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The problem of estimating covariance matrices is central to statistical analysis and is extensively addressed
when data are vectors. This paper studies a novel Kronecker-structured approach for estimating such ma-
trices when data are matrices and arrays. Focusing on matrix-variate data, we present simple approaches
to estimate the row and the column correlation matrices, formulated separately via convex optimization.
We also discuss simple thresholding estimators motivated by the recent development in the literature. Non-
asymptotic results show that the proposed method greatly outperforms methods that ignore the matrix struc-
ture of the data. In particular, our framework allows the dimensionality of data to be arbitrary order even
for fixed sample size, and works for flexible distributions beyond normality. Simulations and data analysis
further confirm the competitiveness of the method. An extension to general array-data is also outlined.

Keywords: covariance matrix; Kronecker structure; matrix data; non-asymptotic bound

1. Introduction

Matrix and array observations are becoming increasingly available in the big data era thanks
to the rapid advance in the information technology and the need to store data in structured
forms; see, for example, Li, Kim and Altman [14], Hoff [11], Leng and Tang [13], Zhou, Li
and Zhu [24], and Zhou et al. [25]. Consider independent and identically distributed matrix-
variates X1, . . . ,Xn ∈ R

p×q that are realizations of a matrix random variable X following a
matrix-variate distribution (Gupta and Nagar [10]). Writing vec as the vector operator that stacks
the columns of a matrix into a vector, we denote

var
(
vec(Xk)

) = �

as the pq ×pq dimensional covariance matrix. Without loss of generality, we assume that E(Xk)

is known or a consistent estimator of E(Xk) such as the sample mean is available. For the latter
case, we require n > 1. In the sequel, we work with Xk − E(Xk).

The covariance matrix � plays an indispensable role in multivariate data analysis and is a
central quantity for estimation and inference. To begin with, a simple estimate of � is the fa-
miliar sample covariance matrix after these observations are vectorized. However, whenever the
data dimension pq is larger than the sample size n, this estimator can be of little use due to its
singularity. Based on this observation, a plethora of approaches, built upon various sparsity as-
sumptions on �, have attracted increasing attention. See, for example, Bickel and Levina [3,4],
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Rothman, Levina and Zhu [17], Cai and Liu [6], Bien and Tibshirani [5], Rothman [15], Xue,
Ma and Zou [21], and Cui, Leng and Sun [8].

Stacking matrices into vectors incurs a loss of information in the matrix form of the data. An
attractive alternative is to assume (Hoff [11], Leng and Tang [13], Tsiligkaridis and Hero [19])

� = � ⊗ �,

where, loosely speaking, � = (ψij ) ∈ R
q×q depicts the covariance of the columns of Xi and

� = (σij ) ∈ R
p×p that of the rows. Using a Kronecker product for the overall covariance matrix

� retains the matrix structure of the data. Another immediate advantage is that the number of the
unknown parameters in � reduces from an order of p2q2 to an order of p2 +q2, making the prob-
lem more tractable. As will become clear, with appropriate sparsity assumptions on � and �, this
decomposition enables one to estimate � at a higher rate of convergence, and allows substantially
larger dimensional covariances to be estimated, even with a fixed sample size. Without consider-
ing sparsity, Srivastava, von Rosen and von Rosen [18] estimated the Kronecker structure when
p and q are fixed. There are also a growing number of papers on estimating the concentration
matrix �−1 via a Kronecker product representation by estimating sparse concentration matrices
�−1 and �−1 (Allen and Tibshirani [1], Yin and Li [22], Leng and Tang [13], Zhou [26]). These
papers assume matrix normality for the data distribution. None of them addresses the issue of
estimating sparse � or �.

This paper is motivated by the neuroimaging data in Section 4.1. When we applied existing
approaches for estimating a sparse Gaussian graphical model in �−1 (Yuan and Lin [23]), or
for estimating two sparse Gaussian graphical models in �−1 and �−1 (Leng and Tang [13]),
or for estimating a sparse covariance matrix in � (Cui, Leng and Sun [8]), they all give a final
estimated � which is diagonal. A formal test of the null hypothesis that the covariance matrix
is diagonal, however, is rejected (Chen, Zhang and Zhong [7]). On the other hand, the proposed
class of estimators, collectively named sparse Kronecker-structured estimators for huge dimen-
sional � and � under sparsity assumptions, is found to be useful for depicting the correlation
structures in � and �. See Figure 6. At the core of these estimators is to estimate non-iteratively
two correlation matrices by convex optimization, one for � and the other for �. The resulting es-
timates are guaranteed positive definite. The technical tools used for the non-asymptotic analysis
are totally different from those in Leng and Tang [13] and Zhou [26] and can be of independent
interest. By “non-asymptotic analysis” we here mean that the sample size n does not need to go
to infinity. Apart from this, there are two major innovations in our non-asymptotic analysis. First,
the non-asymptotic results cover not only the usual Gaussian distribution, but also distributions
such as the exponential tail type distributions (Cai and Liu [6]) and the Bernoulli distribution,
substantially enhancing the usefulness of the method. Second, our model allows the dimension-
ality to be arbitrary order even when the sample size is fixed, thanks to the Kronecker structure
assumption that greatly reduces the number of parameters needed. For modelling covariance of
random vectors, the dimensionality is allowed at most to be of sub-exponential order of the sam-
ple size (Bickel and Levina [3,4]). Methodologically, the proposed method for matrix data can
be easily extended to study array data, which is straightforward operationally and theoretically,
and is discussed in the paper. Our non-asymptotic analysis indicates that the proposed method
gives fast rate of convergence for estimating �. As a result, simple estimates by soft thresholding
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usually suffice to guarantee its positive definiteness in contrast to the thresholding estimator for
the covariance matrix of vector data where special care is recommended (Rothman [15], Xue, Ma
and Zou [21]). This is in sharp contrast to the more difficult problem of estimation concentration
matrices where loss function based approaches have to be employed (Leng and Tang [13]).

The following notations are used throughout the paper. For a square matrix A = (aij ) ∈R
m×m,

diag(A) denotes a matrix consisting of the diagonal terms of A as diag{a11, . . . , amm}. The
Frobenius norm of A is denoted as ‖A‖F and its element �1 norm is denoted as |A|1. We write
|A|max = maxi,j |aij | as the maximum entry of A. The spectral norm of A is ‖A‖2 denoting the
largest singular value of A. The trace of a square matrix A is denoted as tr(A) and the Kronecker
product between matrices is denoted by ⊗. A positive semi-definite matrix is denoted by A � 0.
The (i, j)th entry of A is denoted either as aij or Aij . If A denotes a covariance matrix, the
corresponding correlation matrix is denoted as RA such that {diag(A)}1/2RA{diag(A)1/2} = A.
Finally, Ik denotes the k × k identity matrix.

The rest of the paper is organised as follows. We present the proposed Kronecker-structured es-
timation method in Section 2, where several variants of the approach are discussed. In Section 3,
we provide the main theory, and outline the generalisation of the proposed method for estimat-
ing the covariance matrix of array data. Simulation studies and data analysis are presented in
Section 4 with a short conclusion in Section 5. All the proofs are relegated to the Appendix.

2. Kronecker-structured estimation

We make the following assumption on the matrix variate data X that includes multivariate nor-
mality as a special case.

Condition (A). The matrix variate data X have the structure

X = BSAT, (1)

where A, B are square matrices such that AAT = � , BBT = � and the entries of S = (sij ) are
independent and identically distributed with mean 0 and variance 1.

First we derive a simple sample estimate for � = � ⊗ �. Write

�n = 1

n

n∑
k=1

XT
kXk, �n = 1

n

n∑
k=1

XkX
T
k .

Clearly, the expectations of these two matrices satisfy

E(�n) = tr(�)�, E(�n) = tr(�)�,

respectively, giving rise to a reasonable estimate of � = � ⊗� as �n ⊗�n/(tr(�) tr(�)). Noting
that tr(�) = tr(�) tr(�), we can estimate tr(�) tr(�) consistently by

∑n
k=1 ‖Xk‖2

F /n. Therefore,



3836 C. Leng and G. Pan

a simple sample estimate of � admitting the Kronecker structure is

�n = �n ⊗ �n/

(
1

n

n∑
k=1

‖Xk‖2
F

)
. (2)

If the sample size goes to infinity and the dimensionality of the covariance matrix is fixed, it is
not difficult to see that �n is a consistent estimator of �.

Next, we discuss how to estimate � when p and q are much larger than n. Define the marginal
variance matrices of �n and �n as(

W�
1

)2 = diag(�n),
(
W�

1

)2 = diag(�n),

respectively. The sample row and column sample correlation matrices can be written respectively
as R�

n and R�
n , where

�n = W�
1 R�

n W�
1 , �n = W�

1 R�
n W�

1 .

These two sample correlation matrices can be seen as estimates of the population correlation
matrices R� and R� , respectively. The proposed Kronecker estimator replaces R�

n and R�
n by

their penalized estimates in

R̂� = arg min
R∈Rq×q

1

2

∥∥R − R�
n

∥∥2
F

+ λ� |R|1, s.t. R � εIq,Rjj = 1, j = 1, . . . , q, (3)

R̂� = arg min
R∈Rp×p

1

2

∥∥R − R�
n

∥∥2
F

+ λ� |R|1, s.t. R � εIp,Rjj = 1, j = 1, . . . , p, (4)

where λ� and λ� are penalty parameters, and ε is an arbitrary small positive constant that guar-
antees positive definiteness of the estimates. Here the simplified notation R̂� (R̂�) suppresses its
dependence on the sample size n and the penalty parameter λ� (λ�). The optimization problem
in (3) and (4) is convex and thus convex optimization techniques can be applied. In this paper,
we use the efficient accelerated proximal gradient algorithm in Cui, Leng and Sun [8]. After
obtaining the penalized estimates of � and �, the final Kronecker estimator assembles them as

�̂ = W�
1 R̂�W�

1 , �̂ = W�
1 R̂�W�

1 , �̂ = �̂ ⊗ �̂/

(
1

n

n∑
k=1

‖Xk‖2
F

)
. (5)

Motivated by the adaptive Lasso (Zou [27]), we can replace the penalty |R|1 in (3) by∑
j<k |Rjk|/|(R�

n )jk|, and the penalty in (4) by
∑

j<k |Rjk|/|(R�
n )jk|. After the correlation ma-

trices are obtained, we estimate �, � and � as in (5). The estimate is denoted as �̂A and referred
to as the adaptive Kronecker estimator.

It turns out numerically that the positive definiteness constraints R � εI in (3) and (4) are often
redundant in the sense that the resulting estimates without these constraints are positive definite.
Thanks to the Kronecker product structure of �, the non-asymptotic analysis in the next session
reveals that in estimating the p × p matrix �, the effective sample size becomes nq , and in
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estimating the q × q matrix � , the effective sample size becomes np. Thus, the curse of dimen-
sionality is greatly alleviated. As a consequence, we can directly use thresholding as in in Bickel
and Levina [4] and Rothman, Levina and Zhu [17] without the positive definite constraints, giv-
ing rise to simple and fast estimators. Although thresholding estimators for covariance of vector
data are also found to be positive definite with high probability (Bickel and Levina [4], Rothman,
Levina and Zhu [17]), in practice, these estimators are based on an effective sample size n for
estimating an (pq) × (pq) matrix in our setup, and thus are more prone to the violation of the
constraints. Finally, if our estimate after thresholding is not positive definite, we then evoke the
algorithm in Cui, Leng and Sun [8].

In particular, we define soft-thresholding Kronecker estimator by replacing R̂� by Sλ� (R�
n )

and R̂� by Sλ� (R�
n ) in (5) respectively, where Sλ is the soft-thresholding operator such that the

(i, j)th entry (i �= j ) of Sλ(A) is sign(aij ) · max{|aij | − λ,0} for some λ ≥ 0, and the diagonals
of Sλ(A) are the same as those in A. These matrices can be seen as the solutions to (3) and (4)
with a tuning parameter λ but without the positive definiteness constraint R � εI respectively.

Similarly, define the hard-thresholding operator Hλ(·) such that the (i, j)th entry (i �= j ) of
Hλ(A) is aij · I (|aij | ≥ λ) for some λ ≥ 0 and an indicator function I (·). The hard-thresholding
estimator �̂H is defined by replacing R̂� by Hλ� (R�

n ) and R̂� by Hλ�(R�
n ) in (5), respectively.

Finally, we have the covariance estimate by vectorizing Xk as vec(Xk). Writing

�̃n = 1

n

n∑
k=1

{
vec(Xk)

}{
vec(Xk)

}T
,

we can estimate a sparse correlation matrix as

R̃�̃ = arg min
R∈Rpq×pq

1

2

∥∥R − R�̃n
∥∥2

F
+ λ|R|1, s.t. R � εIpq,Rjj = 1, j = 1, . . . , pq.

We note again that the constraint R � εI is enforced to guarantee the positive definiteness of
the resulting estimate. Without this constraint, the resulting estimate is just the soft-thresholding
estimate as in Bickel and Levina [3]. However, Rothman [15] and Xue, Ma and Zou [21] ob-
served that when the dimension pq is high relative to the sample size n, the soft-thresholding
estimator can be seriously non positive definite, giving rise to invalid covariance matrices. This
phenomenon is especially true when both p and q are very large, a scenario that is appropriate for
our study. Write W̃ 2 = diag(�̃n). The vectorized estimator is formally defined as �̃V = W̃ R̃�̃W̃ .
More details of this approach can be found in Cui, Leng and Sun [8].

3. Theory

We now present non-asymptotic bounds for the proposed Kronecker estimate in terms of the
spectral and Frobenius norms when p and q diverge to infinity. One novelty about our results
is that the dimensionality p and q can diverge to infinity at any rate under suitable sparsity
conditions, even when the sample size n is fixed. This is in marked contrast to other approaches
where the dimensionality is only allowed to be of sub-exponential order of the sample size,
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and the matrix is sufficiently sparse (Bickel and Levina [3,4]). Another novelty of the results
is that we study distributions well beyond matrix normality, providing theoretical guarantees for
studying a variety of problems much broader than those in Leng and Tang [13] and Zhou [26]. For
� = (ψij ), � = (σij ), let s� = ∑

i �=j I (ψij �= 0) and s� = ∑
i �=j I (σij �= 0) denote the numbers

of nonzero off-diagonal parameters in � and �, respectively. The uniform upper bounds of ψij

and σij are denoted as ψmax and σmax, respectively. We impose the following conditions.

Condition (B). There exists constants 0 < c1 < c2 such that c1 ≤ λj (�) ≤ c2, c1 ≤ λi(�) ≤ c2
for j ≤ q , i ≤ p. Here λj (�), λi(�) are the eigenvalues of � , �, respectively, in decreasing
order.

Condition (C). Assume p,q → ∞, c4 <
logp
logq

≤ c5 with c4 > 0.

Condition (D). We assume Es48
ij < ∞.

Basically, Condition (B) states that the eigenvalues of � and � are bounded away from zero
and infinity. Hence, the diagonal elements of � and � are also bounded from above. The model
in (1) means that matrix variate X is a linear transformation of some p×q variate random matrix
S with independent components. It generates a rich collection of X from S with given row and
column covariance matrices � = AAT and � = BBT such that var(vec(X)) = �. In particular,
if X follows a matrix normal distribution, the data structure (1) is satisfied. Condition (D) is
satisfied by many commonly used distributions such as the normal distribution, Bernoulli distri-
bution and the exponential tail type distributions in Cai and Liu (2011). The moment condition
can be further weakened by truncation. But we do not pursue this direction because otherwise a
much lengthier proof is needed. The condition c4 <

logp
logq

≤ c5 in (C) means that p and q are not
necessarily in the same order. For example, we can allow p = O(qk) for any finite k.

For simplicity, we focus on the non-asymptotic bounds of the Kronecker estimate. The proper-
ties of the other estimates can be derived likewise. We first present the accuracy of the estimated
correlation matrices defined in (3) and (4). Then we spell out the non-asymptotic bounds for
estimating � and � that eventually give rise to the bounds of estimating �.

Theorem 1. Assume that the true correlation matrix R� and R� are both positive definite.

Under (A)–(D) if we set the thresholding parameters as λ� = O(

√
logq
np

) and λ� = O(

√
logp
nq

),
then we have

∥∥R̂� − R�
∥∥

F
≤ C

√
(s� + 1)

logq

np
, and

∥∥R̂� − R�
∥∥

F
≤ C

√
(s� + 1)

logp

nq
,

with probability 1 − q−0.9 and 1 −p−0.9, respectively. Here (and in what follows) C is a positive
constant independent of n, p, q but may take different values in different places.

Note that Theorem 1 does not require the sample size n to go to ∞. For fixed n, Theorem 1
continues to hold. Loosely speaking, the theorem states that in estimating R� , the sample size be-
comes from n to nq , and that it becomes np in estimating R� . Therefore, for the non-asymptotic
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results to take effect, we only need to let the effective sample sizes np and nq diverge to infinity,
as compared to the usual non-asymptotic arguments for which the sample size n must diverge to
infinity in estimating variance of vectorized data (Bickel and Levina [4]). We note that, if the vec-
torized estimate is used, the bound in terms of the Frobenius norm becomes O(

√
s� log(pq)/n)

where s� is the number of the nonzero off-diagonal terms of � (Rothman [15]), for which a
sufficient condition for the convergence is log(pq) = o(n) when � is sparse. Obviously, the
convergence rate of the vectorized estimate is much slower.

We have the following corollary regarding the convergence rates of the Kronecker estimates
�̂ and �̂ of the two covariance matrices.

Corollary 1. Assume that Conditions (A)–(D) are satisfied. We have∥∥∥∥ 1

tr�
�̂ − �

∥∥∥∥
2
≤ C

√
(s� + 1)

logq

np
,

∥∥∥∥ 1

tr�
�̂ − �

∥∥∥∥
F

≤ C

√
(s� + q)

logq

np
,

and ∥∥∥∥ 1

tr�
�̂ − �

∥∥∥∥
2
≤ C

√
(s� + 1)

logp

nq
,

∥∥∥∥ 1

tr�
�̂ − �

∥∥∥∥
F

≤ C

√
(s� + p)

logp

nq
,

with probability 1 − q−0.9 and 1 − p−0.9, respectively.

Now, we have the following corollary regarding the rate of convergence of the Kronecker
estimate �̂ for estimating �.

Corollary 2. Assume that Conditions (A)–(D) are satisfied, (s� + q)
logq
np

→ 0 and (s� + p)×
logp
nq

→ 0. We have

‖�̂ − �‖2 ≤ C

(√
(s� + 1)

logq

np
+

√
(s� + 1)

logp

nq

)
,

‖�̂ − �‖F ≤ C

(√
(s� + q)

logq

n
+

√
(s� + p)

logp

n

)
,

with probability 1 − p−0.9 − q−0.9 − (pq)−0.9.

As this paper is the first for studying the estimation of a sparse covariance matrix when it
admits a Kronecker structure, we can only compare its rate of convergence to a few methods
for estimating a sparse precision matrix. Assuming matrix normality, Leng and Tang [13] and
Zhou [26] both show that their estimators have similar rates of convergence, when additional
assumptions are posed on the sparsity of �−1 and �−1. Our results improve those in Leng and
Tang [13] that required max(p logp/q,q logq/p)/n → 0 ruling out problems with fixed n. In
addition, the method in Leng and Tang [13] involves non-convex optimization, while Zhou [26]
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employs graphical lasso. Our method usually involves thresholding, and thus is computationally
more attractive. When p or q is 1, the results are consistent with those in Xue, Ma and Zou [21].

We now compare the Kronecker estimate to the vectorized estimate. If we vectorize the matrix
observations, the standard arguments in Xue, Ma and Zou [21] and Cui, Leng and Sun [8] can
show that estimation errors satisfy

∥∥�̂V − �
∥∥

2 = Op

(√
(s�s� + 1)

logpq

n

)
,

∥∥�̂V − �
∥∥

F
= Op

(√
(s� + q)(s� + p)

logpq

n

)
.

The Kronecker structure assumption on � effectively increases the sample sizes to np and nq for
estimating � and �, respectively.

Denote the non-diagonal support of � as A0� = {(i, j) : i �= j, (�)ij �= 0} and similarly A0�

for �. We have the following consistency results for covariance selection.

Corollary 3. Assume that Conditions (A)–(D) are satisfied.

• If λq(R�) � C

√
(s� + 1)

logq
np

and min(i,j)∈A0�
(R�)ij �

√
logq
np

hold then (R̂�)ij = 0 for

(i, j) ∈ AC
0� , and (R̂�)ij �= 0 for (i, j) ∈ A0� with probability tending to one;

• If λp(R�) � C

√
(s� + 1)

logp
nq

and and min(i,j)∈A0�
(R�)ij �

√
logp
nq

then (R̂�)ij = 0 for

(i, j) ∈ AC
0� , and (R̂�)ij �= 0 for (i, j) ∈ A0� with probability tending to one.

The condition λq(R�) � C

√
(s� + 1)

logq
np

ensures that the solution to (2) without the con-
straint is still positive definite with probability tending to one. It is clear that the solution to
(2) without this constraint becomes the soft thresholding Kronecker estimator. Therefore with
probability tending to one, (R̂�)ij = sign(R�

n )ij (|(R�
n )ij | − λ�)+ where (b)+ > 0 for b > 0,

and (b)+ = 0 otherwise. Corollary 3 establishes the consistency of covariance selection and is
attractive from a model selection perspective.

We below discuss selection of λ� and λ� via cross validation that is done by splitting the
sample randomly into a training and a test set randomly N times. As in Bickel and Levina [4],
it suffices to prove the result when N = 1. We consider choosing λ� and λ� by a grid search

on {j
√

logp
nq

}, 0 < j ≤ J and {j
√

logp
nq

}, 0 < j ≤ J1, respectively. For convenience write the
observations as

X1, . . . ,Xm,Xm+1, . . . ,Xm+B

with n = m + B , where {X1, . . . ,Xm} is the training set and the {Xm+1, . . . ,Xm+B} is the test
set. The two tuning parameters are chosen separately, such that for choosing λ� for example, the
estimated covariance matrix of the training dataset for � is the closest to the sample covariance
matrix of the test set for � in terms of the F norm. The selection of λ� is done similarly. Denote
the estimators obtained from cross validation by R̂�

λ�
and R̂�

λ�
respectively. Inspired by Bickel

and Levina [4] we have the following theory.
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Theorem 2. Suppose that S in (1) consists of i.i.d. standard normal variables. If B = nεn,
(logJ )3 = o(

√
nqp−1εn

√
logp(s� + p)) and J1 = o(

√
npq−1εn

√
logq(s� + q)), then with

probability tending to one

∥∥R̂�
λ�

− R�
∥∥

F
≤ C

√
(s� + 1)

logq

np
, and

∥∥R̂�
λ�

− R�
∥∥

F
≤ C

√
(s� + 1)

logp

nq
.

Corollary 4. Under the condition of Theorem 2, the following two inequalities hold with proba-
bility tending to one

∥∥�̂�
λ�

− �
∥∥

F
≤ C

√
(s� + q)

logp

nq
, and

∥∥∥∥ 1

tr�
ˆ�λ� − �

∥∥∥∥
F

≤ C

√
(s� + p)

logp

nq
.

In theory, a convenient choice of εn is C
logn

for some constant C.

3.1. Array data

The proposed framework can be easily extended to array-type data in a straightforward man-
ner as we discuss below. Consider independent and identically distributed array variables Xk ∈
R

p1×···×pL , k = 1, . . . , n. We assume that they are properly centred such that E(Xk) is a zero
array and var(vec(Xk)) = � = �1 ⊗ · · · ⊗ �L.

As the higher-order analog of matrix rows and columns, a fiber is defined by fixing every index
but one (Kolda and Bader [12]). For example, the mode-� fibers of an array X are all vectors
xi1···i�−1:i�+1···iL that are obtained by fixing the values of {i1, . . . , iL} \ i�. The mode-� unfolding
(also known as matricization or flattening) of a tensor X, denoted as X(�), is an p� × q� matrix
with q� = ∏L

k=1(�=�) pk by replacing the model-� fibers in its columns. More specifically, the
(i�, j)th element is the (i1, . . . , iL)th element of X where

j = 1 +
L∏

k=1(�=�)

(ik − 1)Jk, with Jk =
k−1∏

m=1(�=�)

pm.

With this definition, we see that �
(�)
n = 1

n

∑n
k=1{X(�)

k }{X(�)
k }T is an unbiased estimator of

a��� where a� = ∏L
k=1(�=�) tr(�k). Thus, we have that

⊗L
�=1 �

(�)
n is an unbiased estimate of

{∏L
�=1 tr(��)}L−1�. Replacing

∏L
�=1 tr(��) by its consistent estimate bn = ∑n

k=1 ‖vec(Xk)‖2/

n, we obtain a moment estimate of � as

�n =
L⊗

�=1

�(�)
n /bL−1

n .

The Kronecker estimate for array data is a straightforward extension of that for matrix data.
Following previous ideas, we can define various estimates similar to those in Section 2. For
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instance, we minimize (3) by replacing R�
n by R�

(l)
n to get the Kronecker estimate of R̂(�), where

R�
(l)
n is the correlation of �

(�)
n and λ(�) is the penalty parameter. Let �̂(�) = W(�)R̂(�)W(�), where

(W(�))2 = diag(�
(�)
n ). The final Kronecker estimate of � is

�̂array =
L⊗

�=1

�̂(�)/bL−1
n .

To establish the asymptotic results, we can impose similar conditions as those in Section 3,
under which one can show that if (s� + 1)

logp�

n
∏L

k=1(�=�) pk

→ 0, � ≤ L, we have

‖�̂array −�‖2 ≤ C

L∑
�=1

√
(s� + 1)

logp�

n
∏L

k=1(�=�) pk

, ‖�̂array −�‖F ≤ C

L∑
�=1

√
(s� + p�)

logp�

n
,

with probability 1 − 2
∑L

k=1 p−0.9
k . The detail of these results will be pursued elsewhere.

4. Numerical study

Extensive simulation studies are conducted to assess the finite-sample performance of the pro-
posed estimators. In particular, we consider the following matrices as the building blocks for
generating the covariance matrices � and � throughout the simulation study. For all the simula-
tion studies, we choose ε = 10−6.

Case 1 (Banded matrix). The (i, j)th entry of the matrix is aij = (1 − |i−j |
5 )+.

Case 2 (Block diagonal matrix). Partition the indices {1,2, . . . , p} into K = p/5 non-
overlapping subsets Ik of equal size. Let ik denote the maximum index in Ik . We set

aij = 0.6I{i=j} + 0.4
K∑

i=1

I{i∈Ik,j∈Jk} + 0.4
K−1∑
k=1

(I{i=ik,j∈ik+1} + I{i∈Ik+1,j=ik}).

Case 3 (Random sparse matrix). Let A = B + δI : each off-diagonal upper triangle entry in B

is generated independently and equals to 0.5 with probability 0.1 and 0 with probability 0.9. The
diagonals of B are zero and δ is chosen such that the conditional number of A is p.

The first two cases are similar to those in Xue, Ma and Zou [21]. Case 3, a random sparse
covariance matrix, is adopted from Rothman et al. [16] and Leng and Tang [13]. The patterns
of the sparsity of these three matrices can be seen from Figure 1 for p = 20, where a random
realization of the matrix in Case 3 is illustrated. We denote these three matrices as Aj , j = 1,2,3.

We generate 50 data sets for each simulation setup, each data matrix taking the form X =
BSAT where A, B are square matrices such that AAT = Aj , BBT = Ak , 3 ≥ j ≥ k ≥ 1 and
entries of S are independent t10 random variates normalized to have variance one. We consider
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Figure 1. Heat maps of the three matrices used for simulation when p = 20. The figure for Case 3 is
random realization of the matrix generating process. Black color denotes 1 and white color denotes 0.

a sample size n = 20 and various dimensions as (p, q) = (20,20), (320,320) or (640,20). For
each setup, we generate a test data with the same sample size and choose the tuning parameter
that minimises the Frobenius norm of the difference between the estimate and the empirical
covariance matrix of the test data.

We first examine the estimation accuracy in the Frobenius and spectral norm respectively be-
tween the truth and an estimator. The performance of various estimators of � when (p, q) =
(20,20) is presented in Figure 2. When pq is large, computing the sparse vectorized estimator
or a spectral norm is very slow. Thus, we only present the accuracy of estimating � and � for
(p, q) = (320,320) in Figure 3 and for (p, q) = (640,20) in Figure 4 respectively. Here the
maximum likelihood estimator is obtained via the flip-flop algorithm in Srivastava, von Rosen
and von Rosen [18] which fails to give convergent solutions if n < min{p/q,q/p} + 1 when

Figure 2. The accuracy when (p, q,n) = (20,20,20). A-Kron: the adaptive Kronecker estimator; H-Kron:
the hard-thresholding estimator; Kron: the Kronecker estimator in (5); MLE: the maximum likelihood esti-
mator; Sample: the sample estimator in (2); Vector: the vectorized estimator.
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Figure 3. The accuracy when (p, q,n) = (320,320,20). Short notations can be found in the caption of
Figure 2.

(p, q) = (640,20). This phenomenon happens because during the iteration, some of the esti-
mated intermediate matrices are degenerate and thus cannot be used for updating. Finally, we
also note that the naive sample estimator �̃n is outperformed by all the estimators in Figure 2 by
a large magnitude (not shown) and thus is omitted for better visualization.

We can draw the following conclusions from these figures. The sample estimator and the sparse
vectorized estimator are outperformed by the Kronecker estimators. The maximum likelihood
estimator works well when (p, q) = (20,20), but loses out when dimensionality becomes large.
Among the Kronecker estimators, the hard-thresholding estimator and the adaptive Kronecker
estimator perform among the best, followed by the Kronecker estimator overall.

For variable selection, we follow Leng and Tang [13] to record the true positive rate defined
as #{Âij �= 0&Aij �= 0}/#{Aij �= 0} and the true negative rate defined as #{Âij = 0&Aij = 0}/
#{Aij = 0}. From Table 1, we can see that the Kronecker estimators perform satisfactorily in
general, especially so for the hard-thresholding and adaptive estimators.

An interesting question arises regarding how robust the method is if the assumed Kronecker
structure is not true. Towards this end, we generate data by assuming

� = α� ⊗ � + (1 − α)I,
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Figure 4. The accuracy when (p, q,n) = (640,20,20). Short notations can be found in the caption of
Figure 2.

where � and � are specified as previously, I is an pq × pq dimensional identity matrix and
α ∈ [0,1] is a constant. Apparently, whenever α ∈ (0,1), the assumed Kronecker structure does
not hold. We find that under this perturbation scheme, the proposed method continues to perform
better than the sparse vectorized estimator, an example of which with α = 0.5 is illustrated in
Figure 5. This is most likely due to the reduction of the large number of parameters, the simple
structure of � and the small sample size n = 20. We have also conducted additional simulations
by assuming � = Ai , i = 1,2,3 which does not admit the Kronecker structure. We have observed
that the proposed methods continue to outperform the sparse vectorized estimator.

4.1. A data analysis

As an illustration, we apply the proposed covariance matrix estimation method to analyze the
Neuro Bureau ADHD-200 preprocessed data (http://www.nitrc.org/frs/?group_id=383). We ex-
amine the resting state functional magnetic resonance imaging (fMRI) data collected by Oregon
Health Sciences University by focusing on the 42 typically developing children. These children
served as the baseline for comparison to those diagonized with attention deficit hyperactivity dis-
order (ADHD). For this dataset, we examine the so-called automated anatomical labeling (AAL)

http://www.nitrc.org/frs/?group_id=383
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Table 1. Model selection result in percentages. TPR, true positive rate; TNR, true negative rate; Kron,
Kronecker estimator; A-Kron, adaptive Kronecker estimator; H-Kron, Kronecker estimator via hard-
thresholding

(p, q,n) = (320,320,20) (p, q,n) = (640,20,20)

(�,�) Matrix Kron A-Kron H-Kron Kron A-Kron H-Kron

(A1,A1) � TPR 100 100 100 100 100 100
TNR 92 99 100 42 93 98

� TPR 100 100 100 92 88 78
TNR 92 99 100 94 99 100

(A2,A1) � TPR 100 100 100 100 100 100
TNR 91 99 100 39 95 97

� TPR 100 100 100 100 99 92
TNR 92 99 100 95 99 100

(A2,A2) � TPR 100 100 100 100 100 100
TNR 91 100 100 51 99 100

� TPR 100 100 100 100 100 99
TNR 91 100 100 95 99 100

(A3,A1) � TPR 100 100 100 100 100 100
TNR 85 100 100 45 96 99

� TPR 100 99 91 2 2 2
TNR 81 90 81 99 100 100

(A3,A2) � TPR 100 100 100 100 100 100
TNR 91 100 100 50 99 100

� TPR 100 100 99 7 2 2
TNR 75 93 100 99 100 100

(A3,A3) � TPR 100 100 100 100 100 100
TNR 84 97 84 75 100 100

� TPR 100 100 100 17 5 2
TNR 84 97 100 97 99 100

atlas with 116 regions of interest (ROI). The labels in the atlas indicate macroscopic brain struc-
tures which were obtained by fractionating the brain into functional space using nearest-neighbor
interpolation (Tzourio-Mazoyer et al. [20]). In an fMRI study, brain activities are measured by
detecting associated changes in blood flow through low frequency blood oxygenation level de-
pendent (BOLD) signal in the brain. For our data, the signals of these children were recorded
over 74 scans equally spaced in time. Thus, this dataset consists of n = 42 observations, each of
which can be seen as a p × q matrix with a temporal dimension p = 74 and a spatial dimension
q = 116.
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Figure 5. The accuracy when (p, q,n) = (20,20,20) when the true covariate matrix does not admit the
Kronecker structure. Short notations can be found in the caption of Figure 2.

To explore the covariance structure of the data, we start by vectorizing the matrices as vectors
each with a dimension pq = 8584. We fit the penalized Gaussian graphical model in Yuan and
Lin [23] for estimating a sparse �−1 and the sparse correlation matrix estimation method in Cui,
Leng and Sun [8] for estimating a sparse �. Using 10-fold cross validation for choosing their
respective tuning parameter, both method estimate � as a diagonal matrix. A formal test that
the (pq) × (pq) dimensional correlation matrix is an identity matrix is rejected (Chen, Zhang
and Zhong [7]). We proceed to use the sparse matrix variate graphical model in Leng and Tang
[13] to estimate � whose inverse is represented as the Kronecker product of a sparse �−1 and
�−1. The tuning parameter is again chosen by 10-fold cross validation and we found that both
matrices are estimated as diagonal.

We then apply the Kronecker structured estimators in this paper for which 10-fold cross val-
idation is again used to choose the tuning parameters. We first plot the sample estimators of
R� in panel (a) and R� in panel (d) of Figure 6. Interestingly, the correlation matrix among
the scans at different times clearly exhibit a banded structure, indicating that adjacent observa-
tions along the temporal dimension are strongly correlated, while distant observations are not
as correlated. This agrees with the intuition for fMRI datasets as BOLD signals at consecutive
times can be related to each other. We plot the Kronecker estimator of R� in panel (b) and
R� in panel (e) of Figure 6. The corresponding adaptive Kronecker estimators are plotted in
panels (c) and (f). We note that the adaptive Kronecker estimators are much more sparse than
their non-adaptive versions. For example, the sparsity of R� is 74.4% when the adaptive Kro-
necker estimator is used, while it is 53.7% for the Kronecker estimator. Comparing the 10-fold
cross validation out-of-sample errors, we further find that the errors of the Kronecker and the
adaptive Kronecker estimators are much smaller than the sample estimators in panels (a) and
(d) of the figure, and much better than the sample estimator when data are treated as vectors.
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Figure 6. The sample � and � and their estimators based on the method in this paper. The sparsity is the
percentage of the zeros in the corresponding matrix.

Finally, our Kronecker estimators from panels (c) and (f) confirm that a banded structure for the
covariance matrix of the observed BOLD signals over the temporal domain might be appropri-
ate.

5. Conclusion

We have proposed a novel sparse Kronecker structured method for estimating huge dimensional
covariance matrices for matrix and array data. Our approach is simple, requiring no-iteration
as opposed to iterative procedures for example, in Leng and Tang [13], easy to compute, and
enjoy superior non-asymptotic results under flexible distributions as in Section 3. We impose no
constraints on the dimensionality of the data compared to the sample size, as opposed to the usual
practice in the literature, for example, in Bickel and Levina [4]. This highlights the significant
gain in analysing high dimensional structured data by assuming a Kronecker structure on the
covariance matrix.
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Appendix A

We state a roadmap of the proof to Theorem 1, consisting of two steps.

1. We first establish the following two bounds∣∣∣∣ 1

tr�
�n − �

∣∣∣∣
max

≤ C

√
logq

np
and

∣∣∣∣ 1

tr�
�n − �

∣∣∣∣
max

≤ C

√
logp

nq
, (6)

with certain probabilities. Moderate deviation for martingale is employed to establish (6)
under the moment condition. To this end, a key step is to construct a martingale by ap-
propriately rewriting the entry of the random matrix of interest. Once this is done, the next
difficulty is to characterize the difference between the conditional variance and the variance
of the martingale, which is accomplished by evaluating its higher moment.

2. We further derive the convergence rate of the correlation matrices by putting the correlation
matrices into (3) and (4) in the main paper. Specifically, we obtain the convergence rate of
(R̂� −R�) and (R̂� −R�) under the spectral norm and the Frobenius norm, respectively.

To prove (6), we first write the expression of the elements of the matrices in (6) as∣∣∣∣�n

p
− tr(�)�

p

∣∣∣∣
max

= max
u,v≤q

∣∣∣∣∣1

n

n∑
k=1

[
1

p

p∑
i=1

(xk,iuxk,iv − ψuvσii)

]∣∣∣∣∣,∣∣∣∣�n

q
− tr(�)�

q

∣∣∣∣
max

= max
u,v≤p

∣∣∣∣∣1

n

n∑
k=1

[
1

q

q∑
j=1

(xk,uj xk,vj − ψjjσuv)

]∣∣∣∣∣.
(7)

We then prove (6) by considering the (u, v)th element of the above matrices as independent sums
or martingales.

For ease reference, we cite a moderate deviation result for martingales in Grama [9].

Lemma 1. Let zn be a martingale difference sequence with respect to the increasing σ -field Fn.
Suppose that for some δ > 0

Ln
2δ = E

n∑
i=1

|zi |2+2δ → 0, Nn
2δ = E

∣∣∣∣∣
n∑

i=1

E
(
z2
i |Fi−1

) − 1

∣∣∣∣∣
1+δ

→ 0.

Suppose that x is such that 1 ≤ x ≤ α(Ln
2δ + Nn

2δ)
−1 with α > 0. Then

P

(∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣ ≥ r

)
= 2

(
1 − 
(r)

)[
1 + θC(α, δ)x

1
3+2δ

(
Ln

2δ + Nn
2δ

) 1
3+2δ

]
,

where |θ | ≤ 1, C(α, δ) is a constant depending only on α and δ and

r2 = 2 logx − θ12c(δ) log(1 + √
2 logx),

with 0 ≤ θ1 ≤ 1 and c(δ) = 3 + 6δ.
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Applying this lemma, we establish the following result whose proof can be found in supple-
mentary materials.

Lemma 2. Assume that Conditions (A), (B) and (C) are satisfied. Then for some M > 0,

P

(∣∣∣∣ �n

tr�
− �

∣∣∣∣
max

≤ p

tr�

√
M

logq

np

)
≥ 1 − q−0.94,

P

(∣∣∣∣ �n

tr�
− �

∣∣∣∣
max

≤ q

tr�

√
M

logp

nq

)
≥ 1 − p−0.94.

Proof of Lemma 2. Throughout the paper, we use C and Cj to denote constants which may
change from line to line.

We only prove the second inequality and the first one can be proved similarly. Define

Qquv = √
nq

[
�n

q
− tr(�)�

q

]
uv

.

By (7), write

Qquv = 1√
nq

n∑
k=1

[
q∑

j=1

(xk,uj xk,vj − ψjjσuv)

]
= 1√

nq

q∑
j=1

[
n∑

k=1

(xk,uj xk,vj − ψjjσuv)

]
. (8)

In order to decompose Qnuv into a sum of some manageable terms, we introduce the following
notation. Let

A = (aij )q×q = (a1, . . . , aq)T, ai = (ai1, . . . , aiq)T, i = 1, . . . , q,

B = (bij )p×p = (b1, . . . , bp)T, bi = (bi1, . . . , bip)T, i = 1, . . . , p,

Sk = (sk,ij )p×q = (sk,1, . . . , sk,q), sk,� = (sk,1�, . . . , sk,p�)
T, � = 1, . . . , q.

Recalling (1) in the main paper and the covariance matrices 
 = AAT, � = BBT, we have

φij = aT
i aj , i, j ≤ q, σij = bT

i bj , i, j ≤ p,

xk,ij = bT
i Skaj =

q∑
�=1

aj�b
T
i sk,�.

(9)

Denote the (i, j) entry of ATA by φij = ∑q

k=1 akiakj .
Using (8) and (9) and the fact that trATA = trAAT, we have Qquv = ∑q

�=1 J�, where

J� = 1√
nq

∑
α<�

φ�α(J1α� + J2α�) + 1√
nq

φ��J3�
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with J1α� = ∑n
k=1 bT

usk,�s
T
k,αbv , J2α� = ∑n

k=1 bT
usk,αsT

k,�bv and J3� = ∑n
k=1(b

T
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T
k,�bv −

bT
u bv). Define the σ fields F� = σ (skm, k = 1, . . . , n, m = 1, . . . , �). Then one may verify that

E(J�|F�−1) = 0. Furthermore a direct calculation indicates that E|∑q
� J�| < (Var(
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� J�))

1/2 <

∞, as (10) below shows. Therefore, {J�,F�} is a sequence of martingale differences.
We next calculate the variance of Qquv . One may verify that
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where an 
 bn means that there exist constants c1 and c2 such that c1an ≤ bn ≤ c2an as n → ∞.
We now investigate Nn

2δ in Lemma 1. To this end, we first evaluate the terms involved in
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We conclude from (10) and (11) that

q∑
�

E
(
J 2

� |F�−1
) − Var

(
q∑
�

J�

)
= (Qn1 + Qn2 + Qn3 + Qn4 + Qn5 + Qn6 + Qn7 + Qn8 + Qn9),



Kronecker covariance estimation 3853
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∑
α<�

(
φ2

�αsT
k,αbvb

T
u sk,α

) − bT
u bv

1

q

q∑
�

q∑
α<�

φ2
�α

]
,

Qn6 = 2bT
u bv

[
1

nq

q∑
�

∑
α1<α2<�

(
φ�α1φ�α2

n∑
k=1

sT
k,α1

bvb
T
u sk,α2

)]

and

Qn7 = 2bT
u bv

[
1

nq

q∑
�

∑
α2<α1<�

(
φ�α1φ�α2

n∑
k=1

sT
k,α1

bvb
T
u sk,α2

)]
. (14)

In order to offset p2 caused by max in the inequality (17), below we evaluate the higher
moments of Qnj , j = 1, . . . ,9 in Lemma 3 below. By (10) and Lemma 3 we obtain

E

∣∣∣∣∑q

� E(J 2
� |F�−1)

Var(
∑q

� J�)
− 1

∣∣∣∣12

≤ Cq2‖
0
1(


0
1)

T ‖12
F

n6‖
‖24
F

+ Cq6

n6‖
‖24
F

+ C‖
0
1(


0
1)

T ‖6
F

n6‖
‖12
F

≤ C

n6q3
,

(15)

where we use Lemma 2.1 of Bhansali, Giraitis and Kokoszka [2].
We next consider Ln

2δ with δ = 11 in condition (1). By Rosenthal’s inequality

E(J�)
24 ≤ C

n12q12
E

(∑
α<�

φ�α(J1α� + J2α�)

)24

+ C

n12q12
φ24

�� EJ 24
3� ≤ C

q12

(∑
α<�

φ2
�α

)12

.

This, together with (10), yields that

1

(Var(
∑q

� J�))12

q∑
�=1

E(J�)
24 ≤ C

q11
, (16)

where we also use the fact that
∑

α<� φ2
�α and φ�α are both bounded for any �.
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From (15) and (16), we see that Cq3 ≤ α(Ln
2δ +Nn

2δ)
−1 with some appropriate C, independent

of q . Therefore choose x to be Cq3 in Lemma 1. Note that Var(
∑q

�=1 J�) ≤ C by (10). It follows
from Lemma 1 that

P

(
max
u,v≤p

∣∣∣∣∣
q∑

�=1

J�

∣∣∣∣∣ ≥ M
√

logp

)
≤ p2P

(∣∣∣∣ ∑q

�=1 J�√
Var(

∑q

�=1 J�)

∣∣∣∣ ≥ CM
√

logp

)

≤ p2P

(∣∣∣∣ ∑q

�=1 J�√
Var(

∑q

�=1 J�)

∣∣∣∣ ≥
√

2t logq3

)
≤ C

p3t−2
,

(17)

where M is chosen so that CM
√

logp >
√

2t logq3 with 2 < 3t < 3. Selecting t so that 3t −2 =
0.95 and then summarizing the above, the proof is complete. �

Lemma 3. Recall the definitions of Qnj , j = 1, . . . ,9 in (11)–(14). Then

E(Qn1)
12 + · · · + E(Qn9)

12 ≤ C‖
0
1(


0
1)

T ‖12
F

n6q10
+ C

n6q6
+ C‖
‖12

F ‖
0
1(


0
1)

T ‖6
F

n6q12
,

where 
0
1 = (φ0

�α) stands for the matrix obtained from ATA = (φ�α) with φ0
�α = φ�α if α < � and

zero otherwise.

Proof of Lemma 3. Note that the terms Qn2, Qn4, Qn6 and Qn7 are similar (their upper bounds
are the same up to the constants involving bT

u bv , bT
u bu, bT

v bv). Therefore we only estimate Qn2
below. Define

uα1α2 =
∑
�>α2

φ�α1φ�α2 , vα1α3 =
∑

α2>max(α1,α3)

uα1α2uα3α2 .

Write

Qn2 = 2

nq

n∑
k=1

∑
α1<α2

uα1α2s
T
k,α1

bvs
T
k,α2

bv.

By Rosenthal’s inequality,

E(Qn2)
12 ≤ C

n12q12

∣∣∣∣∣
n∑

k=1

E

(∑
α2

∑
α1<α2

uα1α2s
T
k,α1

bvs
T
k,α2

bv

)2
∣∣∣∣∣
6

+ C

n12q12

n∑
k=1

E

(∑
α2

∑
α1<α2

uα1α2s
T
k,α1

bvs
T
k,α2

bv

)12

≤ C

n6q12

∣∣∣∣∑
α2

∑
α1<α2

u2
α1α2

∣∣∣∣6

+ C

n12q12

n∑
k=1

E

(∑
α2

( ∑
α1<α2

uα1α2s
T
k,α1

bv

)2)6
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+ C

n12q12

n∑
k=1

∑
α2

E

( ∑
α1<α2

uα1α2s
T
k,α1

bv

)12

≤ C

n6q12

∥∥
0
1

(

0

1

)T ∥∥12
F

+ C

n12q12

n∑
k=1

E

( ∑
α1,α3

vα1α3s
T
k,α1

bvs
T
k,α3

bv

)6

+ C

n12q12

n∑
k=1

∑
α2

( ∑
α1<α2

E
(
uα1α2s

T
k,α1

bv

)2
)6

+ C

n12q12

n∑
k=1

∑
α2

∑
α1<α2

E
(
uα1α2s

T
k,α1

bv

)12

≤ C

n6q12

∥∥
0
1

(

0

1

)T ∥∥12
F

+ C

n12q12

n∑
k=1

E

(∑
α3

( ∑
α1<α3

vα1α3s
T
k,α1

bv

)2)3

+ C

n12q12

n∑
k=1

∑
α3

E

( ∑
α1<α3

vα1α3s
T
k,α1

bv

)6

+ C

n11q12

∑
α2

( ∑
α1<α2

u2
α1α2

)6

≤ C

n6q12

∥∥
0
1

(

0

1

)T ∥∥12
F

+ C

n12q10

n∑
k=1

∑
α3

E

( ∑
α1<α3

vα1α3s
T
k,α1

bv

)6

+ C

n11q12

(∑
α2

∑
α1<α2

u2
α1α2

)6

≤ C

n6q12

∥∥
0
1

(

0

1

)T ∥∥12
F

+ C

n11q10

∑
α3

( ∑
α1<α3

v2
α1α3

)3

+ C

n11q10

∑
α3

∑
α1<α3

v6
α1α3

≤ C

n6q12

∥∥
0
1

(

0

1

)T ∥∥12
F

+ C

n11q10

(∑
α3

∑
α1<α3

v2
α1α3

)3

≤ C

n6q12

∥∥
0
1

(

0

1

)T ∥∥12
F

+ C

n11q10

(∑
α3

∑
α1<α3

∑
α2>α1

u2
α1α2

∑
α2>α3

u2
α3α2

)3

≤ C

n6q10

∥∥
0
1

(

0

1

)T ∥∥12
F

,

where the third step uses the fact that

∑
α2

( ∑
α1<α2

uα1α2s
T
k,α1

bv

)2

=
∑
α1,α3

vα1α3s
T
k,α1

bvs
T
k,α3

bv,
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and the fact that∑
α2

∑
α1<α2

u2
α1α2

=
∑
�1,�2

∑
α1<α2<min(�1,�2)

φ�1α1φ�1α2φ�2α1φ�2α2 ≤ ∥∥
0
1

(

0

1

)T ∥∥2
F
,

and the step next to the last one uses Cauchy’s inequality.
Since the terms Qn1, Qn3 and Qn5 are similar (their upper bounds are the same up to the

constants involving bT
u bv , bT

u bu, bT
v bv) we only consider Qn1 next. Let vα = ∑

�>α φ2
�α . Write

Qn1 = 1

nq

n∑
k=1

∑
α

vα

(
sT
k,αbv

)2 − bT
vbv

q

∑
α

vα.

It follows that

E|Qn1|12 ≤ C

n12q12

(
n∑

k=1

E

(∑
α

vα

(
sT
k,αbvb

T
v sk,α − bT

v bv

))2
)6

+ C

n12q12

n∑
k=1

E

(∑
α

vα

(
sT
k,αbvb

T
v sk,α − bT

v bv

))12

≤ C

n12q12

(
n∑

k=1

∑
α

v2
α

)6

+ C

n12q12

n∑
k=1

∑
α

v12
α ≤ C

n6q12

(∑
α

v2
α

)6

≤ C

n6q6
,

where we use the fact that vα is bounded.
We next consider Qn8 only since Qn8 and Qn9 are similar (see (11) and (12)). Note that

|∑p

i=1 b2
uibvi | is bounded. Define uα = ∑

�>α(φ��φ�α). Rewrite Qn8 as

Qn8 = 2Es3
1,11

nq

n∑
k=1

∑
α

sT
k,αbvuα

p∑
i=1

b2
uibvi .

By Rosenthal’s inequality

E|Qn8|12 ≤ C

n12q12

∣∣∣∣∣
n∑

k=1

∑
α

bT
v bvu

2
α

∣∣∣∣∣
6

+ C

n12q12

n∑
k=1

E

∣∣∣∣∣∑
α

sT
k,αbvuα

∣∣∣∣∣
12

≤ C

n6q12

∣∣∣∣∑
α

u2
α

∣∣∣∣6

+ C

n12q12

n∑
k=1

∣∣∣∣∑
α

vT
v bvu

2
α

∣∣∣∣6

+ C

n12q12

n∑
k=1

∑
α

E
∣∣sT

k,αbv

∣∣12
u12

α

≤ C

n6q12

∣∣∣∣∑
α

u2
α

∣∣∣∣6

+ C

n11q12

∣∣∣∣∑
α

u2
α

∣∣∣∣6

+ C

n11q12

∑
α

u12
α

≤ C

n6q12

∣∣∣∣∑
α

u2
α

∣∣∣∣6

≤ C‖
‖12
F ‖
0

1(

0
1)

T ‖6
F

n6q12
,
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because ∑
α

u2
α =

∑
�1,�2

∑
α<min(�1,�2)

φ�1�1φ�1α1φ�2�2φ�2α2

≤
∑

�

φ2
��

(∑
�1,�2

∣∣∣∣ ∑
α<min(�1,�2)

φ�1αφ�2α

∣∣∣∣2)1/2

≤ C‖
‖2
F

∥∥
0
1

(

0

1

)T ∥∥
F
.

�

Appendix B

The aim of this section is to prove Theorem 1, Corollary 1 and Corollary 2. To simplify the
presentation, we define the following two events,

X� =
{∣∣∣∣ 1

tr�
�n − �

∣∣∣∣
max

≤ C

√
logq

np

}
, X� =

{∣∣∣∣ 1

tr�
�n − �

∣∣∣∣
max

≤ C

√
logp

nq

}
,

where C is a constant which may have different values in different places. By Lemma 2 we have
the following Lemma.

Lemma 4. Assume that Conditions (A), (B) and (C) are satisfied. We have

P(X�) = 1 − q−0.94, P (X�) = 1 − p−0.94.

In the following, to ease the presentation, we assume that the two events X� and X� hold.
We next derive the convergence rate regarding the correlation matrices R�

n and R�
n .

Lemma 5. Assume that the events X� and X� happen. We have

∣∣R�
n − R�

∣∣
max ≤ C

√
logq

np
,

∣∣R�
n − R�

∣∣
max ≤ C

√
logp

nq
,

where C is a positive constant.

Proof of Lemma 5. We only prove the first inequality while the second one can be simi-
larly proved. Recall R�

n = (W�
1 )−1�n(W

�
1 )−1 and R� = (W�)−1�(W�)−1, where (W�)2 =

diag(�). When the event X� happens, we have | 1
tr� (W�

1 )2
ii −ψii | ≤ C

√
logq
np

for all i ≤ q . Then,
there exist positive constants c and C such that

c ≤ ∣∣(W�
1

)
ii
/
√

tr�
∣∣ ≤ C,

∣∣∣∣ 1√
tr�

(
W�

1

)
ii

− √
ψii

∣∣∣∣ ≤ C

√
logq

np
.
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It follows that

∣∣(R�
n

)
ij

− (
R�

)
ij

∣∣ =
∣∣∣∣ 1

tr� (�n)ij

(W�
1 )ii(W

�
1 )jj / tr�

− ψij√
ψiiψjj

∣∣∣∣ ≤ C

√
logq

np
.

�

Proof of Theorem 1. Suppose that the events X� and X� happen. Let

�̂ = R̂� − R� = arg min
�

F(�) s.t. R� + � � εIq and �jj = 0,

where F(�) = 1
2‖R� + � − R�

n ‖2
F + λ� |R� + �|1.

Let λ� = C

√
logq
np

. Then by Lemma 5, we have |R�
n − R� |max ≤ λ� . Let A0 be the matrix

constructed from R� by replacing its nonzero entries with 1 and �A0 be the Hadamard product
� ◦ A0 = (�ij · Ao,ij ). Consider for any � ∈ {� : � = �T ,R� + � � εIq,�jj = 0,‖�‖F ≥
4(s� + 1)1/2λ�}. Then one can see that

F(�) − F(0) = 1

2

∥∥R� + � − R�
n

∥∥2
F

− 1

2

∥∥R� − R�
n

∥∥2
F

+ λ�

(∣∣R� + �
∣∣
1 − ∣∣R�

∣∣
1

)
= 1

2
‖�‖2

F + 〈
�,R� − R�

n

〉 + λ� |�Ac
0
|1 + λ�

(∣∣�A0 + R�
A0

∣∣
1 − ∣∣R�

A0

∣∣
1

)
≥ 1

2
‖�‖2

F − λ� |�|1 + λ� |�Ac
0
|1 − λ� |�A0 |1 = 1

2
‖�‖2

F − 2λ� |�A0 |1

≥ 1

2
‖�‖2

F − 2λ�

√
s�‖�‖F > 0.

Here in the second inequality, we use the fact that �jj = 0 and

|�A0 |1 =
∑
i �=j

�ij · A0,ij ≤
(

s�
∑
i,j

�2
ij

)1/2

≤ √
s�‖�‖F .

By the convexity of the objective function F(�), we immediately see that the global optimizer
must satisfy ∥∥R̂� − R�

∥∥2
F

≤ 16(s� + 1)λ2
� ≤ C(s� + 1)

logq

np
.

Appealing to the same method, we also have∥∥R̂� − R�
∥∥2

F
≤ C(s� + 1)

logp

nq
.

Hence, via Lemma 4, we have proved Theorem 1. �

Proof of Corollary 1. Assume that the two events X� and X� happen. Note that

�̂ = Ŵ�
1 R̂�Ŵ�

1 , � = W�R�W�.
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We have

1

tr�
�̂ − � = 1

tr�
Ŵ�

1

(
R̂� − R�

)
Ŵ�

1

+
(

1√
tr�

Ŵ�
1 − W�

)
R� 1√

tr�
Ŵ�

1 + W�R�

(
1√
tr�

Ŵ�
1 − W�

)
.

(18)

Consider the spectral norm of 1
tr� �̂ −� first. Since Ŵ�

1 , W� are diagonal matrices, we obtain

∥∥∥∥ 1√
tr�

Ŵ�
1

∥∥∥∥
2
≤ C,

∥∥∥∥ 1√
tr�

Ŵ�
1 − W�

∥∥∥∥
2
≤

∣∣∣∣ 1√
tr�

Ŵ�
1 − W�

∣∣∣∣
max

≤ C

√
logq

np
.

Hence, by (18), we have

∥∥∥∥ 1

tr�
�̂ − �

∥∥∥∥
2

≤
∥∥∥∥ 1√

tr�
Ŵ�

1

∥∥∥∥2

2
· ∥∥R̂� − R�

∥∥
F

+
∥∥∥∥ 1√

tr�
Ŵ�

1 − W�

∥∥∥∥
2
· ∥∥R�

∥∥
2 ·

∥∥∥∥ 1√
tr�

Ŵ�
1

∥∥∥∥
2

+ ∥∥W�
∥∥

2 · ∥∥R�
∥∥

2 ·
∥∥∥∥ 1√

tr�
Ŵ�

1 − W�

∥∥∥∥
2
≤ C

√
(s� + 1)

logq

np
.

Consider the Frobenius norm now. Note that

∥∥∥∥ 1√
tr�

Ŵ�
1

∥∥∥∥
F

≤ C
√

q,

∥∥∥∥ 1√
tr�

Ŵ�
1 − W�

∥∥∥∥
F

≤ √
q

∣∣∣∣ 1√
tr�

Ŵ�
1 − W�

∣∣∣∣
max

≤ C

√
q logq

np
.

The above result, together with the formula ‖AB‖F ≤ ‖A‖2 · ‖B‖F , implies

∥∥∥∥ 1

tr�
�̂ − �

∥∥∥∥
F

≤
∥∥∥∥ 1√

tr�
Ŵ�

1

∥∥∥∥2

2
· ∥∥R̂� − R�

∥∥
F

+
∥∥∥∥ 1√

tr�
Ŵ�

1 − W�

∥∥∥∥
F

· ∥∥R�
∥∥

2 ·
∥∥∥∥ 1√

tr�
Ŵ�

1

∥∥∥∥
2

+ ∥∥W�
∥∥

2 · ∥∥R�
∥∥

2 ·
∥∥∥∥ 1√

tr�
Ŵ�

1 − W�

∥∥∥∥
F

≤ C(
√

s� + 1 + √
q)

√
logq

np
≤ C

√
(s� + q)

logq

np
.
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Similarly, these arguments also work for the estimate �̂. Hence when X� and X� happen, we
have ∥∥∥∥ 1

tr�
�̂ − �

∥∥∥∥
2
≤ C

√
(s� + 1)

logp

nq
,

∥∥∥∥ 1

tr�
�̂ − �

∥∥∥∥
F

≤ C

√
(s� + p)

logp

nq
.

Therefore, Corollary 1 follows from Lemma 4. �

Proof of Corollary 2. Define the following event

X0 =
{

1

npq

n∑
k=1

‖Xk‖2
F −

(
1

q
tr�

)(
1

p
tr�

)
≤ C

√
log(pq)

npq

}
.

By a tedious proof, as in Lemma 2, we have

P(X0|under condition (C)) = 1 − (pq)−0.95.

Suppose that the events X� , X� , and X0 happen. Applying the formulas ‖A+B‖F ≤ ‖A‖F +
‖B‖F , ‖AB‖F ≤ ‖A‖F ‖B‖2, ‖A ⊗ B‖F = ‖A‖F ‖B‖F and Corollary 1, we write

‖�̂ − �‖F =
∥∥∥∥ �̂ ⊗ �̂

( 1
n

∑n
k=1 ‖Xk‖2

F )
− � ⊗ �

∥∥∥∥
F

≤
∥∥∥∥ pq�̂ ⊗ �̂

( 1
n

∑n
k=1 ‖Xk‖2

F ) · (tr�)(tr�)

∥∥∥∥
F

·
∣∣∣∣∣ 1

npq

n∑
k=1

‖Xk‖2
F −

(
1

p
tr�

)(
1

q
tr�

)∣∣∣∣∣
+

∥∥∥∥(
�̂

tr(�)

)
⊗

(
�̂

tr(�)

)
− � ⊗ �

∥∥∥∥
F

≤ pq · 2‖�‖F · 2‖�‖F

tr� tr�
C

√
log(pq)

npq
+

∥∥∥∥(
�̂

tr(�)
− �

)
⊗

(
�̂

tr(�)
− �

)∥∥∥∥
F

+
∥∥∥∥� ⊗

(
�̂

tr(�)
− �

)∥∥∥∥
F

+
∥∥∥∥(

�̂

tr(�)
− �

)
⊗ �

∥∥∥∥
F

≤ C

(√
log(pq)

n
+

√
(s� + q)(s� + p)

logp logq

n2pq

+
√

(s� + q)
logq

n
+

√
(s� + p)

logp

n

)

≤ C

(√
(s� + q)

logq

n
+

√
(s� + p)

logp

n

)
,
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where in the last inequality, by condition (B) we use the fact that ‖�‖F ≤ λ1(�)
√

q and ‖�‖F ≤
λ1(�)

√
p. Note that ‖A ⊗ B‖2 ≤ ‖A‖2 · ‖B‖2. From Corollary 1, we have

‖�̂ − �‖2 = Op

(√
(s� + 1)

logq

np
+

√
(s� + 1)

logp

nq

)
.

Therefore, Corollary 2 follows from the above inequalities and Lemma 4. �

Proof of Corollary 3. By the Weyl inequality and Theorem 1, we have

λq

(
R̂�

) ≥ λq

(
R�

) − λ1
(
R̂� − R�

)
> 0,

because λq(R�) � C

√
(s� + 1)

logq
np

and λ1(R̂
� − R�) ≤ ‖R̂� − R�‖F . This implies that R̂�

is positive definite with probability tending to one.
Note that the above argument still holds if the constraint R� ≥ εIq is removed (one may

also refer to the proof of Theorem 1). It is clear that the minimizing solution to (2) in the main
paper without this constraint becomes the soft thresholding covariance estimator. Therefore with
probability tending to one, (R̂�)ij = sgn(R�

n )ij (|(R�
n )ij |−λ�)+ where (b)+ > 0 for b > 0, and

(b)+ = 0 otherwise. In view of the assumption min(i,j)∈A0�
(R�)ij �

√
logq
np

, λ� = O(

√
logq
np

)

and Lemma 5, we have (R̂�)ij = 0 for (i, j) ∈ AC
0� and i �= j , and (R̂�)ij �= 0 for (i, j) ∈ A0�

and i �= j with probability tending to one. One can prove a similar result for R̂� and details are
omitted here. �

Appendix C: Cross validation

We below consider λ̂� only and λ̂� can be handled similarly where λ̂� and λ̂� are obtained from
cross validation. The proof of Theorem 2 is straightforward by following that of Theorem 1. In-
deed, one should notice that Lemmas 4 and 5 have nothing to do with λ̂� (which is different from
the proof in Bickel and Levina [4]). Therefore, the argument for Theorem 1 is also applicable to

Theorem 2 as long as λ̂� = Op(

√
logp
np

). Theorem 2 immediately implies Corollary 4 as in the
proof of Corollary 1.

Below we also provide an alternative proof for Corollary 4 (which is enough for the resulting
estimator) since our cross validation is based on sample covariance matrices. Recall that the
matrix data are generated from normal random matrices X = BSAT , where {S} = (sij ) consists
of i.i.d. standard normal random variables. Denote the spectral decomposition of AT A by U�UT

with � = diag(λ1, . . . , λq). Define �0
1 = 1

tr� BSAT AST B . Following Lemma A.2 in Bickel and
Levina [4] one can prove that for symmetric matrix V with ‖V ‖F = 1

P

(√
q√
p

∣∣∣trV �0
1 −

∑
γj

∣∣∣ ≥ t

)
≤ Ke−δt (1+o(1)), (19)
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where t → ∞, γ1, . . . , γp are eigenvalues of BT V B and K > 0, δ > 0. Indeed, recalling the
notations above (9) by the normality of sij one can see that trV �0

1 has the same distribution as

1

tr�

q∑
j=1

p∑
i=1

γiλj s
2
ij .

Hence, one may repeat the argument for Lemma A.2 in Bickel and Levina [4] to obtain (19).
Applying (19) and repeating the arguments for Lemma A.3 in Bickel and Levina [4] we have

ρ(J ) ≤ C(logJ )2p
q

, where ρ(J ) is the upper bound involved in condition A2 of Theorem 3 in
Bickel and Levina [4].

Moreover if we change all �p(rn) in Theorem 3 of Bickel and Levina [4] to all OP (rn), the

conclusion still holds. Indeed, solving the quadratic inequality in terms of a
1/2
n (proved similarly

to Theorem 3 of Bickel and Levina [4])

an ≤ a
1/2
n oP

(
r

1/2
n

) + rn
(
1 + oP (1)

)
yields an = Op(rn), so that Theorem 3 of Bickel and Levina [4] holds for OP (rn). Then the argu-
ment for proving Theorem 4 of Bickel and Levina [4] is also applicable here. Hence, Corollary 4
follows.
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