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We derive tight non-asymptotic bounds for the Kolmogorov distance between the probabilities of two Gaus-
sian elements to hit a ball in a Hilbert space. The key property of these bounds is that they are dimension-free
and depend on the nuclear (Schatten-one) norm of the difference between the covariance operators of the
elements and on the norm of the mean shift. The obtained bounds significantly improve the bound based
on Pinsker’s inequality via the Kullback–Leibler divergence. We also establish an anti-concentration bound
for a squared norm of a non-centered Gaussian element in Hilbert space. The paper presents a number
of examples motivating our results and applications of the obtained bounds to statistical inference and to
high-dimensional CLT.
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1. Introduction

In many statistical and probabilistic applications, one faces the problem of Gaussian comparison,
that is, one has to evaluate how the probability of a ball under a Gaussian measure is affected,
if the mean and the covariance operators of this Gaussian measure are slightly changed. Below
we present particular examples motivating our results when such “large ball probability” prob-
lem naturally arises, including bootstrap validation, Bayesian inference, high-dimensional CLT.
This paper presents sharp bounds for the Kolmogorov distance between the probabilities of two
Gaussian elements to hit a ball in a Hilbert space. The key property of these bounds is that they
are dimension-free and depend on the nuclear (Schatten-one) norm of the difference between
the covariance operators of the elements. We also state a tight dimension free anti-concentration
bound for a squared norm of a Gaussian element in Hilbert space which refines the well-known
results on the density of a chi-squared distribution; see Theorem 2.7.
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Section 1.1 presents some application examples where the “large ball probability” issue natu-
rally arises and explains how the new bounds of this paper can be used to improve the existing
results. The key observation behind the improvement is that in all mentioned examples we only
need to know the properties of Gaussian measures on a class of balls. It means, in particular,
that we would like to compare two Gaussian measures on the class of balls instead on the class
of all measurable sets. The latter can be upperbounded by general Pinsker’s inequality via the
Kullback–Leibler divergence. In case of Gaussian measures, this divergence can be expressed
explicitly in terms of parameters of the underlying measures, see, for example, Spokoiny and
Zhilova [28]. However, the obtained bound involves the inverse of the covariance operators of
the considered Gaussian measures. In particular, small eigenvalues have the largest impact which
is contra-intuitive if a probability of a ball is considered. Our bounds only involve the operator
and Frobenius norms of the related covariance operators and apply even in Hilbert space setup.
Upper bounds for the closeness of two centered Gaussian measures in the class of centered balls
in a separable Hilbert space see in Naumov, Spokoiny, Tavyrikov and Ulyanov [21]

The proofs of the present optimal results are based in particular on Theorem 2.6 below. This
theorem gives sharp upper bounds for a probability density function pξ (x,a) of ‖ξ −a‖2, where
ξ is a Gaussian element with zero mean in a Hilbert space H with norm ‖ · ‖ and a ∈ H. It is well
known that pξ (x,a) can be considered as a density function of a weighted sum of non-central
χ2 distributions. An explicit but cumbersome representation for pξ (x,a) in finite dimensional
space H is available (see, e.g., Section 18 in Johnson, Kotz and Balakrishnan [15]). However,
it involves some special characteristics of the related Gaussian measure which makes it hard
to use in specific situations. Our results from Theorem 2.6 and by Lemma B.1 are much more
transparent and provide sharp uniform and non-uniform upper bounds on the underlying density
respectively.

One can even get two-sided bounds for pξ (x,a) but under additional conditions, see, for ex-
ample, Christoph, Prokhorov and Ulyanov [12]. Asymptotic properties of pξ (x,a), small balls
probabilities P(‖ξ − a‖ ≤ ε), or large deviation bounds P(‖ξ‖ ≥ 1/ε) for small ε can be found
for example, in Bogachev [8], Ledoux and Talagrand [17], Li and Shao [18], Lifshits [19] and
Yurinsky [31].

The paper is organized as follows: a list of examples motivating our results and possible ap-
plications are given in Section 1.1. Section 2 collects the main results. The proofs are given in
Section 3. Some technical results and non-uniform upper bounds for pξ (x,a) are presented in
Appendices A and B respectively.

1.1. Application examples

This section collects some examples where the developed results seem to be very useful.

1.1.1. Bootstrap validity for the MLE

Consider an independent sample Y = (Y1, . . . , Yn)
� with a joint distribution P = ∏

i=1,...,n Pi .
The parametric maximum likelihood approach assumes that P belongs to a given parametric fam-
ily (Pθ , θ ∈ Θ ⊆R

p) dominated by a measure μ, that is, P = Pθ∗ for θ∗ ∈ Θ . The corresponding
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log-likelihood function can be written as a sum of marginal log-likelihoods �i(Yi, θ):

L(θ)
def= log

dPθ

dμ
(Y ) =

n∑
i=1

�i(Yi, θ), �i(Yi, θ) = log
dPi,θ

dμi

(Yi).

The MLE θ̃ of the true parameter θ∗ is defined as the point of maximum of L(θ):

θ̃
def= argmax

θ∈Θ

L(θ), L(̃θ)
def= max

θ∈Θ
L(θ).

If the parametric assumption is misspecified, the target θ∗ is defined as the best parametric fit:

θ∗ def= argmax
θ∈Θ

EL(θ).

The likelihood based confidence set E(z) for the target parameter θ∗ is given by

E(z)
def= {

θ : L(̃θ) − L(θ) ≤ z
}
.

The value z should be selected to ensure the prescribed coverage probability 1 − α:

P
(
θ∗ /∈ E(z)

) ≤ α. (1.1)

However, it depends on the unknown measure P. The bootstrap approach is a resampling tech-
nique based on the conditional distribution of the reweighted log-likelihood L�(θ)

L�(θ) =
n∑

i=1

�i(Yi, θ)w
�
i

with i.i.d. random weights w
�
i given the data Y . Below we assume that w

�
i ∼ N (1,1). The boot-

strap confidence set is defined as

E �(z)
def=

{
θ : sup

θ ′∈Θ

L�
(
θ ′)− L�(θ) ≤ z

}
.

The bootstrap distribution is perfectly known and the bootstrap quantile z� is defined by the
condition

P
�
(̃
θ /∈ E �

(
z�
)) = P

�
(

sup
θ∈Θ

L�(θ) − L�(̃θ) > z�
)

= α.

The bootstrap approach suggests to use z� in place of z to ensure (1.1) in an asymptotic sense.
Bootstrap consistency means that for n large

P
(
θ∗ /∈ E

(
z�
)) = P

(
L(̃θ) − L

(
θ∗)> z�

)≈ α;
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see, for example, Spokoiny and Zhilova [28]. A proof of this result is quite involved. The key
steps are the following two approximations:

sup
θ∈Θ

L(θ) − L
(
θ∗)≈ 1

2
‖ξ + a‖2,

sup
θ∈Θ

L�(θ) − L�(̃θ) ≈ 1

2

∥∥ξ �
∥∥2

,

(1.2)

where ξ is a Gaussian vector with the variance Σ given by

Σ
def= D−1 Var

[∇L
(
θ∗)]D−1, D2 = −∇2

EL
(
θ∗),

while ξ � is conditionally (given Y ) Gaussian w.r.t. the bootstrap measure P
� with the covariance

Σ� given by

Σ� def= D−1

(
n∑

i=1

∇�i

(
Yi, θ

∗){∇�i

(
Yi, θ

∗)}�
)

D−1.

The vector a in (1.2) is the so called modeling bias and it vanishes if the parametric assumption
P = Pθ∗ is precisely fulfilled. The matrix Bernstein inequality ensures that Σ� is close to Σ

in the operator norm for n large; see, for example, Tropp [29]. This yields bootstrap validity
under the true parametric assumption in a weak sense. However, for quantifying the quality of
the bootstrap approximation one has to measure the distance between two high dimensional
Gaussian distributions N (a,Σ) and N (0,Σ�). The recent paper Spokoiny and Zhilova [28]
used the approach based on the Pinsker inequality which gives a bound in the total variation
distance ‖ · ‖TV via the Kullback–Leibler divergence between these two measures. A related
bound involves the Frobenius norm ‖ · ‖Fr of the matrix Σ−1/2Σ�Σ−1/2 − Ip and the norm of

the vector β
def= Σ−1/2a:

∥∥N (a,Σ) −N
(
0,Σ�

)∥∥
TV ≤ 1

2

(∥∥Σ−1/2Σ�Σ−1/2 − Ip

∥∥
Fr + ∥∥Σ−1/2a

∥∥); (1.3)

see, for example, Spokoiny and Zhilova [28]. However, if we limit ourselves to the centered balls
then these bounds can be significantly improved. Namely, by the main result of Theorem 2.1 and
Corollary 2.2 below, we get under some technical conditions∣∣P(‖ξ + a‖2 > 2z�

)− α
∣∣≤ C

‖Σ‖Fr

(∥∥Σ − Σ�
∥∥

1 + ‖a‖2). (1.4)

The “small modeling bias” condition on a from Spokoiny and Zhilova [28] means that the value
‖Σ−1/2a‖ is small and it ensures that a possible model misspecification does not destroy the
validity of the bootstrap. Comparison of (1.4) with (1.3) reveals a number of benefits of (1.4).
First, the “shift” term is proportional to the squared norm of the vector a, while the bound (1.3)
depends on the norm of Σ−1/2a, that is, on the whole spectrum of Σ . Normalization by Σ−1/2



2542 F. Götze et al.

can significantly inflate the vector a in directions where the eigenvalues of Σ are small. In the
contrary, the bound (1.4) only involves the squared norm ‖a‖2 and the Frobenius norm of Σ ,
and the improvement from ‖Σ−1/2a‖ to ‖a‖2/‖Σ‖Fr can be enormous if some eigenvalues of
Σ nearly vanish. Further, the Frobenius norm ‖Σ−1/2Σ�Σ−1/2 − Ip‖Fr can be much larger than
the ratio ‖Σ − Σ�‖1/‖Σ‖Fr by the same reasons.

Note that the approach based on Theorem 2.1 and Corollary 2.2 below was used in Naumov,
Spokoiny and Ulyanov [22] to analyze non-asymptotic properties of bootstrap confidence sets
for spectral projectors of covariance matrices.

1.1.2. Prior impact in linear Gaussian modeling

Consider a linear regression model

Yi = Ψ �
i θ + εi .

The assumption of homogeneous Gaussian errors εi ∼N (0, σ 2) yields the log-likelihood

L(θ) = − 1

2σ 2

n∑
i=1

(
Yi − Ψ �

i θ
)2 + R = − 1

2σ 2

∥∥Y − Ψ �θ
∥∥2 + R,

where the term R does not depend on θ . A Gaussian prior Π = ΠG = N (0,G−2) results in the
posterior

ϑG | Y ∝ exp

(
L(θ) − 1

2
‖Gθ‖2

)
∝ exp

(
− 1

2σ 2

∥∥Y − Ψ �θ
∥∥2 − 1

2
‖Gθ‖2

)
.

We shall represent the quantity LG(θ)
def= L(θ) − 1

2‖Gθ‖2 in the form

LG(θ) = LG(θ̆G) − 1

2

∥∥DG(θ − θ̆G)
∥∥2

,

where

θ̆G
def= (

Ψ Ψ � + σ 2G2)−1
Ψ Y ,

D2
G

def= σ−2Ψ Ψ � + G2.

In particular, it implies that the posterior distribution P(ϑG | Y ) of ϑG given Y is N (θ̆G,D−2
G ).

A contraction property is a kind of concentration of the posterior on the elliptic set

EG(r) = {
θ : ∥∥W(θ − θ̆G)

∥∥≤ r
}
,

where W is a given linear mapping from R
p . The desirable credibility property manifests the

prescribed conditional probability of ϑG ∈ E(rG) given Y with rG defined for a given α by

P
(∥∥W(ϑG − θ̆G)

∥∥≥ rG | Y )= α. (1.5)
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Under the posterior measure ϑG ∼N (θ̆G,D−2
G ), this bound reads as

P
(‖ξG‖ ≥ rG

)= α (1.6)

with a zero mean normal vector ξG ∼ N (0,ΣG) for ΣG = WD−2
G W�. The question of a prior

impact can be stated as follows: whether the obtained credible set significantly depends on the
prior covariance G. Consider another prior Π1 = N (0,G−2

1 ) with the covariance matrix G−2
1 .

The corresponding posterior ϑG1 is again normal but now with parameters θ̆G1 = (Ψ Ψ � +
σ 2G2

1)
−1Ψ Y and D2

G1
= σ−2Ψ Ψ � + G2

1. We aim at checking the posterior probability of the
credible set EG(rG):

P
(∥∥W(ϑG1 − θ̆G)

∥∥≥ rG | Y ).
Clearly this probability can be written as

P
(‖ξG1

+ a‖ ≥ rG

)
with ξG1

∼N (0,ΣG1) for ΣG1 = WD−2
G1

W� and

a
def= W(θ̆G1 − θ̆G).

Therefore,∣∣P(∥∥W(ϑG1 − θ̆G)
∥∥≥ rG | Y )− α

∣∣ ≤ sup
r>0

∣∣P(‖ξG1
+ a‖ ≥ r

)− P
(‖ξG‖ ≥ r

)∣∣.
Again, the Pinsker inequality allows to upperbound the total variation distance between the Gaus-
sian measures N (0,ΣG) and N (a,ΣG1), however the answer is given via the Kullback–Leibler
distance between these two measures:∥∥N (0,ΣG) −N (a,ΣG1)

∥∥
TV ≤ C

(∥∥Σ−1/2
G ΣG1Σ

−1/2
G − Ip

∥∥
Fr + ∥∥Σ−1/2

G1
a
∥∥); (1.7)

see, for example, Panov and Spokoiny [23]. Results of this paper allow to significantly improve
this bound. In particular, only the nuclear norm ‖ΣG − ΣG1‖1, the norm of the vector a and the
Frobenius norm of ΣG are involved. If G2 ≥ G2

1, then ΣG ≤ ΣG1 and

‖ΣG − ΣG1‖1 = trΣG1 − trΣG

and thus, by the main result of Theorem 2.1 and Corollary 2.2 below, it holds under some tech-
nical conditions

∣∣P(∥∥W(ϑG1 − θ̆G)
∥∥≥ rG | Y )− α

∣∣ ≤ C(trΣG1 − trΣG + ‖a‖2)

‖ΣG‖Fr
.

This new bound significantly outperforms (1.7); see the discussion at the end of Section 1.1.1.
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1.1.3. Nonparametric Bayes approach

One of the central question in the nonparametric Bayes approach is whether one can use the
corresponding credible set as a frequentist confidence set for the true underlying mean EY =
f ∗ = Ψ �θ∗. Here we consider the model Y = f ∗ + ε = Ψ �θ + ε in R

n with a homogeneous
Gaussian noise ε ∼ N (0, σ 2

In) and a Gaussian prior N (0,G−2) on θ . The credible set EG(r)

for ϑG yields the credible set EG(r) for the corresponding response f = Ψ �θ :

E(r) = {
f = Ψ �θ : ∥∥AΨ �(θ − θ̆G)

∥∥≤ r
}
,

with some linear mapping A. The radius r = rG is fixed to ensure the prescribed credibil-
ity 1 − α for the corresponding set E(rα) due to (1.5) or (1.6) with W = AΨ � and ΣG =
AΨ �D−2

G Ψ A� = σ 2AΠGA�, with ΠG = Ψ �(Ψ Ψ � + σ 2G2)−1Ψ . The frequentist coverage
probability of the true response f ∗ is given by

P
(
f ∗ ∈ EG(r)

) = P
(∥∥A(

f ∗ − Ψ �θ̆G

)∥∥≤ r
)= P

(∥∥AΨ �(θ∗ − θ̆G

)∥∥≤ r
)
.

The aim is to show that the the latter is close to 1 − α. For the posterior mean θ̆G = (Ψ Ψ � +
σ 2G2)−1Ψ Y , it holds

E
[
A
(
f ∗ − Ψ �θ̆G

)] = A(I− ΠG)f ∗ def= a.

Further,

Σ
def= Var

{
A
(
f ∗ − Ψ �θ̆G

)} = Var{AΠGε} = σ 2AΠ2
GA�

and hence, the vector A(f ∗ − Ψ �θ̆G) is under P normal with mean a = A(I − ΠG)f ∗ and
variance Σ = σ 2AΠ2

GA�. Therefore,

P
(
f ∗ ∈ EG(r)

) = P
(‖a + ξ‖ ≤ r

)
.

Here ξ ∼N (0,Σ). So, it suffices to compare two probabilities

P
(‖a + ξ‖ ≤ r

)
vs P

(‖ξG‖ ≤ r
)

for all r ≥ 0. Existing results cover only very special cases; see, for example, Johnstone [16],
Bontemps [9], Panov and Spokoiny [23], Castillo [10], Castillo and Nickl [11], Belitser [3] and
references therein. Most of the mentioned results are of asymptotic nature and do not quantify
the accuracy of the coverage probability. The results of this paper enable to study this accuracy
in a straightforward way. Note first that the covariance operators Σ = σ 2AΠ2

GA� and ΣG =
σ 2AΠGA� satisfy Σ ≤ ΣG. This yields that

‖ΣG − Σ‖1 = trΣG − trΣ.

Theorem 2.1 and Corollary 2.2 allow to evaluate under some technical conditions the coverage
probability of the credibility set

∣∣P(f ∗ /∈ EG(rG)
)− α

∣∣ ≤ C(trΣG − trΣ + ‖a‖2)

‖Σ‖Fr
.
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The right-hand side of this bound can be easily evaluated. The value ‖a‖ = A(I − ΠG)f ∗ is
small under usual smoothness assumptions on f ∗. The difference

trΣG − trΣ = σ 2 tr
{
A
(
ΠG − Π2

G

)
A�}

is small under standard condition on the design Ψ and on the spectrum of G2; see, for example,
Spokoiny [27].

1.1.4. Central limit theorem in finite- and infinite-dimensional spaces

Another motivation for the current paper comes from the limit theorem in high-dimensional
spaces for convex sets, in particular, for non-centred balls. Applications of smoothing inequalities
require to evaluate the probability of hitting the vicinity of a convex set, see, for example, Bentkus
[4,5]. This question is closely related to the anti-concentration inequalities considered below in
Theorem 2.7. Recently, significant interest was shown in understanding of the anti-concentration
phenomenon for weighted sums of random variables, particularly, in random matrix and number
theory. We refer the interested reader to Rudelson and Vershynin [25], Götze and Zaitsev [14].

Let Y1, . . . , Yn be i.i.d. random vectors in R
p . Assume that all these vectors have zero mean

and the covariance operator Σ . Let X be a Gaussian random vector in R
p with zero mean and

the same covariance operator Σ . We are interested to bound

δ(C) = sup
A∈C

∣∣∣∣P(Y1 + · · · + Yn√
n

∈ A

)
− P(X ∈ A)

∣∣∣∣ (1.8)

for some class C of Borel sets. It is worth emphasizing that the probabilities of hitting the vicini-
ties of a set A ∈ C, play the crucial role in the form of the bound for δ(C). Assume the class C
satisfies the following two conditions:

(i) Class C is invariant under affine symmetric transformations, that is, DA + a ∈ C if A ∈
C,a ∈R

p and D : Rp → R
p is a linear symmetric invertible operator.

(ii) Class C is invariant under taking ε-neighborhoods for all ε > 0. More precisely, Aε,A−ε ∈
C if A ∈ C, where

Aε = {
x ∈R

p : ρA(x) ≤ ε
}

and A−ε = {
x ∈ A : Bε(x) ⊂ A

}
,

with ρA(x) = infy∈A |x −y| as the distance between A ⊂R
p and x ∈R

p , and Bε(x) = {y ∈ R
p :

|x − y| ≤ ε}.
Let X0 be a Gaussian random vector in Rp with zero mean and the identity covariance opera-

tor I. Assume that the class C in (1.8) is such that for all A ∈ C and ε > 0

P
(
X0 ∈ Aε\A)≤ apε, P

(
X0 ∈ A\A−ε

)≤ apε, (1.9)

where ap = ap(C) is the so called isoperimetric constant of C, e.g. taking C as the class of all
convex sets in R

p we get ap ≤ 4p1/4; see Ball [1].
It is known (see Bentkus [5], Theorem 1.2) that if C satisfies conditions (i), (ii) and (1.9) then

for some absolute constant C one has

δ(C) ≤ C(1 + ap)E|Y1|3/√n. (1.10)
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Therefore, the inequalities (1.9), that is, knowledge of ap , play the crucial role in the form of the
bound (1.10).

We have a similar situation in infinite-dimensional spaces. Though contrary to the finite di-
mensional case even if C is a rather small class of “good” subsets, for example, the class of
all balls, the convergence of P((Y1 + · · · + Yn)/

√
n ∈ A) to P(X ∈ A) for each A ∈ C, implied

by the central limit theorem, can not be uniform in A ∈ C; see, for example, Sazonov [26],
pp. 69–70. However, the convergence becomes uniform for a class of all balls with center at
some fixed point, say a. Such classes naturally appear in various statistical problems; see, for
example, Prokhorov and Ulyanov [24] or our previous application examples. Thus, similar to the
inequalities (1.9) we need to get sharp bounds for the probability P(x < ‖X − a‖2 < x + ε) for
the Gaussian element X in a Hilbert space H. Due to our Theorem 2.7 below, it holds under some
technical conditions that

P
(
x < ‖X − a‖2 < x + ε

)≤ Cε

‖Σ‖Fr

for an absolute constant C.

2. Main results

Throughout the paper, the following notation are used. We write a � b (a � b) if there exists
some absolute constant C such that a ≤ Cb (a ≥ Cb resp.). Similarly, a � b means that there
exist c,C such that ca ≤ b ≤ Ca. R (resp. C) denotes the set of all real (resp. complex) numbers.
We assume that all random variables are defined on common probability space (Ω,F,P) and
take values in a real separable Hilbert space H with a scalar product 〈·, ·〉 and norm ‖ · ‖. If
dimension of H is finite and equals p, we shall write Rp instead of H. Let E be the mathematical
expectation with respect to P. We also denote by B(H) the Borel σ -algebra.

For a self-adjoint operator A with eigenvalues λk(A), k ≥ 1, let us denote by ‖A‖ and ‖A‖1

the operator and nuclear (Schatten-one) norm by ‖A‖ def= sup‖x‖=1 ‖Ax‖ and

‖A‖1
def= tr |A| =

∞∑
k=1

∣∣λk(A)
∣∣.

We suppose below that A is a nuclear and ‖A‖1 < ∞.
Let Σξ be a covariance operator of an arbitrary Gaussian random element in H. By {λkξ }k≥1

we denote the set of its eigenvalues arranged in the non-increasing order, that is, λ1ξ ≥ λ2ξ ≥ · · · ,

and let λξ
def= diag(λjξ )

∞
j=1. Note that

∑∞
j=1 λjξ < ∞. Introduce the following quantities

Λ2
kξ

def=
∞∑

j=k

λ2
jξ , k = 1,2, (2.1)
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and

κ(Σξ ) =

⎧⎪⎨⎪⎩
Λ−1

1ξ , if 3λ2
1,ξ ≤ Λ2

1ξ ,

(λ1ξΛ2ξ )
−1/2, if 3λ2

1ξ > Λ2
1ξ ,3λ2

2ξ ≤ Λ2
2ξ ,

(λ1ξλ2ξ )
−1/2, if 3λ2

1ξ > Λ2
1ξ ,3λ2

2ξ > Λ2
2ξ .

(2.2)

It is easy to see that ‖Σξ‖Fr = Λ1ξ . Moreover, it is straightforward to check that

0.9

(Λ1ξΛ2ξ )
1/2

≤ κ(Σξ ) ≤ 1.8

(Λ1ξΛ2ξ )
1/2

. (2.3)

Hence, κ(Σξ ) � (Λ1ξΛ2ξ )
−1/2 and therefore equivalent results can be formulated in terms of

any of the quantities introduced. The following theorem is our main result.

Theorem 2.1. Let ξ and η be Gaussian elements in H with zero mean and covariance operators
Σξ and Ση , respectively. For any a ∈H

sup
x>0

∣∣P(‖ξ − a‖ ≤ x
)− P

(‖η‖ ≤ x
)∣∣

�
{
κ(Σξ ) +κ(Ση)

}(‖λξ − λη‖1 + ‖a‖2). (2.4)

The proof of Theorem 2.1 is given in Section 3.
We see that the obtained bounds are expressed in terms of the specific characteristics of the

matrices Σξ and Ση such as their operator and the Frobenius norms rather than the dimension p.
Another nice feature of the obtained bounds is that they do not involve the inverse of Σξ or Ση .
In other words, small or vanishing eigenvalues of Σξ or Ση do not affect the obtained bounds in
the contrary to the Pinsker bound. Similarly, only the squared norm ‖a‖2 of the shift a shows up

in the results, while the Pinsker bound involves ‖Σ−1/2
ξ a‖ which can be very large or infinite if

Σξ is not well conditioned.
Let us consider κ(Σξ ) in the first factor on the r.h.s of (2.4): κ(Σξ ) + κ(Ση). The repre-

sentation (2.2) mimics well the three typical situations: in the “large-dimensional case” with
three or more significant eigenvalues λjξ , one can take κ(Σξ ) = ‖Σξ‖−1

Fr = λ−1
1ξ . In the “two

dimensional” case, when the sum Λ2
kξ is of the order λ2

kξ for k = 1,2, we have that κ(Σξ )

behaves as the product (λ1ξλ2ξ )
−1/2. In the intermediate case of a spike model with one

large eigenvalue λ1ξ and many small eigenvalues λjξ , j ≥ 2, we have that κ(Σξ ) behaves as
(λ1ξΛ2ξ )

−1/2.
As it was mentioned earlier (see (2.3)), the result of Theorem 2.1 may be equivalently for-

mulated in a “unified” way in terms of (Λ1ξΛ2ξ )
−1/2 and (Λ1ηΛ2η)

−1/2. Moreover, we specify

the bound (2.4) in the “high-dimensional” case, 3‖Σξ‖2 ≤ ‖Σξ‖2
Fr,3‖Ση‖2 ≤ ‖Ση‖2

Fr, which
means at least three significantly positive eigenvalues of the matrices Σξ and Ση . In this case
Λ2

2ξ ≥ 2Λ2
1ξ/3,Λ2

2η ≥ 2Λ2
1η/3 and we get the following corollary.
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Corollary 2.2. Let ξ and η be Gaussian elements in H with zero mean and covariance operators
Σξ and Ση , respectively. Then for any a ∈H

sup
x>0

∣∣P(‖ξ − a‖ ≤ x
)− P

(‖η‖ ≤ x
)∣∣

�
(

1

(Λ1ξΛ2ξ )
1/2

+ 1

(Λ1ηΛ2η)1/2

)(‖λξ − λη‖1 + ‖a‖2).
Moreover, assume that

3‖Σξ‖2 ≤ ‖Σξ‖2
Fr and 3‖Ση‖2 ≤ ‖Ση‖2

Fr.

Then for any a ∈ H

sup
x>0

∣∣P(‖ξ − a‖ ≤ x
)− P

(‖η‖ ≤ x
)∣∣

�
(

1

‖Σξ‖Fr
+ 1

‖Ση‖Fr

)(‖λξ − λη‖1 + ‖a‖2).
We complement the result of Theorem 2.1 and Corollary 2.2 with several additional remarks.

The first remark is that by the Weilandt–Hoffman inequality, ‖λξ − λη‖1 ≤ ‖Σξ − Ση‖1, see,
for example, Markus [20]. This yields the bound in terms of the nuclear norm of the difference
Σξ − Ση , which may be more useful in a number of applications.

Corollary 2.3. Under conditions of Theorem 2.1, we have

sup
x>0

∣∣P(‖ξ − a‖ ≤ x
)− P

(‖η‖ ≤ x
)∣∣ �

{
κ(Σξ ) +κ(Ση)

}(‖Σξ − Ση‖1 + ‖a‖2).
Since the right-hand side of (2.4) does not change if we exchange ξ and η, Theorem 2.1 and

its corollaries hold for the balls with the same shift a. In particular, the following corollary is
true, that improves Theorem 4 in Barsov and Ulyanov [2]

Corollary 2.4. Under conditions of Theorem 2.1, we have

sup
x>0

∣∣P(‖ξ − a‖ ≤ x
)− P

(‖η − a‖ ≤ x
)∣∣ �

{
κ(Σξ ) +κ(Ση)

}(‖λξ − λη‖1 + ‖a‖2).
The result of Theorem 2.1 may be also rewritten in terms of the operator norm∥∥Σ−1/2

ξ ΣηΣ
−1/2
ξ − I

∥∥.
Indeed, using the inequality ‖AB‖1 ≤ ‖A‖1‖B‖ we immediately obtain the following corollary.
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Corollary 2.5. Under conditions of Theorem 2.1, we have

sup
x>0

∣∣P(‖ξ − a‖ ≤ x
)− P

(‖η‖ ≤ x
)∣∣

�
{
κ(Σξ ) +κ(Ση)

}(
tr(Σξ )

∥∥Σ−1/2
ξ ΣηΣ

−1/2
ξ − I

∥∥+ ‖a‖2).
We now discuss the origin of the value κ(Σξ ) which appears in the main theorem and its

corollaries. Analysing the proof of Theorem 2.1 one may find out that it is necessary to get an
upper bound for a probability density function (p.d.f.) pξ (x) (resp. pη(x)) of ‖ξ‖2 (resp. ‖η‖2)
and the more general p.d.f. pξ (x,a) of ‖ξ − a‖2 for all a ∈ H. The same arguments remain true
for pη(x). The following theorem provides uniform bounds.

Theorem 2.6. Let ξ be a Gaussian element in H with zero mean and covariance operator Σξ .
Then it holds for any a that

sup
x≥0

pξ (x,a) � κ(Σξ ) (2.5)

with κ(Σξ ) from (2.2). In particular, κ(Σξ ) � (Λ1ξΛ2ξ )
−1/2.

The proof of this theorem will be given in Section 3.

Since ξ
d= ∑∞

j=1

√
λjξZj ejξ , we obtain that ‖ξ‖2 d= ∑∞

j=1 λjξZ
2
j . Here and in what follows

{ejξ }∞j=1 is the orthonormal basis formed by the eigenvectors of Σξ corresponding to {λjξ }∞j=1.

In the case H = R
p , a = 0,Σξ � I one has that the distribution of ‖ξ‖2 is close to standard χ2

with p degrees of freedom and

sup
x≥0

pξ (x,0) � p−1/2.

Hence, the bound (2.5) gives the right dependence on p because κ(Σξ ) � p−1/2. However, a
lower bound for supx≥0 pξ (x,a) in the general case is still an open question. Another possible
extension is a non-uniform upper bound for the p.d.f. of ‖ξ − a‖2. In this direction for any
λ > λ1ξ we can prove that

pξ (x,a) ≤ exp(−(x1/2 − ‖a‖)2/(2λ))

2
√

λ1ξλ2ξ

∞∏
j=3

(1 − λjξ/λ)−1/2;

see Lemma B.1 and remark after it in Appendix B. It is still an open question whether it is
possible to replace the λkξ ’s in the denominator by Λkξ , k = 1,2.

A direct corollary of Theorem 2.6 is the following theorem which states for a rather general
situation a dimension-free anti-concentration inequality for the squared norm of a Gaussian el-
ement ξ . In the “high dimensional situation”, this anti-concentration bound only involves the
Frobenius norm of Σξ .
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Theorem 2.7 (ε-band of the squared norm of a Gaussian element). Let ξ be a Gaussian
element in H with zero mean and a covariance operator Σξ . Then for arbitrary ε > 0, one has

sup
x>0

P
(
x < ‖ξ − a‖2 < x + ε

)
� κ(Σξ )ε (2.6)

with κ(Σξ ) from (2.2). In particular, κ(Σξ ) can be replaced by (Λ1ξΛ2ξ )
−1/2.

We finish this section by some lower bounds that justify the structure of estimates in Theo-
rem 2.1 and Theorem 2.7.

For simplicity, we consider the case of centred ball, i.e. a = 0 and denote κ(Σξ ,Ση)
def=

max{κ(Σξ ),κ(Ση)}. We show that in the case H = R2 there exist covariance operators Σξ

and Ση and some absolute positive constant C1 such that κ(Σξ ,Ση) � (λ1ξλ2ξ )
−1/2 and

sup
x>0

∣∣P(‖ξ‖ ≤ x
)− P

(‖η‖ ≤ x
)∣∣≥ C1(λ1ξλ2ξ )

−1/2‖Σξ − Ση‖1, (2.7)

that is, in this case the lower bound coincides up to an absolute constant with the upper bound
in Theorem 2.1. To show (2.7), we consider the following example. Let ξ and η be the Gaussian
random vectors in R

2 with zero means and covariance matrices Σξ = diag(λ1ξ , λ2ξ ) and Ση =
diag(λ1η, λ2η) resp. Then

sup
x>0

∣∣P(‖ξ‖ ≤ x
)− P

(‖η‖ ≤ x
)∣∣≥ ∣∣P(‖ξ‖ ≤ √

R
)− P

(‖η‖ ≤ √
R
)∣∣,

for some R which will be chosen later. Put

E1
def=

{
(x1, x2) ∈R

2 :
2∑

j=1

λjξx
2
j ≤ R

}
, E2

def=
{

(x1, x2) ∈R
2 :

2∑
j=1

λjηx
2
j ≤ R

}
.

Let us take λ1ξ = λ1η, λ2η/2 < λ2ξ < λ2η . This choice gives ‖Σξ − Ση‖1 = λ2η − λ2ξ and
κ(Σξ ,Ση) � (λ1ξλ2ξ )

−1/2. It is straightforward to check that

∣∣P(‖ξ‖ ≤ √
R
)− P

(‖η‖ ≤ √
R
)∣∣ = 1

2π

∫
E1\E2

exp

(
−x2

1 + x2
2

2

)
dx1 dx2

≥ 1

2π

(|E1| − |E2|
)

exp

[
−R

2

(
1

λ1ξ
+ 1

λ2ξ

)]
,

where |Ei | is a volume of the ellipsoid |Ei |, i = 1,2. Applying the formula for the volume of an
ellipsoid we obtain

|E1| − |E2| ≥ πR‖Σξ − Ση‖1

4
√

2
√

λ1ξλ2ξλ2ξ

.
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We take R = 2λ2ξ . Then

R

2λ2ξ
exp

(
− R

2λ2ξ

)
= e−1 >

1

3
.

Hence,∣∣P(‖ξ‖ ≤ √
R
)− P

(‖η‖ ≤ √
R
)∣∣ ≥ ‖Σξ − Ση‖1

12
√

2
√

λ1ξλ2ξ

exp

[
−λ2ξ

λ1ξ

]
≥ C1

‖Σξ − Ση‖1√
λ1ξλ2ξ

,

where C1
def= exp(−1)/(12

√
2). From the last inequality, we get (2.7).

However it is still an open question to get a lower bound in Theorem 2.1 even in the case of
centered balls. The problem to get a lower bound in Theorem 2.6 is open as well. Partly the last
problem was solved in Christoph, Prokhorov and Ulyanov [12], Theorem 1.

We now turn to the case H = R
1. Here, one may get a two-sided inequality. First, we derive

an upper bound. Let ξ and η be normal variables with zero mean and variances λξ and λη resp.
Without loss of generality, we may assume that λξ < λη . Then

sup
x>0

∣∣P(‖ξ‖ ≤ x
)− P

(‖η‖ ≤ x
)∣∣

= 2√
2π

sup
x>0

∫ x/
√

λξ

x/
√

λη

e−y2/2 dy

≤ ‖Σξ − Ση‖1√
ληλξ (

√
λξ + √

λη)
sup
x>0

(
x exp

(−x2/(2λη)
))

�
‖Σξ − Ση‖1

λξ
.

We also have the following lower bound:

sup
x>0

∣∣P(‖ξ‖ ≤ x
)− P

(‖η‖ ≤ x
)∣∣

= 2√
2π

sup
x>0

∫ x/
√

λξ

x/
√

λη

e−y2/2 dy

≥ 2‖Σξ − Ση‖1x0 exp(−x2
0/(2λξ ))√

2π
√

ληλξ (
√

λξ + √
λη)

� ‖Σξ − Ση‖1

λη
,

where x0
def= √

λξ .
Similar arguments can be applied in the case of Theorem 2.7. The right-hand side of (2.6)

essentially depends on the first two eigenvalues of Σξ . In general, it is impossible to get similar
bounds of order O(ε) with dependence on λ1ξ only. In fact, let H =R

2 and λ1ξ = 1 and λ2ξ = 0
(i.e., ξ has the degenerate Gaussian distribution). Then for all positive ε ≤ log 2 one has

sup
x>0

P
(
x < ‖ξ‖2 < x + ε

)≥ ε1/2/(2
√

π).
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3. Proofs of the main results

This section collects the proofs of the main results.

Proof of Theorem 2.6. Let {ej }∞j=1 be an orthonormal basis in H formed by the eigenvectors
of Σξ corresponding to eigenvalues {λ1ξ }∞j=1. In what follows we omit the index ξ from the

notation. Put aj
def= 〈a, ej 〉 and ξj

def= 〈ξ , ej 〉. Then ξj , j ≥ 1, are independent N (0, λj ) r.v. Let
gj (x), j ≥ 1, (resp. fj (t)) be the p.d.f (resp. c.f.) of (ξj − aj )

2. Moreover, let g(m,x),m ≥ 1
(resp. g(m,x),m ≥ 1) be the p.d.f. of

∑m
j=1(ξj − aj )

2 (resp.
∑∞

j=m+1(ξj − aj )
2). We also

introduce the c.f. f (m, t) of
∑m

j=1(ξj − aj )
2. As

p(x,a) =
∫ ∞

−∞
g(m,y)g(m,x − y)dy ≤ sup

x≥0
g(m,x), (3.1)

we may restrict ourselves to the finite dimensional case only, e.d., H = R
m, where m is some

large integer. Hence, in what follows we will assume that ξ is a m dimensional vector.
We separately consider three cases corresponding to the definition (2.2) of κ(Σξ ):

1. 3λ2
1 ≤ Λ2

1;
2. 3λ2

1 ≥ Λ2
1, 3λ2

2 ≥ Λ2
2;

3. 3λ2
1 ≥ Λ2

1, 3λ2
2 ≤ Λ2

2.

We start with the case 1. It is straightforward to check that

∣∣fj (t)
∣∣≤ 1

(1 + 4λ2
j t

2)1/4
, j = 1, . . . ,m. (3.2)

By the inverse formula

p(x,a) = 1

2π

∫ +∞

−∞
e−itx

m∏
j=1

fj (t) dt

≤ 1

2π

∫ +∞

−∞

m∏
j=1

∣∣fj (t)
∣∣dt ≤ 1

2π

∫ +∞

−∞

m∏
j=1

1

(1 + 4λ2
j t

2)1/4
dt.

Now Lemma A.2 implies the desired bound.
The proof in case 2 follows from the Lemma B.1 in Section B. However, as long as a uniform

bound is concerned, one can simplify the proof. Indeed, similarly to (3.1) one can show that for
m ≥ 2

g(m,x) ≤ sup
x≥0

g(2, x).



Large ball probability 2553

It is straightforward to check that

gj (x) = 1

2
√

2πxλj

[
exp

(
− (x1/2 − aj )

2

2λj

)
+ exp

(
− (x1/2 + aj )

2

2λj

)]
≤ 1√

2πxλj

. (3.3)

This inequality implies that

g(2, x) =
∫ x

0
g1(x − y)g2(y) dy ≤ 1

2π
√

λ1λ2

∫ x

0
(x − y)−1/2y−1/2 dy = 1

2
√

λ1λ2
.

It remains to use the fact that the r.h.s. of the previous inequality can also be bounded by
C/

√
Λ1Λ2.

Finally, we consider the case 3. Define wj
def= λ2

j /Λ
2
2 for j ≥ 2 and rewrite ‖ξ‖2 as follows

‖ξ‖2 d= (ξ1 − a1)
2 + Λ2η,

where η
def= ∑m

j=2
√

wj(Zj − a′
j )

2, a′
j

def= aj /
√

λj ,Zj ∼N (0,1). Let pη be the p.d.f. of random
variable η. The bound (3.3) implies

g(m,x) ≤ 1√
2πλ1

∫ x/Λ2

0

pη(z)√
x − Λ2z

dz ≤ C√
λ1Λ2

sup
x>0

∫ x

0

pη(z)√
x − z

dz. (3.4)

We will show that pη(z) is bounded by some absolute constant. Indeed, by the inverse formula

pη(z) = 1

2π

∫ +∞

−∞
e−itz

m∏
j=2

f j (t) dt,

where f j (t) is the characteristic function of
√

wj(Zj −a′
j )

2 for j = 2, . . . ,m. Similarly to (3.2),

we can bound |f j (t)| ≤ (1 + 4wj t
2)−1/4 and

pη(z) ≤ 1

2π

∫ +∞

−∞

m∏
j=2

∣∣f j (t)
∣∣dt ≤ 1

2π

∫ +∞

−∞

m∏
j=2

1

(1 + 4wj t2)1/4
dt.

In view of
∑

j≥2 wj = 1, Lemma A.2 implies

sup
z

pη(z) � 1. (3.5)

We divide integral in r.h.s. of (3.4) into two parts: x − z < 1,0 ≤ z ≤ x and x − z ≥ 1,0 ≤ z ≤ x.
For the first part, we use (3.5), for the second part we estimate integrand by pη(z) and use∫∞

0 pη(z) dz = 1. This bound yields the upper bound of order (λ1Λ2)
−1/2 � (Λ1Λ2)

−1/2 in
case (3). This completes the proof of the theorem. �

Remark 3.1. Notice that instead of Lemma A.2 one may also apply an alternative approach
from Ul’yanov [30], Lemma 5, and Bobkov, Chistyakov and Götze [7], Lemma 7.1.
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Proof of Theorem 2.1. We split the proof into two parts. In the first part, we study the case
a = 0 and show that

sup
x>0

∣∣P(‖ξ‖ ≤ x
)− P

(‖η‖ ≤ x
)∣∣� {

κ(Σξ ) +κ(Ση)
}‖λξ − λη‖1. (3.6)

The second part is devoted to the case Σξ = Ση . We prove

sup
x>0

∣∣P(‖ξ − a‖ ≤ x
)− P

(‖ξ‖ ≤ x
)∣∣� κ(Σξ )‖a‖2. (3.7)

The final estimate will follow by combining the two obtained estimates and the triangular in-
equality.

Case I: a = 0.
Without loss of generality we may assume that Σξ = λξ ,Ση = λη , where λξ

def= diag(λ1ξ ,

λ2ξ , . . .), λη
def= diag(λ1η, λ2η, . . .) and λ1ξ ≥ λ1ξ ≥ . . . and similarly in decreasing order for

λiη’s.
Fix any s : 0 ≤ s ≤ 1. Let Z(s) be a Gaussian random element in H with zero mean and

diagonal covariance operator V(s):

V(s)
def= sλξ + (1 − s)λη.

Denote by f (t, s) (resp. p(x, s)) the characteristic function (resp. p.d.f.) of ‖Z(s)‖2. Let λ1(s) ≥
λ2(s) ≥ . . . be the eigenvalues of V(s) and introduce the diagonal resolvent operator G(t, s)

def=
(I − 2itV(s))−1. Recall that ‖Z(s)‖2 d= ∑n

j=1 λj (s)Z
2
j , where Zj , j ≥ 1, are i.i.d. N (0,1) r.v.

Then it is straightforward to check that a characteristic function f (t, s) of ‖Z(s)‖2 can be written
as

f (t, s) = E exp
{
it
∥∥Z(s)

∥∥2}= exp

{
−1

2
tr log

(
I− 2itV(s)

)}
,

where for an operator A and the identity operator I we use notation

log(I+ A) = A
∫ 1

0
(I+ yA)−1 dy.

It is well known, see, for example, Chung [13], §6.2, p. 168, that for a continuous d.f. F(x) with
c.f. f (t) we may write

F(x) = 1

2
+ i

2π
lim

T →∞ V.P.
∫

|t |≤T

e−itxf (t)
dt

t
,

where V.P. stands for the principal value of integral. Let us fix an arbitrary x > 0. Then

P
(‖ξ‖2 < x

)− P
(‖η‖2 < x

)= i

2π
lim

T →∞ V.P.
∫

|t |≤T

f (t,1) − f (t,0)

t
e−itx dt,
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By the Newton–Leibnitz formula

f (t,1) − f (t,0) =
∫ 1

0

∂f (t, s)

∂s
ds.

It is straightforward to check that

∂f (t, s)/∂s

t
= if (t, s) tr

{
(λξ − λη)G(t, s)

}
.

Changing the order of integration we get

P
(‖ξ‖2 < x

)− P
(‖η‖2 < x

)
= − 1

2π

∫ 1

0

∫ ∞

−∞
tr
{
(λξ − λη)G(t, s)

}
f (t, s)e−itx dt ds.

(3.8)

Since G(t, s) is the diagonal operator with (1 − 2itλj (s))
−1 on the diagonal, we may fix s and

j and consider the following quantity

1

2π

∫ ∞

−∞
(
1 − 2itλj (s)

)−1
f (t, s)e−itx dt.

Let Zj(s), j ≥ 1 be independent exponentially distributed r.v. with mean 2λj (s) (we write
Exp(2λj (s))), which are also independent of Zk, k ≥ 1. Then

EeitZj (s) = (
1 − 2itλj (s)

)−1
.

Moreover, (1−2itλj (s))
−1f (t, s) is the characteristic function of Zj (s)+‖Z(s)‖2. Let pj (x, s)

be the corresponding p.d.f. Then

1

2π

∫ ∞

−∞
(
1 − 2itλj (s)

)−1
f (t, s)e−itx dt = pj (x, s).

Denote by P(x, s) a diagonal operator with pj (x, s) on the main diagonal. Then we may conclude
that

1

2π

∫ ∞

−∞
tr
{
(λξ − λη)G(t, s)

}
f (t, s)e−itx dt = tr

{
(λξ − λη)P(x, s)

}
.

It is clear that the absolute value of the last term is bounded above by

‖λξ − λη‖1 max
j

sup
x≥0

pj (x, s)

and we need to bound uniformly each pj (x, s). For any j :

pj (x, s) =
∫ ∞

−∞
p(y, s)pj (x − y, s) dy ≤ sup

x≥0
p(x, s),



2556 F. Götze et al.

where pj (x, s) is the p.d.f. of Zj (s). Applying Theorem 2.6, we obtain

sup
x≥0

p(x, s) � 1

(Λ1(s)Λ2(s))1/2
,

where Λk(s), k = 1,2, are defined by (2.1) if one replace ξ by Z(s). It remains to integrate over
s and use (2.3) to obtain

sup
x>0

∣∣P(‖ξ‖2 < x
)− P

(‖η‖2 < x
)∣∣≤ {

κ(Σξ ) +κ(Ση)
}‖λξ − λη‖1.

This bounds concludes the proof of (3.6).
Case II: Σξ = Ση and a �= 0.
We may rotate ξ such that Σξ = Λξ . Then we have to replace a by appropriate a, but

‖a‖ = ‖a‖. Fix any s : 0 ≤ s ≤ 1. Let a(s)
def= a

√
s. Introduce the diagonal operator G(t)

def= (I−
2itΛξ )

−1. It is straightforward to check that a characteristic function f (t,a(s)) of ‖ξ − a(s)‖2

can be written as

f
(
t,a(s)

)= E exp
{
it
∥∥ξ − a(s)

∥∥2}= exp

{
it

(
s
〈
G(t)a,a

〉− 1

2it
tr log(I− 2itΛξ )

)}
.

Repeating the arguments from the proof of Theorem 2.1 we obtain (compare with (3.8))

P
(‖ξ − a‖2 < x

)− P
(‖ξ‖2 < x

)= − 1

2π

∫ 1

0

∫ ∞

−∞
〈
G(t)a,a

〉
f
(
t,a(s)

)
e−itx dt ds.

Moreover, we may rewrite the last equation as follows

P
(‖ξ − a‖2 < x

)− P
(‖ξ‖2 < x

)= −
∞∑

j=1

[aj ]2
∫ 1

0
pj

(
x,a(s)

)
ds,

where pj (x,a(s)) is p.d.f of Zj + ‖ξ − a(s)‖2. Here Zj is a random variable with exponen-
tial distribution Exp(2λjξ ). It remains to apply Theorem 2.6 and integrate over s. We conclude
(3.7). �

Appendix A: Technical results

Lemma A.1. It holds

sup
0<a≤1

a

∫ ∞

0

1

(1 + t2)a+1/2
dt ≤ C, (A.1)

and

sup
a≥1

a1/2
∫ ∞

0

1

(1 + t2)a+1/2
dt ≤ C. (A.2)
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Proof. Define

H(a)
def=

∫ ∞

0

1

(1 + t2)a+1/2
dt. (A.3)

Obviously, H(a) monotonously decreases in a. Integration by parts implies for a > 0∫ ∞

0

t2

(1 + t2)a+3/2
dt = − 1

2a + 1

∫ ∞

0
t d

(
1

(1 + t2)a+1/2

)
= 1

2a + 1

∫ ∞

0

1

(1 + t2)a+1/2
dt = H(a)

2a + 1
.

At the same time, for a > 0∫ ∞

0

t2

(1 + t2)a+3/2
dt =

∫ ∞

0

1 + t2

(1 + t2)a+3/2
dt −

∫ ∞

0

1

(1 + t2)a+3/2
dt = H(a) − H(a + 1).

This implies a recurrent relation

H(a + 1) = a

a + 1/2
H(a).

For a ∈ [0,1], it implies

aH(a) = (a + 1/2)H(a + 1) ≤ 3

2
H(1) = C

and (A.1) follows. For a = a0 + k with a0 ∈ [1,2] and an integer k ≥ 0, we use that

√
aH(a) = √

a
(a − 1)(a − 2) . . . a0

(a − 1/2)(a − 3/2) . . . (a0 + 1/2)
H(a0)

=
√

a(a − 1)

a − 1/2

√
(a − 1)(a − 2)

a − 3/2
. . .

√
(a0 + 1)a0

a0 + 1/2

√
a0H(a0) ≤ √

2H(1) = C.

This proves (A.2). �

Lemma A.2. Let λ1 ≥ λ2 ≥ · · · ≥ λp and

3λ2
1 ≤ Λ2 def=

p∑
j=1

λ2
j .

Define

hj (t)
def= 1

(1 + λ2
j t

2)1/4
, j = 1, . . . , p.
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Then it holds ∫ ∞

0

p∏
j=1

hj (t) dt � 1

Λ
.

Proof. Let qj be a set of positive numbers with qj ≥ 3 and
∑

j q−1
j = 1. A specific choice will

be given later (cf. Bobkov and Chistyakov [6], Lemma 5). By the Hölder inequality∫ ∞

0

p∏
j=1

hj (t) dt ≤
p∏

j=1

(∫ ∞

0

∣∣hj (t)
∣∣qj dt

)1/qj

.

Further, for each j , by the change of variable λj t = u∫ ∞

0

∣∣hj (t)
∣∣qj dt =

∫ ∞

0

dt

(1 + λ2
j t

2)qj /4
= λ−1

j

∫ ∞

0

du

(1 + u2)qj /4
= λ−1

j H(qj /4 − 1/2)

with H(·) from (A.3). Therefore, by (A.2) of Lemma A.1 in view of qj/4 − 1/2 ≥ 1/4∫ ∞

0

p∏
j=1

hj (t) dt ≤
p∏

j=1

(
H(qj/4 − 1/2)

λj

)1/qj

�
p∏

j=1

(
1

λj

√
qj /4 − 1/2

)1/qj

. (A.4)

Now we fix qj by the condition

λ2
j (qj /4 − 1/2) = τ,

where the constant τ is determined by
∑p

j=1 q−1
j = 1. This yields

1

qj

= λ2
j

4τ + 2λ2
j

,

p∑
j=1

λ2
j

4τ + 2λ2
j

= 1,

and obviously τ ≤ Λ2/4 and τ + λ2
1/2 ≥ Λ2/4. The condition 3λ2

1 ≤ Λ2 implies

qj = 4τ

λ2
j

+ 2 ≥ Λ2 − 2λ2
1

λ2
1

+ 2 ≥ 3, j ≤ p.

Also

τ ≥ 1

4

(
Λ2 − 2λ2

1

)≥ 1

4

(
Λ2 − 2Λ2

3

)
� Λ2.

Now it follows from (A.4) that∫ ∞

0

p∏
j=1

hj (t) dt �
(

1√
τ

)q−1
1 +···+q−1

p

� 1

Λ

as required. �
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Appendix B: A non-uniform bound for the density of a
weighted non-central χ2 distribution

Lemma B.1. Let ξ be a Gaussian element in H with zero mean and covariance operator Σξ .
Denote by pξ (x,a) the p.d.f. of ‖ξ − a‖2. Then for any a ∈H and all λ > λ1ξ

pξ (x,a) ≤ exp(−(x1/2 − ‖a‖)2/(2λ))

2
√

λ1ξλ2ξ

∞∏
j=3

(1 − λjξ/λ)−1/2. (B.1)

Remark B.1. The infinite product in the r.h.s. of (B.1) is convergent. Indeed, taking logarithm
and using log(1 + x) ≥ x/(x + 1) for x > −1 we obtain

0 < −1

2
log

∞∏
j=3

(1 − λjξ/λ) ≤ 1

2(λ − λ1ξ )

∞∑
j=3

λjξ < ∞,

where we also used the fact that Σξ is a nuclear operator and ‖Σξ‖1 < ∞. Taking λ = ‖Σξ‖1

we get
∏∞

j=3(1 − λjξ/λ)−1/2 ≤ √
e.

Proof. We will use the notation from the proof of Theorem 2.6. We rewrite gj (x) as follows

gj (x) = 1√
2πxλj

dj (x),

where

dj (x)
def= dj (λj , x)

def= 1

2

[
exp

(−(
x1/2 − aj

)2
/(2λj )

)+ exp
(−(

x1/2 + aj

)2
/(2λj )

)]
.

It is straightforward to check that for a ≥ b ≥ 0(
(a − b)1/2 − c

)2 + (
b1/2 − d

)2 ≥ (
a1/2 − (

c2 + d2)1/2)2
,

and

dj (x) ≤ exp
(−(

x1/2 − |aj |
)2

/(2λj )
)
.

We have for all j = 1,2, . . . and any λ > λ1

gj (x) ≤ 1√
2πxλj

exp
(−(

x1/2 − |aj |
)2

/(2λ)
)
dj

(
λλj/(λ − λj ), x

)
. (B.2)

Moreover,

(2πx)−1/2(λ − λj )
1/2/(λλj )

1/2dj

(
λλj/(λ − λj ), x

)
(B.3)
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is the density function of (
√

λ/(λ − λj )ξj − aj )
2. These inequalities imply

g(2, x) =
∫ x

0
g1(x − y)g2(y) dy

≤ 1

2π
√

λ1λ2
exp

(−(
x1/2 − (

a2
1 + a2

2

)1/2)2
/(2λ)

)∫ x

0
(x − y)−1/2y−1/2 dy

= 1

2
√

λ1λ2
exp

(−(
x1/2 − (

a2
1 + a2

2

)1/2)2
/(2λ)

)
.

Similarly, applying the last inequality, (B.2) and (B.3) we obtain

g(3, x) =
∫ x

0
g(2, x − y)g3(y) dy

≤ 1

2
√

λ1λ2
√

2πλ3
exp

(−(
x1/2 − (

a2
1 + a2

2 + a2
3

)1/2)2
/(2λ)

)
×
∫ x

0

d3(λλ3/(λ − λ3), y)

y1/2
dy

≤ 1

2
√

λ1λ2
exp

(−(
x1/2 − (

a2
1 + a2

2 + a2
3

)1/2)2
/(2λ)

)(
1 − λ3

λ

)−1/2

.

By induction, we get

g(m,x) ≤ 1

2
√

λ1λ2
exp

(
− (x1/2 − (a2

1 + · · · + a2
m)1/2)2

2λ

) m∏
j=3

(
1 − λj

λ

)−1/2

. (B.4)

Now take an arbitrary ε > 0 and any integer m > 0. Let 0 < μ < 1/(2λj ) for all j ≥ m + 1. By
Markov’s inequality and using the moment generating function of χ2 we obtain

P

( ∞∑
j=m+1

ξ2
j ≥ ε2

)
≤ e−με2

∞∏
j=m+1

Ee
μξ2

j = e−με2
∞∏

j=m+1

1√
1 − 2μλj

.

Let us choose μ
def= 1/(4

∑∞
j=m+1 λj ). Taking logarithm and using log(1 + x) ≥ x/(x + 1) for

x > −1 we obtain

0 < −1

2
log

∞∏
j=m+1

(1 − 2μλj ) ≤ μ

1 − 2μλm+1

∞∑
j=m+1

λj <
1

4(1 − 1/2)
= 1/2,

It follows now that
∏∞

j=m+1(1 − 2μλj )
−1/2 ≤ √

e < 2. Hence,

P

( ∞∑
j=m+1

ξ2
j ≥ ε2

)
≤ 2 exp

{
−ε2

(
4

∞∑
j=m+1

λj

)−1}
.
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Since ‖Σ‖1 < ∞ it follows that
∑∞

j=m+1 λj tends to zero as m goes to infinity. Hence, there
exists M1 = M1(ε) such that for all m ≥ M1

P

( ∞∑
j=m+1

ξ2
j ≥ ε2

)
≤ ε2.

For any m ≥ M1 we obtain

∞∑
j=m+1

(ξj − aj )
2 ≤ 2

( ∞∑
j=m+1

ξ2
j +

∞∑
j=m+1

a2
j

)
.

We choose M2 = M2(ε) such that
∑∞

j=m+1 a2
j ≤ ε2. Hence, for m > M1 + M2 we obtain the

following inequality

P
(
x − ε ≤ ‖ξ − a‖2 ≤ x + ε

)≤ P

(
x − ε − 4ε2 ≤

m∑
j=1

(ξj − aj )
2 ≤ x + ε

)
+ ε2.

The last inequality implies

P
(
x − ε ≤ ‖ξ − a‖2 ≤ x + ε

)≤ ε2 + (
2ε + 4ε2) sup

y∈T (ε,x)

g(m,y),

where T (ε, x)
def= {y ∈ R

1 : x −ε−4ε2 ≤ y ≤ x +ε}. Dividing the right-hand side of the previous
inequality by 2ε we obtain (B.1) from (B.4) as ε tends to 0. �
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