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We are interested in the dynamic of a structured branching population where the trait of each individual
moves according to a Markov process. The rate of division of each individual is a function of its trait and
when a branching event occurs, the trait of the descendants at birth depends on the trait of the mother
and on the number of descendants. In this article, we explicitly describe the penalized Markov process,
named auxiliary process, corresponding to the dynamic of the trait of a “typical” individual by giving its
associated infinitesimal generator. We prove a Many-to-One formula and a Many-to-One formula for forks.
Furthermore, we prove that this auxiliary process characterizes exactly the process of the trait of a uniformly
sampled individual in a large population approximation. We detail three examples of growth-fragmentation
models: the linear growth model, the exponential growth model and the parasite infection model.

Keywords: branching Markov processes; Many-to-One formulas; size-biased reproduction law

1. Introduction

The characterization of the sampling of individuals in a population is a key issue for branching
processes with several motivations in statistics and biology. We refer to the work of Durrett
[20] and references therein for the study of the genealogy of a branching Markov process and
the study of the degree of relationship between k individuals chosen randomly at time t in the
population. In particular, he analyzed the asymptotics of the so-called reduced branching process
Nt(s) defined as the number of individuals alive at time s which have offspring alive at time t .
An approximation of this process by a pure birth process is given in [44]. The question of finding
the coalescing time of individuals in a Galton–Watson tree is addressed in [48] and the coalescent
structure of continuous-time Galton–Watson trees is studied in [26]. We refer to [2] and [38] for
more results on this question and to [32] for results concerning the Bellman-Harris branching
process. The pedigree of a typical individual in a supercritical branching process has also been
investigated asymptotically for multi-type branching processes with a finite number of types in
[23], with i.i.d. lifetimes in [3] and with an age-structure in [43]. The characterization of the
sampling is the key to obtain asymptotic results on the branching process [5,15,37] and to infer
the parameters of the model [18,24,31].

In this article, we consider a continuous-time structured branching Markov process where the
trait of each individual moves according to a Markov process and influences the branching events.
The purpose of this article is to characterize the trait of a typical individual uniformly sampled
from the population at time t and its associated ancestral lineage. In particular, we exhibit the
bias due to the structure of the population and to the sampling. We also describe the traits of a
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uniformly sampled couple in the current population. Therefore, we provide new applications in a
non-neutral framework for cell division (Section 2.2), even for models in a varying environment.

We now describe informally the process, while its rigorous construction and characterization
as a càdlàg measure-valued process under Assumptions A and B are detailed in Section 2. We
assume that individuals behave independently and that for each individual u:

• its trait (Xu
t )t≥0 evolves as an X -valued Markov process with infinitesimal generator

(G,D(G)), where X ⊂R
d is a measurable space for some d ≥ 1,

• it dies at time t at rate B(Xu
t ),

• at death, an individual with trait x is replaced by k ∈ N individuals with probability pk(x)

and m(x) =∑k≥1 kpk(x),

• the trait of the j th child among k is distributed as P
(k)
j (x, ·) for all 1 ≤ j ≤ k.

We use the notion of spine, which is a distinguished line of descent in the branching process,
and Many-to-One formulas, which have been developed from the notion of size-biased tree,
considered by Kallenberg [33], Chauvin and Rouault [13], Chauvin, Rouault and Wakolbinger
[14] with a Palm measure approach and Lyons, Peres and Pemantle [40]. For general results on
branching processes using these techniques, including the spinal decomposition, we refer to [37]
and [1] for discrete-time models and to [23,25] and [15] for continuous-time branching processes.
These previous works ensure in particular that if we denote by Vt the set of individuals alive at
time t and by Nt its cardinal, we have the well-known Many-to-One formula:

E

[∑
u∈Vt

f
(
Xu

t

)]= E
[
f (Yt )e

∫ t
0 B(Ys)(m(Ys)−1) ds

]
, (1.1)

where f is a non-negative measurable function and (Yt )t≥0 follows the dynamic of a tagged-
particle i.e. the same dynamic of all the particles between jumps and at a jump, the unique
daughter particle is chosen uniformly at random among all the daughter particles. This formula
can be seen as a Feynman–Kac formula [17], Section 1.3, with a weight on the right-hand side
relying on the whole ancestral lineage of current individuals which corresponds to the growth of
the population. In this case, under spectral assumptions, the asymptotic behavior of the number of
individuals has been well studied in [1,23,37,40] and [10]. We also refer to the work of Bansaye
et al. [5] for law of large numbers theorems using Many-to-One formulas.

On the right-hand side of (1.1) appears a Markov process with penalized (or rewarded) tra-
jectories which describes the dynamic of the trait of a typical individual. This corresponds to a
time-inhomogeneous Markov process Y (t), indexed by t ≥ 0, for which we provide the following
formula for any non-negative measurable function F on the space of càdlàg processes:

E

[∑
u∈Vt

F
(
Xu

s , s ≤ t
)]= m(x,0, t)E

[
F
(
Y (t)

s , s ≤ t
)]

, (1.2)

where for x ∈ X and 0 ≤ s ≤ t ,

m(x, s, t) := E[Nt |Zs = δx], (1.3)
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and

Zt =
∑
u∈Vt

δXu
t
,

is the empirical measure of the process. We explicit the generator (A(t)
s )s≤t of this auxiliary

process: for all well-chosen functions f , x ∈X and s < t , we have

A(t)
s f (x) = Ĝ(t)

s f (x) + B̂(t)
s (x)

∫
X

(
f (y) − f (x)

)
P̂ (t)

s (x, dy),

where

Ĝ(t)
s f (x) = G(m(·, s, t)f )(x) − f (x)G(m(·, s, t))(x)

m(x, s, t)
,

B̂(t)
s (x) = B(x)

∫
X

m(y, s, t)

m(x, s, t)
m(x, dy),

P̂ (t)
s (x, dy) = m(y, s, t)m(x, dy)

(∫
X

m(y, s, t)m(x, dy)

)−1

,

and

m(x,A) :=
∑
k≥0

pk(x)

k∑
j=1

P
(k)
j (x,A),

denotes the expected number of children with trait in the Borel set A of an individual with trait x.
Moreover, we give some very simple and interesting examples where we can find the expres-

sion of the generator of the auxiliary process: we detail three models for the dynamic of a cell
population (see Section 2.2).

The Many-to-One formula (1.2) splits the behavior of the entire population into a term char-
acterizing the growth of the population and a term characterizing the dynamic of the trait. This
separation in two terms is the key to the study of the ancestral trait of a uniformly sampled
individual. Indeed, we prove in Theorem 4.1, that the auxiliary process describes the ancestral
lineage of a sampled individual in a branching population at a fixed time when the initial popula-
tion is large. More precisely, if we denote by XU(t),ν the trait of a uniformly sampled individual
from a population at time t with initial distribution ν and if νn =∑n

i=1 δXi
where Xi are i.i.d.

random variables with law ν, under some assumptions, we prove the following convergence in
law:

X
U(t),νn

[0,t] −→
n→+∞ Y

(t),πt

[0,t] , where πt (dx) = E(Nt |Z0 = δx)ν(dx)∫
E(Nt |Z0 = δx)ν(dx)

, (1.4)

and Y (t),πt denotes the auxiliary process with initial condition distributed as πt . This result shows
that the auxiliary process is the appropriate tool for the study of the trait along the ancestral
lineage of a sampling. We notice in particular that the dependence of the average number of
individuals in the population on the trait plays a crucial part in the creation of a bias.
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Finally, we refer the reader to [41] for results on the asymptotic behavior of the process of a
sampling. In particular, under some assumptions ensuring the ergodicity of the auxiliary process,
a law of large numbers for the empirical distribution of ancestral trajectories is proven. The
asymptotic behavior of the process of a sampling has already been studied in [5] in the case of a
constant division rate and in [15] in a spectral framework.

Outline. Section 2 is devoted to the rigorous construction of our process. In Section 2.1, we
first describe in detail the model and in Theorem 2.1, we prove the existence and uniqueness of
the branching process. Then, in Section 2.2, we introduce our three examples of cell division
models: the size-structured model with linear or exponential growth and the parasite infection
model. In Section 3, we detail the properties of the Markov process along the spine. In particular,
in Theorem 3.1, we prove the Many-to-One formula which describes the dynamic of a typical
individual in the population. Finally, we give two other Many-to-One formulas, one for the dy-
namic of the whole tree in Proposition 3.5 and an other one for the dynamic of a couple of traits
in Proposition 3.6. Section 4 concerns the ancestral lineage of a uniform sampling at a fixed time
in a large population. More precisely, in Theorem 4.1, we prove the convergence (1.4). In Sec-
tion 4.2, we give explicitly the dynamic of the auxiliary process for our three examples of cell
population models. Finally, in Section 5, we give some useful comments on the model and some
additional examples.

Notation. We use the classical Ulam–Harris–Neveu notation to identify each individual. Let

U =
⋃
n∈N

(
N

∗)n.
The first individual is labeled by ∅. When an individual u ∈ U dies, its K descendants are labeled
u1, . . . , uK . If u is an ancestor of v, we write u ≤ v.

We will denote by C1(X ) and C2(X ), the set of continuously differentiable and twice contin-
uously differentiable functions on X , respectively. Finally, for any stochastic process X on X
or Z on the set of point measures on X , we will denote by Ex[f (Xt )] = E[f (Xt )|X0 = x] and
Eδx [f (Zt )] = E[f (Zt )|Z0 = δx].

2. Definition and existence of the structured branching process

First, we introduce some useful notations and objects to characterize the branching process. Then,
we prove the existence and uniqueness of the measure-valued branching process from scratch in
Section 2.1. Henceforth, we work on a probability space denoted by (�,F,P).

Dynamic of the trait. Let X = Y × R+ where Y ⊂ R
d is a measurable space for some d ≥ 1.

It is the state space of the Markov process describing the trait of the individuals. The second
component, with values in R+, is a time component. We assume that (At , t ≥ 0) is a strongly
continuous contraction semi-group with associated infinitesimal generator G :D(G) ⊂ Cb(X ) →
Cb(X ), where Cb(X ) denotes the space of continuous bounded function from X to R.
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Then, according to Theorem 4.4.1 in [21], there is a unique solution to the martingale prob-
lem associated with (G,D(G)), denoted by (Xt , t ≥ 0). It is an X -valued càdlàg strong Markov
process. For all 0 ≤ s ≤ t , x ∈ X , we denote by �(x, s, t) the corresponding stochastic flow that
is, (�(x, s, t), t ≥ s) is the unique solution of the martingale problem associated with (G,D(G))

satisfying �(x, s, s) = x. We have the following properties:

• for all f ∈D(G), 0 ≤ s ≤ t and x ∈ X ,

f
(
�(x, s, t)

)− f (x) −
∫ t

s

Gf
(
�(x, s, r)

)
dr, (2.1)

is a σ(Xt , t ≥ 0)-martingale where σ(Xt , t ≥ 0) is the natural filtration associated with X,
• for each 0 ≤ s ≤ t , �(·, s, t) is a measurable map from X to X ,
• for each 0 ≤ r ≤ s ≤ t and all x ∈X , �(�(x, r, s), s, t) = �(x, r, t), almost surely.

We refer the reader to [36] for more properties on stochastic flows.

Remark 2.1. According to the Hille-Yoshida theorem (see [21], Theorem 1.2.6), D(G) is dense
in Cb(X ) for the topology of uniform convergence.

Division events. An individual with trait x dies at an instantaneous rate B(x), where B is a
continuous function from X to R+. It is replaced by Au(x) children, where Au(x) is a N-valued
random variable with distribution (pk(x), k ≥ 0). For convenience, we assume that p1(x) ≡ 0
for all x ∈ X . The trait at birth of the j th descendant among k is given by the random variable
F

(k)
j (x, θ), where (F

(k)
j (·, ·), j ≤ k, k ∈ N) is a family of measurable functions from X × [0,1]

to X and θ is a uniform random variable on [0,1]. This formalism will prove useful for the
use of Poisson point measures. For all k ∈ N, let P (k)(x, ·) be the probability measure on X k

corresponding to the trait distribution at birth of the k descendants of an individual with trait x.
We denote by P

(k)
j (x, ·) the j th marginal distribution of P (k) for all k ∈ N and j ≤ k i.e. for all

Borel sets A ⊂X , we have P
(k)
j (x,A) = P (k)(x,X j−1 × A ×X k−j ).

We denote by MP (X ) the set of point measures on X . Following Fournier and Méléard
[22], we work in D(R+,MP (X )), the state of càdlàg measure-valued processes. For any Z̄ ∈
D(R+,MP (U ×X )), we write Z̄t =∑u∈Vt

δ(u,Xu
t )(du, dx) and

Zt =
∑
u∈Vt

δXu
t
, t ≥ 0,

the marginal measure of Z̄t (du, dx) on X , where Vt represents the set of individuals alive at
time t . We set Nt = #Vt . Moreover, for any process Z̄ ∈ D(R+,MP (U ×X )), we define recur-
sively the associated sequence of jump times by

T0(Z̄) = 0 and Tk+1(Z̄) = inf
{
t > Tk(Z̄),Nt 
= NTk(Z̄)

}
,

with the standard convention that inf{∅} = +∞.
In order to ensure the non-explosion in finite time of such a process, we need to consider two

sets of hypotheses. The first one controls what happens regarding divisions (in term of rate of
division and of mass creation).
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Assumption A. We consider the following assumptions:

1. There exist b1, b2 ≥ 0 and γ ≥ 1 such that for all x ∈X ,

B(x) ≤ b1|x|γ + b2.

2. For all t ≥ 0, there exists 
(t) ∈ R+, increasing in t , such that for all x = (y, t) ∈ X , k ∈ N

and θ ∈ [0,1],
k∑

i=1

F
(k)
i (x, θ) ≤ x ∨ 
(t), componentwise.

3. There exists m ≥ 0 such that for all x ∈X ,

m(x) =
∑

k

kpk(x) ≤ m.

4. For all x ∈ X and s ≥ 0, we have

lim
t→+∞

∫ t

s

B
(
�(x, s, r)

)
dr = +∞, almost surely.

The first point controls the lifetimes of individuals via the division rate. In particular, if γ = 0,
B is bounded and the non-explosion in finite time of the number of individuals in the previously
defined process is obvious. In more general framework, we have to consider the other points of
Assumption A in order to prove the non-explosion in finite time. The second point of Assump-
tion A means that we consider a fragmentation process with a possibility of mass creation at
division when the mass is small enough. In particular, clones are allowed in the case of bounded
traits and bounded number of descendants and any finite type branching structured process can
be considered. The dependence in t of the threshold 
 allows us to consider models in a varying
environment. The last point of Assumption A ensures that each individual divides after a certain
time.

We make a second assumption to control the behavior of traits between divisions.

Assumption B. There exists a sequence of functions (hn,γ )n∈N such that for all n ∈ N, hn,γ ∈
D(G) and limn→+∞ hn,γ (x) = |x|γ for all x ∈ X and there exist c1, c2 ≥ 0 such that, for all
x ∈X ,

lim
n→+∞Ghn,γ (x) ≤ c1|x|γ + c2,

where γ is defined in the first item and for x ∈X , |x|γ = (
∑d+1

i=1 |xi |)γ .

Assumptions A(1) and B are linked via the parameter γ which controls the balance between
the growth of the population and the dynamic of the trait. The sequence of functions (hn,γ , n ∈ N)

allows us to consider dynamics for the trait for which the domain of the generator does not
contain the function x �→ |x|γ .
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2.1. Existence and uniqueness of the structured branching process

We now prove the strong existence and uniqueness of the structured branching process. Let
E = U ×R+ × [0,1] × [0,1] and M(ds, du, dz, dl, dθ) be a Poisson point measure on R+ × E

with intensity ds ⊗ n(du)⊗ dz ⊗ dl ⊗ dθ , where n(du) denotes the counting measure on U . Let
(�u)u∈U be a family of independent stochastic flows satisfying (2.1) describing the individual-
based dynamics. We assume that M and (�u)u∈U are independent. We denote by Ft the filtration
generated by the Poisson point measure M and the family of stochastic flows (�u(x, s, t), u ∈
U , x ∈ X , s ≤ t) up to time t .

For all x ∈X , there exists a function G(x, ·) : [0,1] →N such that

G(x, l)
d= (pk(x), k ∈N

)
,

where l is a uniform random variable on [0,1]. This formalism will prove useful in the use
of Poisson point measure to describe the jumps in the measure-valued branching process. For
convenience, for all x ∈X and θ, l uniform random variables on [0,1], we write

Fi(x, l, θ) = F
(G(x,l))
i (x, θ).

We also define

D̄(G) := {f : U ×R+ ×X → R such that f (u, s, ·) ∈ D(G),∀u ∈ U , s ≥ 0
}
.

For all 0 ≤ s ≤ t , f ∈ D̄(G), x ∈ X and u ∈ U , we consider the Ft -martingale (M
f,u
s,t (x), t ≥ s)

defined by

M
f,u
s,t (x) := f

(
u, t,�u(x, s, t)

)− f (u, s, x)

−
∫ t

s

(
Gf
(
u, r,�u(x, s, r)

)+ ∂rf
(
u, r,�u(x, s, r)

))
dr.

(2.2)

Theorem 2.1. Under Assumptions A(1)–(3) and B, there exists a strongly unique Ft -adapted
càdlàg process (Z̄s, s ≥ 0) taking values in MP (U ×X ) such that, for all f ∈ D̄(G) and t ≥ 0,

〈Z̄t , f 〉 = f (∅,0, x0) +
∫ t

0

∫
U×X

(
Gf (u, s, x) + ∂sf (u, s, x)

)
Z̄s(du, dx)ds

+ M
f

0,t (x)

+
∫ t

0

∫
E

1{u∈Vs− ,z≤B(Xu

s− )}

(G(Xu
s ,l)∑

i=1

f
(
u, s,Fi

(
Xu

s− , l, θ
))− f

(
u, s,Xu

s−
))

× M(ds, du, dz, dl, dθ),

(2.3)
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where, for all s ≥ 0 and t ≥ s,

M
f
s,t (x) =

∑
k≥1

1{s≤Tk−1(Z̄)<t}
∑

u∈VTk−1(Z̄)

M
f,u

Tk−1(Z̄),Tk(Z̄)∧t

(
Xu

Tk−1(Z̄)

)
,

is a Ft -martingale.

The existence and uniqueness of such measure-valued process has first been studied by
Fournier and Méléard [22]. We also refer to [6,46] for different extensions and to [7] for the
case of branching processes. Here, we obtain the non-explosion of the branching process in finite
time under quite general assumptions (no bounded branching rate, random number of offspring,
random transmission of the trait).

The proof of this theorem is split into four lemmas. First, in Lemma 2.2, we prove the existence
of a Ft -adapted càdlàg measure-valued process Z̄ solution of (2.3) for all t ∈ [0, Tk(Z̄)) and all
k ∈N. Then, in Lemma 2.3, we prove that (M

f
s,t , t ≥ 0) is a Ft -martingale. Next, in Lemma 2.4,

we prove the uniqueness of the increasing sequence (Tk(Z̄), k ≥ 0) corresponding to the jump
times of a solution Z̄ to (2.3) and the uniqueness of a Ft -adapted càdlàg solution to (2.3) for
t ∈ [0, Tk(Z̄)) for all k ∈ N. Finally, in Lemma 2.5, we prove that the sequence of jump times
tends to infinity resulting in the existence and uniqueness of the process on R+.

Lemma 2.2. There exists a Ft -adapted càdlàg measure-valued process (Z̄t , t ≥ 0) ∈ MP (U ×
X ) which is solution of (2.3) for all f ∈ D̄(G) and for all t ∈ [0, Tk(Z̄)), k ∈N.

Proof. See Appendix A. �

The existence of such processes has already been studied in [7] in the case of a trait following
a Feller diffusion. From Lemma 2.2, we deduce the existence of a càdlàg measure-valued process
Z ∈MP (X ) solution of (2.3) which is given by the projection of the solution Z̄ ∈ MP (U ×X )

on the second coordinate.

Lemma 2.3. Let Z̄ ∈ MP (U × X ) be a solution of (2.3) whose construction is given in the
previous lemma. Let k ∈N. For all 0 ≤ s ≤ t ≤ Tk(Z̄), x ∈X and f ∈ D̄(G),

M
f
s,t (x) =

∑
k≥1

1{s≤Tk−1(Z̄)<t}
∑

u∈VTk−1

M
f,u

Tk−1(Z̄),Tk(Z̄)∧t

(
Xu

Tk−1(Z̄)

)
,

is an Ft -martingale.

Proof. Let k ∈ N and 0 ≤ s ≤ t ≤ Tk(Z̄). Let f ∈ D̄(G) and x ∈ X . Then, for all s ≤ r ≤ t , we
have

E
[
M

f
s,t (x)|Fr

]− M
f
s,r (x)

= E

[∑
k≥1

1{r≤Tk−1(Z̄)<t}
∑

u∈VTk−1(Z̄)

M
f,u

Tk−1(Z̄),Tk(Z̄)∧t

(
Xu

Tk−1(Z̄)

)∣∣∣Fr

]
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= E

[∑
k≥1

1{r≤Tk−1(Z̄)<t}
∑

u∈VTk−1(Z̄)

E
[
M

f,u

Tk−1(Z̄),Tk(Z̄)∧t

(
Xu

Tk−1(Z̄)

)|FTk−1(Z̄)

]∣∣∣Fr

]

= 0,

because (M
f,u
s,t (x), t ≥ s) is a Ft -martingale. �

Next, we prove the uniqueness of the sequence of jump times (Tk(Z̄), k ≥ 0) associated with
a solution Z̄ ∈ MP (U × X ) to (2.3) and the uniqueness of the solution on [0, Tk(Z̄)), for all
k ∈N. We refer to [46] for similar results.

Lemma 2.4. The increasing sequence (Tk(Z̄), k ≥ 0) corresponding to the jump times of a so-
lution Z̄ to (2.3) is strongly unique. Moreover, the strong uniqueness of a Ft -adapted càdlàg
measure-valued solution to (2.3) holds, for t ∈ [0, Tk(Z̄)) and for all k ∈N.

Proof. See Appendix B. �

Lemma 2.5. Under Assumptions A(1)–(3) and B, the strongly unique sequence of jump times of
a solution Z̄ to (2.3) tends to infinity as k tends to infinity, almost surely.

Proof. Let T > 0. To shorten notation, we write Tk instead of Tk(Z̄). We prove that almost surely
there is no accumulation of jumps on [0, T ] of the solution of (2.3) previously constructed on
[0, Tk[, for all k ∈ N. Let k ∈ N and (Z̄t , t ≤ Tk) be the solution of (2.3) up to the kth division
time. Using equation (2.3) applied to the constant function equal to 1, for all t ≤ Tk ∧T , we have

Eδx (Nt ) = 1 +
∫ t

0
Eδx

(∑
u∈Vs

B
(
Xu

s

)(
m
(
Xu

s

)− 1
))

ds

≤ 1 + mb1

∫ t

0
Eδx

(∑
u∈Vs

∣∣Xu
s

∣∣γ)ds + mb2

∫ t

0
Eδx (Ns) ds,

(2.4)

where the inequality comes from Assumption A(1) and A(3). Next, using (2.3) again, we have

Eδx

[∑
u∈Vt

hn,γ

(
Xu

t

)]

= hn,γ (x) +
∫ t

0
Eδx

[∑
u∈Vs

Ghn,γ

(
Xu

s

)]
ds

+
∫ t

0

∫
[0,1]

Eδx

[∑
u∈Vs

B
(
Xu

s

)∑
k≥0

pk

(
Xu

s

)( k∑
j=1

hn,γ

(
F

(k)
j

(
Xu

s , θ
))− hn,γ

(
Xu

s

))]
dθ ds,
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where hn,γ is introduced in Assumption B. Letting n tend to infinity and using Assumption B
yields

Eδx

[∑
u∈Vt

∣∣Xu
t

∣∣γ ]

≤ |x|γ +
∫ t

0
Eδx

[∑
u∈Vs

(
c1
∣∣Xu

s

∣∣γ + c2
)]

ds

+
∫ t

0

∫
[0,1]

Eδx

[∑
u∈Vs

B
(
Xu

s

)∑
k≥0

pk

(
Xu

s

)( k∑
j=1

∣∣F (k)
j

(
Xu

s , θ
)∣∣γ − ∣∣Xu

s

∣∣γ)]dθ ds.

Next, using Assumptions A(2) and B, we get that

Eδx

[∑
u∈Vt

∣∣Xu
t

∣∣γ ]≤ |x|γ +
∫ t

0
Eδx

[∑
u∈Vs

(
c1
∣∣Xu

s

∣∣γ + c2
)]

+Eδx

[∑
u∈Vs

B
(
Xu

s

)

(s)1{|Xu

s |γ ≤
(s)}
]

ds.

Finally, using Assumption A(1) and the fact that t �→ 
(t) is increasing, we get

Eδx

[∑
u∈Vt

∣∣Xu
t

∣∣γ ]≤ |x|γ + c1

∫ t

0
Eδx

[∑
u∈Vs

∣∣Xu
s

∣∣γ ]ds

+ (c2 + (b1
(t) + b2
)

(t)
)∫ t

0
Eδx [Ns]ds.

Combining this inequality with (2.4), we obtain for all t ≤ Tk ∧ T

Eδx [Nt ] +Eδx

[∑
u∈Vt

∣∣Xu
t

∣∣γ ]≤ 1 + |x|γ + A(T )

∫ t

0

(
Eδx [Ns] +Eδx

[∑
u∈Vs

∣∣Xu
s

∣∣γ ])ds,

where A(T ) = c1 + c2 + b1
(T )2 + b2
(T )+ (b1 + b2)m. According to Grönwall lemma, for all
t ≤ Tk ∧ T , we get

Eδx [Nt ] +Eδx

[∑
u∈Vt

∣∣Xu
t

∣∣γ ]≤ (1 + |x|γ )eA(T )t < ∞.

Finally, the average number of individuals in the population at time t is bounded for t in
compact sets and there is no explosion of the population in finite time. �



Uniform sampling in a structured branching population 2659

Before moving to the next section, we introduce (Rs,t , t ≥ s), the first-moment semi-group
associated with the branching process: for all s ≥ 0, t ≥ s and x ∈ X , let

Rs,tf (x) = E

[∑
u∈Vt

f
(
Xu

t

)∣∣∣Zs = δx

]
, (2.5)

where f is a measurable function. Applying equation (2.3) to f ≡ 1, and taking the expectation
yields

Rs,t1(x) = m(x, s, t) = 1 +
∫ t

s

E

[∑
u∈Vr

B
(
Xu

r

)(
m
(
Xu

r

)− 1
)∣∣∣Zs = δx

]
dr. (2.6)

In particular, if B ≡ b and m(x) = m for all x ∈X , we obtain m(x, s, t) = eb(m−1)(t−s).
Finally, let us recall that for all 0 ≤ s ≤ t , Rs,t is also a linear operator from the set of measures

of finite mass into itself through the left action. In particular, for any x ∈ X , we will denote the
measure δxRs,t (dy) by Rs,t (x, dy).

2.2. Some growth-fragmentation models for cell population dynamics

In this section, we consider growth-fragmentation processes: at division, the trait of the ances-
tor is shared between the children and the number of individuals in the population increases.
Moreover, we focus on models where the trait moves according to a diffusion with associated
generator of the form

Gf (x) = r(x)f ′(x) + σ 2(x)f ′′(x),

where r and σ are measurable functions. This class covers several dynamics for the trait. Here,
we present three of them. In particular, we give an explicit formula for the average number of
individuals in the population at time t . We first give a useful equation concerning models with
such a dynamic. For all s ≥ 0, t ≥ s and x ∈ X , applying (2.3) to Id(x) = x and taking the
expectation, we obtain

Rs,t Id(x) = x +
∫ t

s

Rs,ur(x) du, (2.7)

where (Rs,t )t≥s is defined in (2.5).

2.2.1. Linear growth model

We consider here a size-structured model. More precisely, the size of each cell grows linearly
at a rate a > 0 and this rate is supposed to be identical for each cell. We assume that divisions
occur at rate B(x) = αx, α > 0. At fission, the cell splits into two daughter cells of size x

2 , where
x denotes the size of the mother at splitting. Deciding whether the cells’ growth follows a linear
or an exponential dynamic has fueled a large debate in the literature (see [16] and references
therein). The linear growth model has been considered for example in [19] for the calibration of a
deterministic growth-fragmentation model from experimental data and in [30] for the estimation
of the division rate.
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Using the previous notations, the process (Xt , t ≥ 0) describing the size of a cell starting from
x0 is given by

Xt = x0 + at,

and the associated generator is given for any function f ∈ C1(R+) by

Gf (x) = af ′(x).

Then, the branching process (Zt , t ≥ 0) is solution of the following equation, for any function
f ∈ C1(R+) and any x ∈ X ,

〈Zt ,f 〉 = 〈Z0, f 〉 +
∫ t

0

∫
R+

af ′(x)Zs(dx)ds

+
∫ t

0

∫
U×R+

1{u∈Vs− ,z≤αXu

s−}
(

2f

(
Xu

s−
2

)
− f

(
Xu

s−
))

M(ds, du, dz),

where M is a Poisson point measure on R+ ×U ×R+ with intensity ds ⊗ n(du) ⊗ dz. The first
integral corresponds to the dynamic of the population between two divisions. The integral with
respect to the Poisson point measure represents to the jump part of the process and the indicator
function corresponds to the fact that an individual u jumps at time s if it is in the population
at time s− and if the division rate at Xu

s− is large enough. In this case, it is removed from the
population and two descendants with trait Xu

s−/2 appear.
The validity of Assumptions A and B is trivial for this model with γ = 1. Let us compute the

average number of individuals in the population at time t . For all s ≤ t and x ∈ R, we have using
(2.6):

m(x, s, t) = 1 + α

∫ t

s

E

(∑
u∈Vr

Xu
r

∣∣∣Zs = δx

)
dr. (2.8)

Combining (2.7) with r(x) ≡ a and (2.8), we obtain

m(x, s, t) = 1 + α

∫ t

s

(
x + a

∫ r

s

m(x, s, τ ) dτ

)
dr,

and for all x ∈ X and s ≥ 0, m(x, s, ·) is the solution of the following Cauchy problem with
unknown f : {

f ′′(t) = aαf (t),

f (s) = 1, f ′(s) = αx.

with explicit solution given by

m(x, s, t) = 1

2

(
ea(t−s) + e−a(t−s)

)+ x

2

√
α

a

(
ea(t−s) − e−a(t−s)

)
,

where a = √
aα. The population size is exponential in time as in the neutral case.
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2.2.2. Exponential growth model in a varying environment

We assume here that the growth of the cells is exponential at rate a. This exponential growth
model has been studied in [18] in the case of a specific growth rate for each individual in order
to infer the division rate of the population. Here, we assume that the division rate is a function
of time, mimicking a varying environment. More precisely, we set B(x, t) = α(t)x, with α a
positive function. The generator for the dynamic of the size is given for any function f ∈ C1(R+)

by

Gf (x) = axf ′(x).

We still assume that the branching is binary and that the size of the descendants at birth are both
x/2 if x is the size of the mother at splitting. Then, the branching process (Zt , t ≥ 0) is solution
of the following equation, for any function f ∈ C1(R+) and any x ∈X :

〈Zt ,f 〉 = 〈Z0, f 〉 +
∫ t

0

∫
R+

axf ′(x)Zs(dx)ds

+
∫ t

0

∫
U×R+

1{u∈Vs− ,z≤α(s)Xu

s−}
(

2f

(
Xu

s−
2

)
− f

(
Xu

s−
))

M(ds, du, dz),

where M is a Poisson point measure on R+ ×U ×R+ with intensity ds ⊗n(du)⊗dz. Moreover,
using (2.7) with r(x) = ax, we have

E

(∑
u∈Vt

Xu
t

∣∣∣Zs = δx

)
= xea(t−s).

Combining this with equation (2.6), we obtain

m(x, s, t) = 1 + x

∫ t

s

α(r)ea(r−s) dr.

In particular, if α(r) ≡ α with α a positive constant, we get

m(x, s, t) = 1 + αx

a

(
ea(t−s) − 1

)
.

The growth is again exponentially fast in time.

2.2.3. Parasite infection model

This model is a continuous version of Kimmel’s multilevel model for plasmids [34] which has
already been studied in the case of a constant or monotone division rate by Bansaye and Tran
in [7]. It models the proliferation of a parasite infection in a cell population. More precisely, we
assume here that the trait (Xt , t ≥ 0) is a Markov process describing the quantity of parasites in
each cell which evolves as a Feller diffusion process:

Xt = X0 +
∫ t

0
gXs ds +

∫ t

0

√
2σ 2Xs dBs,
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where (Bs)s≥0 is standard Brownian motion and g,σ > 0 are some fixed parameters. The gener-
ator for the dynamic of the quantity of parasites is given for any function f ∈ C2(R+) by

Gf (x) = gxf ′(x) + σ 2xf ′′(x).

We assume here that a cell with a quantity x of parasites will potentially divide at a rate B(x) =
αx +β , α,β > 0 into two daughter cells with a quantity δx and (1−δ)x of parasites respectively,
where δ is a random variable with uniform distribution on [0,1]. We need β to be strictly positive
so that even cells without any parasites divide after some time. The branching process (Zt , t ≥ 0)

is then solution of the following equation, for any function f ∈ C2(R+) and any x ∈ X :

〈Zt ,f 〉 = 〈Z0, f 〉 +
∫ t

0

∫
R+

(
gxf ′(x) + σ 2xf ′′(x)

)
Zs(dx)ds +Mt

+
∫ t

0

∫
U×R+×[0,1]

1{u∈Vs− ,z≤αXu

s−+β}
(
f
(
δXu

s−
)+ f

(
(1 − δ)Xu

s−
)− f

(
Xu

s−
))

× M(ds, du, dz, dδ),

where

Mt =
∫ t

0

∑
u∈Vs

√
2σ 2Xu

s f ′(Xu
s

)
dBu

s

and M is a Poisson point measure on R+ ×U ×R+ ×[0,1] with intensity ds ⊗n(du)⊗dz⊗dδ

and (Bu
s , s ≥ 0)u∈U is a family of independent standard Brownian motions. In particular, the

generator corresponding to first moment semi-group is given for any function f ∈ C2(R) and
x ∈X by

Finff (x) = gxf ′(x) + σ 2xf ′′(x) + (αx + β)

(∫ 1

0

[
f (δx) + f

(
(1 − δ)x

)]
dδ − f (x)

)
.

Therefore, we notice that if (V ,λ) are eigenelements of Finf, we have FinfV (0) = βV (0) so
that V (0) = 0 if λ 
= β and we cannot apply usual techniques using eigenelements requiring that
V > 0 [15].

Let us compute the average number of individuals in the population after time t . Using (2.6),
we have

m(x, s, t) = 1 + α

∫ t

s

E

[∑
u∈Vr

Xu
r

∣∣∣Zs = δx

]
dr + β

∫ t

s

m(x, s, r) dr.

Again, using (2.7), we obtain

E

[∑
u∈Vr

Xu
r

∣∣∣Zs = δx

]
= xeg(r−s).

Then, combining the two previous equations and differentiating, we get

∂tm(x, s, t) = αxeg(t−s) + βm(x, s, t),
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and finally

m(x, s, t) = αx

g − β
eg(t−s) +

(
1 − αx

g − β

)
eβ(t−s),

if g 
= β and:

m(x, s, t) = (1 + α(t − s)
)
xeβ(t−s),

if g = β . In the three examples above, the mean number of individuals in the population is an
affine function of the trait of the initial individual. However, this is not the rule. For example,
Cloez developed in [15], Corollary 6.1, the case of a dynamic of the trait following an Ornstein–
Uhlenbeck process where the dependence in x is not affine.

For other examples and comments, including a link with the integro-differential model, we
refer to Section 5.

3. The trait of sampled individuals at a fixed time:
Many-to-One formulas

In order to characterize the trait of a uniformly sampled individual, the spinal approach [13,
40], consists in following a “typical” individual in the population whose behavior summarizes
the behavior of the entire population. Biggins [9] used this approach for the study of branching
random walks extending Kingman results [35]. The spinal approach has then been extended to
various frameworks [25,28,37]. In particular, Georgii and Baake [23] used spine techniques in
a spectral framework to describe the asymptotic distribution of the trait of a uniformly sampled
individual in the population and its ancestral lineage in the case of a finite set of possible trait.

In this section, we specify the generator of the process describing the trait along the spine.
The existence of our auxiliary process does not rely on the existence of spectral elements for the
mean operator of the branching process.

With a slight abuse of notation, for all u ∈ Vt and s < t , we denote by Xu
s the trait of the unique

ancestor living at time s of u.

3.1. The auxiliary process

Let us define

D(A) = {f ∈ D(G) s.t. m(·, s, t)f (s, x) ∈D(G) ∀t ≥ 0, s ≤ t
}
.

From now on, we assume that for all x ∈X , t ≥ 0 and s ≤ t , m(x, s, t) 
= 0.
We now recall the operator and functions needed for the definition of the auxiliary process,

and introduce additional notations. For all f ∈D(A), x ∈X and s < t , we write

Ĝ(t)
s f (x) = G(m(·, s, t)f )(x) − f (x)G(m(·, s, t))(x)

m(x, s, t)
, (3.1)
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B̂(t)
s (x) = B(x)�(x, s, t), (3.2)

P̂ (t)
s (x, dy) = �−1(x, s, t)

m(y, s, t)

m(x, s, t)
m(x, dy), (3.3)

where

�(x, s, t) =
∫
X

m(y, s, t)

m(x, s, t)
m(x, dy).

In order to prove a Many-to-One formula, we need to consider the following assumptions.

Assumption C. There exists a function C such that for all j ≤ k, j, k ∈ N and 0 ≤ s ≤ t , we
have

sup
x∈X

sup
s∈[0,t]

∫
X

m(y, s, t)

m(x, s, t)
P

(k)
j (x, dy) ≤ C(t), ∀t ≥ 0.

Assumption D. For all t ≥ 0, we have

– for all x ∈ X , s �→ m(x, s, t) is differentiable on [0, t] and its derivative is continuous on
[0, t],

– for all x ∈X , f ∈D(A), s �→ G(m(·, s, t)f )(x) is continuous,
– D(A) is dense in Cb(X ) for the topology of uniform convergence.

The last item of this assumption allows us to extend our formulas to all measurable functions
with respect to the Skorokod topology using a monotone class argument. Moreover, combining
Lemma 3.4 and Remark 2.1, this assumption is in particular satisfied if D(G) is stable by product.

Theorem 3.1. Under Assumptions A(1)–(3), B, C and D, for all t ≥ 0, for all x0 ∈X and for all
non-negative measurable functions F : D([0, t],X ) → R+, we have

Eδx0

[∑
u∈Vt

F
(
Xu

s , s ≤ t
)]= m(x0,0, t)Ex0

[
F
(
Y (t)

s , s ≤ t
)]

, (3.4)

where (Y
(t)
s , s ≤ t) is a time-inhomogeneous Markov process whose law is characterized by its

associated infinitesimal generators (A(t)
s )s≤t given for f ∈D(A) and x ∈X by

A(t)
s f (x) = Ĝ(t)

s f (x) + B̂(t)
s (x)

∫
X

(
f (y) − f (x)

)
P̂ (t)

s (x, dy). (3.5)

Formula (3.4) has a natural interpretation in terms of semi-groups. If f is a non-negative
measurable function, for any 0 ≤ r ≤ s ≤ t and any x ∈ X , we set

P (t)
r,s f (x) := E[∑u∈Vt

f (Xu
s )|Zr = δx]

m(x, r, t)
= E

[
f
(
Y (t)

s

)|Y (t)
r = x

]
. (3.6)
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In other words, (P
(t)
r,s , r ≤ s ≤ t) is a conservative time-inhomogeneous semi-group that is for all

r ≤ u ≤ s ≤ t , P
(t)
r,uP

(t)
u,s = P

(t)
r,s , and the auxiliary process Y (t) is its time-inhomogeneous associ-

ated Markov process corresponding to the right-hand side of (1.1). We can exhibit this process
using a change of probability measure. Indeed, by Feynman–Kac’s formula [17], Section 1.3, we
have

P (t)
r,s f (x) = m(x, r, t)−1

E
[
e
∫ s
r B(Xv)(m(Xv)−1) dvm(Xs, s, t)f (Xs)|Xr = x

]
,

where the Markov process (Xs, r ≤ s ≤ t) corresponds to dynamic of the tagged-particle which
infinitesimal generator M is given by

Mf (x) = Gf (x) + B(x)m(x)
∑
k≥0

kpk(x)

m(x)

1

k

k∑
i=1

∫
X

(
f (y) − f (x)

)
P

(k)
i (x, dy).

Then, the change of probability measure given by the σ(Xl, l ≤ s)-martingale

M(t)
s := e

∫ s
r B(Xs)(m(Xs)−1) dsm(Xs, s, t)

m(x, r, t)
, for r ≤ s ≤ t

exhibits the probability measure corresponding to the auxiliary process.
Before proving Theorem 3.1, we give some links between our approach and previous works

on this subject. First, in the neutral case, that is, B and (pk)k∈N constants, the auxiliary process
coincides with the one in [5] that is, for all f ∈ D(G) and x ∈ X , the infinitesimal generator of
the auxiliary process is given by

Af (x) = Gf (x) + Bm
∑
k≥0

p̂k

(
1

k

k∑
j=1

∫
X

(
f (y) − f (x)

)
P

(k)
j (x, dy)

)
,

where p̂k = kpkm
−1 denote the biased reproduction law. In the general case, the dynamic of

the auxiliary process heavily depends on the comparison between m(x, s, t) and m(y, s, t), for
x, y ∈ X . It emphasizes several bias due to growth of the population. First, the auxiliary process
jumps more than the original process, if jumping is beneficial in terms of number of descendants.
This phenomenon of time-acceleration also appears for examples in [13,40] or [25]. Moreover,
the reproduction law favors the creation of a large number of descendants as in [5] and the non-
neutrality favors individuals with an “efficient” trait at birth in terms of number of descendants.
Finally, a new bias appears on the dynamic of the trait because of the combination of the random
evolution of the trait and non-neutrality. Indeed, if the dynamic of the trait is deterministic, we
have Ĝ(t)

s f (x) = Gf (x).
The auxiliary process could be guessed through a discretization of the model using the expres-

sion of the auxiliary process in [4], eq. 3. However, the proof of Theorem 3.1 is a direct contin-
uous time approach relying on the uniqueness of the solution to the integro-differential equation
(3.8). The proof is decomposed in four parts: first, in Lemma 3.2, we prove that the integro-
differential equation (3.8) admits a unique solution which corresponds to the semi-group of the
auxiliary process defined in (3.6). Afterwards, in Lemma 3.3, we prove that the infinitesimal



2666 A. Marguet

generator of this auxiliary process verifies (3.5). Then, we prove Theorem 3.1 for any function
such that F(x) = f1(xt1) · · ·fk(xtk ), x ∈ D([0, t],X ), by induction on k ∈ N. Finally, we extend
the set of functions for which (3.4) is satisfied using a monotone class argument.

Let t ≥ 0. We define the following family of semi-groups for f ∈D(A):

Q(t)
s,rf (x) = Ar−s(m(·, r, t)f )(x)

m(x, s, t)
, s ≤ r ≤ t.

We also define

G̃(t)
s f (x) = G(m(·, s, t)f )(x) + f (x)∂sm(x, s, t)

m(x, s, t)
. (3.7)

Lemma 3.2. Let t ≥ 0. Under Assumptions A(1)–(3), B, C and D, for all x0 ∈ X and t0 ≤ t ,
the family of probability measures (P

(t)
t0,s

(x0, ·), t0 ≤ s ≤ t) is the unique solution of the following
equation with unknown (μt0,s(x0, ·), t0 ≤ s ≤ t):

μt0,s(x0, f ) = f (t0, x0) +
∫ s

t0

∫
X

(
G̃(t)

r f (r, x) + ∂rf (r, x)
)
μt0,r (x0, dx) dr

+
∫ s

t0

∫
X

[
B̂(t)

r (x)

∫
X

f (r, y)P̂ (t)
r (x, dy) − B(x)f (r, x)

]
× μt0,r (x0, dx) dr,

(3.8)

for all function f ∈D(A) such that s �→ f (s, x) is continuously differentiable for all x ∈X .

Proof. Let t ≥ 0 and let f be as in the statement of the lemma. The proof falls naturally into two
parts. We begin by proving that (P

(t)
t0,s

(x0, ·), t0 ≤ s ≤ t) is a solution of (3.8). First, we notice
that for all t0 ≤ s ≤ t , x0 ∈X ,

m(x0, t0, t)P
(t)
t0,s

f (t0, x0) = E
(〈
Zs,f (s, ·)m(·, s, t)〉|Zt0 = δx0

)
.

Indeed, from (3.6), we have

m(x0, t0, t)P
(t)
t0,s

f (t0, x0) = E

[∑
v∈Vs

∑
u∈Vt ,u≥v

f
(
s,Xv

s

)∣∣∣Zt0 = δx0

]

= E

[∑
v∈Vs

f
(
s,Xv

s

)
E

( ∑
u∈Vt ,u≥v

1
∣∣∣Fs

)∣∣∣Zt0 = δx0

]

= E

[∑
v∈Vs

f
(
s,Xv

s

)
E

(∑
u∈Vt

1
∣∣∣Zs = δXv

s

)∣∣∣Zt0 = δx0

]

= E

[∑
v∈Vs

f
(
s,Xv

s

)
m
(
Xv

s , s, t
)∣∣∣Zt0 = δx0

]
.
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Then, applying (2.3) to the function (x, s) �→ f (s, x)m(x, s, t) and taking the expectation, we
obtain

E

[∑
v∈Vs

f
(
s,Xv

s

)
m
(
Xv

s , s, t
)∣∣∣Zt0 = δx0

]
= m(x0, t0, t)f (t0, x0)

+
∫ s

t0

∫
X

(
G
(
f (r, ·)m(·, r, t))(x) + f (r, x)∂rm(x, r, t) + ∂rf (r, x)m(x, r, t)

)
× Rt0,r (x0, dx) dr

+
∫ s

t0

∫
X

B(x)

(∑
k≥0

pk(x)

k∑
j=1

∫
X

f (r, y)m(y, r, t)P
(k)
j (x, dy) − f (r, x)m(x, r, t)

)

× Rt0,r (x0, dx) dr.

(3.9)

Finally, factorizing by m(x, r, t) in the last two terms and dividing by m(x0, t0, t), we obtain that
the family of probability measures (P

(t)
t0,s

(x0, ·), t0 ≤ s ≤ t) is a solution of (3.8).
We now prove the uniqueness of a solution to (3.8). Without loss of generality, we assume

that t0 = 0. This part of the proof is adapted from [7]. Let (γ 1
s,t , s ≤ t) and (γ 2

s,t , s ≤ t) be two
solutions of equation (3.8). Let us recall that the total variation norm is given for all measures
γ 1, γ 2 on X with finite mass by∥∥γ 1 − γ 2

∥∥
TV = sup

φ∈Cb(X ,R),‖φ‖∞≤1

∣∣γ 1(φ) − γ 2(φ)
∣∣,

where Cb(X ,R) denotes the set of continuous bounded functions from X to R. The idea is to find
a function which cancels the first integral in (3.8). Let x ∈ X , t ≥ 0 and r ≤ t . We begin by com-
puting the differential of (Q

(t)
s,rf (x), s ≤ r ≤ t) with respect to s. First, s �→ Ar−s(m(·, r, t)f )(x)

is differentiable because x �→ m(x, r, t)f (x) ∈ D(G) and according to the backward equa-
tion, its derivative is s �→ G(Ar−s(m(·, r, t)f ))(x) = Ar−s(G(m(·, r, t)f ))(x). Furthermore,
s �→ m(x, s, t)−1 is differentiable because s �→ m(x, s, t) is differentiable according to the first
point of Assumption D and because m(x, s, t) 
= 0 for all x ∈ X , t ≥ 0 and s ≤ t . Then, for all
s ≥ 0 and r ≥ s, we have

∂sQ
(t)
s,rf (x) = ∂sAr−s(m(·, r, t)f )(x)

m(x, s, t)
− ∂sm(x, s, t)

m(x, s, t)2
Ar−s

(
m(·, r, t)f )(x)

= −G(Ar−s(m(·, r, t)f ))(x)

m(x, s, t)
− ∂sm(x, s, t)

m(x, s, t)

Ar−s(m(·, r, t)f )(x)

m(x, s, t)

= −
(G(m(·, r, t)Q(t)

s,rf )(x)

m(x, s, t)
+ ∂sm(x, s, t)

m(x, s, t)
Q(t)

s,rf (x)

)
.
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Therefore, for all s ≤ t and f ∈ D(A), we have

∂sQ
(t)
s,rf (x) = −G̃(t)

s Q(t)
s,rf (x). (3.10)

Let f ∈ D(A) be such that ‖f ‖∞ ≤ 1. Let us consider τn(x) = inf{t ≥ 0,Xt /∈ B(x,n)}, where
B(x,n) = {y ∈X , |x − y| ≤ n}. For all x ∈ X , s ≤ r ≤ t and n ∈ N, we define

Q(t),n
s,r f (x) = Ex[m(Xr∧τn(x)−s , r ∧ τn(x), t)f (Xr∧τn(x)−s)]

m(x, s, t)
.

We still have ∂sQ
(t),n
s,r f (x) = −G̃(t)

s Q
(t),n
s,r f (x). Moreover, for all s ≤ r ≤ t and all x ∈ X , we

have ∣∣Q(t),n
s,r f (x)

∣∣≤ Ex[m(Xr∧τn(x)−s , r ∧ τn(x), t)]
m(x, s, t)

≤ Ex[m(Xr∧τn(x)−s , r ∧ τn(x), t)]
E[1�r∧τn(x)

m(X
∅

r∧τn(x), r ∧ τn(x), t)|Zs = δx]
,

where �r = {T1(Z̄) > r}. Conditioning with respect to σ(X∅
s , s ≤ r∧τn(x)) on the denominator,

we obtain∣∣Q(t),n
s,r f (x)

∣∣≤ Ex[m(Xr∧τn(x)−s , r ∧ τn(x), t)]
E[exp(− ∫ r∧τn(x)

0 B(X
∅
u ) du)m(X

∅

r∧τn(x), r ∧ τn(x), t)|X∅
s = x]

≤ E[m(Xr∧τn(x), r ∧ τn(x), t)|Xs = x]
exp(−rBn(x))E[m(X

∅

r∧τn(x), r ∧ τn(x), t)|X∅
s = x] ≤ erBn(x),

(3.11)

where Bn(x) = supy∈B(x,n) B(y).
Let Tn = inf{s ≤ t, γ 1

s,t (x0,B(x0, n)C)+γ 2
s,t (x0,B(x0, n)C) > 0} where B(x0, n)C is the com-

plementary of B(x0, n) with the convention that inf∅ = +∞. Then, using that (γ i
s,t , s ≤ t), for

i = 1,2, are solutions of (3.8), we have for all s ≤ r ≤ t〈
γ i
s∧Tn,t (x0, ·),Q(t),n

s∧Tn,rf
〉

= Q
(t),n
0,r f (x0) +

∫ s∧Tn

0

∫
X

[
B̂(t)

u (x)

∫
X

Q(t),n
u,r f (y)P̂ (t)

u (x, dy) − B(x)Q(t),n
u,r f (x)

]
× γ i

u,t (x0, dx) du.

Using (3.11), we get∣∣γ 1
s∧Tn,t

(
x0,Q

(t),n
s∧Tn,rf

)− γ 2
s∧Tn,t

(
x0,Q

(t),n
s∧Tn,rf

)∣∣
=
∣∣∣∣∫ s∧Tn

0

∫
X

[
B̂(t)

u (x)

∫
X

Q(t),n
u,r f (y)P̂ (t)

u (x, dy) − B(x)Q(t),n
u,r f (x)

]
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× (γ 1
u,t − γ 2

u,t

)
(x0, dx) du

∣∣∣∣
=
∣∣∣∣∫ s∧Tn

0

∫
X

B(x)

[∫
X

Q(t),n
u,r f (y)

m(y,u, t)

m(x,u, t)
m(x, dy) − Q(t),n

u,r f (x)

]
× (γ 1

u,t − γ 2
u,t

)
(x0, dx) du

∣∣∣∣
≤ (C(t)m + 1

)
erBr(n,x0)(x0)Bn(x0)

∫ s∧Tn

0

∥∥γ 1
u,t − γ 2

u,t

∥∥
TV du

≤ (C(t)m + 1
)
erBr(n,x0)(x0)Bn(x0)

∫ s

0

∥∥γ 1
u∧Tn,t − γ 2

u∧Tn,t

∥∥
TV du,

where r(n, x0) = 4n+2|x0|+
(s) and C(t) is defined in Assumption C. Then Grönwall’s lemma
implies that ‖γ 1

s∧Tn,t − γ 2
s∧Tn,t‖TV = 0. Taking the limit as n tends to +∞, we obtain ‖γ 1

s,t −
γ 2
s,t‖TV = 0 and the uniqueness of the solution to (3.8). �

Lemma 3.3. Let t ≥ 0. Under Assumption D, the generator of (P
(t)
r,s , r ≤ s ≤ t), the semi-group

defined in (3.6), is (A(t)
s , s ≤ t) defined on D(A).

For the proof of this lemma, we need a preliminary result which proof is given in Appendix C.

Lemma 3.4. For all t ≥ 0 and s ≤ t ,

G
(
m(·, s, t))(x) = lim

r→0

E(m(Xr, s, t)|X0 = x) − m(x, s, t)

r

= −∂sm(x, s, t) + B(x)m(x, s, t)

− B(x)
∑
k≥0

pk(x)

k∑
j=1

∫
X

m(y, s, t)P
(k)
j (x, dy).

We can now prove Lemma 3.3.

Proof. Let t ≥ 0 and f ∈D(A). If we take the expectation of (2.3) and differentiate with respect
to t , for all function g such that g(s, ·) ∈D(A), we get that

∂tRs,tg(x, s) = Gg(x, s) + ∂sg(x, s) + B(x)

(∫
X

g(y, s)m(x, dy) − g(x, s)

)
:= Rg(x, s),

for all x ∈ X and s ≤ t , because t �→ E[〈Zt ,f 〉] is continuous whenever f is continuous. Next,
according to Assumption D, we have the following first order Taylor expansion: for all x ∈ X ,
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r < t and h > 0,

P
(t)
r,r+hf (x) = Rr,r+h(m(·, r + h, t)f )(x)

m(x, r, t)

= f (x) + R(m(·, r, t)f )(x)

m(x, r, t)
h + ∂rm(x, r, t)f (x)

m(x, r, t)
h + o(h).

Then,

lim
h→0

P
(t)
r,r+hf (x) − f (x)

h
= R(m(·, r, t)f )(x)

m(x, r, t)
+ ∂rm(x, r, t)f (x)

m(x, r, t)
,

and we get

A(t)
r f (x) = G̃(t)

r f (x) + B̂(t)
r (x)

[∫
X

f (y)P̂ (t)
r (x, dy) − B(x)f (x)

]
, r ≤ t. (3.12)

Combining Lemma 3.4 and (3.12), we obtain formula (3.5) for the generator of the auxiliary
process. �

Proof of Theorem 3.1. We prove the result by induction on k ∈ N for any separable function
F = f1 · · ·fk with fi ∈ D(A) for all i = 1, . . . , k. We consider the following proposition denoted
by Hk : for all 0 < s1 ≤ s2 ≤ · · · ≤ sk ≤ t , for all x0 ∈ X and f1, . . . , fk ∈ D(A),

Eδx0

[∑
u∈Vt

f1
(
Xu

s1

) · · ·fk

(
Xu

sk

)]= m(x0,0, t)Ex0

[
f1
(
Y (t)

s1

) · · ·fn

(
Y (t)

sk

)]
.

First, H1 holds by definition (3.6). Assuming that Hk−1 is true for some k > 1, we now prove
Hk . Let 0 < s1 ≤ s2 ≤ · · · ≤ sk ≤ t and f1, . . . , fk be measurable non-negative functions such
that fi ∈D(A) for all 1 ≤ i ≤ k. Using the Markov property, we have

Eδx0

[∑
u∈Vt

f1
(
Xu

s1

) · · ·fk

(
Xu

sk

)]

= Eδx0

[ ∑
u∈Vsk−1

f1
(
Xu

s1

) · · ·fk−1
(
Xu

sk−1

)
E

[ ∑
v∈Vt ,v≥u

fk

(
Xv

sk

)∣∣∣Fsk−1

]]

= Eδx0

[ ∑
u∈Vsk−1

f1
(
Xu

s1

) · · ·fk−1
(
Xu

sk−1

)
E

[∑
v∈Vt

fk

(
Xv

sk

)∣∣∣Zsk−1 = δXu
sk−1

]]
.
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We can now use the result proved in the case k = 1 and the last term on the right-hand side is
equal to

Eδx0

[ ∑
u∈Vsk−1

k−1∏
i=1

fi

(
Xu

si

)
m
(
Xu

sk−1
, sk−1, t

)
E
[
fk

(
Y (t)

sk

)|Y (t)
sk−1

= Xu
sk−1

]]

= Eδx0

[∑
u∈Vt

f1
(
Xu

s1

) · · ·fk−1
(
Xu

sk−1

)
E
[
fk

(
Y (t)

sk

)|Y (t)
sk−1

= Xu
sk−1

]]
= m(x0,0, t)Ex0

[
f1
(
Y (t)

s1

) · · ·fk−1
(
Y (t)

sk−1

)
E
[
fk

(
Y (t)

sk

)|Y (t)
sk−1

]]
,

where the last equality is obtained using the induction hypothesis.
Finally, using Assumption D and a monotone-class argument, we extend the result to all mea-

surable function with respect to the Skorokod topology (see details in Appendix D). �

We now develop two other Many-to-One formulas: one to characterize the trait of the individ-
uals over the whole tree and the other to characterize the trait of a couple of individuals.

3.2. A Many-to-One formula for the whole tree

We denote by:

T =
⋃
s≥0

Vs ⊂ U ,

the set of all individuals in the population. For u ∈ T , we denote by α(u) and β(u) the random
variables representing respectively the time of birth and death of u.

Proposition 3.5. Under Assumptions A,B, C and D, for all x0 ∈ X and for any non-negative
measurable function F : D(R+,X ) ×R+ →R+, we have

Eδx0

[∑
u∈T

F
(
Xu

[0,β(u)), β(u)
)]=

∫ +∞

0
m(x0,0, s)Ex0

[
F
(
Y

(s)
[0,s), s

)
B
(
Y (s)

s

)]
ds. (3.13)

The left-hand side of (3.13) describes the dynamic of the trait of all individuals that were in the
population. The right-hand side is the equivalent in terms of auxiliary process. Then, according to
this result, the sum of the contributions of all individuals in the population is equal to the average
of the auxiliary process with respect to the mean number of individuals in the population. The
weight B in the right-hand side comes from the density of the lifetimes. The terms might be
infinite.
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Proof. We follow [15], Lemma 3.8, and provide a proof for the whole trajectories. First, we
recall that for any u ∈ T and any Borel set A ⊂R+

P
(
β(u) ∈ A|(Xu

s

)
s≥0, α(u)

)= ∫
A

B
(
Xu

t

)
exp

(
−
∫ t

α(u)

B
(
Xu

s

)
ds

)
dt.

Then, for all non-negative measurable functions f :D(R+,X ) →R+, we have

Eδx0

[
1{u∈T }

∫ β(u)

α(u)

F
(
Xu

[0,s), s
)
B
(
Xu

s

)
ds

]

= Eδx0

[
1{u∈T }

∫ +∞

α(u)

(∫ τ

α(u)

F
(
Xu

[0,s), s
)
B
(
Xu

s

)
ds

)
× B

(
Xu

τ

)
exp

(
−
∫ τ

α(u)

B
(
Xu

r

)
dr

)
dτ

]
.

Next, using Fubini’s theorem, we obtain that the right-hand side of the above equation is equal to

Eδx0

[
1{u∈T }

∫ +∞

α(u)

(∫ +∞

s

B
(
Xu

τ

)
exp

(
−
∫ τ

α(u)

B
(
Xu

r

)
dr

)
dτ

)
× F

(
Xu

[0,s), s
)
B
(
Xu

s

)
ds

]
= Eδx0

[
1{u∈T }

∫ +∞

α(u)

exp

(
−
∫ s

α(u)

B
(
Xu

r

)
dr

)
F
(
Xu

[0,s), s
)
B
(
Xu

s

)
ds

]
= Eδx0

[
1{u∈T }F

(
Xu

[0,β(u)), β(u)
)]

,

(3.14)

where the first equality comes from of Assumption A(4). But{
α(u) ≤ s < β(u),u ∈ T

}= {u ∈ Vs},
then,

Eδx0

[
1{u∈T }

∫ β(u)

α(u)

F
(
Xu

[0,s), s
)
B
(
Xu

s

)
ds

]

= Eδx0

[∫ +∞

0
1{u∈Vs}F

(
Xu

[0,s), s
)
B
(
Xu

s

)
ds

]
.

(3.15)

Finally combining (3.14) and (3.15), we get

Eδx0

[∑
u∈T

f
(
Xu

[0,β(u)), β(u)
)]=

∑
u∈U

Eδx0

[
1{u∈T }F

(
Xu

[0,β(u)), β(u)
)]

=
∑
u∈U

Eδx0

[∫ +∞

0
1{u∈Vs}F

(
Xu

[0,s), s
)
B
(
Xu

s

)
ds

]
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=
∫ +∞

0
Eδx0

[∑
u∈Vs

F
(
Xu

[0,s), s
)
B
(
Xu

s

)]
ds

=
∫ +∞

0
m(x0,0, s)Ex0

[
F
(
Y

(s)
[0,s), s

)
B
(
Y (s)

s

)]
ds,

where the last equality comes from the Many-to-One formula (3.4). �

3.3. Many-to-One formulas for forks

In this section, we characterize the law of a couple of lineage coming from two individuals alive
at time t . For former results on the subject, we refer to [5] for such formulas in the neutral case
and to [27] for many-to-few-formulas on weighted k-fold sums over particles in the case of local
branching. We aim at characterizing the dynamic of the trait of a couple of individual along
the spine using our auxiliary process. Those formulas have already proved useful to control the
variance of estimators [31].

For any two functions f , g, defined respectively on two intervals If , Ig , for any [a, b) ⊂ If ,
[c, d) ⊂ Ig , we define the concatenation [f[a,b), g[c,d)] by

[f[a,b), g[c,d)](t) =
{

f (t), if t ∈ [a, b),

g(t + c − b), if t ∈ [b, b + (d − c)
)
.

Proposition 3.6. Under Assumptions A, B, C and D, for any t ≥ 0 and x0 ∈ X , for any non-
negative measurable function F :D([0, t],X )2 → R+,

Eδx0

[ ∑
u,v∈Vt
u 
=v

F
(
Xu

[0,t],X
v[0,t]
)]=

∫ t

0
m(x0,0, s)Ex0

[
B
(
Y (s)

s

)
Js,tF

(
Y

(s)
[0,s]
)]

ds, (3.16)

where for (xr , r ≤ s) ∈ D([0, s],X ),

Js,tF (x) =
∑

a 
=b∈N

∑
k≥max(a,b)

pk(xs)

∫ 1

0
m
(
F (k)

a (xs, θ), s, t
)
m
(
F

(k)
b (xs, θ), s, t

)
× Hs,tF

(
x,F (k)

a (xs, θ),F
(k)
b (xs, θ)

)
dθ,

and for all s ≤ t , (xs, s ≤ t) ∈D([0, t],X ) and y1, y2 ∈X ,

Hs,tF (x, y1, y2) = E
[
F
([

x[0,s);Y (t),1
[s,t]

]
,
[
x[0,s);Y (t),2

[s,t]
])|(Y (t),1

s , Y (t),2
s

)= (y1, y2)
]
,

and (Y
(t),1
s , s ≤ t), (Y

(t),2
s , s ≤ t) are two independent copies of (Y

(t)
s , s ≤ t).
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Figure 1. Forks.

According to this proposition, the sum of the contributions of each couple in the population
at time t corresponds to an integral of a product of a count term and a term characterizing the
dynamic of the traits of the couple. The integral is over all the possible death time s ∈ [0, t] for
the most recent common ancestor w of u and v, where u 
= v ∈ Vt . For example, in the case of
Figure 1, if we pick the green star and the blue star, the lineage of their most recent common
ancestor w is in red. For the count term, m(x0,0, s) corresponds to the choice w among the
individuals in the population at time s and m(F

(k)
a (xs, θ), s, t)m(F

(k)
b (xs, θ), s, t) corresponds

to the choice of u and v among the descendants of w. In the example, with our choice of w,
there is only one choice for u and two for v. Before s, the traits along the ancestral lineage of
u and v are identical. After the death of w, the dynamic of the trait of the ancestor of u and the
ancestor of v become independent conditionally to the trait of w at death. This explains the term
Hs,tF (x[0,s),F

(k)
a (xs, θ),F

(k)
b (xs, θ)) above and, in the right-hand side of (3.16), s represents the

time of the most recent common ancestor with x[0,s), Y
(t),1
[s,t] and Y

(t),2
[s,t] describing the dynamics

of the trait along the red, green and blue path, respectively.
This formula is similar to the Many-to-Two formula proved in [27] but as in the Many-to-One

formula (3.4), the count terms are separated from the terms corresponding to the dynamic of the
trait of a “typical” individual contrary to the formula in [27]. This decomposition is useful for
the study of the asymptotic behavior of the branching process. We refer the reader the [41] for
an example of use of this formula to prove a law of large numbers.

Proof. Let t ≥ 0 and x0 ∈ X . First we prove (3.16) for F(x, y) = f1(x)f2(y), where fi :
D([0, t],X ) → R+ are non-negative measurable functions for i = 1,2. Let us denote by A the
left-hand side of (3.16). We explicit the most recent common ancestor w of two individuals u,v
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living at time t and we obtain

A = Eδx0

[∑
w∈U

∑
a1 
=a2∈N

∑
ũ1 ,̃u2∈T

1{t≥β(w)}1{wa1ũ1∈Vt ,wa2ũ2∈Vt }

×
∏

i=1,2

fi

([
Xw

[0,β(w));Xwai ũi

[β(w),t]
])]

= Eδx0

[ ∑
wa1 
=wa2∈T

a1,a2∈N

1{t≥β(w)}E
[ ∏

i=1,2

∑
ui∈Vt ,ui≥wai

fi

([
Xw[0,β(w));Xui

[β(w),t]
])∣∣∣Fβ(w)

]]
.

Then, applying successively the branching property and the Markov property, we have

A = Eδx0

[ ∑
wa1 
=wa2∈T

a1,a2∈N

1{t≥β(w)}
∏

i=1,2

E

[ ∑
ui∈Vt

ui≥wai

fi

([
Xw

[0,β(w));Xui

[β(w),t]
])∣∣∣Xwai

[0,β(w)]
]]

= Eδx0

[ ∑
wa1 
=wa2∈T

a1,a2∈N

1{t≥β(w)}
∏

i=1,2

E

[ ∑
ui∈Vt

ui≥wai

fi

([̃
x;Xui

[β(w),t]
])∣∣∣Xwai

β(w)

]
x̃=Xw[0,β(w))

]
.

Next, we use the Many-to-One formula (3.4) and we explicit the distribution of the trait at birth
of wa and wb:

Eδx0

[ ∑
wa1 
=wa2∈T

a1,a2∈N

1{t≥β(w)}
∏

i=1,2

m
(
X

wai

β(w), β(w), t
)

×E
[
fi

([̃
x;Y (t)

[β(w),t]
])|Y (t)

β(w) = X
wai

β(w)

]
x̃=Xw[0,β(w))

]
= Eδx0

[ ∑
wa1 
=wa2∈T

a1,a2∈N

1{t≥β(w)}
∑

k≥a1∨a2

pk

(
Xw

β(w)

)

×
∫ 1

0

∏
i=1,2

m
(
F (k)

ai

(
Xw

β(w), θ
)
, β(w), t

)
×E

[
fi

([̃
x;Y (t)

[β(w),t]
])|Y (t)

β(w) = F (k)
ai

(
Xw

β(w)− , θ
)]

x̃=Xw[0,β(w))
dθ

]
.
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Applying the Many-to-One formula over the whole tree (3.13) yields

A =
∫ t

0
m(x0,0, s)Ex

[
B
(
Y (s)

s

) ∑
a1 
=a2∈N

∑
k≥a1∨a2

pk

(
Y (s)

s

)
×
∫ 1

0

∏
i=1,2

m
(
F (k)

ai

(
Y (s)

s , θ
)
, s, t

)
×E

[
fi

([̃
x;Y (t)

[s,t]
])|Y (t)

s = F (k)
ai

(
Y (s)

s , θ
)]

|̃x=Y
(s)
[0,s)

dθ

]
ds

=
∫ t

0
m(x0,0, s)Ex0

[
B
(
Y (s)

s

)
Js,t (f1 ⊗ f2)

(
Y

(s)
[0,s)

)]
ds,

where f1 ⊗ f2(x) = f1(x)f2(x). Finally, we obtain (3.16) using a monotone class argument. �

Let us explicit a particular case of formula (3.16). We define

J2(f, g)(x) =
∑
a 
=b

∑
k≥max(a,b)

pk(x)

∫ 1

0
f
(
F (k)

a (x, θ)
)
g
(
F

(k)
b (x, θ)

)
dθ. (3.17)

J2 represents the average trait at birth of two uniformly chosen children from an individual of
type x. For simplicity of notation, we write J2f (x) instead of J2(f,f )(x). Let us recall that

P (t)
r,s f (x) = E

[
f
(
Y (t)

s

)|Y (t)
r = x

]
.

Corollary 3.7. Under Assumptions A,B, C and D, for any non-negative measurable functions
ft , gt from X ×R

+ to R and any x0 ∈ X we have for s ≤ t ,

Eδx0

[ ∑
u,v∈Vt
u 
=v

ft

(
Xu

s

)
gt

(
Xv

s

)]

=
∫ t

s

m(x0,0, r)Ex0

[
ft ⊗ gt

(
Y (r)

s

)
B ⊗ J2m(·, r, t)(Y (r)

r

)]
dr

+
∫ s

0
m(x0,0, r)Ex0

[
B ⊗ J2

(
m(·, r, t)P (t)

r,s ft ,m(·, r, t)P (t)
r,s gt

)(
Y (r)

r

)]
dr.

(3.18)

The first integral corresponds to the couple of individuals alive at time t whose most recent
common ancestor died after time s. It is for example the case on Figure 2 if you pick two red stars
on the tree on the left-hand side. The product m(x0,0, r)J2m(·, r, t)(y), with y ∈ X , corresponds
to the average number of such couples at time t whose most recent common ancestor died at time
r with s ≤ r ≤ t . The second integral corresponds to couples (u, v) ∈ Vt of individuals whose
most recent common ancestor w died before s. It is the case on Figure 2 if you pick one blue
star and one green star on the tree on the right-hand side. In this case, unlike in the previous one,
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Figure 2. Trees and forks.

the value of the trait of the individuals at time s is not the same. The dynamic of the trait on the
blue lineage and on the green lineage are independent conditionally to the trait of their common
ancestor at death. This explains the terms P

(t)
r,s ft and P

(t)
r,s gt that appear in the second integral. As

before, the remaining terms depending on the average number of individuals in the population
are count terms.

4. Ancestral lineage of a uniform sampling at a fixed time with a
large initial population

The Many-to-One formula (3.4) gives us the law of the trait of a uniformly sampled individual
in an “average” population. But the characterization of the law of the trait of a uniformly sam-
pled individual in the effective population is more complex because the number of individuals
alive at time t is stochastic and depends on the dynamic of the trait of individuals. As the aux-
iliary process takes into account the bias in the population due to the number of individuals, it
characterizes the law of a uniformly sampled individual only when the bias are in place that is,
when there are a certain amount of individuals. Indeed, the dynamic of the first individual in the
population is not biased. That is why we now look at the ancestral lineage of a uniform sampling
with a large initial population.

4.1. Convergence of the sampling process on a fixed time interval

It only makes sense to speak of a uniformly sampled individual at time t if the population does
not become extinct before time t . For all t ≥ 0, let �t = {Nt > 0} denote the event of survival of
the population. Let ν ∈ MP (X ) be such that

Pν(�t ) > 0. (4.1)



2678 A. Marguet

We set

νn :=
n∑

i=1

δXi
, (4.2)

where Xi are i.i.d. random variables with distribution ν. For t ≥ 0, we denote by U(t) the random
variable with uniform distribution on Vt conditionally on �t and by (X

U(t)
s , s ≤ t) the process

describing the trait of a sampling along its ancestral lineage. If X is a stochastic process, we
denote by Xν the process with initial distribution ν ∈ MP (X ). In particular, for all t ≥ 0, Y (t),ν

corresponds to the auxiliary process with Y
(t)
0 ∼ ν. For all 0 ≤ s ≤ t ,

m(ν, s, t) = E(Nt |Zs = ν),

denote the average number of individuals in the population after time t starting from a population
distributed as ν at time s.

Theorem 4.1. Under Assumptions A(1)–(3),B, C and D, for any t ≥ 0, the sequence
(X

U(t),νn

[0,t] )n≥0 converges in law in D([0, t],X ) to Y
(t),πt

[0,t] where

πt (dx) = m(x,0, t)ν(dx)

m(ν,0, t)
.

Proof. Let t ≥ 0. Let (Xi)1≤i≤n be i.i.d. random variables with distribution ν and νn =∑n
i=1 δXi

. Let F : D([0, t],X ) →R+ be a bounded measurable function. First, we notice that

1

n
N

νn
t = 1

n

n∑
i=1

N
(i)
t , (4.3)

where N
(i)
t are independent copies of Nt with initial distribution δXi

. According to the
law of large numbers, (4.3) converges almost surely as n tends to infinity to m(ν,0, t) =∫
X m(x,0, t)ν(dx). Next, let �t(νn) = {Nνn

t > 0}. (�t (νn))n≥0 is a increasing sequence. Ac-
cording to (4.1), there exists 0 < ε(t) ≤ 1 such that

P
(
�t(νn)

C
)≤ (1 − ε(t)

)n −→
n→+∞ 0,

so that:

1{�t (νn)C } −→
n→+∞ 0, almost surely.

We have

E
[
F
(
X

U(t),νn

[0,t]
)]= E

[
1{�t (νn)}

1

N
νn
t

∑
u∈V

νn
t

F
(
Xu

[0,t]
)]
P
(
�t(νn)

)−1
.
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Let V
(i)
t , i = 1, . . . , n be independent identically distributed populations at time t coming from

an individual with trait Xi ∼ ν at 0. Then,

E

[
1{�t (νn)}

1

N
νn
t

∑
u∈V

νn
t

F
(
Xu

[0,t]
)]= E

[
1{�t (νn)}

n

N
νn
t

1

n

n∑
i=1

∑
u∈V

(i)
t

F
(
Xu

[0,t]
)]

. (4.4)

According to the strong law of large numbers,

1

n

n∑
i=1

∑
u∈V

(i)
t

F
(
Xu

[0,t]
) −→

n→+∞ Eν

[∑
u∈Vt

F
(
Xu

[0,t]
)]

, almost surely.

Taking the limit in (4.4) as n tends to infinity, by dominated convergence because F is bounded,
we have

E
[
F
(
X

U(t),νn

[0,t]
)] −→

n→+∞
1

m(ν,0, t)

∫
X
Ex

[∑
u∈Vt

F
(
Xu

[0,t]
)]

ν(dx),

because P(�t (νn)) → 1 as n tends to infinity. Finally, applying the Many-to-one formula (3.4),
we obtain

E
[
F
(
X

U(t),νn

[0,t]
)] −→

n→+∞

∫
X m(x,0, t)Ex[F(Y

(t)
[0,t])]ν(dx)

m(ν,0, t)
. �

Remark 4.1. If we start with n individuals with the same trait x, we obtain

E
[
F
(
X

U(t),νn

[0,t]
)] −→

n→+∞ Ex

[
F
(
Y

(t)
[0,t]
)]

.

Therefore, the auxiliary process describes exactly the dynamic of the trait of a uniformly sampled
individual in the large initial population limit, if all starting individuals have the same trait. If the
initial individuals have different traits at the beginning, the large population approximation of a
uniformly sampled individual is a linear combination of the auxiliary process.

Remark 4.2. One can easily generalizes this results to a k-tuple of individuals uniformly picked
at time t . If you start with a population of size n and you pick k individuals uniformly at random
at time t , when n tends to infinity, the probability that those k individuals comes from the same
initial individual is zero. Then, the trajectories of their traits are independent and for example in
the case k = 2, for any f,g :D([0, t],X ) → R+ bounded measurable functions, we get

E
[
f
(
X

U1(t),νn

[0,t]
)
g
(
X

U2(t),νn

[0,t]
)] −→

n→+∞ Ex

[
f
(
Y

(t),1
[0,t]

)
g
(
Y

(t),2
[0,t]

)]
,

where U1(t), U2(t) are independent random variables with uniform distribution on Vt and the
processes (Y

(t),1
s , s ≤ t), (Y

(t),2
s , s ≤ t) are i.i.d. and distributed as (Y

(t)
s , s ≤ t).

Remark 4.3. Another way of characterizing the trait of a uniformly sampled individual via the
auxiliary process is to look at the long time behavior of the process instead of looking at the large
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initial population behavior. This has been done in [5] in the case of a constant division rate and
in [41] in a general framework using the ergodicity of ancestral lineages.

4.2. The trait of a uniformly sampled individual for growth-fragmentation
models

The auxiliary process is a good way of getting simulated random variables corresponding to the
trait of a uniformly sampled individual with large initial population or to the trait of a uniformly
sampled individual for large times (see [41]). Indeed, it is much more quicker to simulate one
trajectory of the auxiliary process rather than the dynamic of an entire population. In this section,
we detail the auxiliary process for our three examples introduced in Section 2.2.

4.2.1. Linear growth model

For the linear growth model with binary division (Section 2.2.1), Assumption C is satisfied for
C ≡ 1 and the large initial population limit of the ancestral process of a sampling grows linearly
between two jumps and jumps at time s at rate

B̂(t)
s (x) = αx

(
1 + 1 + e2a(t−s)

1 − x
√

α
a

+ e2a(t−s)(1 + x
√

α
a
)

)
.

At a jump, there is a unique descendant with trait x
2 if x is the trait of its parent at the splitting

time. In particular, the rate of division of the limiting process is bigger than the rate of division
in a cell line for the original process. It means that in the large initial population limit, a typical
individual has overcome more division than any individual.

4.2.2. Exponential growth model in a varying environment

For the exponential growth model in a varying environment with binary division (Section 2.2.2),
Assumption C is satisfied for C ≡ 1 and the associated auxiliary process grows exponentially
between two jumps and jumps at time s at rate

B̂(t)
s (x) = α(s)x

(
1 + 1

1 + x
∫ t

s
α(r)ea(r−s) dr

)
.

The rate of division of the limiting process is again bigger than the division rate of any individual.
At a jump, there is a unique descendant with trait x

2 if x is the trait of its parent at the splitting
time.

This example is a good illustration of the fact that the large initial population limit of the size
of a uniformly sampled individual does not correspond to the size of a tagged cell, that is, the size
along a lineage where at each division, you choose randomly one daughter cell. In fact, as the
division rate of the auxiliary process is larger than B , the number of divisions along the lineage
of a uniformly sampled individual is bigger than the number of divisions along the lineage of
tagged cell, resulting in a difference on the size of the individuals. However, the distribution of the
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Figure 3. Distribution of the number of divisions in the lineage of a uniformly sampled individual (black
bars), of the auxiliary process (red bars) and of a tagged cell (blue bars). For each case, we used 5000
realizations of each process until time t = 50 with parameters a = 0.1 and x0 = 1. The distribution of
the number of divisions almost coincides for the auxiliary process and a sampled individual. However, the
distribution of the number of divisions for a tagged cell is different from the two previous ones. Indeed, it
is more likely to sample an individual whose ancestors divided many times, that is why, the distributions
of the number of divisions for the auxiliary process and for a uniformly sampled individual are centered on
bigger values than the distribution of the number of divisions for a tagged cell.

number of divisions along the lineage of a uniformly sampled individual coincides with the one
for the auxiliary process. On Figure 3, we can see those distributions: the two first distributions,
corresponding to the distribution of the number of divisions along the lineage of a uniformly
sampled individual and of the auxiliary process, are centered on a bigger number of divisions
than the third distribution corresponding to a tagged cell.

4.2.3. Parasite infection model

For this cell division model with parasite infection, Assumption C is satisfied for C ≡ 1 and the
auxiliary process evolves as a Feller diffusion with infinitesimal generator

F (t)
s f (x) =

(
gx + 2σ 2 αx(eg(t−s) − eβ(t−s))

αx(eg(t−s) − eβ(t−s)) + (g − β)eβ(t−s)

)
f ′(x) + σ 2xf ′′(x),

so that the drift of the limit of the process of the ancestral trait of a sampling is bigger than the
original drift in the population. Then, the limiting process jumps at time s at rate

B̂(t)
s (x) = (αx + β)

(
1 + 1

1 + αx
g−β

(e(g−β)(t−s) − 1)

)
.
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Therefore, the division rate of the limiting process is also bigger than the rate of division in a cell
line for the original process.

The trait of the newborn cell is distributed according to the following probability law:

P̂ (t)
s (x, dy) = 1{0≤y≤x}

2(g − β) + 2αy(e(g−β)(t−s) − 1)

2(g − β) + αx(e(g−β)(t−s) − 1)

dy

x
.

In fact, because cells divide faster when they have more parasites inside them, it is a good strat-
egy, in order to have a lot of descendants in a long time scale, to choose to give a lot of parasites
to your daughter cell. Moreover, the evolution of the trait is biased: the drift in the Feller diffu-
sion is more important for the auxiliary process because a cell with more parasites divides faster
so that it produces more descendants.

5. Further comments and examples

We can apply the results of this work to various models and we choose to detail in this article
only three of them based on biological and computational considerations. However, we review
in this section some other interesting models.

5.1. The age-structured population model

In this model, the quantity of interest is the age of each individual which grows linearly. The
lifetime of each individual is a random variable with cumulative distribution function G. Such
models have been first introduced by Bellman and Harris in [8] and have recently been studied in
order to infer the division rate [31]. Let B : R+ → R be the rate of division of each cell defined
via

G(t) = 1 − exp

(
−
∫ t

0
B(s) ds

)
.

The branching process (Zt )t≥0 is solution of the following equation, for any function f ∈
C1(R+) and any x ∈X :

〈Zt ,f 〉 = 〈Z0, f 〉 +
∫ t

0

∫
R+

f ′(x)Zs(dx)ds

+
∫ t

0

∫
U×R+×N

1{u∈Vs− ,θ≤B(Xu

s− )}
(
kf (0) − f

(
Xu

s−
))

M(ds, du, dθ, dk),

where M is a Poisson point measure on R+ × U × R+ × N with intensity ds ⊗ n(du) ⊗ dθ ⊗
p(dk), where p denotes the distribution of the number of descendants.

In order to get information on the average number of individuals in the population at time t ,
we follow Harris in [29], Chapter 6, and we obtain

m(0,0, t) = 1 − G(t) + m

∫ t

0
m(0,0, t − u)dG(u),
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where m is the average number of descendants at division. From this expression, we can derive
a renewal equation for m(x,0, t), for x ≥ 0. We cannot find an explicit solution to this renewal
equation except in the case of an exponentially distributed lifetime but we know the asymptotic
behavior of a solution (see [29]). In particular, if G is non-lattice and m > 1,

m(0,0, t) ∼
t→+∞ c(α,m)n1e

αt , where
∫ ∞

0
e−αt dG(t) = 1/m,

and c(α,m) and n1 are explicitly given in [29], Theorem 17.1. The rate of division of the auxiliary
process is thus given for large t by

B̂(t)
s ∼ B(x)

e−αx(1 − G(x))

1 − m
∫ x

0 e−αu dG(u)
.

5.2. Multi-type branching process and switching

An example of phenomenon that we would like to understand using a model on a finite state
space is the phenotypic switching, i.e. the capacity to achieve multiple internal states in response
to a single set of external inputs. Examples of studies of switching can be found in [45] or [39].
For an asymptotic characterization of the ancestral lineage of a typical individual for models
with a trait on a finite state space, we refer to [23]. We assume here that an individual can be
in state 0 or 1 which is constant during its lifetime. An individual in state x = 0,1 divide at
rate B(x) = bx and at division, it is replaced by 2 individuals. We denote by p the probability
of switching at birth. We assume that this probability does not depend on the trait. Therefore,
the trait only affects the lifetime of individuals. We obtain for the generator of the first moment
semi-group for any function f taking values in {0,1} and any x ∈ {0,1}:

Fswitchf (x) = B(x)
(
2f (x)(1 − p) + 2f (x)p − f (x)

)
,

where x = 1 − x. After some computations, we obtain

Eδx

[∑
u∈Vt

Xu
t

]
= x + (b1(1 − 2p) − 2pb0

)∫ t

0
Eδx

[∑
u∈Vs

Xu
s

]
ds + 2pb0

∫ t

0
Eδx [Ns]ds.

Then, if we write:

μ(t) = Eδx [Nt ], ν(t) = Eδx

[∑
u∈Vt

Xu
t

]
, ∀t ≥ 0,

we obtain (
∂tμ

∂tν

)
=
(

b0 b1 − b0
2pb0 b1(1 − 2p) − 2pb0

)(
μ

ν

)
.
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For example, for p = 1/2, writing γ = b0
b1

, we have

m(1, s, t) = m(0, s, t) + [e√
b0b1(t−s) − e−√

b0b1(t−s)
] 1

2
√

γ
(1 − γ ).

In particular, the transition kernel of the auxiliary process is given by

P̂ (t)
s (x, dy) = m(x, s, t)δx(dy) + m(x, s, t)δx(dy)

m(x, s, t) + m(x, s, t)
,

so that if γ > 1, that is, b0 > b1, the auxiliary process switches more from 1 to 0 at a jump
because m(0, s, t) > m(1, s, t).

5.3. Markovian jump processes for the dynamic of the trait

The dynamic of some characteristics of a cell are non-continuous and thus cannot be described
by a diffusion type process. For example, this is the case for the dynamic of populations inside
a cell such as plasmids or extra-chromosomal DNA. Then, an other generalization of Kimmel’s
multilevel model for plasmids [34] is the following: we assume that the trait of each individual
evolves as a birth and death process with birth rate λ > 0 and death rate μ > 0. We assume here
that λ − μ > 0. The generator of the process corresponding to the dynamic of the trait is then
given for any measurable function f :N→ R+ and any x ∈ N by

Gf (x) = λ
(
f (x + 1) − f (x)

)+ μ
(
f (x − 1) − f (x)

)
.

We assume that a cell with x plasmids divides at a rate B(x) and that at division, the plasmids
are randomly allocated to one of the two daughter cells. The branching process (Zt , t ≥ 0) is
solution of the following equation, for any measurable function f : N→R+ and any x ∈ X ,

〈Zt ,f 〉 = 〈Z0, f 〉 +
∫ t

0

∫
R+

∑
u∈Vs

[
1{θ≤λXu

s−}
(
f
(
Xu

s− + 1
)− f

(
Xu

s−
))

+ 1{λXu

s−≤θ≤(λ+μ)Xu

s−}
(
f
(
Xu

s− − 1
)− f

(
Xu

s−
))]

Qu(ds, dθ)

+
∫ t

0

∫
U×R+×[0,1]

1{u∈Vs− ,z≤B(Xu

s− )}
(
f
(
δXu

s−
)+ f

(
(1 − δ)Xu

s−
)− f

(
Xu

s−
))

× M(ds, du, dz, dδ),

where (Qu)u∈U is a family of Poisson point measure on R+ ×R+ with intensity ds ⊗ dθ and M

is a Poisson point measure on R+ × U ×R+ × [0,1] with intensity ds ⊗ n(du) ⊗ dz ⊗ dδ.
For example, for the division rate B(x) = x, we obtain for the average number of individuals

in the population after a time t

m(x, s, t) = 1 + x

λ − μ

(
e(λ−μ)t − 1

)
.
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In particular, the motion of the auxiliary process between jumps is given by the following gener-
ator:

Ĝ(t)
s f (x) = λ

[
1 + e(λ−μ)(t−s) − 1

λ − μ + x(e(λ−μ)(t−s) − 1)

](
f (x + 1) − f (x)

)
+ μ

[
1 − e(λ−μ)(t−s) − 1

λ − μ + x(e(λ−μ)(t−s) − 1)

](
f (x − 1) − f (x)

)
.

The birth rate of the plasmid population for the auxiliary process is bigger than λ and the death
rate is smaller than μ. This can be explained again by the fact that cells with a lot of plasmids
divides more so that they are more represented at sampling.

5.4. Link with the integro-differential model

The study of the average process associated with the measure-valued branching process Z is
interesting in the sense that it characterizes the macroscopic evolution of the population. For a
more detailed study of this link see, for example, [12]. The following result is a corollary of
Theorem 2.1 of Section 2. We recall that for all s ≥ 0, t ≥ s and x ∈ X ,

Rs,tf (x) = E

[∑
u∈Vt

f
(
Xu

t

)∣∣∣Zs = δx

]
,

where f is a measurable function.

Corollary 5.1. Let f ∈ D(G), s ≥ 0 and x0 ∈ X . Under Assumptions A(1)–(3) and B, the mea-
sure (Rs,t (x0, ·))t≥0 is the unique solution to the following integro-differential equation:

Rs,tf (s, x0) = f (s, x0) +
∫ t

s

∫
X

(
Gf (r, x) + ∂rf (r, x)

)
Rs,r (x0, dx) ds

+
∫ t

s

∫
X

B(x)

[∑
k≥0

pk(x)

k∑
j=1

∫
X

f (r, y)P
(k)
j (x, dy) − f (r, x)

]

× Rs,r (x0, dx) ds,

(5.1)

where (Rs,t )t≥s is defined in (2.5).

One can prove this result taking the expectation in (2.3) and using the same arguments as in
the proof of Corollary 2.4 in [15].

Let n(t, ·) := R0,t (x0, ·). Equation (5.1) can be rewritten as⎧⎪⎪⎨⎪⎪⎩
∂tn(t, x) = GT n(t, x) +

∑
k≥0

k∑
j=1

K
(k)
j

(
Bpkn(t, ·))− B(x)n(t, x),

n(0, x)dx = δx0(dx),
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where GT , G are the adjoint operators of K
(k)
j and f �→ ∫

X f (y)P
(k)
j (x, dy) respectively, as in

[15].
For example, in the case of the cell division model with exponential growth introduced in

Section 2.2.2, we obtain in a weak sense

∂tn(t, x) + ∂x

(
axn(t, x)

)= 4B(2x)n(t,2x) − B(x)n(t, x).

This is a classical growth-fragmentation equation as the one studied in [42] or [12]. The solu-
tions of the associated eigenvalue problem permit in particular to quantify the asymptotic global
growth rate of the population.

Appendix A: Proof of Lemma 2.2

We give a recursive construction of the solution to (2.3). For all u ∈ U , we denote the birth time
and the death time of u respectively by α(u) and β(u). Let x0 ∈ X be given. We construct a
structured population Y k = (Z̄k, (Xu

s , s ≥ Tk(Z̄
k), u ∈ VTk(Z̄

k))), where Z̄k ∈ D(R+,MP (U ×
X )) is such that Tk+1 = +∞. We set α(∅) = 0, X

∅

0 = x0, V0 = {∅} and Z̄0
t ≡ δ(∅,x0) for all

t ≥ 0, so that

Y 0 = (Z̄0,
(
�∅(x0,0, t), t ≥ 0

))
.

Let k ≥ 1. We now construct Y k+1. For all u ∈ VTk(Z̄
k) such that α(u) = Tk(Z̄

k) and for all
t ≥ α(u), we set Xu

t = �u(Xu
α(u), α(u), t). For all u ∈ VTk(Z̄

k), let

β(u) = inf{t > α(u),

∫ t

α(u)

∫
R+

1{z≤B(Xu

s− )}M
(
ds, {u}, dz, [0,1], [0,1])> 0}.

Let T = inf{β(u),u ∈ VTk(Z̄
k)}. Let (T ,Uk+1, θk+1,Lk+1,Ak+1) be the unique quintuplet of

random variables such that M({T }, {Uk+1}, {θk+1}, {Lk+1}, {Ak+1}) = 1. Let

VT = VT − \ {Uk+1} ∪ {Uk+11, . . . ,Uk+1G(Uk+1, T ,Lk+1)
}
,

and for all i = 1, . . . ,G(X
Uk+1
T ,Lk+1), we set α(Uk+1i) = T and

X
Uk+1i

α(Uk+1i)
= Fi

(
X

Uk+1
T ,Lk+1,Ak+1

)
.

We set

Z̄k+1
t = Z̄k

t , for all t ∈ [0, Tk

(
Z̄k
)]

,

Z̄k+1
t =

∑
u∈V

Tk(Z̄k )

δ(u,Xu
t ), for all t ∈ [Tk

(
Z̄k
)
, T
[
,

Z̄k+1
t =

∑
u∈VT

δ(u,Xu
T ), for all t ≥ T .

Finally, we set Y k+1 = (Z̄k+1, (Xu
s , s ≥ T ,u ∈ VT )) so that Tk+1(Z̄

k+1) = T .
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Let Z̄ be the measure-valued branching process on R+ satisfying, for all k ∈ N and all t ≥ 0,

Z̄t∧Tk(Z̄
k) = Z̄k

t .

Therefore, Tk(Z̄) = Tk(Z̄
k) for all k ∈N. To shorten notation, we write Tk instead of Tk(Z̄) until

the end of the proof.
Let f ∈D(G). We now prove by induction the following property:

Hk : {∀t ∈ [Tk,Tk+1), 〈Z̄t , f 〉 is a solution to (2.3)
}
.

First, H0 is obviously true. Assume that Hk−1 is true. Let t ∈ [Tk,Tk+1). We recall that Uk

denotes the individual who dies at time Tk . We denote by

Vt,1 = VTk−1 \ {Uk}, Vt,2 = {u ∈ Vt |α(u) = Tk

}
,

the set of all individuals born strictly before Tk except Uk and the descendants of Uk , respectively.
We have ∑

u∈Vt

f
(
u, t,Xu

t

)= ∑
u∈Vt,1

f
(
u, t,Xu

t

)+ ∑
u∈Vt,2

f
(
u, t,Xu

t

)
,

and

f
(
u, t,Xu

t

)= f
(
u, t,�u(XTk−1 , Tk−1, t)

)
.

As none of the individuals in VTk−1 \ {Uk} divides on [Tk−1, t], using (2.2), we obtain

f
(
u, t,Xu

t

)= f
(
u,Tk−1,X

u
Tk−1

)+ ∫ t

Tk−1

(
Gf
(
u, s,Xu

s

)+ ∂sf
(
u, s,Xu

s

))
ds

+ M
f,u
Tk−1,t

(
Xu

Tk−1

)
.

Then, we split both the integral term and the martingale in two terms to separate the behavior of
the population before Tk and after Tk . We add and subtract the contribution corresponding to Uk

to get a sum over all individuals alive at time Tk−1:∑
u∈Vt,1

f
(
u, t,Xu

t

)
=

∑
u∈VTk−1\{Uk}

∫ t

Tk

(
Gf
(
u, s,Xu

s

)+ ∂sf
(
u, s,Xu

s

))
ds

+
∑

u∈VTk−1\{Uk}
M

f,u
Tk,t

(
Xu

Tk

)− f
(
Uk,T

−
k ,X

Uk

T −
k

)+ ∑
u∈VTk−1

f
(
u,Tk−1,X

u
Tk−1

)

+
∑

u∈VTk−1

∫ Tk

Tk−1

(
Gf
(
u, s,Xu

s

)+ ∂sf
(
u, s,Xu

s

))
ds +

∑
u∈VTk−1

M
f,u
Tk−1,Tk

(
Xu

Tk−1

)
.

(A.1)
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Using the induction hypothesis, we have

∑
u∈VTk−1

f
(
u,Tk−1,X

u
Tk−1

)
= f (u,0, x0)

+
∫ Tk−1

0

∫
U×X

(
Gf (u, s, x) + ∂sf (u, s, x)

)
Z̄s(dudx)ds + M

f

0,Tk−1
(x0)

+
∫ Tk−1

0

∫
E

1{u∈Vs− ,z≤B(Xu

s− )}

(G(Xu
s ,l)∑

i=1

f
(
u, s,Fi

(
Xu

s− , l, θ
))− f

(
u, s,Xu

s−
))

× M(ds, du, dz, dl, dθ).

(A.2)

Moreover, for all s ∈ [Tk−1, Tk[, Vs = VTk−1 , so that we have

∑
u∈VTk−1

∫ Tk

Tk−1

(
Gf
(
u, s,Xu

s

)+ ∂sf
(
u, s,Xu

s

))
ds

=
∫ Tk

Tk−1

∑
u∈Vs

(
Gf
(
u, s,Xu

s

)+ ∂sf
(
u, s,Xu

s

))
ds.

(A.3)

Finally, combining (A.1), (A.2) and (A.3), we obtain

∑
u∈Vt,1

f
(
u, t,Xu

t

)
= f (∅,0, x0) +

∫ Tk

0

∫
U×X

(
Gf (u, s, x) + ∂sf (u, s, x)

)
Z̄s(dudx)ds

+ M
f

0,Tk−1
(x0) +

∑
u∈VTk−1

M
f,u
Tk−1,Tk

(
Xu

Tk−1

)− f
(
Uk,T

−
k ,X

Uk

T −
k

)

+
∫ Tk−1

0

∫
E

1{u∈Vs− ,z≤B(Xu

s− )}

(G(Xu
s ,l)∑

i=1

f
(
u, s,Fi

(
Xu

s− , l, θ
))− f

(
u, s,Xu

s−
))

× M(ds, du, dz, dl, dθ)

+
∑

u∈VTk−1 \{Uk}

[∫ t

Tk

(
Gf
(
u, s,Xu

s

)+ ∂sf
(
u, s,Xu

s

))
ds + M

f,u
Tk,t

(
Xu

Tk

)]
.

(A.4)
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Next, using again (2.2), we have∑
u∈Vt,2

f
(
u, t,Xu

t

)
=
∑

u∈Vt,2

[
f
(
u,Tk,X

u
Tk

)+ ∫ t

Tk

(
Gf
(
u, s,Xu

s

)+ ∂sf
(
u, s,Xu

s

))
ds + M

f,u
Tk,t

(
Xu

Tk

)]
.

(A.5)

Moreover, by definition of Vt,2,

∑
u∈Vt,2

f
(
u,Tk,X

u
Tk

)

=
∫ t

Tk−1

∫
E

1{u∈Vs− ,z≤B(Xu

s− )}
G(Xu

s ,l)∑
i=1

f
(
u, s,Fi

(
Xu

s− , l, θ
))

M(ds, du, dz, dl, dθ).

(A.6)

Adding the martingale terms of (A.4) and (A.5), we obtain

M
f

0,Tk−1
(x0) +

∑
u∈VTk−1

M
f,u
Tk−1,Tk

(
Xu

Tk−1

)
+

∑
u∈VTk−1\{Uk}

M
f,u
Tk−1,t

(
Xu

Tk−1

)+ ∑
u∈VTk

,α(u)=Tk

M
f,u
Tk,t

(
Xu

Tk

)= M
f

0,Tk
(x0).

(A.7)

Finally, we obtain the result combining (A.5), (A.6) and (A.7).

Appendix B: Proof of Lemma 2.4

Let Z̄(1) and Z̄(2) be two solutions of (2.3) associated with the previously defined family of
flows and Poisson point measure. For all k ∈ N, we write T

(i)
k = Tk(Z̄

(i)), i = 1,2. We assume

that Z̄
(1)
0 = Z̄

(2)
0 = δx , for some x ∈ X . We have T

(1)
0 = T

(2)
0 = 0. We prove by induction on

k ∈N the following proposition:

Hk: T
(1)
k+1 = T

(2)
k+1 and ∀t ∈ [T (1)

k , T
(1)
k+1

)
,∀f ∈ D̄(G),

〈
Z̄

(1)
t , f

〉= 〈Z̄(2)
t , f

〉
.

First, H0 is true because

T
(1)
1 = T

(2)
1 = inf

{
t > 0,

∫ t

0

∫
R+

1{z≤B(�∅(x,0,s))}M
(
ds, {∅}, dz, [0,1], [0,1])> 0

}
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and for all t ∈ [0, T1), Z̄
(1)
t = Z̄

(2)
t = δ�∅(x,0,t). Let us assume that Hk−1 is true. We first prove

the second point of Hk . By (2.3), for i = 1,2, we have〈
Z̄

(i)

T
(1)
k

, f
〉

= 〈Z̄(i)

T
(1)
k−1

, f
〉

+
∫ T

(1)
k

T
(1)
k−1

∫
U×X

(
Gf (u, s, x) + ∂sf (u, s, x)

)
Z̄(i)

s (du, dx)ds + M
f,(i)

T
(1)
k−1,T

(1)
k

(x)

+
∫ T

(1)
k

T
(1)
k−1

∫
E

1{u∈V
(i)

s− ,z≤B(X
u,(i)

s− )}

(G(Xu
s ,l)∑

i=1

f
(
u, s,Fi

(
Xu

s− , l, θ
))− f

(
u, s,X

u,(i)

s−
))

× M(ds, du, dz, dl, dθ).

(B.1)

As the jump integral (B.1) depends only on the process strictly before T
(1)
k , we obtain, using the

induction hypothesis, that 〈Z̄(1)

T
(1)
k

, f 〉 = 〈Z̄(2)

T
(1)
k

, f 〉. The evolution of the trait for t ∈ [T (1)
k , T

(1)
k+1 ∧

T
(2)
k+1) only depends on the family of flows given at the beginning and which are the same for

both solutions. Hence, it remains to prove that T
(1)
k+1 = T

(2)
k+1. And it is the case because this jump

time only depend on the state of the population at T
(1)
k , on the flows and on the Poisson point

measure M . Finally, for all t ∈ [T (1)
k , T

(1)
k+1), we have: 〈Z̄(1)

t , f 〉 = 〈Z̄(2)
t , f 〉.

Moreover, the measure-valued process is entirely characterized by {〈Z̄t , f 〉, f ∈ D̄(G)} ac-
cording to Remark 2.1. Therefore, there is a unique càdlàg measure-valued strong solution to
(2.3) up to the kth jump time for all k ∈N.

Appendix C: Proof of Lemma 3.4

Let t ≥ 0 and s ≤ t . We want to prove that m(·, s, t) ∈D(G) i.e. that

lim
r↓0

E(m(Xr, s, t)|X0 = x) − m(x, s, t)

r
= lim

r↓s

E(m(Xr, s, t)|Xs = x) − m(x, s, t)

r − s

exists. Let s ≤ r < t and x ∈X . We consider the event �r = {no division before r}. Then

1

r − s

(
E
(
m(Xr, s, t)|Xs = x

)− m(x, s, t)
)= A(x, r, s, t) + B(x, r, s, t) + C(x, r, s, t),

where

A(x, r, s, t) = 1

r − s

(
E
(
m(Xr, s, t)|Xs = x

)−E
(〈
Zr,m(·, s, t)〉1�r |Zs = δx

))
,

B(x, r, s, t) = 1

r − s
E
(〈
Zr,m(·, s, t)〉(1�r − 1)|Zs = δx

)
,
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C(x, r, s, t) = 1

r − s

(
E
(〈
Zr,m(·, s, t)〉|Zs = δx

)− m(x, s, t)
)
.

First,

A(x, r, s, t) = 1

r − s

(
E
(
m(Xr, s, t |Xs = x)

)−E
(
m
(
X∅

r , s, t
)
1�r |X∅

s = x
))

.

Conditioning with respect to σ(Xu, r ≤ u ≤ s) we obtain

A(x, r, s, t) = 1

r − s
E
(
m(Xr, s, t)

(
1 − e− ∫ r

s B(Xu)du
)|Xs = x

)−−→
r→s

m(x, s, t)B(x).

Next, we have

B(x, r, s, t) = − 1

r − s
E
(〈
Zr,m(·, s, t)〉1�C

r
|Zs = δx

)
.

Then, let us denote T1 the random variable corresponding to the lifetime of the first individual.
Using the Markov property and the branching property, we have

B(x, r, s, t) = − 1

r − s
E

(∑
u∈Vr

m
(
Xu

r , s, t
)
1{T1<r}

∣∣∣Zs = δx

)

= − 1

r − s
E

(
1{T1<r}

∑
k≥0

pk

(
X

∅

T1

)

×
k∑

j=0

∫ 1

0
E

(∑
u∈Vr

m
(
Xu

r , s, t
)∣∣∣Xu

T1
= F

(k)
j

(
X

∅

T1
, θ
))

× P
(k)
j

(
X

∅

T1
, dθ

)∣∣∣Zs = δx

)
.

Next, exhibiting the distribution of T1 we obtain

B(x, r, s, t) = − 1

r − s

∫ r

s

E

(
B
(
X∅

v

)
e− ∫ v

s B(X
∅

l )dl
∑
k≥0

pk

(
X∅

v

)

×
k∑

j=0

∫ 1

0
E

(∑
u∈Vr

m
(
Xu

r , s, t
)∣∣∣Xu

v = F
(k)
j

(
X∅

v , θ
))

P
(k)
j

(
X∅

v , dθ
)∣∣∣Zs = δx

)
.

Finally,

B(x, r, s, t) −−→
r→s

−B(x)
∑
k≥0

pk(x)

k∑
j=1

∫ 1

0
m
(
F

(k)
j (x, θ), s, t

)
P

(k)
j (x, dθ).
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For the last term, we have

C(x, r, s, t) = 1

r − s

(
E
(〈
Zr,m(·, s, t)〉|Zs = δx

)− m(x, s, t)
)

= 1

r − s

(
Rs,r (Rs,t1)(x) − Rs,t1(x)

)
= 1

r − s
Rs,r (Rs,t1 − Rr,t1)(x)

= Rs,r

(
m(·, s, t) − m(·, r, t)

r − s

)
(x) −−→

r→s
−∂sm(x, s, t),

because according to the first point of Assumption D, h−1(m(x, s +h, t)−m(x, s, t)) converges
uniformly for x in compact sets when h tends to zero. Finally,

lim
r→s

E(m(Xr, s, t)|Xs = x) − m(x, s, t)

r − s
,

exists.

Appendix D: Details of the proof of Theorem 3.1

We detail here the use of the monotone-class theorem in the proof of Theorem 3.1.
Using Remark 2.1, (3.4) is satisfied for any function of the form F = 1B1 · · ·1Bn , where Bi are

Borel sets, for i = 1, . . . , n, for all n ∈N. Let us define

H = {F :D([0, t],X )→ R+ bounded and measurable satisfying (3.4)
}
,

and

I =
{

n⋂
i=1

{
x ∈ D

([0, t],X ), x(si) ∈ Bi

}
, n ∈ N, si ∈ R+,Bi Borel sets

}
.

First, I is a π -system and σ(I) = D where D is the Borel σ -field associated with the Sko-
rokod topology on D([0, t],X ) ([11], Theorem 12.5). Then, applying the monotone-class the-
orem ([47], Theorem 3.14), we obtain that H contains all bounded measurable functions with
respect to the Skorokhod topology.
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