chain. When this distance is chosen to be Total Variation, then this is a
strictly stronger condition than geometric ergodicity [see Corollary 22 in [39]], so we feel that
our results are a useful pre-cursor to understanding when these estimated bounds are informative
in practice.



3136 Livingstone, Betancourt, Byrne and Girolami

In the case of MALA, when ‖∇U(x)‖ grows at a faster than linear rate for large ‖x‖ then it is
shown in [8] that useful inferences for functionals concentrated in the centre of the space can be
made by setting a small enough value for ε. It is likely that the same analysis can be done with
HMC, and that the result would be similar, but we leave such explorations for future work.

7.4. Practitioner guidelines

The main conclusion of our work for practitioners implementing the method in a bespoke manner
is to consider the form of ‖∇U(x)‖. If this term either grows very fast or becomes negligibly
small when ‖x‖ is large then it is likely that the Markov chains produced will struggle to explore
the tails of π(·) effectively. When the gradient grows at a faster than linear rate then a suitably
small value for ε must be chosen to counteract this, while when it shrinks then the integration time
T must be made sufficiently large. Of course in either scenario if there is a re-parametrisation of
the model that may not suffer these difficulties then this should be applied. Users implementing
the method in the Stan software [14] should note that both of these instances are captured by
standard output diagnostics. Numerical trajectories that become unstable due to large gradients
are classed as ‘divergences’, while a failure to move far enough because of negligible gradients is
recorded through the ‘maximum tree depth reached’ warning. If this happens and π(·) is known
to be proper, then the user should set as large a maximum tree depth as is computationally feasible
when tail exploration is of keen interest.
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18-BEJ1083SUPP; .pdf). We provide additional examples of π -irreducibility, with supporting
plots, as well as elaborating on the connections between HMC and Langevin dynamics and giving
a more detailed proof of inwards convergence for the exponential family model class.
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