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The family of goodness-of-fit tests based on �-divergences is known to be optimal for detecting signals
hidden in high-dimensional noise data when the heterogeneous normal mixture model is underlying. This
test family includes Tukey’s popular higher criticism test and the famous Berk–Jones test. In this paper we
address the open question whether the tests’ optimality is still present beyond the prime normal mixture
model. On the one hand, we transfer the known optimality of the higher criticism test for different models,
for example, for the heteroscedastic normal, general Gaussian and exponential-χ2-mixture models, to the
whole test family. On the other hand, we discuss the optimality for new model classes based on exponential
families including the scale exponential, the scale Fréchet and the location Gumbel models. For all these
examples we apply a general machinery which might be used to show the tests’ optimality for further
models/model classes in future.
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1. Introduction

In several research areas it is of interest to detect rare and weak signals hidden in a huge noisy
background. Examples for such areas are genomics [14,22,28], disease surveillance [36,38], local
anomaly detection [39] as well as cosmology and astronomy [10,33]. Let us, exemplary, discuss
an application in genomics. An important aim is to determine as early as possible whether a
patient is healthy or affected by a common disease like cancer or leukemia. Many researchers
assume (see the references above) that the majority of affected patients’ genes behaves like genes
of non-affected patients (noisy background) and only a small amount of genes displays a slightly
different behavior (signals). In other words, if there are any signals at all then they are represented
rarely and weakly. This combination makes it very difficult to detect the signals. In this paper, we
study tests for this kind of signal detection problems. After introducing the mathematical model,
we give more details about tests which were already suggested in the literature and explain our
new insights into these.

Let Pn be a known continuous noise distribution and μn be an unknown signal distribution
on (R,B). Popular examples are shift models, i.e., μn(−∞, x] = Pn(−∞, x − ϑn] with sig-
nal strength ϑn ∈ R. Now, let Xn,1, . . . ,Xn,n be an i.i.d. (independent and identical distributed)
sample with

Xn,1 ∼ Qn = (1 − εn)Pn + εnμn fo some εn ∈ [0,1].
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Figure 1. The detection boundary for the sparse heterogeneous normal mixture model β �→ ρ(β).

The parameter εn can be seen as the parameter of the signal quantity. In fact, it is the probability
that Xn,1 follows the signal distribution μn instead of the noise distribution Pn. The actual num-
ber of signals is random and approximately of the size nεn. When observing Xn,1, . . . ,Xn,n the
question arises whether it is pure noise or some signals are hidden in it. This leads to the testing
problem

H0,n : εn = 0 versus H1,n : εn > 0. (1.1)

We focus on the challenging case of rare signals εn → 0, where we differ between the sparse
signal case (nε2

n → 0) and the dense signal case (nε2
n → ∞). Throughout this paper, if not stated

otherwise, all limits are meant as n → ∞. Clearly, the likelihood ratio test is the best test for
(1.1). Its power behavior was studied by Ingster [27] for the heterogeneous normal mixture model
Pn = N(0,1) and μn = N(ϑn,1). Using the parametrization εn = n−β , β ∈ (1/2,1), and ϑn =√

2r log(n), r > 0, he showed that the detection boundary ρ(β) given by

ρ(β) =

⎧⎪⎪⎨⎪⎪⎩
β − 1

2
if β ∈

(
1

2
,

3

4

]
,

(1 − √
1 − β)2 if β ∈

(
3

4
,1

)
,

(1.2)

splits the r-β-parametrization plane, see Figure 1, into the completely detectable and the unde-
tectable area. If r > ρ(β) then the likelihood ratio test can completely separate H0,n and H1,n

asymptotically (completely detectable case), that is, the sum of type 1 and 2 error probabilities
tends to 0. Otherwise, if r < ρ(β), the likelihood ratio test and, thus, any other test cannot dis-
tinguish between H0,n and H1,n asymptotically (undetectable case). Later, Donoho and Jin [17]
showed the optimality of a modified version of Tukey’s higher criticism [42–44] in the sense



Signal detection via Phi-divergences for general mixtures 3043

that it can completely separate H0,n and H1,n asymptotically if r > ρ(β). In contrast to the like-
lihood ratio test, the higher criticism test does not need the knowledge of the unknown signal
probability εn and signal strength ϑn. Jager and Wellner [31] introduced a family of test statistics
based on �-divergences including the higher criticism test statistic and the test statistic of Berk
and Jones [6]. They extended the optimality result of [17] to their whole family. But in contrast
to the higher criticism test [2–4,8,9,17,26,37], it is less known if this optimality also holds under
more general model assumptions for the whole family.

As already mentioned, we differ between dense and sparse signals, where the main focus in
the literature lies on the latter one. There are only a few positive results about the higher criticism
test for dense signals. For instance, Cai et al. [8] proved the higher criticism test’s optimality in
the dense signal case for the normal location model introduced above with ϑn → 0.

When we explained the results of Ingster [27] we omitted the case r = ρ(β), the behavior
on the detection boundary. Ingster [27] determined the limit distribution of the likelihood ratio
test on the boundary under H0,n as well as under H1,n. An interesting observation is that non-
Gaussian limits do also occur. In other words, he showed that there is a third area in the r-β-
parametrization plane, namely the nontrivial power area on the boundary. Ditzhaus and Janssen
[16] studied the asymptotic behavior of the likelihood ratio test and the higher criticism test on
the detection boundary for general mixtures rigorously. In particular, they showed that the higher
criticism test has no power on the boundary for various models, whereas the likelihood ratio test
has nontrivial power there.

In short, these are our new insights:

(i) We enlarge the family of Jager and Wellner [30].
(ii) We give a positive answer to the uncertainty whether the �-divergence tests’ optimality

still hold beyond the normality assumption.

• We verify the optimality of the whole family for a model class recently suggested
by Cai and Wu [9]. Among others, this (extended) class include the heterogeneous
normal, the exponential-χ2 and different exponential family mixture models, like
the scale exponential or the scale Fréchet model.

• In contrast to the main literature we pay also attention to the dense case (nε2
n → ∞)

and prove the �-divergence tests’ optimality for general exponential family mixture
models.

(iii) The negative result of the higher criticism test corresponding to the signal detectability
on the detection boundary can be transferred to the whole test family.

The paper is organized as follows. In Section 2, we introduce the (enlarged) family of �-
divergence test statistics and present the limit distribution under the null H0,n, which is the same
for the whole family. Section 3 contains our tools to discuss the asymptotic power of the whole
family under the alternative H1,n. These tools are applied in Section 4 to verify the optimality
postulated in (ii) for the examples mentioned therein. Section 5 consists of a discussion.
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2. The test family and its limit under the null

2.1. The test statistics

This papers’ focus lies on continuous noise distributions. That is why we can assume without loss
of generality that Pn = P0 for all n, having, for example, a transformation to p-values in mind.
Denote the distribution function of P0 by F0. The basic idea is to compare the empirical distribu-
tion function Fn(u) = n−1 ∑n

i=1 1{Xn,i ≤ u} with the noise distribution function F0(u) for u ∈R

by using one of the �-divergence tests proposed by Csiszár [13] based on a convex function �,
see also [1,12]. To be more specific, we introduce a family (φs)s∈R of convex functions mapping
(0,∞) to (0,∞]:

φs(x) =

⎧⎪⎨⎪⎩
x − log(x) − 1 for s = 0,

x
(
log(x) − 1

) + 1 for s = 1,(
1 − s + sx − xs

)
/
(
s(1 − s)

)
for s �= 0,1.

Based on these the family of �-divergence statistics (Ks)s∈R is given by

Ks(u, v) = vφs

(
u

v

)
+ (1 − v)φs

(
1 − u

1 − v

)
for u,v ∈ (0,1). It is easy to see that R 	 s �→ φs(x) is continuous for every fixed x ∈ (0,∞)

and so is R 	 s �→ Ks(u, v) for all fixed u,v ∈ (0,1). Now, we consider the following family
{Sn(s) : s ∈R} of test statistics for (1.1) given by

Sn(s) = sup
X1:n≤x<Xn:n

Ks

(
Fn(x),F0(x)

)
, (2.1)

where X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics of the observation vector (Xn,1, . . . ,

Xn,n). We want to point out that Jager and Wellner [31] restricted their family to s ∈ [−1,2], but
as we will see there is no need for this constraint. As explained in [31] Tukey’s higher criticism
test (s = 2), the test of Berk and Jones [6] (s = 1), the “reversed Berk–Jones” statistic introduced
by Jager and Wellner [30] (s = 0) and a studentized version of the higher criticism statistic
studied by Eicker [20] (s = −1) are included in this family. Note that Sn(s) does not always
coincide with the corresponding known test statistic but is equivalent to them for s given in the
parentheses. For all other s, the test statistic Sn(s) was new. Jager and Wellner [31] give a special
emphasis to Sn(1/2), which is equivalent to the supremum of the pointwise Hellinger divergence
between two Bernoulli distributions with parameters F0(u) and Fn(u).

2.2. Limit distribution under the null

The limit distribution of the higher criticism statistic is already known [29,40], Section 16.1, and
so is the asymptotic behavior of Sn(2). By the following two observations, we can motivate, at
least heuristically, that the resulting asymptotic behavior under the null can be directly transferred
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to Sn(s): 1. Fn(x)/F0(x) ≈ 1 ≈ (1 −Fn(x))/(1 −F0(x)) under the null. 2. φs(x)/φ2(x) → 1 for
x → 1. Clearly, for a mathematical correct proof there is a little bit more to do. For s ∈ [−1,2]
this was already done by Jager and Wellner [31] and we extend their proof idea to all s ∈R. Here

and subsequently, we denote by
d−→,

Pn
0−→,

Qn
n−→ convergence in distribution, in P n

0 -probability
and in Qn

n-probability, respectively.

Theorem 2.1. Define

rn = log log(n) + 1

2
log log log(n) − 1

2
log(4π).

Then we have for all s ∈R that under the null H0,n

nSn(s) − rn
d−→ Y, (2.2)

where Y − log(4) is standard Gumbel distributed, i.e., x �→ exp(−4 exp(−x)) is the distribution
function of Y .

At least for Sn(2) it is known that the convergence rate is really slow [34]. Since the basic
proof idea of Theorem 2.1 is to approximate nSn(s) by nSn(2) the same bad rate can be expected
for all s ∈ R or an even worse rate due to an additional approximation error. Consequently, we
cannot recommend using a critical value based on the convergence result in Theorem 2.1 unless
the sample size n is really huge. Since the noise distribution is assumed to be known, we suggest
to use a standard Monte-Carlo simulation to estimate the α-quantile of Sn(s). Alternatively, the
reader can find finite recursion formulas for the exact finite distribution in the literature, see Jager
and Wellner [30] (for s = 0, up to n = 103) and Khmaladze and Shinjikashvili [34] (for s = 2,
up to n = 104).

3. Asymptotic power under the alternative

The same tool, already used by Ditzhaus and Janssen [16] to study the power behavior of the
higher criticism test (s = 2), can be applied to the whole family. Its applicability is illustrated in
Section 4. Let us become more concrete. We introduce Hn : (0,1/2) → (0,∞) given by

Hn(v) =
√

nεn√
v

(∣∣μF0
n (0, v] − v

∣∣ + ∣∣μF0
n (1 − v,1) − v

∣∣), v ∈
(

0,
1

2

)
, (3.1)

where μ
F0
n is the distribution of F0(Xn,1) if Xn,1 ∼ μn. Basically, Hn(v) compares the tails near

to 0 and near to 1 of the p-value F0(Xn,1) for Xn,1 following the signal distribution μn and the
noise distribution P0, respectively.

Theorem 3.1 (Complete detection). Suppose that there is a sequence (vn)n∈N in (0,1/2) such
that vnn → ∞ and (log log(n))−1Hn(vn) → ∞. Then for all s ∈ R

nSn(s) − rn −→ ∞ in Qn
n-probability. (3.2)
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By Theorems 2.1 and 3.1, we can conclude that under (3.2) there exists a sequence of critical
values cn(s) such that the type 1 and 2 error probabilities of ϕn(s) = 1{Sn(s) > cn(s)} tend
to 0. In other words, by using Sn(s) we can completely separate H0,n and H1,n asymptotically.
Ditzhaus and Janssen [16] showed that the assumptions of Theorem 3.1 are fulfilled, for example,
for the heterogeneous normal mixture model from the Introduction. While Theorem 3.1 can be
used to verify the optimality of the whole family, the next theorem is for a finer analysis of the
asymptotic power, namely, for the power analysis on the detection boundary. For various model
assumptions [8,16,27] it is known that the log-likelihood ratio has real-valued, nontrivial limits
under H0,n as well as under H1,n on the boundary, where also non-Gaussian limits occur. In
particular, the asymptotic power of the log-likelihood ratio test is nontrivial in the sense that the
sum of error probabilities tends neither to 0 nor to 1 but to a value in between. By the first lemma
of Le Cam real-valued limits of the log-likelihood ratio imply mutual contiguity of P n

0 and Qn
n,

i.e., for all sequences (An)n∈N of sets the following equivalence is true: P n
0 (An) → 0 if and only

if Qn
n(An) → 0.

Theorem 3.2 (No power). Suppose that P n
0 and Qn

n are mutually contiguous and that there are
constants κ, c1,n, c2,n, c3,n, c4,n ∈ (0,1) such that√

log log(n) sup
{
Hn(v) : v ∈ [c1,n, c2,n] ∪ [c3,n, c4,n]

} → 0, where (3.3)

log(c1,n)

log(n)
→ −1,

log(c4,n)

log(n)
→ 0 and

log(c2,n)

log(n)
,

log(c3,n)

log(n)
→ −κ. (3.4)

Then the distributional convergence in (2.2) holds under the alternative Hn,1.

By Theorems 2.1 and 3.2 all tests of the form ϕn(s) = 1{Sn(s) > cn(s)} cannot distinguish
between H0,n and H1,n asymptotically if (3.3) and (3.4) are fulfilled. We explain briefly why
the supremum can be taken over Cn = [c1,n, c2,n] ∪ [c3,n, c4,n] instead of over the whole interval
[0,1/2]. The supremum in (2.1) is taken neither by x from the extreme tails nor from the middle.
In fact, the supremum is take by the so-called intermediate values [23,24], i.e., by x with F0(x) ∈
Cn = [c1,n, c2,n]∪ [c3,n, c4,n] or 1 −F0(x) ∈ Cn. To be more concrete, we verify that under H0,n

(and so under H1,n due to mutually contiguity)

n
(

sup
X1:n≤x<Xn:n:F0(x),1−F0(x)/∈Cn

Ks

(
Fn(x),F0(x)

)) − rn → −∞

in probability. We want to point out that the restriction to intermediate values in (3.3) is necessary
for applying Theorem 3.2 to the majority of the examples.

Last, we give a simplification of our tool for the sparse case (nε2
n → 0).

Remark 3.3 (Simplification for the sparse case). Typically, in the sparse case we even have√
log log(n)nε2

n → 0. Then it is easy to see that the statements in Theorems 3.1 and 3.2 remain
true if Hn(v) is replaced by

H̃n(v) = √
nεnv

−1/2(μF0
n (0, v] + μF0

n [1 − v,1)
)
.
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4. Application

4.1. Extension of Cai and Wu

Throughout this section, we consider (only) the sparse case

εn = n−β, β ∈
(

1

2
,1

]
.

Starting with a fixed noise distribution P0 and a fixed sequence (μn)n∈N of signal distributions,
Cai and Wu [9] developed a technique to calculate a detection threshold β# for the parameter β .

(i) (Undetectable) If β exceeds β#, then there is no sequence of tests, which can distinguish
between H0,n and H1,n asymptotically.

(ii) (Completely detectable) If β is smaller than β#, then there is a sequence of likelihood
ratio tests, which can completely separate H0,n and H1,n asymptotically.

In their paper they discussed two different cases, standard normal distributed and general noise.
For standard normal distributed noise, they showed the optimality of the higher criticism test,
that is, it can completely separate H0,n and H1,n asymptotically if β < β#. At the section’s end,
we discuss this situation more closely. Up until now, it was an open problem whether the higher
criticism test is optimal in the general noise setting. After introducing the calculation technique
we give a positive answer to this open question, where the optimality is not restricted to the
higher criticism test but holds even for the whole family {Sn(s) : s ∈R}.

Proposition 4.1 (Theorem 3 in [9]). Define for all t > 0

hn,1(t) = log

(
dμn

dP0

(
F−1

0

(
n−t

)))
, hn,2(t) = log

(
dμn

dP0

(
F−1

0

(
1 − n−t

)))
and

hn(t) = max
{
hn,1(t), hn,2(t)

}
.

Suppose that

sup

{∣∣∣∣ hn(t)

log(n)
− γ (t)

∣∣∣∣ : t ≥ log(2)

log(n)

}
→ 0 (4.1)

for a measurable γ : [0,∞) → R. Then the detection threshold for β is given by

β# = 1

2
+ ess sup

t≥0

{
γ (t) − t + min(t,1)

2

}
. (4.2)

The simple scale exponential distribution model P0 = Exp(1) and μn = Exp(1 + nr) (r > 0)

cannot be treated by Proposition 4.1 since hn(t)/ log(n) tends to −∞ for t ≤ r − δ for every
δ > 0. We relax the uniform convergence condition (4.1) such that this example and further
interesting models can be treated. Moreover, we prove the optimality of the whole �-divergence
test family.
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Theorem 4.2 (Extension of Proposition 4.1). Let hn be defined as in Proposition 4.1. Assume
that there exists some β∗ ∈R such that for every δ > 0

lim inf
n→∞ λλ

(
t ≥ log(2)

log(n)
: β∗ − δ − 1

2
≤ hn(t)

log(n)
− t + min{t,1}

2

)
> 0 and (4.3)

λλ

(
t ≥ log(2)

log(n)
: β∗ + δ − 1

2
≤ hn(t)

log(n)
− t + min{t,1}

2

)
= 0 (4.4)

for all sufficiently large n ≥ N1,δ , where λλ denotes the Lebesgue measure. Let (λn)n∈N be a
sequence in (0,∞) such that λn → 0 and λnn

κ → ∞ for all κ > 0. Suppose that for some
M ≥ 1:

lim
n→∞ sup

t≥M

∣∣∣∣ hn(t)

log(n)
− γ (t)

∣∣∣∣ = 0 (4.5)

for some γ : (0,∞) → R or for every δ > 0 there exists N2,δ ∈N such that

λλ

(
t ≥ M : β∗ + δ − 1 ≤ hn(t)

log(n)
−

(
1 − λn

log(n)

)
t

)
= 0 (4.6)

for all n ≥ N2,δ . Then β# = β∗. Moreover, if β < β# then for every s ∈ R there is a sequence
(cn(s))n∈N of critical values such that ϕn = 1{Sn(s) > cn(s)} can completely separate H0,n and
H1,n asymptotically.

The conditions (4.3) and (4.4) together are mimicking the essential supremum in (4.2), where
γ is replaced by hn/ log(n). The uniform convergence of hn/ log(n) is not necessarily needed
anymore. It can easily be checked that the conditions of Proposition 4.1 imply the ones of our
Theorem 4.2. As already explained by Cai and Wu [9] Proposition 4.1 can be used to the derive
the detection boundary for

• the general Gaussian location mixture model, where

dP0

dλλ
(x) = τ

2�(τ)
exp

(−|x|τ ) and
dμn

dλλ
(x) = dP0

dλλ
(x − ϑn)

for some shape parameter τ > 0 and a shift ϑn = (r log(n))1/τ .
• the exponential-χ2-mixture model, where P0 = Exp(2) is the exponential distribution with

scale parameter 2 and μn = χ2
2 (ϑn) is the (non-central) χ2-distribution with 2 degrees of

freedom and non-centrality parameter ϑn = 2r log(n).

For the concrete detection boundaries we refer to Donoho and Jin [17], who already postulated
the optimality of the higher criticism test for both examples. From our Theorem 4.2, we obtain
the optimality for the whole family {Sn(s) : s ∈R}.

As mentioned above, the simple scale exponential distribution model and even more general
exponential family models can be treated now. Recall that a function L is slowly varying at
infinity if limx→∞ L(λx)/L(x) = 1 for all λ > 0.
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Theorem 4.3. Let (P(ϑ))ϑ∈[0,∞) be a family of continuous distributions on [0,∞) with P(ϑ) �
P(0) and Radon–Nikodym density

dP(ϑ)

dP(0)

= C(ϑ) exp(ϑT ) (4.7)

for appropriate functions T : [0,∞) →R and C : [0,∞) → (0,∞) with C(0) = 1. Suppose that
T is strictly decreasing on [0, η] for some η > 0, T (η) ≥ T (x) for all x ≥ η and

T
(
F−1

0 (0)
) − T

(
F−1

0 (u)
) = u

1
p L

(
1

u

)
as u ↘ 0

for a slowly varying function L at infinity, where F−1
0 is the left continuous quantile function of

P(0). Let P0 = P(0) be the noise distribution and μn = P(ϑn) the signal distribution with signal
strength ϑn ∼n→∞ nr for r > 0, that is, ϑn/nr → 1. Then the conditions of Theorem 4.2 are
fulfilled for

β# = β#(r,p) = min{rp,1} + 1

2
.

We refer the reader to Corollary 5.7 and Theorem 8.19 of Ditzhaus [15] for a discussion
about the tests’ power behavior on the detection boundary. In short, the likelihood ratio test has
nontrivial power on the detection boundary, whereas the higher criticism test has no power. By
Theorem 3.2, the latter can be extended to the whole family {Sn(s) : s ∈ R}. We want to point out
that Theorem 4.3 can be used for exponential families (P(ϑ))ϑ≥0 on R by applying it to (P

F0
(ϑ)

)ϑ≥0

or (P
1−F0
(ϑ) )ϑ≥0 instead, where F0 is the distribution function of P0 = P(0). An example for this

situation is the location Gumbel model. In the following, we give the detection boundary for this
and two other models as an immediate consequence of Theorem 4.3.

Corollary 4.4. Fix r > 0. Consider one of the following three models (a)–(c):

(a) the Gumbel location model with parameter θn = r log(n)

dP0

dλλ
(x) = exp

(−x − e−x
)

and
dμn

dλλ
(x) = dP0

dλλ
(x − θn) (x ∈R). (4.8)

(b) the scale Fréchet model with shape parameter α > 0 and scale parameter θn = nr/α

dP0

dλλ
(x) = αx−α−1 exp

(−x−α
)

and
dμn

dλλ
(x) = 1

θn

dP0

dλλ

(
x

θn

)
(x > 0). (4.9)

(c) the scale exponential distribution model P0 = Exp(1) and μn = Exp(1 + nr).

In all three cases the detection boundary is given by

β#
GFE(r) := min(r,1) + 1

2
.
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The whole family {Sn(s) : s ∈ R} is optimal in the sense that the null and the alternative can be
completely separated asymptotically if β < β#(r).

Last, we give our generalization of Theorems 1 and 4 of Cai and Wu [9] concerning (only)
normal distributed noise, which we mentioned at the section’s beginning.

Theorem 4.5. Let P0 = N(0,1). Define for all x > 0

h̃n(x) = log

(
dμn

dP0

(
x
√

2 log(n)
))

.

Suppose that there is some β∗ ∈ R such that for every δ > 0

lim inf
n→∞ λλ

(
x ∈R : β∗ − δ − 1

2
≤ h̃n(x)

log(n)
− x2 + min{x2,1}

2

)
> 0 and (4.10)

λλ

(
x ∈R : β∗ + δ − 1

2
≤ h̃n(x)

log(n)
− x2 + min{x2,1}

2

)
= 0 (4.11)

for all sufficiently large n ≥ N1,δ . Let (λn)n∈N be a sequence in (0,∞) such that λn → 0 and
λnn

κ → ∞ for all κ > 0. Suppose that for some M ≥ 1:

lim
n→∞ sup

|x|≥M

∣∣∣∣ h̃n(x)

log(n)
− α(x)

∣∣∣∣ = 0 (4.12)

for some α : (0,∞) → R or for every δ > 0 there exists N2,δ ∈ N such that

λλ

(
|x| ≥ M : β∗ + δ − 1 ≤ h̃n(x)

log(n)
−

(
1 − λn

log(n)

)
x2

)
= 0 (4.13)

for all n ≥ N2,δ . Then β# = β∗. Moreover, if β < β# then for every s ∈ R there is a sequence
(cn(s))n∈N of critical values such that ϕn = 1{Sn(s) > cn(s)} can completely separate H0,n and
H1,n asymptotically.

The results concerning the (heterogeneous) normal location model mentioned in Section 1
follow immediately from the previous theorem. More generally, Theorem 4.5 can be applied to
convolution normal models P0 = N(0,1) and μn = μ̃n ∗ N(0,1) (compare to Corollary 1 and
Section V-B in [9]), where ∗ denotes the convolution operation. An example for this convolution
idea is

• the heteroscedastic normal location model P0 = N(0,1) and μn = N(ϑn,σ
2
0 ) with signal

strength
√

2r log(n), where the signal variance σ 2
0 ∈ [0,∞) may differ from 1.

Cai et al. [8] already verified the optimality of the higher criticism test for this model. By The-
orem 4.5, this optimality can now be extended to the whole family. Moreover, Ditzhaus and
Janssen [16] showed that the higher criticism test has no asymptotic power on the detection
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Figure 2. The detection boundary for dense exponential family mixtures is plotted, see Theorem 4.6.

boundary for the heterogeneous normal mixture model, whereas the likelihood ratio test has non-
trivial power there. By Theorem 3.2 this negative result can be transferred to the whole family as
well.

4.2. Dense exponential family

Beside the sparse heteroscedastic normal mixture model mentioned at the end of the previous sec-
tion Cai et al. [8] also studied the dense case with vanishing signal strength ϑn → 0 and showed
the optimality of the higher criticism test. Their result can be extended to general exponential
families and to the whole �-divergence test family.

Theorem 4.6. Let (P(ϑ))ϑ∈[0,∞) be a family of continuous distributions on R with Radon–
Nikodym density given by (4.7) for T : R → R and C : R → (0,∞) with C(0) = 1. Assume that
VarP(0)

(T ) > 0. Consider the noise distribution P0 = P(0) and the signal distribution μn = P(ϑn)

with the parametrization

εn = n−β, β ∈
(

0,
1

2

)
and ϑn ∼n→∞ n−r , r > 0,

then the detection boundary for the parameter r is given by

ρ∗(β) = 1

2
− β, (4.14)

see Figure 2. In particular, we have for all s ∈ R:

(a) If r < ρ∗(β) then there is a sequence (cn(s))n∈N of critical values such that ϕn =
1{Sn(s) > cn(s)} can completely separate P n

0 and Qn
n asymptotically.
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(b) Suppose that r = ρ∗(β). Then 2N(0,1)((1/2)VarP(0)
(T )1/2,∞) is the lower bound of the

limit of the sum of type 1 and 2 error probabilities for all tests testing P n
0 versus Qn

n and is
attained by a likelihood ratio test sequence. But all tests of the form ϕn = 1{Sn(s) > cn(s)}
cannot distinguish between P n

0 and Qn
n asymptotically.

(c) If r > ρ∗(β) then no test ϕn can distinguish between P n
0 and Qn

n asymptotically.

The detection boundary (4.14) and the statements (a)–(c) are valid, among others, for:

• the heterogeneous normal model P0 = N(0,1) and μn = N(n−r ,1).
• the location Gumbel model (4.8) with θn = n−r .
• the scale Fréchet model (4.9) with shape parameter α > 0 and θn = (1 + n−r )1/α .
• the scale exponential distribution model P0 = Exp(1) and μn = Exp(1 + n−r ).

4.3. Spike chimeric alternatives

The prime example of Ditzhaus and Janssen [16] was a p-value model inspired by the spike
chimeric alternatives of Khmaladze [35]. If signals are present the corresponding p-values are
usually small. Hence, it is reasonable to restrict the support of μn to the shrinking interval (0, κn)

with κn → 0. Let P0 = λλ|(0,1) and let h be some Lebesgue-density on (0,1) with
∫ 1

0 h2 dλλ < ∞.
Then we define the signal distribution by its rescaled density

dμn

dλλ
(x) = κ−1

n h

(
x

κn

)
1
{
x ∈ (0, κn)

} (
x ∈ (0,1)

)
.

Using the parametrization

κn = nr (r > 0) and εn = n−β

(
β ∈

(
1

2
,1

))
Ditzhaus and Janssen [16] calculated the detection boundary

ρ(β) = 2β − 1

(
β ∈

(
1

2
,1

))
,

see Figure 3, for the parameter r and proved the optimality of the higher criticism test. Moreover,
they verified that the higher criticism test has no asymptotic power on the detection boundary
while the likelihood ratio test has nontrivial power there. Since our Theorems 3.1 and 3.2 are
extensions of their Theorems 3.1 and 3.2 we can immediately transfer the optimality and the
negative result concerning the power on the boundary to the whole family {Sn(s) : s ∈R}.

5. Discussion

The higher criticism test became quite popular recently. In this paper, we showed that the (en-
larged) φ-divergence test family {Sn(s) : s ∈ R} of Cai and Wu [9] shares the higher criticism
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Figure 3. The detection boundary for the spike chimeric alternatives.

test’s optimality under various model assumptions. The advantage of a whole test family is more
flexibility in choosing a test statistic which suits the specific problem best. Jager and Wellner [31]
already pointed out that Sn(s) is more sensible for signal distributions with heavy or light tails if
s ≥ 1 or s ≤ 0, respectively. As a good compromise they suggested their “new” Sn(1/2). In future
we wish to conduct a detailed simulation study in order to give a better advice for practitioners
how to choose “the best” s.

Besides the detection problem, a more in-depth analysis of the data such as feature selection,
classification and estimation of the signal amount is of great interest. The detection problem
discussed in this paper is closely related to these problems [18,19,25,32] and the higher criticism
statistic can be applied to them as well. Our results motivate a future investigation whether the
whole class {Sn(s) : s ∈R} can be used for these problems.

6. Proofs

6.1. Preliminaries

To prove Theorem 2.1, we use some results of Chang [11] and Wellner [45] about the asymptotic
behavior of the empirical distribution function. We summarize them in the following lemma.

Lemma 6.1. Let Xn,1, . . . ,Xn,n be independent and identical distributed random variables on
the same probability space (�,A,P ) with continuous distribution function Fn. Let Fn be the
corresponding empirical distribution function. Let (dn)n∈N be a decreasing sequence in R, that
is, dn > dn+1, such that nFn(dn) → ∞. Then

sup
dn≤x<∞

∣∣∣∣Fn(x)

Fn(x)
− 1

∣∣∣∣ P−→ 0. (6.1)
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If additionally cn = nF(dn)/ log log(n) → ∞, then

√
cn sup

dn≤x<∞

∣∣∣∣Fn(x)

Fn(x)
− 1

∣∣∣∣ P−→ √
2. (6.2)

Moreover, for all t ∈ R

lim
λ→∞ lim sup

n→∞
P

(
Bc

n,λ,t

) = 0 with Bn,λ,t =
{

sup
x∈(X1:n,∞)

(
Fn(x)

x

)t

< λ

}
. (6.3)

Proof. First, suppose that Xn,1, . . . ,Xn,n are uniformly distributed on (0,1). Then (6.1) was
stated by Chang [11], see also Theorem 0 of Wellner [45], and (6.3) follows by combining (i) and
(ii) of Remark 1 of Wellner [45]. Moreover, (6.2) follows from Theorem 1S of Wellner [45]. For
general continuous distribution, note that Fn(Xn,1), . . . ,Fn(Xn,n) are independent and uniformly
distributed random variables in (0,1). Consequently, it is easy to check that the statements for
general distributions can be concluded from the ones for uniform distributions. �

In Section 4, we made several statements about the general detectability of signals. For this
purpose, we have to study the best tests for the underlying testing problem, namely likelihood
ratio tests. Let us first introduce the variational distance ‖P − Q‖ between two probability mea-
sures P and Q on the same measure space:

‖P − Q‖ = 1

2

∫ ∣∣∣∣ dP

d(P + Q)
− dQ

d(P + Q)

∣∣∣∣d(P + Q).

By Lemmas 2.2 and 2.3 of Strasser [41], the lower bound of the sum of type 1 and 2 error
probabilities for all tests testing P n

0 versus Qn
n equals 1 − ‖P n

0 − Qn
n‖. Moreover, this bound is

attained by the likelihood ratio test ϕn = 1{dQn
n/dP n

0 ≥ 1}. It is well known and easy to show

that weak convergence of binary experiments {P n
0 ,Qn

n} w−→ {P,Q} implies convergence of the

variational distance ‖P n
0 − Qn

n‖ → ‖P − Q‖. Let us recall that {P n
0 ,Qn

n} w−→ {P,Q} if and only
if L(dQn

n/dP n
0 |P n

0 ) tends weakly to L(dQ/dP |P), or equivalently L(dQn
n/dP n

0 |Qn
n) converges

weakly to L(dQ/dP |Q), where L(T |P) = P T denotes the image measure. For more details
about the convergence of binary or more general experiments, we refer the reader to Strasser
[41]. Ditzhaus and Janssen [16] studied the asymptotic behavior of likelihood ratio tests for our
testing problem rigorously. Below we present a simplification of their Theorem A.1.

Proposition 6.2 (Ditzhaus and Janssen [16]). Let σ ≥ 0 and τ > 0. If

In,1,x = nεnμn

(
εn

dμn

dP0
> x

)
→ 0 for all x > 0 and (6.4)

In,2,τ = nε2
nEP0

((
dμn

dP0

)2

1
{
εn

dμn

dPn

≤ τ

}
− 1

)
→ σ 2 (6.5)

then {P n
0 ,Qn

n} w−→ {N(−σ 2/2, σ 2),N(σ 2/2, σ 2)}, where N(0,0) = ε0 is the Dirac measure cen-
tred in 0.
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Under the conditions of Proposition 6.2 the lower bound of the error probabilities sum for all
tests testing P n

0 versus Qn
n tends to 1 − ‖N(−σ 2/2, σ 2),N(σ 2/2, σ 2)‖ = 2N(0,1)(σ/2,∞). In

particular, σ = 0 implies that no test sequence can asymptotically distinguish between P n
0 and

Qn
n since the error probabilities sum converges to 1 for all test sequences.

6.2. Proofs of our statements

Proof of Theorem 2.1. Having a transformation to p-values pn,i = F0(Xn,i) or pn,i = 1 −
F0(Xn,i) in mind we can assume without loss of generality that P0 = λλ|(0,1) is the uniform
distribution on the interval (0,1). The proof is based, as the one of Theorem 3.1 of Jager and
Wellner [31], on a Taylor expansion of u �→ Ks(u, v) around u = v. It is easy to verify that

∂

∂u
Ks(u, v)|u=v = 0 = Ks(v, v),

∂2

∂2u
Ks(u, v)|u=v = 1

v(1 − v)
and

∂3

∂3u
Ks(u, v) = (s − 2)

v2

(
u

v

)s−3

− (s − 2)

(1 − v)2

(
1 − u

1 − v

)s−3

.

Hence, by a careful calculation we obtain for all x ∈ [X1:n,Xn:n)

Ks

(
Fn(x), x

) = K2
(
Fn(x), x

)(
1 + (s − 2)

3
Rn,x,s

)
with

Rn,x,s = (Fn(x) − x)

x(1 − x)

(
(1 − x)2

(
F

∗
n,x

x

)s−3

− x2
(

1 − F
∗
n,x

1 − x

)s−3)
,

(6.6)

where F
∗
n,x is a random variable satisfying min{Fn(x), x} ≤ F

∗
n,x ≤ max{Fn(x), x}. Clearly, t →

t3−s (t > 0) is monotone. Thus, |Rn,x,s | ≤ R
(1)
n,x,s + R

(2)
n,x,s , where

R(1)
n,x,s = |Fn(x) − x|

x
max

{
1,

(
Fn(x)

x

)s−3}
and

R(2)
n,x,s = |Fn(x) − x|

1 − x
max

{
1,

(
1 − Fn(x)

1 − x

)s−3}
.

Let dn = n−1(logn)5. Obviously, P n
0 (X1:n > dn) + P n

0 (Xn:n < 1 − dn) = 2(1 − dn)
n → 0. By

(6.6) ∣∣nKs

(
Fn(x), x

) − rn − (
nK2

(
Fn(x), x

) − rn
)∣∣

≤ (
R(1)

n,x,s + R(2)
n,x,s

)(∣∣nK2
(
Fn(x), x

) − rn
∣∣ + rn

)
.

Consequently, for (2.2) it is sufficient to show that

n
(

sup
x∈(dn,1−dn)

K2
(
Fn(x), x

)) − rn
d−→ Y under P n

0 , (6.7)



3056 M. Ditzhaus

rn sup
x∈(dn,1−dn)

R
(j)
n,x,s

P n
0−→ 0 for j = 1,2 and (6.8)

In,s = n
(

sup
x∈(X1:n,dn)∪(1−dn,Xn:n)

Ks

(
Fn(x), x

)) − rn
P n

0−→ −∞. (6.9)

Note that

In,s ≤ rn

(
−1 + n

rn
sup

x∈(X1:n,dn)∪(1−dn,Xn:n)

K2
(
Fn(x), x

)(
1 + R(1)

n,x,s + R(2)
n,x,s

))
.

Hence, using the inequality

P(An) ≤ P(An ∩ Bn,λ) + P
(
Bc

n,λ

)
(6.10)

with appropriate sets we can deduce (6.9) from (6.6) if

n

rn
sup

x∈(X1:n,dn)∪(1−dn,Xn:n)

K2
(
Fn(x), x

) Pn
0−→ 0 and (6.11)

lim
λ→∞ lim sup

n→∞
P n

0

((
B

(j)
n,λ

)c) = 0 for both j ∈ {1,2}, (6.12)

where B
(j)
n,λ =

{
sup

x∈(X1:n,dn)∪(1−dn,Xn:n)

R
(j)
n,x,s < λ

}
.

Thus, it remains to verify (6.7), (6.8), (6.11) and (6.12). Due to symmetry it is sufficient to
show (6.8) and (6.12) for j = 1. Using again (6.10) we obtain (6.8) for j = 1 from (6.2) and
(6.3) setting t = s −3 since cn = ndn/ log log(n) = log(n)5/ log log(n) → ∞ and

√
cn/rn → ∞.

Moreover, from the inequality

R(1)
n,x,s ≤ 1 + Fn(x)

x
+

(
Fn(x)

x

)s−2

+
(
Fn(x)

x

)s−3

we can conclude (6.12) for j = 1 by applying (6.3) for t ∈ {1, s − 2, s − 3}.
To prove the remaining (6.7) and (6.11) we introduce the supremum statistic of the normalized

uniform empirical process

Zn(a, b) = sup
a<x<b

√
n
|Fn(x) − x|√

x(1 − x)

(
a, b ∈ (0,1)

)
(6.13)

studied by Jaeschke [29], see also Chapter 16 of Shorack and Wellner [40]. In particular, by
(19), (20), (25), (26) and (g) in Section 16.1 from Shorack and Wellner [40] and the symmetry

Zn(0, a)
d= Zn(1 − a,1) we obtain

Zn(dn,1 − dn)

bn

Pn
0−→ 1 and bnZn(dn,1 − dn) − cn

d−→ Y under P n
0 , (6.14)
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b−1
n Zn(0, dn)

Pn
0−→ 0 and b−1

n Zn(1 − dn,1)
P n

0−→ 0, where (6.15)

bn = √
2 log log(n) and cn = b2

n + 1

2
log log log(n) − 1

2
log(4π). (6.16)

Observe that

n
(

sup
x∈(a,b)

K2
(
Fn(x), x

)) − rn

= 1

2
Zn(a, b)2 − rn (6.17)

= 1

2

(
bnZn(a, b) − cn

)(Zn(a, b)

bn

+ cn

b2
n

)
+

(
1

2

c2
n

b2
n

− rn

) (
a, b ∈ (0,1)

)
. (6.18)

Finally, (6.7) follows from (6.18) and (6.14). Furthermore, we conclude (6.11) from (6.15) and
(6.17) since b2

n/rn → 2. �

Proof of Theorem 3.1. Similar to the previous proof we can assume that P0 = λλ|(0,1) is the
uniform distribution on (0,1). Set ln = log log(n). Due to symmetry it is sufficient to give the
proof under the assumption

n1/2εnv
−1/2
n l−1

n

(
μn(0, vn] − vn

) → A ∈ {−∞,∞}. (6.19)

Let Gn be the distribution function of Qn defined by Gn(v) = v + εn(μn(0, v] − v) (v ∈ (0,1)).
If A = ∞, then it is easy to see that

l−1
n nGn(vn) → ∞. (6.20)

Moreover, A = −∞ implies l−1
n

√
nvn → ∞ and, thus, l−1

n nvn(1− εn) → ∞. In all, (6.20) holds
in both cases A ∈ {−∞,∞}. Due to (6.20), we obtain from Lemma 6.1 that

Fn(vn)

Gn(vn)
→ 1 in Qn

n-probability. (6.21)

From (6.20) we deduce Qn
n(X1:n ≤ vn) = 1 − (1 − Gn(vn))

n → 1 and vn < 1/2 implies
Qn

n(Xn:n > vn) → 1. Hence, Sn(s) ≥ Ks(Fn(vn), vn) ≥ vnφs(Fn(vn)/vn) with probability tend-
ing to one. Combining this and rnl

−1
n → 1 we can conclude that (3.2) follows from

Qn
n

(
nvn

ln
φs

(
Fn(vn)

vn

)
> 2

)
→ 1. (6.22)

Consequently, it is sufficient to verify (6.22). Since v−1
n Gn(vn) ≥ 1 − εn → 1 we can assume

without loss of generality that

v−1
n Gn(vn) → C ∈ [1,∞], (6.23)
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otherwise we use standard subsequence arguments.
First, consider C < ∞. Since φs(1) = φ′

s(1) = 0 and φ′′
s (x) = xs−2, x > 0, we obtain from

Taylor’s Theorem that

vnφs

(
Fn(vn)

vn

)
= (Fn(vn) − vn)

2

2vn

(
F

∗
n

vn

)s−2

, (6.24)

where F
∗
n is a random variable fulfilling min{vn,Fn(vn)} ≤ F

∗
n ≤ max{vn,Fn(vn)}. We can de-

duce from (6.21) and the monotonicity of x �→ xs−2 (x > 0) that for all 0 < δ < min{1,Cs−2}

Qn
n

((
F

∗
n

vn

)s−2

> δ

)
≥ Qn

n

(
min

{
1,

(
Fn(vn)

vn

)s−2}
> δ

)
→ 1. (6.25)

Ditzhaus and Janssen [16] showed in the proof of their Theorem 4.1 that under (6.19)

Qn
n

(√
n

|Fn(vn) − vn|√
vn(1 − vn)ln

> γ

)
→ 1 for all γ > 0. (6.26)

The main idea of proving (6.26) is a simple application of Chebyschev’s inequality. Combining
(6.24) to (6.26) yields (6.22).

Now, consider C = ∞. By (6.20), (6.21) and (6.23) we have for all γ > 0:

Qn
n

(
l−1
n nFn(vn) > γ

) → 1 and Qn
n

(
v−1
n Fn(vn) > γ

) → 1. (6.27)

Due to the latter convergence statement we only need to analyse φs(x) for sufficiently large x

more closely to prove (6.22). It is easy to verify that there exist some c1,s , c2,s > 0 and c3,s ∈ R

such that

φs(x) ≥ c2,sx + c3,s for all x ≥ c1,s .

For this purpose, consider the cases s < 0, s = 0, s ∈ (0,1), s > 1 separately. For example, if
s ∈ (0,1) then φs(x) ≥ x(s − xs−1)/(s(1 − s)) ≥ x/(2(1 − s)) for all x ≥ (2−1s)1/(s−1). Finally,

Qn
n

(
nvn

ln
φs

(
Fn(vn)

vn

)
> 2

)
≥ Qn

n

(
nvn

ln

(
Fn(vn)

vn

+ c3,s

c2,s

)
>

2

c2,s

,
Fn(vn)

vn

> c1,s ,
c3,s

c2,s

≥ −1

2

Fn(vn)

vn

)
≥ Qn

n

(
nFn(vn)

ln
>

4

c2,s

,
Fn(vn)

vn

> max

{
c1,s ,−2c3,s

c2,s

})
,

where the latter probability tend to 1 by (6.27). �

Proof of Theorem 3.2. Again, we can assume that P0 = λλ|(0,1). Let dn = n−1(logn)5. By The-
orem 4.2 of Ditzhaus and Janssen [16] we have bnZn(0,1) − cn → Y in distribution under Qn

n,
where bn and cn are defined by (6.16). Combining this and the mutual contiguity yields that all
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statements in (6.14) and (6.15) hold under Qn
n. From these convergence statements and (6.18), we

obtain the theorem’s statement in the case of s = 2. Finally, the theorem’s statement for general
s ∈R follows from the Taylor expansion (6.6), (6.8), (6.9) and, again, the mutual contiguity. �

Proof of Theorem 4.2. The proof is divided into two parts. First, we discuss the case β < β∗
by applying our Theorem 3.1 and, second, the case β > β∗ by make use of Proposition 6.2. Set
ln = log log(n).

The case β < β∗. By Theorem 3.1 and Remark 3.3 it is sufficient to show that

l−1
n H̃n(vn) = n1/2−βv

−1/2
n l−1

n

(∫ vn

0

dμn

dP0

(
F−1

0 (x)
) + dμn

dP0

(
F−1

0 (1 − x)
)

dx

)
converges to ∞ for some log(n)n−1 ≤ vn ≤ (log(n))−1. Using the parametrization vn = n−τn

with τn ∈ [̃τn,1 − τ̃n] and τ̃n = ln(log(n))−1 we obtain by substituting n−t = x that

l−1
n H̃n(vn) ≥ n1/2−β+τn/2l−1

n log(n)

∫ ∞

τn

exp
(
hn(t) − t log(n)

)
dt. (6.28)

Fix δ ∈ (0,1) with δ−1 ∈ N and 2δ ≤ β∗ − β . By (4.3) there exists some κ ∈ (0,1/2) such that
for every sufficiently large n ∈ N

λλ
(
t ∈ (1,∞) : (β∗ − δ − 1 + t

)
log(n) ≤ hn(t)

) ≥ κ or (6.29)

λλ

(
t ∈ (0,1) :

(
β∗ − δ + t

2
− 1

2

)
log(n) ≤ hn(t)

)
≥ κ. (6.30)

If (6.29) holds, then we set τn = 1 − τ̃n and get from (6.28)

l−1
n H̃n(vn) ≥ κ

√
log(n)l−1

n nδ.

Otherwise, if (6.30) holds then

λλ

(
t ∈ (

δ(jn − 1) + τ̃n, jnδ
) :

(
β∗ − δ + t

2
− 1

2

)
log(n) ≤ hn(t)

)
≥ δκ

2

for some jn ∈ {1, . . . , δ−1}. In this case, we set τn = δ(jn − 1) + τ̃n and obtain

l−1
n H̃n(vn) ≥ κδ

2ln
log(n)nβ∗−β−δ+τn/2−jnδ/2 ≥ κδ

2ln

(
log(n)

)3/2
nδ/2.

To sum up, we can conclude l−1
n H̃n(vn) → ∞.

The case β > β∗. Fix x > 0. Note for a uniformly distributed U on (0,1) that F−1
0 (U) and

F−1
0 (1 − U) are P0-distributed. By Proposition 6.2 and the substitution u = n−t it remains to

show that

n1−βμn

(
n−β dμn

dP0
> x

)
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= n1−β

∫
1
{
u ∈

(
0,

1

2

)
: n−β dμn

dP0

(
F−1

0 (u)
)
> x

}
dμn

dP0

(
F−1

0 (u)
)

du

+ n1−β

∫
1
{
u ∈

(
0,

1

2

)
: n−β dμn

dP0

(
F−1

0 (1 − u)
)
> x

}
dμn

dP0

(
F−1

0 (1 − u)
)

du

≤ 2n1−β log(n)

∫
1
{
t ≥ log(2)

log(n)
: n−β exp

(
hn(t)

)
> x

}
× exp

(
hn(t) − t log(n)

)
dt (6.31)

converges to 0 and

n1−2β

∫
1
{
n−β dμn

dP0
≤ x

}(
dμn

dP0

)2

dP0

≤ 2n1−2β log(n)

∫
1
{
t ≥ log(2)

log(n)
: n−β exp

(
hn(t)

) ≤ x

}
exp

(
2hn(t) − t log(n)

)
dt

does so as well. To verify both convergences, set

In,1 = log(n)n1−2β

∫ 1

(log(2)/ log(n))

exp

(
log(n)

(
2hn(t)

log(n)
− t

))
dt,

In,2 = log(n)n1−β

∫ M

1
exp

(
log(n)

(
hn(t)

log(n)
− t

))
dt and

In,3 = log(n)n1−β

∫ ∞

M

exp

(
log(n)

(
hn(t)

log(n)
− t

))
dt.

Observe that

n1−βμn

(
n−β dμn

dP0
> x

)
≤ 2x−1In,1 + 2(In,2 + In,3) and

n1−2β

∫
1
{
n−β dμn

dP0
≤ x

}(
dμn

dP0

)2

dP0 ≤ 2In,1 + 2x(In,2 + In,3).

From (4.4) with δ = (β − β∗)/2 > 0 we deduce for all n ≥ N1,δ that In,1 ≤ log(n)n−2δ → 0 and
In,2 ≤ log(n)n−δM → 0. Consequently, it remains to prove In,3 → 0.

First, assume that (4.6) holds for δ = (β − β∗)/2 > 0. Then for all n ≥ N2,δ

In,3 ≤ n−δ log(n)

∫ ∞

1
exp(−λnt)dt = log(n)n−δλ−1

n → 0.

Second, suppose that (4.5) is fulfilled. Similar to the calculation in (6.31), we obtain
log(n)

∫
exp(hn,j (t))n

−t dt = 1 and, thus,
∫

exp(hn(t))n
−t dt ≤ 2. For all κ > 0 there exists
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some N3,κ ∈N such that for all n ≥ N3,κ

sup
t≥M

∣∣∣∣γ (t) − hn(t)

log(n)

∣∣∣∣ ≤ κ and, hence,
∫ ∞

M

nγ (t)−t dt ≤ 2nκ . (6.32)

From the latter and a simple proof by contradiction, we conclude that

λλ
(
t ≥ M : γ (t) − t > 0

) = 0.

We want to point out that Cai and Wu [9] already showed the two previous statements for M = 1
under the assumption (4.1). Let �x� be the integer part of x ∈ R and τn = ln/ log(n). To show
In,3 → 0, we divide hn(t) as follows: hn(t) = (1 − τn)hn(t) + τnhn(t). To get an upper bound,
we use (4.4) with δ = (β − β∗)/2 for the first summand and the first statement in (6.32) with
κ = 1 for the second summand. Consequently, there is some N4 ≥ N1,δ + exp(N3,1) such that
for all n ≥ N4

In,3 = log(n)n1−β

∫ ∞

M

n(1−τn)(hn(t)/ log(n)−t)nτnhn(t)/ log(n)−τntdt

≤ log(n)n1−β+(1−τn)(β∗+δ−1)

∫ ∞

M

nτn(γ (t)+1−t) dt

≤ log(n)3−β∗−δn−δ

∫ ∞

M

⌊
log(n)

⌋γ (t)−t dt ≤ n−δ/22
⌊

log(n)
⌋ → 0. �

Proof of Theorem 4.3. Without loss of generality, we can assume that P0 = λλ|(0,1) and T (0) =
0. By assumption T restricted on [0, η] is invertible. Denote by T −1 its inverse. We deduce from
Theorem 1.5.12 of Bingham et al. [7] that for all x ∈ [0,−T (η)] we have

λλ−T
|(0,1)(0, x) = T −1(x) = xpL1

(
1

x

)
for a slowly varying function L1 at infinity. Hence, from Theorems XIII.5.2 and XIII.5.3 of
Feller [21] we obtain C(ϑn) = nrpL2(n

r) for a slowly varying function L2 at infinity. Moreover,
it is well known, see Proposition 1.3.6 of Bingham et al. [7], that log(L2(x)) = o(log(x)) and
L(x)xκ → ∞ as x → ∞ for all κ > 0. Let hn,1, hn,2 and hn be defined as in Proposition 4.1.
Fix δ ∈ (0, rp) and set λn = log log(n). By the monotonicity of T

hn(t) ≤ log
(
C(ϑn)

) + ϑnT
(
n−rp+δ/2) = (

rp + o(1)
)

log(n) − nδ/(2p)L
(
nrp

)(
1 + o(1)

)
for all t ≤ rp − δ/2. Consequently, there is some constant K > 0 such that

sup
t∈(log(2)/ log(n),rp−δ/2)

{
hn(t)

log(n)
−

(
1 − λn

log(n)

)
t + min{1, t}

2

}
≤ K − nδ/(4p) → −∞.
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Since T ≤ 0 we have for sufficiently large n

sup
t≥rp− δ

2

{
hn(t)

log(n)
−

(
1 − λn

log(n)

)
t + min{1, t}

2

}

≤ rp + o(1) −
(

rp − δ

2

)
+ min{rp − δ/2,1}

2
< β#(r,p) − 1

2
+ δ.

To sum up, (4.4) and (4.6) hold for β∗ = β#(r,p). Similarly to the previous calculations,

sup
t∈(rp+δ/4,rp+δ/2)

{
hn(t)

log(n)
− t + min{1, t}

2

}
> β#(r,p) − 1

2
− δ

for sufficiently large n and, consequently, (4.3) is fulfilled for β∗ = β#(r,p). �

Proof of Theorem 4.5. Due to the analogy to the proof of Theorem 4.2, we skip some details
here. Set ln = log log(n). By �, �−1, φ we denote the distribution function, the left continuous
quantile function and the density of N(0,1), respectively.

The case β < β∗. By �−1(1 − x) = −�−1(x), Theorem 3.1 and Remark 3.3 it remains to
show for some vn = n−τn with τn ∈ [̃τn,1 − τ̃n] and τ̃n = ln/ log(n) that

l−1
n H̃n(vn) = n1/2−β+τn/2 1

ln
√

2π

∫
dμn

dP0
(x) exp

(
−x2

2

)
1
{|x| ≥ �−1(1 − vn)

}
dx

converges to ∞. A simple consequence of integration by parts is φ(x)(x/(1+x2)) ≤ 1−�(x) ≤
φ(x)/x for all x > 0. By this it is easy to obtain �−1(1 − u) ≤ √−2 log(u) for all sufficiently
small u > 0. Hence, �−1(1 − vn) ≤ √

2τn log(n) for all sufficiently large n. Combining this and
the substitution x = y

√
2 log(n) yields

l−1
n H̃n(vn) ≥

∫
n1/2−β+τn/2+h̃n(y)/ log(n)−y2

1
{|y| ≥ √

τn

}
dy

for sufficiently large n. Fix δ ∈ (0,1) with δ−1 ∈ N and 2δ ≤ β∗ −β . By (4.10) there exists some
κ ∈ (0,1/2) such that for every sufficiently large n

λλ

(
|y| > 1 : β∗ − δ − 1 + y2 ≤ h̃n(y)

log(n)

)
≥ κ or

λλ

(
|y| ∈ (√

δ(jn − 1) + τ̃n,
√

jnδ
) : β∗ − δ + y2 − 1

2
≤ h̃n(y)

log(n)

)
≥ κ

(6.33)

for some appropriate jn ∈ {1, . . . , δ−1}. If (6.33) holds then set τn = 1 − τ̃n and otherwise set
τn = δ(jn − 1) + τ̃n. Consequently, we obtain analogously to the proof of Theorem 4.2 that
l−1
n H̃n(vn) → ∞.
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The case β > β∗. Set

In,1 = n1−2β

√
log(n)

π

∫ 1

−1
n2h̃n(x)/ log(n)−x2

dx,

In,2 = n1−β

√
log(n)

π

∫
nh̃n(x)/ log(n)−x2

1
{|x| ∈ (1,M)

}
dx and

In,3 = n1−β

√
log(n)

π

∫
nh̃n(x)/ log(n)−x2

1
{|x| ≥ M

}
dx.

Fix y > 0. It remains to verify that

n1−βμn

(
n−β dμn

dP0
> y

)
≤ 1

y
In,1 + In,2 + In,3 and

n1−2β

∫
1
{
n−β dμn

dP0
≤ y

}(
dμn

dP0

)2

dP0 ≤ In,1 + y(In,2 + In,3)

converges to 0. By (4.11) setting δ = (β − β∗)/2 > 0 we have In,1 ≤ 2n−2δ
√

log(n)/π → 0 and
In,2 ≤ 2Mn−δ

√
log(n)/π → 0. It remains to discuss In,3.

First, assume that (4.13) holds for δ = (β − β∗)/2 > 0. Then

In,3 ≤ n−δ

√
log(n)

π

∫ ∞

−∞
exp

(−λnx
2)dx = n−δ

√
log(n)

λn

→ 0.

Second, suppose that (4.12) is fulfilled. Analogously to the proof of Theorem 4.2, there is some
Ñκ ∈ N such that

∫
1{|x| ≥ M}nα(x)−x2

dx ≤ 2nκ for every κ > 0 and all n ≥ Ñκ . Moreover,
λλ(|x| ≥ M : α(x) − x2 > 0) = 0. Let τn = ln/ log(n). Finally, from (4.11) with δ = (β − β∗)/2
and (4.12) we get for sufficiently large n

In,3 ≤
√

log(n)

π
n1−β+(1−τn)(β∗+δ−1)

∫
1
{|x| ≥ M

}
nτn(α(x)+1−x2) dx

≤ n−δ/2
∫

1
{|x| ≥ M

}⌊
log(n)

⌋α(x)−x2
dx ≤ n−δ/22

⌊
log(n)

⌋ → 0. �

Proof of Theorem 4.6. We split the proof into two steps:
1. Likelihood ratio test sequences: Let r ≥ ρ∗(β). Here, we give the proof for (c) and for the

part of (b) regarding the lower bound of the error probabilities sum attained by a likelihood ratio
test sequence. By the explanations in the preliminary Section 6.1 and, in particular, Proposi-
tion 6.2 therein it is sufficient to show for all x > 0 that

In,1,x → 0 and In,2,x → σ 21
{
r = ρ∗(β)

}
with σ 2 = VarP(0)

(T ),
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where in the situation here the quantities In,1,x and In,2,x can be simplified to

In,1,x = n1−βP(ϑn)

(
εn

dP(ϑn)

dP(0)

> x

)
,

In,2,x = n1−2β

(
C(ϑn)

2

C(2ϑn)
P(2ϑn)

(
εn

dP(ϑn)

dP(0)

≤ x

)
− 1

)
.

For this purpose, we introduce the Laplace transform ω defined by

ω(ϑ) = C(ϑ)−1 =
∫

exp(ϑT )dP(0), ϑ ∈ �. (6.34)

By Corollary 7.1 of Barndorff–Nielsen [5] the Laplace transform ω is analytic in a neighborhood
around 0 and the derivatives can be determined by differentiation under the integral sign. Hence,
there is M ∈ (1,∞) such that for all x > 0 and n ≥ Nx

C(2ϑn) ≤ 2,
εnC(ϑn)

x
≤ e−1 and ω(4)(2ϑn) =

∫
T 4 exp(2ϑnT )dP(0) < M,

where f (k) denotes the derivative of order k ∈N of the function f . Thus, we obtain for all x > 0
and n ≥ Nx

P(2ϑn)

(
εn

dP(ϑn)

dP(0)

> x

)
≤ 2

∫
1
{
ϑnT > log

(
x

εnC(ϑn)

)}
exp(2ϑnT )dP(0)

≤ 2
∫

(ϑnT )41{ϑnT > 1} exp(2ϑnT )dP(0)

≤ 2ϑ4
nω(4)(2ϑn) = o

(
n−2r

)
.

By a Taylor expansion around 0, we can conclude that as ϑ → 0

ω(2ϑ) = 1 + 2ϑEP(0)
(T ) + 2ϑ2EP(0)

(
T 2) + o

(
ϑ2) and, thus,

ω(ϑ)2 = ω(2ϑ) − ϑ2σ 2 + o
(
ϑ2).

Consequently, for all x > 0

In,2,x = n1−2β

(
ω(2ϑn)

ω(ϑn)2

(
1 + o

(
ϑ2

n

)) − 1

)
= n1−2β−2rσ 2(1 + o(1)

)
,

which proves In,2,x → σ 21{r = ρ∗(β)}. Furthermore, for all x > 0

In,1,x ≤ 1

x
n1−2β C(ϑn)

2

C(2ϑn)
P(2ϑn)

(
εn

dP(ϑn)

dP(0)

> x

)
= o

(
n1−2β−2r

)
.

2. Test sequences based on Sn(s): Here, we verify (a) and the statement of (b) about Sn(s). To
apply Theorems 3.1 and 3.2, we analyse the asymptotic behavior of Hn(v) given by (3.1) more
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closely. Again, we assume P(0) = λλ|(0,1). As already stated, the Laplace transform ω introduced
in (6.34) is analytic in (−δ, δ) for sufficiently small δ ∈ (0,1) and so is C. From now on, let n be
sufficiently large such that ϑn ≤ δ/2. Observe that for all v ∈ (0,1/2)

μn(0, v) − v =
∫

B1,v

χx(ϑn)dx and μn(1 − v,1) − v =
∫

B2,v

χx(ϑn)dx,

where χx(ϑ) = C(ϑ) exp
(
ϑT (x)

) − 1,B1,v = (0, v) and B2,v = (1 − v,1).

For every (fixed) x ∈ (0,1)

χ(1)
x (ϑ) = C(1)(ϑ) exp

(
ϑT (x)

) + C(ϑ)T (x) exp
(
ϑT (x)

)
and

χ(2)
x (ϑ) = [

C(2)(ϑ) + 2C(1)(ϑ)T (x) + C(ϑ)T 2(x)
]

exp
(
ϑT (x)

)
.

From C(1)(0) = −ω(1)(0) = − ∫ 1
0 T dλλ and a Taylor expansion around 0 we deduce that

χx(ϑn) = ϑn

(
−

∫ 1

0
T dλλ + T (x)

)
+ ϑ2

n

2
χ(2)

x

(
rn(x)

)
with rn(x) ∈ [0, ϑn].

Since C and ω are analytic there exists M > 1 independent of ϑ such that

∣∣C(ϑ)
∣∣ + ∣∣C(1)(ϑ)

∣∣ + ∣∣C(2)(ϑ)
∣∣ +

2∑
k=0

∫ 1

0
|T |k exp(ϑT )dλλ ≤ M.

By Hölder’s inequality it holds for all f : (0,1) → R with
∫ 1

0 f 4 dλλ ≤ M that∫
Bj,v

|f |dλλ ≤ v3/4M1/4 ≤ v3/4M for j = 1,2.

Hence, for all j ∈ {1,2}, v ∈ (0,1/2)∫
Bj,v

∣∣χ(2)
x

(
rn(x)

)∣∣dx ≤ M

∫
Bj,v

(
1 + 2|T | + T 2)(exp(ϑnT ) + exp(−ϑnT )

)
dλλ

≤ 8v3/4M2.

Consequently,

Hn(v) ≥ n1/2−βv−1/2
∣∣∣∣∫

Bj,v

χx(ϑn)dx

∣∣∣∣
= n1/2−β−rv−1/2

∣∣∣∣∫
Bj,v

(
T −

∫ 1

0
T dλλ

)
dλλ + o(1)

∣∣∣∣(1 + o(1)
)
. (6.35)

If
∫ v

0 (T − ∫ 1
0 T dλλ)dλλ = 0 = ∫ 1

1−v
(T − ∫ 1

0 T dλλ)dλλ would hold for every v ∈ (0,1/2), then

T ≡ ∫ 1
0 T dλλ would be true λλ|(0,1)-almost surely. But the latter contradicts the assumption
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VarP(0)
(T ) > 0. Thus, we can deduce from (6.35) that (log log(n))−1Hn(v

∗) → ∞ for some
v∗ ∈ (0,1/2) if r < ρ∗(β). Applying Theorem 3.1 with vn = v∗ gives us (a).

It remains to discuss the case r = ρ∗(β). Set cn,1 = 1/n, cn,2 = cn,3 = 1/
√

n and cn,4 =
(log(n))−4. Clearly, (3.4) holds with κ = 1/2. Moreover, we can conclude from our previous
considerations

sup
v∈[cn,1,cn,4]

Hn(v) ≤ 2n1/2−β−r sup
v∈[cn,1,cn,4]

v−1/2
(

vM + v3/4M + 8
ϑn

2
v3/4M2

)
≤ 2 sup

v∈[cn,1,cn,4]
v1/410M2 = 20M2(log(n)

)−1 → 0.

Hence, (3.3) is fulfilled. Recall that in the first proof step we applied Proposition 6.2 to verify
{P n

0 ,Qn
n} w−→ {N(−σ 2/2, σ 2),N(σ 2/2, σ 2)} for some σ 2 > 0. In particular, by the first Lemma

of Le Cam P n
0 and Qn

n are mutually contiguous. Finally, the desired statement in (b) follows
from Theorem 3.2. �
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