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This paper proposes feasible asymptotically efficient estimators for a certain class of Gaussian noises with
self-similarity and stationarity properties, which includes the fractional Gaussian noises, under high fre-
quency observations. In this setting, the optimal rate of estimation depends on whether either the Hurst or
diffusion parameters is known or not. This is due to the singularity of the asymptotic Fisher information
matrix for simultaneous estimation of the above two parameters. One of our key ideas is to extend the
Whittle estimation method to the situation of high frequency observations. We show that our estimators are
asymptotically efficient in Fisher’s sense. Further by Monte-Carlo experiments, we examine finite sample
performances of our estimators. Finite sample modifications of the asymptotic variances of the estimators
are also given, which exhibit almost perfect fits to the numerical results.

Keywords: asymptotic efficiency; fractional Gaussian noises; high frequency observations; local
asymptotic normality; Whittle estimation

1. Introduction

Self-similarity and Gaussianity properties of noises in time series data are observed in many
fields, for example, hydrology, turbulence, molecular biology and financial economics. Fractional
Brownian motion, which is introduced by Kolmogorov [13] and further developed by Mandelbrot
and Van Ness [16], is the most fundamental continuous-time model to represent these phenom-
ena. Until now, statistical inference problems of discretely observed fractional Brownian motion
have been studied under the large sample asymptotics (cf. Fox and Taqqu [9], Dahlhaus [6],
Lieberman et al. [14,15], Cohen et al. [5]) or the high frequency asymptotics (cf. Coeurjolly
[4], Brouste and Iacus [3], Kawai [12], Brouste and Fukasawa [2]). Some of them also discuss
the optimality of their estimators or local asymptotic normality (LAN) property under those
asymptotics. To the best of our knowledge, however, there is no estimator available so far which
is computationally feasible and asymptotically optimal under the high frequency asymptotics,
despite that it has become important because of increasing availability of high frequency data
thanks to recent developments of information technology.

Now, we review the results of Kawai [12] and Brouste and Fukasawa [2], where they stud-
ied the LAN property of the fractional Gaussian noises under high frequency observations. The
parameter to be estimated is (H,σ ) ∈ (0,1] × (0,∞), where H and σ are the so-called Hurst
parameter and diffusion parameter respectively. Kawai [12] obtained a LAN property in a weak
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sense, where the rate matrix φ̄n(H,σ ) and the asymptotic Fisher information matrix I(H,σ ) are
given by

φ̄n(H,σ ) :=

⎛⎜⎜⎝
1√

n| log δn| 0

0
1√
n

⎞⎟⎟⎠ , I(H,σ ) :=
⎛⎜⎝ 2 − 2

σ

− 2

σ

2

σ 2

⎞⎟⎠ .

Here, n is the sample size and δn is the length of sampling intervals. The LAN property is only
in a weak sense because I(H,σ ) is a singular matrix. As a result, the asymptotic lower bounds
of risk are derived only in the case that either the Hurst parameter H or the diffusion parameter
σ is known. In Brouste and Fukasawa [2], it was shown that the LAN property in the usual sense
actually holds even if both of the parameters are unknown. One of their key ideas is using a
certain class of non-diagonal rate matrices. The LAN property enables them to determine the
optimal rate of estimation for each of H and σ . Then the lower bounds of variance are given as
follows; for any estimators Ĥn and σ̂n,

lim
C→∞ lim inf

n→∞ sup
‖φ−1

n (H0,σ0)((H,σ )∗−(H0,σ0)
∗)‖

R2<C

nE
(n)
H,σ

[
(Ĥn − H)2]≥ G1(H0)

−1,

lim
C→∞ lim inf

n→∞ sup
‖φ−1

n (H0,σ0)((H,σ )∗−(H0,σ0)
∗)‖

R2 <C

n

σ 2(log δn)2
E

(n)
H,σ

[
(̂σn − σ)2]≥ G1(H0)

−1,

for any (H0, σ0), where

G1(H) := 1

4π

∫ π

−π

(
∂

∂H
logfH (λ)

)2

dλ − 1

2

(
1

2π

∫ π

−π

∂

∂H
logfH (λ)dλ

)2

> 0

and fH is the spectral density of the fractional Gaussian noises, which will be given later. It
is noteworthy that the optimal rates of estimation are slower than in the case where the other
parameter is known.

The LAN property implies the asymptotic efficiency of the maximum likelihood estimator
(MLE) in general. The MLE is unfortunately not computationally feasible for the fractional
Gaussian noises because the computation of the inverse of the covariance matrices is very heavy.
Our main contribution in this context is to construct computationally feasible asymptotically ef-
ficient estimators. We deal with the three cases: both the Hurst parameter H and the diffusion
parameter σ are unknown, only the Hurst parameter H is known, only the diffusion parameter σ

is known. Actually, we work under a more general model of Gaussian noises with self-similarity
and stationarity properties, which generalizes the fractional Gaussian noises.

This paper is organized as follows. In Section 3, we introduce the model. In Section 4, we give
several examples in our framework. In Section 5, we present and prove our main results. In Sec-
tion 6, we investigate finite sample performances of our estimators by Monte-Carlo experiments.
In the Appendix, we give several lemmas and extensions of the results in Kawai [12], Brouste
and Fukasawa [2].
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2. Notation and brief review of the Whittle estimator in large
sample setting

In this section, we prepare notation used in this paper and briefly review asymptotic properties of
the Whittle estimator in large sample setting, that is, the situation that a length of sampling inter-
val δ > 0 is constant and a sample size n → ∞ is considered through this section. In particular,
we suppose δ ≡ 1 for notational simplicity.

2.1. Notation

Let p ∈ N, �† be a closure of a bounded convex domain in R
p+1 and a function f : �† ×

[−π,π] → [−∞,∞] be sufficiently smooth in the sense specified later. Denote fθ (λ) ≡ f (θ,λ)

and

aq(θ) :=
(

1

2π

∫ π

−π

∂

∂θ1
logfθ (λ) dλ, . . . ,

1

2π

∫ π

−π

∂

∂θq

logfθ (λ) dλ

)
,

Fq(θ) :=
(

1

4π

∫ π

−π

∂

∂θi

logfθ (λ)
∂

∂θj

logfθ (λ) dλ

)
i,j=1,...,q

,

Gq(θ) :=
(

1

4π

∫ π

−π

∂

∂θi

loggθ (λ)
∂

∂θj

loggθ (λ)dλ

)
i,j=1,...,q

for each q ∈ {1,2, . . . , p + 1}, where the function gθ (λ) ≡ g(θ,λ) is defined by

gθ (λ) := fθ (λ)

b(θ)
with b(θ) := exp

(
1

2π

∫ π

−π

logfθ (λ) dλ

)
.

In particular, denote a0(θ) := 0 for notational simplicity. Moreover, define

In(xn, λ) := 1

2πn

∣∣∣∣∣
n∑

j=1

xj e
√−1jλ

∣∣∣∣∣
2

with xn = (x1, . . . , xn) ∈ R
n, λ ∈ [−π,π].

2.2. Asymptotic properties of the Whittle estimator in large sample setting

Let (
,F,P ) be a probability space on which a centered stationary Gaussian sequence {Xj }j∈Z
with a spectral density f (θ,λ) is defined, that is, its covariance function is characterized by the
function f : �† × [−π,π] → [−∞,∞] as follows:

E[XiXj ] = 1

2π

∫ π

−π

e
√−1(i−j)λf (θ,λ) dλ for any i, j ∈ Z.

In the following, denote fθ (λ) ≡ f (θ,λ) for notational simplicity. Moreover, we impose the
following conditions, which are used in many of previous works, see, for example, Fox and
Taqqu [9], Dahlhaus [6,7], Lieberman et al. [14] and Cohen et al. [5], on the spectral density:
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(S.1) If θ1 and θ2 are distinct elements of �†, a set {λ ∈ [−π,π] : fθ1(λ) 
= fθ2(λ)} has a
positive Lebesgue measure.

(S.2) f ∈ C3,1(�† × [−π,π] \ {0}) and there exists a continuous function α : �† → (−1,1)

such that for any η > 0, there exist positive constants c1,η, c2,η , which only depend on
η, such that the following conditions hold for every (θ, λ) ∈ �† × [−π,π] \ {0}.
(a) c1,η|λ|−α(θ)+η ≤ fθ (λ) ≤ c2,η|λ|−α(θ)−η.
(b) For any l ∈ {1,2,3} and k ∈ {1, . . . , p + 1}l ,∣∣∣∣ ∂l

∂θk1 · · · ∂θkl

fθ (λ)

∣∣∣∣≤ c2,η|λ|−α(θ)−η,∣∣∣∣ ∂l+1

∂λ∂θk1 · · · ∂θkl

fθ (λ)

∣∣∣∣≤ c2,η|λ|−α(θ)−1−η.

(S.3) The matrix Fp+1(θ) is invertible for any θ ∈ �†.

Remark 1. Under the condition (S.2), the spectral density fθ (λ) and its derivatives are integrable
and the differential and integral operators can be freely interchanged.

Remark 2. It is unclear whether the identifiability condition (S.1) implies (S.3). Actually,
Taniguchi [20], p.161, and Dzhaparidze [8], p.107, assume the same or equivalent conditions
as (S.3) in addition to (S.1). Note that the condition (S.3) is equivalent to the linear independence
of a family of functions {∂/∂θj logfθ (·)}j=1,...,p+1 for any θ ∈ �†. Moreover, its linear inde-
pendence is equivalent to that of a family of functions {∂/∂θj loggθ (·)}j=1,...,p+1 for any θ ∈ �†

under the condition (S.2) because ∂/∂θj loggθ (λ) equals ∂/∂θj logfθ (λ) plus a certain constant
and these functions are not constant under (S.2). As a result, the condition (S.3) is also equivalent
to that the matrices Gq(θ) are invertible for any θ ∈ �† and q ∈ {1,2, . . . , p + 1} under (S.2).

Through this section, we consider the following observations

X(1)
n := (X1, . . . ,Xn), n ∈N, (2.1)

and denote by Q
(n)
θ a distribution of X(1)

n . The Whittle likelihood LW(θ) and the Whittle estima-

tor θ̂W
n based on observed values xn := X(1)

n (ω) for a certain ω ∈ 
 are defined in the following
way:

LW
n (θ) := 1

2π

∫ π

−π

logfθ (λ)dλ + 1

2π

∫ π

−π

In(xn, λ)

fθ (λ)
dλ, θ̂W

n := arg min
(θ)∈�×�

LW
n (θ).

The following result is derived from Theorem 5 in Lieberman et al. [14] and Theorem 2.4 in
Cohen et al. [5].

Theorem 1. Let a true value θ0 be an interior point of the parameter space �†. Under (S.1)–
(S.3), a sequence of the Whittle estimators θ̂W

n is asymptotically efficient in Fisher’s sense, that
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is, it holds that

L
{√

n
(
θ̂W
n − θ0

)|Q(n)
θ0

} n→∞→ N
(
0,Fp+1(θ0)

−1),
where Fp+1(θ0) is the non-singular asymptotic Fisher information matrix at the point θ0.

3. Model assumption

In this section, we introduce several assumptions for a model considered in this paper, which are
inspired from the previous works documented in Section 2.

Assumption 1. Let parameter spaces � and � be the closures of bounded convex domains
in R

p−1 × (0,1] and (0,∞), respectively. Moreover, assume true values θ0 ≡ (ψ0,H0) ≡
(ψ

(1)
0 , . . . ,ψ

(p−1)

0 ,H0) and σ0 are interior points of � and �, respectively. Let the sample size
n ∈ N and the length of sampling intervals δn > 0 satisfy infn∈N nδn > 0 and δn → 0 as n → ∞.
Let (
,F,P ) be a probability space on which a sequence of observations:

Xn := (Xn
1 , . . . ,Xn

n

)
, n ∈ N,

is defined, where Xn is a n-dimensional centered Gaussian random vector which covariance
function is characterized by a spectral density f n(θ, σ,λ), that is, it holds that

E
[
Xn

i Xn
j

]= 1

2π

∫ π

−π

e
√−1(i−j)λf n(θ, σ,λ) dλ for any i, j = 1, . . . , n.

Denote by P
(n)
θ,σ a distribution of Xn. Moreover, we impose the following condition on the spectral

density:

(S.0) f n(θ, σ,λ) is decomposed as σ 2δ2H
n f (θ,λ), where (θ, σ,λ) �→ σ 2f (θ,λ) satisfies the

conditions (S.1)–(S.3) with the parameter space �† := � × �.

In the following, denote f n(θ, σ,λ) and f (θ,λ) as f n
θ,σ (λ) and fθ (λ), respectively. Moreover,

we sometimes use the notation θp+1 ≡ σ for simplicity.

Remark 3. As far as we consider the asymptotics of high frequency observations, it is natural
to regard the data as discrete observations from a continuous-time process. If we consider a
stationary stochastic process X = {Xt }t∈R with a spectral density fX(θ,λ) with λ ∈ R, then the
well-known aliasing formula yields that a spectral density of its discrete sample with the length
of observations δn is given by

f n(θ,λ) := 1

2πδn

∑
j∈Z

fX

(
θ,

λ + 2πj

δn

)
, λ ∈ [−π,π].
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Moreover, if we consider a centered self-similar stationary Gaussian noise (δn ≡ 1) in the sense
of Sinai [19], then its spectral density is given by

fH,η(λ) := η
{
2(1 − cosλ)

}∑
j∈Z

1

|λ + 2πj |1+2H
, λ ∈ [−π,π], (3.1)

for a certain constant η > 0. Note that certain series are naturally appeared in both cases. As far
as we are interested in self-similar stationary Gaussian noises, it suffices to consider stationary
Gaussian noises with spectral densities like (3.1). However, we actually work under more slightly
general form of spectral densities appeared in (S.0).

Remark 4. In the large sample setting corresponding to δn ≡ δ and n → ∞, it is not necessary to
consider the decomposition of the spectral density in (S.0) as shown in Section 2 because we can
include the part σ 2δ2H into the model parameters. This is also mentioned in the seminal paper
of Dahlhaus [6], p.1752. In the high frequency setting, however, we cannot do this because the
variable δn which drives the asymptotics is closely related with the Hurst parameter H . Moreover,
the parameter σ and the others play different roles under high frequency observations. In fact, as
we see later, the efficient rate of estimator of σ is different from that of the others.

4. Examples

In this section, we give several examples satisfying the assumptions introduced in the previous
section. Namely, we treat three models: the fractional Brownian motion, a special case of a
fractional Langevin model and its extension.

4.1. Fractional Brownian motion

A centered continuous Gaussian process {BH
t }t∈R is called a fractional Brownian motion (fBm)

with the Hurst parameter H if its covariance function is given by

E
[
BH

t BH
s

] := 1

2

(|t |2H + |s|2H − |t − s|2H
)

for any s, t ∈ R.

Such a process actually exists for any H ∈ (0,1] from the Kolmogorov’s extension and conti-
nuity theorems. It is well known that the fBm has the stationary increments and self-similarity
properties, that is,{

BH
t+k − BH

k

}
t∈R = {BH

t

}
t∈R and

{
BH

ct

}
t∈R = {cH BH

t

}
t∈R (4.1)

hold in law for any k ∈ R and c > 0. Consider the following observations:

Bn := (σBH
δn

, σBH
2δn

, . . . , σBH
nδn

)
,
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where n is the sample size and δn is the length of sampling intervals. Denote by P
(n)
H,σ a distribu-

tion of a n-dimensional centered Gaussian random vector

Xn := (Xn
1 , . . . ,Xn

n

)
with Xn

j := σ
(
BH

jδn
− BH

(j−1)δn

)
.

Note that Xn satisfies all conditions in Assumption 1. Indeed, the properties in (4.1) yield that a
covariance function of Xn is characterized by

E
[
Xn

i Xn
j

]= σ 2δ2H
n

2

(|i − j + 1|2H − 2|i − j |2H + |i − j − 1|2H
)

= 1

2π

∫ π

−π

e
√−1(i−j)λf n

H,σ (λ)dλ

for any i, j = 1, . . . , n, where f n
H,σ (λ) := σ 2δ2H

n fH (λ) and

fH (λ) := CH

{
2(1 − cosλ)

}∑
j∈Z

1

|λ + 2πj |1+2H

with CH := �(2H + 1) sin(πH)

2π
,

(4.2)

see Sinai [19] and Samorodnitsky and Taqqu [18]. Moreover, it is easily shown that the spectral
density f n

H,σ satisfies the condition (S.0) (cf. Fox and Taqqu [9]).

4.2. Fractional Langevin model

In the context of molecular biology, the movement of particle in homogeneous medium is mod-
eled by the Langevin equation. One of the characteristics of this model is that a mean square
displacement of particle linearly grows in time. The particle in inhomogeneous medium, how-
ever, does not behave in the same way. Namely, the mean square displacement of particle in
this situation grows as a power function in time. This phenomenon is the so-called anomalous
diffusion, see, for example, Bouchaud and Georges [1] for more detail. Therefore, we attempt to
model this by the following second order stochastic differential equations:

dZt = Yt dt,

dYt = −∇q(Zt ) − γ Yt dt + σ dBH
t , γ, σ > 0,

where Z and Y represent the position and velocity of particle respectively, q is a certain potential
function, γ and σ are the friction and diffusion coefficients respectively, and BH is the fractional
Brownian motion with the Hurst parameter H . Here, we assumed the mass of the particle is equal
to 1 for notational simplicity. We call the above equations as a fractional Langevin model named
after the Langevin model in the case of H = 1/2.

Under the situation of a free particle with no friction term, that is, assume q is a constant
function and γ = 0 in the fractional Langevin model, we consider a statistical inference problem
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for the unknown parameter (H,σ ) based on position data {Zjδn}j=1,...,n, where n is the sample
size and δn is the length of sampling intervals. In this situation, no velocity data are available
so that we consider to substitute numerical derivatives of the position data {Zjδn}j=1,...,n for the
velocity data. Namely, we define a proxy {Yn

j }j=1,...,n for the velocity data of particle by

Yn
j := 1

δn

(Zjδn − Z(j−1)δn) = 1

δn

∫ jδn

(j−1)δn

Yt dt.

Then, we define n-dimensional centered Gaussian random vectors Xn := (Xn
1 , . . . ,Xn

n) with n ∈
N and denote by P

(n)
H,σ a distribution of Xn, where

Xn
j := Yn

j − Yn
j−1 = σ

δn

∫ jδn

(j−1)δn

(
BH

t − BH
t−δn

)
dt.

Note that Xn satisfies all conditions in Assumption 1. Indeed, it is easily shown that a covariance
function of Xn is characterized by

E
[
Xn

i Xn
j

]= σ 2δ2H
n

2

(|i − j + 2|2H+2 − 4|i − j + 1|2H+2

+ 6|i − j |2H+2 − 4|i − j − 1|2H+2 + |i − j − 2|2H+2)
= 1

2π

∫ π

−π

e
√−1(i−j)λf n

H,σ (λ)dλ

for any i, j = 1, . . . , n, where f n
H,σ (λ) := σ 2δ2H

n fH (λ) and

fH (λ) := CH

{
2(1 − cosλ)

}2∑
j∈Z

1

|λ + 2πj |3+2H
with CH := �(2H + 1) sin(πH)

2π
.

Moreover, it is shown that the spectral density f n
H,σ satisfies the condition (S.0) in the similar

ways to the previous example. Therefore, this example is included in our setting.
More generally, we consider a sequence of n-dimensional centered Gaussian random vectors

which covariance functions are characterized by the following spectral density:

f n
H,ψ,σ (λ) := σ 2δ2H

n CH

{
2(1 − cosλ)

}ψ+1∑
j∈Z

1

|λ + 2πj |1+2H+2ψ
,

where ψ ∈ (0,∞) and CH is given in the above. Note that such Gaussian random vectors exist
for any ψ ∈ (0,∞) because their covariance matrix are well-defined and positive definite for
each n ∈ N. Moreover, it is easily shown that f n

H,ψ,σ satisfies the condition (S.0) in the similar
ways to the previous examples. A continuous-time stochastic process behind such a sequence can
be formally derived from taking the fractional difference of the order ψ for a fractional integral
of the order ψ of the fractional Brownian motion with the Hurst parameter H and appropriately
rescaling. However, its rigorous justification is left for future research.
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5. Construction of asymptotically efficient estimators

The Whittle estimation method is very useful to estimate the Hurst parameter of a certain classs
of stationary Gaussian time series in various aspects, for example, the Whittle estimator enjoys
asymptotic efficiency as well as the MLE and can be computed more easily and faster than it
because we compute an approximate log-likelihood instead of the exact one which involves the
inverse of the covariance matrix. Therefore, we attempt to prove the Whittle estimation method
also works well under the high frequency observations. In the following, we consider statistical
inference problems of our model in three cases: both parameters (θ, σ ) are unknown, only the
Hurst parameter H is known, only the diffusion parameter σ is known. In each case, we construct
a feasible asymptotically efficient estimator by applying the Whittle estimation method.

5.1. Only the Hurst parameter H is known

Assume the true value of the Hurst parameter H0 is known through this subsection. Under the
condition (S.0), we define an estimation function L̄N (ψ,σ ) based on observed values xn :=
Xn(ω) for a certain ω ∈ 
 as follows:

L̄n(ψ,σ ) := 1

2π

∫ π

−π

log
(
σ 2δ2H0

n fψ(λ)
)
dλ + 1

2π

∫ π

−π

In(xn, λ)

σ 2δ
2H0
n fψ(λ)

dλ

= 2H0 log δn + 1

2π

∫ π

−π

log
(
σ 2fψ(λ)

)
dλ + 1

2π

∫ π

−π

In(̃xn, λ)

σ 2fψ(λ)
dλ,

where fψ(λ) := fψ,H0(λ), x̃n := δ
−H0
n xn. Then we define an estimator for the unknown parame-

ter (ψ,σ ) by

(ψ̄n, σ̄n) := arg min
(ψ,H0,σ )∈�×�

L̄n(ψ,σ )

= arg min
(ψ,H0,σ )∈�×�

{
1

2π

∫ π

−π

log
(
σ 2fψ(λ)

)
dλ + 1

2π

∫ π

−π

In(̃xn, λ)

σ 2fψ(λ)
dλ

}
.

Note that the decomposition of the spectral density in (S.0) and the Gaussianity of the distribution
of Xn yield that the distribution of

X̃n := (δ−H0
n Xn

1 , . . . , δ−H0
n Xn

n

)
, n ∈N, (5.1)

is equal to that of X(1)
n with spectral density σ 2fθ (λ). As a result, the following result is obtained

from Theorem 1 and an easy modification of Theorem 2.4 of Cohen et al. [5] even under high
frequency observations.

Theorem 2. Suppose Assumption 1 and H0 is known. Then (ψ̄n, σ̄n) is an asymptotically effi-
cient estimator in Fisher’s sense, that is, it holds that

L
{√

n

(
ψ̄n − ψ0
σ̄n − σ0

)∣∣∣P (n)
θ0,σ0

}
n→∞→ N

(
0,F(ψ0, σ0)

−1),
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where the non-singular asymptotic Fisher information matrix F(ψ,σ ) is given by

F(ψ,σ ) :=
(

1

4π

∫ π

−π

∂

∂θi

log
(
σ 2fψ(λ)

) ∂

∂θj

log
(
σ 2fψ(λ)

)
dλ

)
i,j=1,...,p−1,p+1

.

5.2. Both parameters (θ,σ ) are unknown

In this section, we consider the case that both parameters (θ, σ ) are unknown. This case is more
difficult than the previous case because we cannot substantially take the appropriate scaling of
the data like (5.1). However, we can construct an asymptotically efficient estimator as follows: At
first, under the assumption (S.0), we define the reparametrized spectral density gθ (λ) ≡ g(θ,λ)

with θ ∈ � by

gθ (λ) := fθ (λ)

b(θ)
with b(θ) := exp

(
1

2π

∫ π

−π

logfθ (λ)dλ

)
.

Then, gθ also satisfies the conditions (S.1) and (S.2). Moreover, it is easily shown that the fol-
lowing equality holds for any θ ∈ �:

1

2π

∫ π

−π

loggθ (λ) dλ = 0. (5.2)

Then, the Whittle estimation function ν2
n(θ) and the Whittle estimator θ̂n for the reparametrized

parameter (ν, θ) with ν := σδH
n b(θ)−1/2 based on observed values xn := Xn(ω) for a certain

ω ∈ 
 are defined by

ν2
n(θ) := 1

2π

∫ π

−π

In(xn, λ)

gθ (λ)
dλ, θ̂n := arg min

θ∈�

ν2
n(θ).

Note that the estimator θ̂n also minimizes a rescaled estimation function σ̃ 2
n (θ) given by

σ̃ 2
n (θ) := (δ2H0

n b(θ0)
)−1

ν2
n(θ) = 1

2π

∫ π

−π

In(̃xn, λ)

gθ (λ)
dλ, (5.3)

where x̃n := (δ
2H0
n b(θ0))

− 1
2 xn, and the same argument in (5.1) yields that a distribution of X̃n :=

(δ
2H0
n b(θ0))

− 1
2 Xn is equal to that of X(1)

n with spectral density σ 2gθ (λ). In other words, we can
formally take an appropriate scaling of the data even if H0 is unknown. Define σ̃n := (̃σ 2

n (θ̂n))
1/2.

Then, we can regard a random variable (θ̂n, σ̃n) as a minimizer of a function Ln(θ, σ ) given by

Ln(θ, σ ) := logσ 2 + 1

2π

∫ π

−π

In(̃xn, λ)

σ 2gθ (λ)
dλ

with respect to (θ, σ ) on � × �. As a result of the above argument, we obtain the following
central limit theorem (CLT) from Theorem 1 and elementary computation of its asymptotic co-
variance matrix using the equality (5.2) and the block matrix.
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Lemma 1. Under Assumption 1, the following CLT holds:

L
{√

n

(
θ̂n − θ0
σ̃n − σ0

)∣∣∣P (n)
θ0,σ0

}
n→∞→ N

⎛⎝0,

⎛⎝Gp(θ0)
−1 0p×1

01×p

σ 2
0

2

⎞⎠⎞⎠ . (5.4)

Note that the random variable σ̃n is not a statistic because the true value θ0 is used in its defi-
nition. However, we can construct an estimator σ̂n for the diffusion parameter σ by substituting
the estimators θ̂n and Ĥn into the true values θ0 and H0 in the rescaled function σ̃n. Namely, we
define

σ̂n :=
√(

δ
2Ĥn
n b(θ̂n)

)−1
ν2
n(θ̂n).

In the rest of this section, we show the estimator (θ̂n, σ̂n) is asymptotically efficient in Fisher’s
sense. Before showing this claim, we review the definition of the asymptotically efficient estima-
tor in this sense more precisely following by Ibragimov and Has’minski [11], p. 159.

Definition 1. Let �† ⊂R
p+1 and a family of measures {P (n)

θ ; θ ∈ �†} satisfy the LAN property
at a point θ0 ∈ �† as n → ∞, that is, for a certain non-singular (p + 1) × (p + 1)-matrix φn(θ0)

and any u ∈ R
p+1, the log-likelihood ratio admits the representation:

log
dP

(n)
θ0+φn(θ0)u

dP
(n)
θ0

= 〈u, ζn(θ0)
〉− 1

2

〈
J (θ0)u,u

〉+ rn(θ0),

where J (θ0) is a non-singular (p + 1) × (p + 1)-matrix and

ζn(θ0) → N
(
0,J (θ0)

)
, rn(θ0) → 0,

in law under P
(n)
θ0

as n → ∞. A sequence of estimators θ̂n is called asymptotically efficient in
Fisher’s sense at the point θ0 if it holds that

L
{
φ−1

n (θ0)(θ̂n − θ0)|P (n)
θ0

} n→∞→ N
(
0,J (θ0)

−1).
Here, the matrices φn(θ0) and J (θ0) are usually called as a rate and the asymptotic Fisher infor-
mation matrices, respectively.

Theorem 3. Suppose Assumption 1 and a rate matrix φn ≡ φn(θ0, σ0) satisfies Assumption 2
in Appendix B. Then, the sequence of estimators (θ̂n, σ̂n) is asymptotically efficient in Fisher’s
sense, that is,

L
{
φ−1

n

(
θ̂n − θ0
σ̂n − σ0

)∣∣∣P (n)
θ0,σ0

}
n→∞→ N

(
0,J (θ0, σ0)

−1), (5.5)

where J (θ, σ ) is given in Appendix B.
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Proof. At first, note that

φ−1
n

(
θ̂n − θ0
σ̂n − σ0

)
=
⎛⎝ φ−1

n,1(ψ̂n − ψ0)

φ−1
n,2

(
Ĥn − H0
σ̂n − σ0

)⎞⎠ , (5.6)

where φ−1
n,1 and φ−1

n,2 are inverse matrices of φn,1 and φn,2 respectively, that is,

φ−1
n,1 = diag

(
1

d
(1)
n

, . . . ,
1

d
(p−1)
n

)
, φ−1

n,2 = 1

det(φn,2)

(
β̂n −α̂n

−βn αn

)
.

Here, det(φn,2) is calculated as follows:

det(φn,2) = σ0

n

(√
nαn

√
nβ̂n

σ0
− √

nα̂n

√
nβn

σ0

)
= σ0

n
(
√

nαnγ̂n − √
nα̂nγn).

Set σ́n := {(δ2H0
n b(θ̂n))

−1ν2
n(θ̂n)}1/2. At first, the error of log σ̂n − logσ0 is expanded as follows

by using the delta method and Lemma 6 in the Appendix:

log σ̂n − logσ0 = (log σ́n − logσ0) − log δn(Ĥn − H0)

= 1

σ0
(σ́n − σ0) − log δn(Ĥn − H0) + o

P
(n)
θ0,σ0

(
n− 1

2
)
.

In the similar way as the above, we obtain an asymptotic expansion of σ̂n − σ0 as follows:

σ̂n − σ0 = σ0(log σ̂n − logσ0) + o
P

(n)
θ0,σ0

(
n− 1

2
)

(5.7)
= σ́n − σ0 − σ0 log δn(Ĥn − H0) + o

P
(n)
θ0,σ0

(
n− 1

2
)
.

Therefore, the following asymptotic expansion holds.

φ−1
n,2

(
Ĥn − H0
σ̂n − σ0

)
= 1

det(φn,2)

(
β̂n(Ĥn − H0) − α̂n(̂σn − σ0)

−βn(Ĥn − H0) + αn(̂σn − σ0)

)

= σ0

ndet(φn,2)

⎛⎜⎜⎝ γ̂n

√
n(Ĥn − H0) − √

nα̂n

√
n

σ0
(σ́n − σ0)

−γn

√
n(Ĥn − H0) + √

nαn

√
n

σ0
(σ́n − σ0)

⎞⎟⎟⎠+ o
P

(n)
θ0,σ0

(1)

= σ0

ndet(φn,2)

(
γ̂n −√

nα̂n

−γn

√
nαn

)⎛⎝√
n(Ĥn − H0)√
n

σ0
(σ́n − σ0)

⎞⎠+ o
P

(n)
θ0,σ0

(1)

= (E∗
n

)−1

⎛⎝√
n(Ĥn − H0)√
n

σ0
(σ́n − σ0)

⎞⎠+ o
P

(n)
θ0,σ0

(1),
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where

En ≡ En(θ0, σ0) :=
(√

nαn γn√
nα̂n γ̂n

)
.

Note that (5.7) and α̂n/det(φn,2) = O(
√

n), αn/det(φn,2) = O(
√

n) are used in the second
equality. From this asymptotic expansion and (5.6), it holds that

φ−1
n

(
θ̂n − θ0
σ̂n − σ0

)
=
(√

nφn,1 0p−1×2
02×p−1 E∗

n

)−1
⎛⎝√

n(θ̂n − θ0)√
n

σ0
(σ́n − σ0)

⎞⎠+ o
P

(n)
θ0,σ0

(1).

Then, from Lemma 6 in the Appendix, En → E,
√

nφn,1 → D in matrix norm as n → ∞ and
the continuous mapping theorem, it converges to a normal distribution with mean vector 0p+1×1

and covariance matrix given by the inverse matrix of(
D 0p−1×2

02×p−1 E∗
)∗(Fp(θ) ap(θ)

ap(θ)∗ 2

)(
D 0p−1×2

02×p−1 E∗
)

. (5.8)

Therefore, (5.5) follows from elementary computation of (5.8) by using the block matrix because
D is a diagonal matrix. Moreover, the asymptotic efficiency of {(θ̂n, σ̂n)}n∈N also follows from
(5.5) and Theorem 6 in the Appendix. �

5.3. Only the diffusion parameter σ is known

Our purpose in this subsection is to construct an asymptotically efficient estimator for the un-
known parameter θ = (ψ,H) in Fisher’s sense in the case that the true value of the diffusion
parameter σ0 is known. Namely, we construct an estimator (ψ̂n, Ĥn) for the parameter (ψ,H)

satisfying the following central limit theorem:

L
{( √

n(ψ̂n − ψ0)√
n| log δn|(Ĥn − H0)

)∣∣∣P (n)
θ0,σ0

}
n→∞→ N

(
0,I(θ0)

−1), (5.9)

where the non-singular asymptotic Fisher information I(θ) is given by

I(θ) :=
⎛⎜⎝ Gp−1(θ)−1 −1

2
Gp−1(θ)−1ap−1(θ)

−1

2
ap−1(θ)∗Gp−1(θ)−1 1

2
+ 1

4
ap−1(θ)∗Gp−1(θ)−1ap−1(θ)

⎞⎟⎠
−1

.

In fact, the relation (5.9) means the asymptotic efficiency in Fisher’s sense, which follows from
Lemma 5 and Theorem 5 in the Appendix. Note that the optimal asymptotic covariance ma-
trix I(θ)−1 is independent of the estimation error of the Hurst parameter as well as that of the
diffusion parameter.
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At first, we work under a strong assumption that a value b(θ0) is known. Then, we define an
estimator Ĥ zero

n as a solution of the following equation with respect to H :

log
ν2
n(θ̂n)

δ2H
n b(θ0)

− logσ 2
0 = 0,

where θ̂n ≡ (ψ̂n, Ĥn) ≡ (ψ̂
(1)
n , . . . , ψ̂

(p−1)
n , Ĥn) is the Whittle estimator defined in Section 5.2.

Note that the estimator Ĥ zero
n is given by

Ĥ zero
n := 1

2| log δn|
{
logb(θ0) − logν2

n(θ̂n) + logσ 2
0

}
.

Then, we obtain the following result.

Lemma 2. Suppose Assumption 1 and b(θ0) is known. Then, the following CLT holds:

L
{( √

n(θ̂n − θ0)√
n| log δn|

(
Ĥ zero

n − H0
)) ∣∣∣P (n)

θ0,σ0

}
n→∞→ N

(
0,A(0)(θ0)

)
,

where

A(0)(θ) :=
(

Ip 0p×1

01×p − 1

σ

)⎛⎝Gp(θ)−1 0p×1

01×p

σ 2

2

⎞⎠( Ip 0p×1

01×p − 1

σ

)∗
=
⎛⎝Gp(θ)−1 0

0
1

2

⎞⎠ .

In particular, the estimator (ψ̂n, Ĥ
zero
n ) enjoys the asymptotic normality property.

Proof. At first, the definition of Ĥ zero
n , Lemma 1 and the delta method yield that

√
n| log δn|

(
Ĥ zero

n − H0
)= −

√
n

2

{
log

ν2
n(θ̂n)

δ
2H0
n b(θ0)

− logσ 2
0

}

= −
√

n

σ0
(̃σn − σ0) + o

P
(n)
θ0,σ0

(1) as n → ∞.

(5.10)

Then, the following asymptotic expansion holds as n → ∞:

( √
n(θ̂n − θ0)√

n| log δn|
(
Ĥ zero

n − H0
))=

⎛⎝ Ip 0p×1

01×p − 1

σ0

⎞⎠ · √n

(
θ̂n − θ0
σ̃n − σ0

)
+ o

P
(n)
θ0,σ0

(1).

The first claim follows from Lemma 1 and the continuous mapping theorem. Moreover, the
second claim also follows from the first one and the continuous mapping theorem. �

The assumption that b(θ0) is known is too strict; however Lemma 2 has an important implica-
tion that a precise estimate of b(θ0) leads to an efficient estimation of H . In fact, the convergence



1884 M. Fukasawa and T. Takabatake

rate
√

n| log δn| and the asymptotic variance 1/2 of H in Lemma 2 are the best possible for
fractional Gaussian noise model with σ known; see Kawai [12].

Now, we remove the assumption that b(θ0) is known. Consider to substitute the Whittle esti-
mator θ̂n to the true value θ0 in b(θ0). Namely, we define an estimator by

Ĥ one
n := 1

2| log δn|
{
logb(θ̂n) − logν2

n(θ̂n) + logσ 2
0

}
.

The following result is proved in the same way as the proof of Lemma 2 by using Lemma 6 in
the Appendix instead of Lemma 1.

Lemma 3. Under Assumption 1, the following CLT holds:

L
{( √

n(θ̂n − θ0)√
n| log δn|

(
Ĥ one

n − H0
)) ∣∣∣P (n)

θ0,σ0

}
n→∞→ N

(
0,A(1)(θ0)

)
,

where A(1)(θ) is given in Lemma 6 in the Appendix. In particular, the estimator (ψ̂n, Ĥ
one
n )

enjoys the asymptotic normality property.

Although (ψ̂n, Ĥ
one
n ) is rate-efficient, unfortunately, it is not asymptotically efficient; compare

A(1)(θ) with I(θ)−1. This is due to that θ̂n that is substituted to b(θ0) includes an estimate of H

which is not rate-efficient. Therefore, its asymptotic variance contributes to that of Ĥ one
n . How-

ever, we can construct an asymptotically efficient estimator by using the estimator (ψ̂n, Ĥ
one
n ).

Namely, we define an estimator by

Ĥ two
n := 1

2| log δn|
{
logb

(
θ̂one
n

)− logν2
n(θ̂n) + logσ 2

0

}
,

where θ̂one
n := (ψ̂n, Ĥ

one
n ). Then, we can prove the asymptotic efficiency of the estimator

(ψ̂n, Ĥ
two
n ) as follows.

Theorem 4. Under Assumption 1, the estimator (ψ̂n, Ĥ
two
n ) is asymptotically efficient in Fisher’s

sense, that is, the estimator (ψ̂n, Ĥ
two
n ) satisfies the CLT (5.9).

Proof. In the same way as (5.10), the following asymptotic expansion holds as n → ∞:
√

n| log δn|
(
Ĥ two

n − H0
)

= −
√

n

σ0
(̃σn − σ0) +

√
n

2

(
logb

(
θ̂one
n

)− logb(θ0)
)+ o

P
(n)
θ0,σ0

(1).
(5.11)

Moreover, the second term in the right-hand side of (5.11) is expanded as follows:
√

n

2

(
logb

(
θ̂one
n

)− logb(θ0)
)= −1

2
ap(θ0)

∗√n
(
θ̂one
n − θ0

)+ o
P

(n)
θ0,σ0

(1)

= −1

2
ap−1(θ0)

∗√n(ψ̂n − ψ0) + o
P

(n)
θ0,σ0

(1)

(5.12)
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as n → ∞, where the
√

n| log δn|-consistency of the estimator Ĥ one
n is used in the second equal-

ity. Therefore, we obtain the following asymptotic expansion from (5.11) and (5.12):( √
n(ψ̂n − ψ0)√

n| log δn|
(
Ĥ two

n − H0
))=

⎛⎝ Ip−1 0p×1

−1

2
ap−1(θ0)

∗ − 1

σ0

⎞⎠ · √n

(
ψ̂n − ψ0
σ̃n − σ0

)
+ o

P
(n)
θ0,σ0

(1)

as n → ∞. As a result, the conclusion also follows from the same way as the last part of the
proof of Lemma 6 in the Appendix. �

6. Simulation studies

6.1. Implementation and simulation studies of Whittle estimator

In this part, we explain how to implement the Whittle estimator for the Hurst and diffusion pa-
rameters and show its finite sample performance by the Monte-Carlo experiments. Although we
perform simulation studies only for the case of the fGn, an extension to the other models shown
in Section 4 is actually straightforward. Therefore, our implementation procedure is applicable
for most of interesting self-similar stationary Gaussian noises appeared in practice, also see Re-
mark 3 in Section 3. To the best of our knowledge, no explicit form of the Whittle likelihood
for the spectral density of fGn is known so far. Therefore, some kinds of approximations for this
likelihood are needed. In practical, we approximate this likelihood by the Riemann sum at the
points of the Fourier frequencies λn

j := 2πj/n, j = 1, . . . , n as follows:

1

2π

∫ π

−π

In(λ)

gH (λ)
dλ = 1

π

∫ π

0

In(λ)

gH (λ)
dλ ≈ 1

n

�n/2�∑
j=1

In(λ
n
j )

gH (λn
j )

as n → ∞. (6.1)

Then, the sum of (6.1) is effectively calculated by the well-known FFT (Fast Fourier Transform)
algorithm. In particular, a calculation speed by the FFT algorithm is fastest when the number of
data n is equal to 2m for a certain m ∈ N. Note that the symmetric property of the periodogram
In(λ) and the normalized spectral density gH (λ) with respect to λ ∈ [−π,π] are used in the
first equality of (6.1). Finally, estimated values of Ĥn are obtained by substituting normalized
Paxson’s approximation spectral density, see Paxson [17] and a supplementary article Fukasawa
and Takabatake [10] for more detail, for gH and minimizing the sum in (6.1).

In our simulation studies, we use FGN package of R to generate fractional Gaussian noises
and fix several parameters as follows: the true value of the diffusion parameter σ0 = 0.5, the time
horizon T = 1, the number of the approximations of the spectral density k = 200, the number of
repetition of the Monte-Carlo experiments m = 1000. We vary the Hurst parameter H0 and the
length of the observation interval δn.

First, we examine the Whittle estimator Ĥn constructed in Section 5.2. Table 1 reports the
rescaled bias and MSE (Mean Square Error) of Ĥn:

BiasH (H0, δn) := 1

m

m∑
j=1

√
n(Ĥn,j − H0),
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MSEH (H0, δn) := 1

m

m∑
j=1

{√
n(Ĥn,j − H0)

}2
, δn := 1/n,

where Ĥn,j is the j th estimated value of Ĥn in the Monte-Carlo experiments. Table 1 suggests
that Ĥn has a negative bias for all cases if δn is not so small. However, this bias seems to van-
ish for all cases as δn becomes smaller. In Figure 1, red and blue lines superimposed on the
histogram represent the probability density of the theoretical asymptotic error distribution pro-
vided by Theorem 3 and that of a normal distribution with a mean BiasH (H0, δn) and a variance
MSEH (H0, δn), respectively. These figures confirm that the Whittle estimator Ĥn has finite sam-
ple performances which are consistent to the asymptotic results in Theorem 3.

Next, we examine the Whittle estimator σ̂n constructed in Section 5.2. Table 2 reports the
rescaled bias and MSE of σ̂n:

Biasσ (H0, δn) := 1

m

m∑
j=1

√
n

| log δn| (̂σn,j − σ0),

MSEσ (H0, δn) := 1

m

m∑
j=1

{ √
n

| log δn| (̂σn,j − σ0)

}2

, δn := 1/n,

where σ̂n,j is the j th estimated value of σ̂n in the Monte-Carlo experiments.
In Figure 2, green and blue lines superimposed on the histogram represent the probability

density of the theoretical asymptotic error distribution provided by Theorem 3 and that of a
normal distribution with a mean Biasσ (H0, δn) and a variance MSEσ (H0, δn) respectively. In
contrast to the case of the Whittle estimator Ĥn, the blue line is distinguishable from the green
one for each H0 even if δn is quite small. If δn is sufficiently small, however, they seem to fit
well the red one, which represents the probability density of a centered normal distribution with
a variance:

Vσ (H0, δn) := σ 2
0

2| log δn|2

+ σ 2
0

{
1 − 1

2| log δn|∂H logb(H0)

}2{ 1

4π

∫ π

−π

[
∂H loggH0(λ)

]2
dλ

}−1

.

(6.2)

This variance, derived in Appendix C based on Theorem 3, converges to the limit variance
as n → ∞ but very slowly because | log δn| very slowly diverges, for example | log(1/218)| ≈
12.477. Moreover, Figure 3 suggests that all values of the MSE in Table 2 fits well the values of
Vσ (H0,2−18), and those values are a bit smaller than the limit variances when H0 is small and
those are quite larger than them when H0 is large. Note that the smallness (resp. largeness) of
the values of (6.2) is caused from the positiveness (resp. negativeness) of values of ∂H logb(H0)

and those size, see also Figure 4 and Table 3. Furthermore, we can also see that this phenomena
happens even for the other asymptotically efficient estimators under high frequency observations
which include the MLE given by Brouste and Fukasawa [2], see Appendix C for more detail.
Therefore, careful treatment at this point is necessary for high frequency data analysis.
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Table 1. Table of rescaled bias and MSE of the Whittle estimator Ĥn with several values of δn and H0

Table of Ĥn δn = 1/28 δn = 1/213 δn = 1/218

H0 = 0.1 Bias −0.0109 0.02458 0.01158
MSE 0.1538 0.12914 0.12909

H0 = 0.2 Bias −0.0922 −0.01550 −0.01569
MSE 0.2994 0.22613 0.23672

H0 = 0.3 Bias −0.1139 0.00238 0.02617
MSE 0.3392 0.29208 0.30897

H0 = 0.4 Bias −0.1902 −0.01717 −0.00525
MSE 0.4158 0.35315 0.36804

H0 = 0.5 Bias −0.2231 −0.07692 0.00596
MSE 0.4899 0.41390 0.38944

H0 = 0.6 Bias −0.2854 −0.08426 −0.05027
MSE 0.5568 0.44233 0.42982

H0 = 0.7 Bias −0.2304 −0.06622 −0.04082
MSE 0.5435 0.42367 0.42112

H0 = 0.8 Bias −0.2475 −0.01685 −0.04263
MSE 0.5771 0.45629 0.44602

H0 = 0.9 Bias −0.1861 0.02320 0.02074
MSE 0.5700 0.47100 0.45968

Figure 1. Histograms of {√n(Ĥn,j − H0)}j=1,...,m and plot of probability densities of several normal
distributions with different values of δn and H0.
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Table 2. Table of rescaled bias and MSE of the Whittle estimator σ̂n with several values of δn and H0

Table of σ̂n δn = 1/28 δn = 1/213 δn = 1/218

H0 = 0.1 Bias 0.00851 0.016242 0.006291
MSE 0.03294 0.027818 0.027987

H0 = 0.2 Bias −0.02560 −0.002493 −0.006068
MSE 0.06293 0.050319 0.053721

H0 = 0.3 Bias −0.02707 0.008957 0.015442
MSE 0.07307 0.068760 0.071989

H0 = 0.4 Bias −0.05837 0.000172 0.000279
MSE 0.08863 0.086517 0.089748

H0 = 0.5 Bias −0.07483 −0.026713 0.004175
MSE 0.10484 0.103572 0.098181

H0 = 0.6 Bias −0.10024 −0.032532 −0.022897
MSE 0.12959 0.115973 0.113178

H0 = 0.7 Bias −0.07076 −0.024223 −0.018831
MSE 0.15596 0.125084 0.118769

H0 = 0.8 Bias −0.06555 0.006731 −0.021478
MSE 0.21589 0.165668 0.143015

H0 = 0.9 Bias 0.12212 0.052899 0.019976
MSE 0.99965 0.269497 0.207527

Figure 2. Histograms of {√n/| log δn|(̂σn,j − σ0)}j=1,...,m and plot of probability densities of several
normal distributions with different values of δn and H0.
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Figure 3. This figure represents a plot of Vσ (H0,2−18) (black) and the theoretical asymptotic variance
(red) with respect to H0. Moreover, the values of MSE in Table 2 are superimposed on them.

Figure 4. The solid line in this figure represents a plot of ∂H logb(H0) with respect to H0.

Table 3. Values of ∂H logb(H0) with several different values of H0 are summarized

H0 = 0.1 H0 = 0.2 H0 = 0.3 H0 = 0.4 H0 = 0.5 H0 = 0.6 H0 = 0.7 H0 = 0.8 H0 = 0.9

2.026 1.321 0.874 0.464 −0.000 −0.613 −1.554 −3.331 −8.449

6.2. Simulation studies of estimator ̂H two
n

Table 4 reports the rescaled bias and MSE of Ĥ two
n :

Bias2(H0, δn) := 1

m

m∑
j=1

√
n| log δn|

(
Ĥ two

n,j − H0
)
,
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MSE2(H0, δn) := 1

m

m∑
j=1

{√
n| log δn|

(
Ĥ two

n,j − H0
)}2

, δn := 1/n,

where Ĥ two
n,j be the j th estimated value of Ĥ two

n in the Monte-Carlo experiments.
In Figure 5, green and blue lines superimposed on the histogram represent the probability den-

sity of the theoretical asymptotic error distribution provided by Theorem 4 and that of a normal
distribution with a mean Bias2(H0, δn) and a variance MSE2(H0, δn) respectively. Figure 5 also
suggests that the blue line is distinguishable from the green one for each H0 even if δn is quite
small. If δn is sufficiently small, however, they seem to fit well the red one, which represents the
probability density of a centered normal distribution with a variance:

V2(H0, δn) := 1

2

(
1 + 1

2| log δn|∂H logb(H0)

)2

+ 1

| log δn|2
(

1

2
∂H logb(H0)

)4( 1

4π

∫ π

−π

[
∂H loggH0(λ)

]2
dλ

)−1

.

(6.3)

This variance, derived in Appendix C, converges to the limit variance as n → ∞ but very slowly.
Interestingly, Figure 6 suggests that all values of the MSE in Table 4 fits well the values of
V2(H0,2−18).

In the rest of this section, we attempt to answer the following two questions by using the
approximation formula (6.3):

1. Why values of MSE2(H0, δn) in Table 4 is larger (resp. smaller) than those of the theoretical
asymptotic variance when H0 < 1/2 (resp. H0 > 1/2 except for H0 = 0.9)?

2. Why the value of MSE2(H0, δn) when H0 = 0.9 is extremely large?

At first, we consider the first question. The phenomena of the first question seems to be caused
from the effect of the first term of (6.3). Indeed, (2| log δn|)−1∂H logb(H0) in this term takes
relatively large positive (resp. negative) value in these cases because | log δn| very slowly diverges
and ∂H logb(H0) takes relatively large positive (resp. negative) value, see also Figure 4 and
Table 3. Note that the second term of (6.3) in these cases has almost no influence to the value of
(6.3) if δn is quite small.

Next, we consider the second question. Contrast to the previous one, the phenomena of
the second question seems to be caused from the effect of the second term of (6.3). Indeed,
| log δn|−2( 1

2∂H logb(H0))
4 in the second term of (6.3) takes extremely large positive value when

H0 = 0.9 because | log δn| slowly diverges and ∂H logb(H0) extremely large positive value, see
also Figure 4 and Table 3. Then, the positive effect of the value of MSE2(H0, δn) caused from
the first term of (6.3) is relatively larger than the negative one caused from the second term of
(6.3), which is mentioned in the answer of the previous question. Furthermore, we can also see
that this phenomena happens even for the other asymptotically efficient estimator in this setting.
See Appendix C for more detail. Therefore, careful treatment at this point is also necessary for
high frequency data analysis.
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Table 4. Table of rescaled bias and MSE of the estimator Ĥ two
n with deferent values of δn and H0

Table of Ĥ two
n δn = 1/28 δn = 1/213 δn = 1/218

H0 = 0.1 Bias −0.0056 −0.04572 −0.00617
MSE 0.6912 0.67937 0.60245

H0 = 0.2 Bias 0.0994 0.00822 −0.00135
MSE 0.6400 0.58856 0.57736

H0 = 0.3 Bias 0.0226 −0.01569 −0.02641
MSE 0.5861 0.52786 0.55571

H0 = 0.4 Bias 0.0248 0.00459 −0.01623
MSE 0.5307 0.52183 0.51395

H0 = 0.5 Bias 0.0814 −0.01789 0.03082
MSE 0.5470 0.47506 0.51824

H0 = 0.6 Bias 0.0556 0.01956 −0.00108
MSE 0.4966 0.46402 0.46335

H0 = 0.7 Bias 0.0403 0.02279 0.00173
MSE 0.3873 0.41353 0.42827

H0 = 0.8 Bias −0.0752 0.01975 0.01357
MSE 0.3480 0.37197 0.41573

H0 = 0.9 Bias −0.4978 0.05361 0.03233
MSE 6.1539 2.00298 1.15611

Figure 5. Histograms of {√n| log δn|(Ĥ two
n,j

− H0)}j=1,...,m and plot of probability densities of several
normal distributions with different values of δn and H0.
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Figure 6. This figure represents a plot of V2(H0,2−18) (black) and the theoretical asymptotic variance
(red) with respect to H0. Moreover, the values of MSE in Table 4 are superimposed on them.

Appendix A: Preliminary lemmas

In this appendix, we show several lemmas used in the proof of main results.

Lemma 4. Let f : �† ×[−π,π] → [−∞,∞] satisfy (S.2). Then, the matrices Fq(θ) and Gq(θ)

are connected with the following relation:

Gq(θ) =Fq(θ) − 1

2
aq(θ)aq(θ)∗ for each q = 1, . . . , p + 1 and θ ∈ �†.

Proof. Fix q ∈ {1, . . . , p + 1}. Note that the following equality holds for any θ ∈ �†:

∂

∂θj

loggθ (λ) = ∂

∂θj

logfθ (λ) − 1

2π

∫ π

−π

∂

∂θj

logfθ (λ) dλ. (A.1)

Then, it easily follows from (A.1) that (i, j)-component of the matrix Gq(θ) is equal to

1

4π

∫ π

−π

∂

∂θi

logfθ (λ)
∂

∂θj

logfθ (λ)dλ

− 1

2

(
1

2π

∫ π

−π

∂

∂θi

logfθ (λ)dλ

)(
1

2π

∫ π

−π

∂

∂θj

logfθ (λ) dλ

)
for any θ ∈ �†. Therefore, the conclusion follows. �

Lemma 5. Let �† := � × � given in Assumption 1 and f : �† × [−π,π] → [−∞,∞] satisfy
(S.2)–(S.3). Then, the following equality holds for each q = 1, . . . , p and θ ∈ �†:

(
Fq(θ) aq(θ)

aq(θ)∗ 2

)−1

=
⎛⎜⎝ Gq(θ)−1 −1

2
Gq(θ)−1aq(θ)

−1

2
aq(θ)∗Gq(θ)−1 1

2
+ 1

4
aq(θ)∗Gq(θ)−1aq(θ)

⎞⎟⎠ .
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Proof. In order to obtain the conclusion, it suffices to prove that

(
Fq(θ) aq(θ)

aq(θ)∗ 2

)⎛⎜⎝ Gq(θ)−1 −1

2
Gq(θ)−1aq(θ)

−1

2
aq(θ)∗Gq(θ)−1 1

2
+ 1

4
aq(θ)∗Gq(θ)−1aq(θ)

⎞⎟⎠= Iq (A.2)

holds for each q = 1, . . . , p and θ ∈ �†, where Iq is the unit matrix of size q . The equality (A.2)
easily follows from elementary computations using the block matrix and the following equality
derived from Lemma 4:

Fq(θ)Gq(θ)−1 = Iq + 1

2
aq(θ)aq(θ)∗Gq(θ)−1

for each q = 1, . . . , p and θ ∈ �†. Therefore, we finish the proof. �

Lemma 6. Under Assumption 1, the following CLT holds.

L

⎧⎨⎩
⎛⎝√

n(θ̂n − θ0)√
n

σ0
(σ́n − σ0)

⎞⎠∣∣∣P (n)
θ0,σ0

⎫⎬⎭ n→∞→ N
(
0,A(1)(θ0)

)
,

where σ́n := {(δ2H0
n b(θ̂n))

−1ν2
n(θ̂n)}1/2 and

A(1)(θ) :=
(

Ip 0p×1

−1

2
ap(θ)∗ 1

σ

)⎛⎝Gp(θ)−1 0p×1

01×p

σ 2

2

⎞⎠( Ip 0p×1

−1

2
ap(θ)∗ 1

σ

)∗

=
⎛⎜⎝ Gp(θ)−1 −1

2
Gp(θ)−1ap(θ)

−1

2
ap(θ)∗Gp(θ)−1 1

2
+ 1

4
ap(θ)∗Gp(θ)−1ap(θ)

⎞⎟⎠=
(
Fp(θ) ap(θ)

ap(θ)∗ 2

)−1

.

Proof. At first, we obtain the following asymptotic expansion from Lemma 1 and the delta
method:

√
n(log σ́n − logσ0) = √

n(log σ̃n − logσ0) −
√

n

2

(
logb(θ̂n) − logb(θ0)

)
=

√
n

σ0
(̃σn − σ0) −

√
n

2

(
logb(θ̂n) − logb(θ0)

)+ o
P

(n)
θ0,σ0

(1)

(A.3)

as n → ∞. Moreover, the second term in (A.3) is expanded by

logb(θ̂n) − logb(θ0) = 1

2π

∫ π

−π

logfθ̂n
(λ) dλ − 1

2π

∫ π

−π

logfθ0(λ) dλ

= ap(θ0)
∗(θ̂n − θ0) + o

P
(n)
θ0,σ0

(
n− 1

2
)

as n → ∞,

(A.4)
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where Lemma 1 and the delta method are used again in the second equality. Then, we also obtain
the following asymptotic expansion from (A.3), (A.4) and the delta method:⎛⎝√

n(θ̂n − θ0)√
n

σ0
(σ́n − σ0)

⎞⎠=
⎛⎝ Ip 0p×1

−1

2
ap(θ0)

∗ 1

σ0

⎞⎠ · √n

(
θ̂n − θ0
σ̃n − σ0

)
+ o

P
(n)
θ0,σ0

(1) as n → ∞.

The conclusion follows from Lemma 1, Lemma 5 and the continuous mapping theorem. �

Appendix B: LAN property under high frequency observations

In this appendix, we show several extensions of the results in Kawai [12] and Brouste and Fuka-
sawa [2] into our model framework without proof. These results can be proved in the similar
argument. At first, we show the extension of the result in Kawai [12]. Set a rate matrix φ̄n(θ, σ )

as follows.

φ̄n ≡ φ̄n(θ, σ ) :=

⎛⎜⎜⎜⎜⎜⎝
1√
n
Ip−1 0p−1×1 0p−1×1

01×p−1
1√

n log δn

0

01×p−1 0
1√
n

⎞⎟⎟⎟⎟⎟⎠ .

Then, we obtain the following weak LAN property.

Theorem 5. Suppose Assumption 1. The family of measures {P (n)
θ,σ ; (θ, σ ) ∈ � × �} is LAN at

any points (θ0, σ0) ∈ � × � for the rate matrix φ̄n(θ0, σ0) in a weak sense, that is, the log-
likelihood ratio admits the following representation for any u ∈ R

p+1:

log
dP

(n)

(θ0,σ0)+φ̄n(θ0,σ0)u

dP
(n)
θ0,σ0

= 〈u, ζ̄n(θ0, σ0)
〉− 1

2

〈
I(θ0, σ0)u,u

〉+ r̄n(θ0, σ0),

where

ζ̄n(θ0, σ0) →N
(
0,I(θ0, σ0)

)
, r̄n(θ0, σ0) → 0,

in law under P
(n)
θ0,σ0

as n → ∞ and the matrix I(θ, σ ) is given by⎛⎜⎜⎜⎜⎝
Fp−1(θ) ap−1(θ)

1

σ
ap−1(θ)

ap−1(θ)∗ 2
2

σ
1

σ
ap−1(θ)∗ 2

σ

2

σ 2

⎞⎟⎟⎟⎟⎠ .
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In particular, the asymptotic Fisher information matrix I(θ, σ ) is singular unless either the Hurst
parameter H or the diffusion parameter σ is known.

Next, we show the extension of the result in Brouste and Fukasawa [2]. Here, we introduce a
certain class of rate matrices.

Assumption 2. Consider a matrix

φn ≡ φn(θ, σ ) :=
(

φn,1 0p−1×2
02×p−1 φn,2

)
,

where

φn,1 ≡φn,1(θ, σ ) := diag
(
d(1)
n , . . . , d

(p−1)
n

)
, φn,2 ≡ φn,2(θ, σ ) :=

(
αn α̂n

βn β̂n

)
,

with the following properties:

1. |φn,1| = d
(1)
n · · ·d(p−1)

n 
= 0 and |φn,2| = αnβ̂n − α̂nβn 
= 0.
2. αn

√
n → α for some α ∈R.

3. α̂n

√
n → α̂ for some α̂ ∈R.

4. For j = 1, . . . , p − 1, d
(j)
n

√
n → d(j) for some d(j) ∈ R \ {0}.

5. γn := αn

√
n log δn + βn

√
nσ−1 → γ for some γ ∈ R.

6. γ̂n := α̂n

√
n log δn + β̂n

√
nσ−1 → γ̂ for some γ̂ ∈ R.

7. d(1) · · ·d(p−1) 
= 0 and αγ̂ − α̂γ 
= 0.

Then, we obtain the following LAN property.

Theorem 6. Suppose Assumption 1. The family of measures {P (n)
θ,σ ; (θ, σ ) ∈ � × �} is LAN at

any points (θ0, σ0) ∈ � × � for the rate matrix φn(θ0, σ0) satisfying Assumption 2, that is, the
log-likelihood ratio admits the following representation for any u ∈R

p+1:

log
dP

(n)
(θ0,σ0)+φn(θ0,σ0)u

dP
(n)
θ0,σ0

= 〈u, ζn(θ0, σ0)
〉− 1

2

〈
J (θ0, σ0)u,u

〉+ rn(θ0, σ0),

where

ζn(θ0, σ0) →N
(
0,J (θ0, σ0)

)
, rn(θ0, σ0) → 0,

in law under P
(n)
θ0,σ0

as n → ∞ and the matrix J (θ, σ ) is given by(
D 0p−1×2

02×p−1 E

)(
Fp(θ) ap(θ)

ap(θ)∗ 2

)(
D 0p−1×2

02×p−1 E

)∗
,
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where

D ≡ D(θ,σ ) := diag
(
d(1), . . . , d(p−1)

)
, E ≡ E(θ,σ ) :=

(
α γ

α̂ γ̂

)
.

In particular, the matrix J (θ, σ ) is nondegenerate.

Appendix C: Approximation formula of theoretical asymptotic
variance

In this section, finite sample modifications of the asymptotic variances of asymptotically efficient
estimators given in Section 5 is derived for the 2-dimensional parameter (H,σ ).

C.1. Case of Whittle estimator σ̂n

A finite sample modification of the asymptotic variance of the Whittle estimator for the diffusion
parameter is given in this subsection. At first note that, if the length of the observation interval
δn is quite small, Lemma 1 yields that the joint distribution of

√
n(Ĥn − H0) and

√
n(̃σn − σ0)

under P
(n)
H0,σ0

is approximated by that of centered normal random variables Z1 and Z2 given by

(
Z1
Z2

)
∼N

(
0,diag

{(
1

4π

∫ π

−π

[
∂H loggH0(λ)

]2
dλ

)−1

,
σ 2

0

2

})
, (C.1)

where Z1 and Z2 are independent because the joint distribution of (Z1,Z2) is a bivariate normal
random variable without correlation.

We derive a finite sample modification of the asymptotic variance of
√

n
| log δn| (̂σn − σ0). At first,√

n
| log δn| (̂σn − σ0) is asymptotically expanded as follows by using Lemma 1, Theorem 3 and the
delta method:

√
n

| log δn| (̂σn − σ0)

=
√

n

| log δn|σ0(log σ̂n − logσ0) + O
P

(n)
H0,σ0

( | log δn|√
n

)
=

√
n

| log δn|
{
(log σ̃n − logσ0) − log δn(Ĥn − H0)

− 1

2

(
logb(Ĥn) − logb(H0)

)}
(C.2)

+ O
P

(n)
H0,σ0

( | log δn|√
n

)
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=
√

n

σ0| log δn| (̃σn − σ0) + √
n(Ĥn − H0)

− 1

2| log δn|∂H logb(H0)
√

n(Ĥn − H0) + O
P

(n)
H0,σ0

( | log δn|√
n

)
as n → ∞. Then, the asymptotic variance of

√
n

| log δn| (̂σn − σ0) is approximately derived from

ignoring the remainder term of (C.2) and using the asymptotic independence of
√

n(Ĥn − H0)

and
√

n(̃σn − σ0) under P
(n)
H0,σ0

and (C.1) as follows:

Var(n)
H0,σ0

[ √
n

| log δn| (̂σn − σ0)

]
≈ 1

| log δn|2 Var(n)
H0,σ0

[√
n(̃σn − σ0)

]
+ σ 2

0

{
1 − 1

2| log δn|∂H logb(H0)

}2

Var(n)
H0,σ0

[√
n(Ĥn − H0)

]
≈ σ 2

0

2| log δn|2 + σ 2
0

{
1 − 1

2| log δn|∂H logb(H0)

}2{ 1

4π

∫ π

−π

[
∂H loggH0(λ)

]2
dλ

}−1

.

C.2. Case of two-step estimator ̂H two
n

At first, an asymptotic expansion of
√

n| log δn|(Ĥ one
n −H0) is obtained in the similar way as the

proof of Lemma 3 and Lemma 6 in the Appendix as follows:
√

n| log δn|
(
Ĥ one

n − H0
)

= −
√

n

σ0
(̃σn − σ0) + 1

2
∂H logb(H0)

√
n(Ĥn − H0)

+ O
P

(n)
H0,σ0

(
1√
n

)
as n → ∞.

(C.3)

A similar argument in the above yields that
√

n| log δn|
(
Ĥ two

n − H0
)

= −
√

n

σ0
(̃σn − σ0) + 1

2| log δn|∂H logb(H0)
√

n| log δn|
(
Ĥ one

n − H0
)

+ O
P

(n)
H0,σ0

(
1√
n

)
(C.4)

= −
(

1 + 1

2| log δn|∂H logb(H0)

)√
n

σ0
(̃σn − σ0)
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+ 1

| log δn|
(

1

2
∂H logb(H0)

)2

· √n(Ĥn − H0) + O
P

(n)
H0,σ0

(
1√
n

)
as n → ∞. Note that the delta method and the above CLT are used in the third equality, and (C.3)

is used in the fourth one. Therefore, an approximate variance of
√

n
| log δn| (̂σn − σ0) is derived from

ignoring the remainder term of (C.4) and using the asymptotic independence of
√

n(Ĥn − H0)

and
√

n(̃σn − σ0) under P
(n)
H0,σ0

and (C.1) as follows:

Var(n)
H0,σ0

[√
n| log δn|

(
Ĥ two

n − H0
)]

≈
(

1 + 1

2| log δn|∂H logb(H0)

)2 1

σ 2
0

Var(n)
H0,σ0

[√
n(̃σn − σ0)

]
+ 1

| log δn|2
(

1

2
∂H logb(H0)

)4

Var(n)
H0,σ0

[√
n(Ĥn − H0)

]
≈ 1

2

(
1 + 1

2| log δn|∂H logb(H0)

)2

+ 1

| log δn|2
(

1

2
∂H logb(H0)

)4( 1

4π

∫ π

−π

[
∂H loggH0(λ)

]2
dλ

)−1

.

C.3. Additional remark for maximum likelihood estimator

In this subsection, we additionally remark about the generality of the finite sample modifications
of asymptotic variances derived in the previous two subsection. Actually, the same argument dis-
cussed in the above holds true for more general class of asymptotically efficient estimators under
high frequency observations in each setting. In the rest of this section, we briefly summarize
them. First, we consider the case that both parameters (θ, σ ) are unknown. It is easily shown
that for any asymptotically efficient estimator (θ̂n, σ̂n) ≡ (ψ̂n, Ĥn, σ̂n) under high frequency ob-
servations in this case, that is, it satisfies (5.5) in Theorem 3, a random variable (θ̂n, σ̃n) defined
by

σ̃n := δ
Ĥn
n b(θ̂n)

δ
H0
n b(θ0)

σ̂n, H ∈ (0,1], n ∈N,

also satisfies (5.4) in Lemma 1. Therefore, the same argument in Appendix C.1 holds true. Next,
we consider the case that the diffusion parameter σ is known. Define one-step and two-step
estimators for the Hurst parameter H defined by

Ĥ one
n := 1

2| log δn|
{
logb(θ̂n) − log

(
b(θ̂n)δ

Ĥn
n σ̂n

)+ logσ 2
0

}
,

Ĥ two
n := 1

2| log δn|
{
logb

(
θ̂one
n

)− log
(
b(θ̂n)δ

Ĥn
n σ̂n

)+ logσ 2
0

}
,
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where (θ̂n, σ̂n) ≡ (ψ̂n, Ĥn, σ̂n) is any asymptotically efficient estimator in the previous case and
θ̂one
n := (ψ̂n, Ĥ

one
n ). Therefore, the same argument in . C.2 also holds true. As a result, the fi-

nite sample modifications of the asymptotic variances are also applicable for the MLE given by
Brouste and Fukasawa [2] and the one-step and two-step estimators based on the MLE. These
results have an important implication that all asymptotically efficient estimators under high fre-
quency observations also suffer from the same problem of finite sample efficiency loss docu-
mented in Section 6 and they explain the reason why their phenomena happen.
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Supplementary Material

Supplement to “Asymptotically efficient estimators for self-similar stationary Gaussian
noises under high frequency observations” (DOI: 10.3150/18-BEJ1039SUPP; .pdf). We ex-
plain how to implement spectral densities of self-similar stationary Gaussian noises and their
derivatives with respect to parameters for more detail. This procedure is applicable for all exam-
ples shown in Section 4 of the original article.

References

[1] Bouchaud, J.-P. and Georges, A. (1990). Anomalous diffusion in disordered media: Statistical mech-
anisms, models and physical applications. Phys. Rep. 195 127–293. MR1081295

[2] Brouste, A. and Fukasawa, M. (2018). Local asymptotic normality property for fractional Gaussian
noise under high frequency observations. Ann. Statist. To appear.

[3] Brouste, A. and Iacus, S.M. (2013). Parameter estimation for the discretely observed fractional
Ornstein–Uhlenbeck process and the Yuima R package. Comput. Statist. 28 1529–1547. MR3120827

[4] Coeurjolly, J.-F. (2001). Estimating the parameters of a fractional Brownian motion by discrete varia-
tions of its sample paths. Stat. Inference Stoch. Process. 4 199–227. MR1856174

[5] Cohen, S., Gamboa, F., Lacaux, C. and Loubes, J.-M. (2013). LAN property for some fractional type
Brownian motion. ALEA Lat. Am. J. Probab. Math. Stat. 10 91–106. MR3083920

[6] Dahlhaus, R. (1989). Efficient parameter estimation for self-similar processes. Ann. Statist. 17 1749–
1766. MR1026311

[7] Dahlhaus, R. (2006). Correction: “Efficient parameter estimation for self-similar processes” [Ann.
Statist. 17 (1989), no. 4, 1749–1766; MR1026311]. Ann. Statist. 34 1045–1047. MR2283403

[8] Dzhaparidze, K. (1986). Parameter Estimation and Hypothesis Testing in Spectral Analysis of Sta-
tionary Time Series. New York: Springer. MR0812272

[9] Fox, R. and Taqqu, M.S. (1986). Large-sample properties of parameter estimates for strongly depen-
dent stationary Gaussian time series. Ann. Statist. 14 517–532. MR0840512

[10] Fukasawa, M. and Takabatake, T. (2019). Supplement to “Asymptotically efficient estimators
for self-similar stationary Gaussian noises under high frequency observations.” DOI:10.3150/18-
BEJ1039SUPP.

https://doi.org/10.3150/18-BEJ1039SUPP
http://www.ams.org/mathscinet-getitem?mr=1081295
http://www.ams.org/mathscinet-getitem?mr=3120827
http://www.ams.org/mathscinet-getitem?mr=1856174
http://www.ams.org/mathscinet-getitem?mr=3083920
http://www.ams.org/mathscinet-getitem?mr=1026311
http://www.ams.org/mathscinet-getitem?mr=2283403
http://www.ams.org/mathscinet-getitem?mr=0812272
http://www.ams.org/mathscinet-getitem?mr=0840512
https://doi.org/10.3150/18-BEJ1039SUPP
https://doi.org/10.3150/18-BEJ1039SUPP


1900 M. Fukasawa and T. Takabatake

[11] Ibragimov, I.A. and Has’minskiı̆, R.Z. (1981). Statistical Estimation: Asymptotic Theory. Applications
of Mathematics 16. Berlin: Springer. MR0620321

[12] Kawai, R. (2013). Fisher information for fractional Brownian motion under high-frequency discrete
sampling. Comm. Statist. Theory Methods 42 1628–1636. MR3041490

[13] Kolmogoroff, A.N. (1940). Wienersche Spiralen und einige andere interessante Kurven im
Hilbertschen Raum. C. R. (Doklady) Acad. Sci. URSS (N.S.) 26 115–118. MR0003441

[14] Lieberman, O., Rosemarin, R. and Rousseau, J. (2009). Asymptotic theory for maximum likelihood
estimation in stationary fractional Gaussian processes, under short-, long- and intermediate memory.
CiteSeerX.

[15] Lieberman, O., Rosemarin, R. and Rousseau, J. (2012). Asymptotic theory for maximum likelihood
estimation of the memory parameter in stationary Gaussian processes. Econometric Theory 28 457–
470. MR2913638

[16] Mandelbrot, B.B. and Van Ness, J.W. (1968). Fractional Brownian motions, fractional noises and
applications. SIAM Rev. 10 422–437. MR0242239

[17] Paxson, V. (1997). Fast, approximate synthesis of fractional Gaussian noise for generating self-similar
network traffic. ACM SIGCOMM Computer Communication Review 27 5–18.

[18] Samorodnitsky, G. and Taqqu, M.S. (1994). Stable Non-Gaussian Random Processes: Stochastic Mod-
els with Infinite Variance. New York: Chapman & Hall. MR1280932

[19] Sinai, Y.G. (1976). Self-similar probability distributions. Theory Probab. Appl. 21 64–80.
[20] Taniguchi, M. (1983). On the second order asymptotic efficiency of estimators of Gaussian ARMA

processes. Ann. Statist. 11 157–169. MR0684873

Received August 2017 and revised March 2018

http://www.ams.org/mathscinet-getitem?mr=0620321
http://www.ams.org/mathscinet-getitem?mr=3041490
http://www.ams.org/mathscinet-getitem?mr=0003441
http://www.ams.org/mathscinet-getitem?mr=2913638
http://www.ams.org/mathscinet-getitem?mr=0242239
http://www.ams.org/mathscinet-getitem?mr=1280932
http://www.ams.org/mathscinet-getitem?mr=0684873

	Introduction
	Notation and brief review of the Whittle estimator in large sample setting
	Notation
	Asymptotic properties of the Whittle estimator in large sample setting

	Model assumption
	Examples
	Fractional Brownian motion
	Fractional Langevin model

	Construction of asymptotically efﬁcient estimators
	Only the Hurst parameter H is known
	Both parameters (theta, sigma) are unknown
	Only the diffusion parameter sigma is known

	Simulation studies
	Implementation and simulation studies of Whittle estimator
	Simulation studies of estimator Hntwo

	Appendix A: Preliminary lemmas
	Appendix B: LAN property under high frequency observations
	Appendix C: Approximation formula of theoretical asymptotic variance
	Case of Whittle estimator sigman
	Case of two-step estimator Hntwo
	Additional remark for maximum likelihood estimator

	Acknowledgements
	Supplementary Material
	References

