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Motivated by change point problems in time series and the detection of textured objects in images, we
consider the problem of detecting a piece of a Gaussian Markov random field hidden in white Gaussian
noise. We derive minimax lower bounds and propose near-optimal tests.
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1. Introduction

Anomaly detection is important in a number of applications, including surveillance and environ-
ment monitoring systems using sensor networks, object tracking from video or satellite images,
and tumor detection in medical imaging. The most common model is that of an object or signal
of unusually high amplitude hidden in noise. In other words, one is interested in detecting the
presence of an object in which the mean of the signal is different from that of the background. We
refer to this as the detection-of-means problem. In many situations, anomaly manifests as unusual
dependencies in the data. This detection-of-correlations problem is the one that we consider in
this paper.

1.1. Setting and hypothesis testing problem

It is common to model dependencies by a Gaussian random field X = (Xi : i ∈ V), where V ⊂
V∞ is of size |V| = n, while V∞ is countably infinite. We focus on the important example of a
d-dimensional integer lattice

V = {1, . . . ,m}d ⊂ V∞ = Z
d . (1)

We formalize the task of detection as the following hypothesis testing problem. One observes
a realization of X = (Xi : i ∈ V), where the Xi ’s are known to be standard normal. Under the
null hypothesis H0, the Xi ’s are independent. Under the alternative hypothesis H1, the Xi ’s
are correlated in one of the following ways. Let C be a class of subsets of V . Each set S ∈ C
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represents a possible anomalous subset of the components of X. Specifically, when S ∈ C is the
anomalous subset of nodes, each Xi with i /∈ S is still independent of all the other variables,
while (Xi : i ∈ S) coincides with (Yi : i ∈ S), where Y = (Yi : i ∈ V∞) is a stationary Gaussian
Markov random field. We emphasize that, in this formulation, the anomalous subset S is only
known to belong to C.

We are thus addressing the problem of detecting a region of a Gaussian Markov random field
against a background of white noise. This testing problem models important detection problems
such as the detection of a piece of a time series in a signal and the detection of a textured object
in an image, which we describe below. Before doing that, we further detail the model and set
some foundational notation and terminology.

1.2. Tests and minimax risk

We denote the distribution of X under H0 by P0. The distribution of the zero-mean stationary
Gaussian Markov random field Y is determined by its covariance operator � = (�i,j : i, j ∈ V∞)

defined by �i,j = E[YiYj ]. We denote the distribution of X under H1 by PS,� when S ∈ C is the
anomalous set and � is the covariance operator of the Gaussian Markov random field Y .

A test is a measurable function f : RV → {0,1}. When f (X) = 0, the test accepts the null
hypothesis and it rejects it otherwise. The probability of type I error of a test f is P0{f (X) = 1}.
When S ∈ C is the anomalous set and Y has covariance operator �, the probability of type II
error is PS,�{f (X) = 0}. In this paper, we evaluate tests based on their worst-case risks. The risk
of a test f corresponding to a covariance operator � and class of sets C is defined as

RC,�(f ) = P0
{
f (X) = 1

} + max
S∈C

PS,�

{
f (X) = 0

}
. (2)

Defining the risk this way is meaningful when the distribution of Y is known, meaning that � is
available to the statistician. In this case, the minimax risk is defined as

R∗
C,� = inf

f
RC,�(f ), (3)

where the infimum is over all tests f . When � is only known to belong to some class of covari-
ance operators G, it is more meaningful to define the risk of a test f as

RC,G(f ) = P0
{
f (X) = 1

} + max
�∈G

max
S∈C

PS,�

{
f (X) = 0

}
. (4)

The corresponding minimax risk is defined as

R∗
C,G = inf

f
RC,G(f ). (5)

In this paper, we consider situations in which the covariance operator � is known (i.e., the test
f is allowed to be constructed using this information) and other situations when � is unknown
but it is assumed to belong to a class G. When � is known (resp. unknown), we say that a test f

asymptotically separates the two hypotheses if RC,�(f ) → 0 (resp. RC,G(f ) → 0), and we say
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that the hypotheses merge asymptotically if R∗
C,� → 1 (resp. R∗

C,G
→ 1), as n = |V| → ∞. We

note that, as long as � ∈G, R∗
C,� ≤ R∗

C,G
, and that R∗

C,G
≤ 1, since the test f ≡ 1 (which always

rejects) has risk equal to 1.
At a high-level, our results are as follows. We characterize the minimax testing risk for both

known (R∗
C,�) and unknown (R∗

C,G
) covariances when the anomaly is a Gaussian Markov random

field. More precisely, we give conditions on � or G enforcing the hypotheses to merge asymp-
totically so that detection problem is nearly impossible. Under nearly matching conditions, we
exhibit tests that asymptotically separate the hypotheses. Our general results are illustrated in the
following subsections.

1.3. Example: Detecting a piece of time series

As a first example of the general problem described above, consider the case of observing a time
series X1, . . . ,Xn. This corresponds to the setting of the lattice (1) in dimension d = 1. Under the
null hypothesis, the Xi ’s are i.i.d. standard normal random variables. We assume that the anomaly
comes in the form of temporal correlations over an (unknown) interval S = {i + 1, . . . , i + k} of,
say, known length k < n. Here, i ∈ {0,1, . . . , n − k} is thus unknown. Specifically, when S is the
anomalous interval, (Xi+1, . . . ,Xi+k) ∼ (Yi+1, . . . , Yi+k), where (Yi : i ∈ Z) is an autoregressive
process of order h (abbreviated ARh) with zero mean and unit variance, that is,

Yi = ψ1Yi−1 + · · · + ψhYi−h + σZi, ∀i ∈ Z, (6)

where (Zi : i ∈ Z) are i.i.d. standard normal random variables, ψ1, . . . ,ψh ∈ R are the coeffi-
cients of the process—assumed to be stationary—and σ > 0 is such that Var(Yi) = 1 for all i.
Note that σ is a function of ψ1, . . . ,ψh, so that the model has effectively h parameters. It is well
known that the parameters ψ1, . . . ,ψh define a stationary process when the roots of the poly-
nomial zp − ∑h

i=1 ψiz
p−i in the complex plane lie within the open unit circle. See [14] for a

standard reference on time series.
In the simplest setting h = 1 and the parameter space for ψ is (−1,1). Then, the hypothesis

testing problem is to distinguish

H0 : X1, . . . ,Xn
i.i.d.∼ N (0,1),

versus

H1 : ∃i ∈ {0,1, . . . , n − k} such that

X1, . . . ,Xi,Xi+k+1, . . . ,Xn
i.i.d.∼ N (0,1)

and (Xi+1, . . . ,Xi+k) is independent of X1, . . . ,Xi,Xi+k+1, . . . ,Xn with

Xi+j+1 − ψXi+j
i.i.d.∼ N

(
0,1 − ψ2), ∀j ∈ {1, . . . , k − 1}.

Typical realizations of the observed vector under the null and alternative hypotheses are illus-
trated in Figure 1.
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Figure 1. Top: a realization of the observed time series under the null hypothesis (white noise). Bottom:
a realization under the alternative with anomalous interval S = {201, . . . ,250}, assuming an AR1 covariance
model with parameter ψ = 0.9.

Gaussian autoregressive processes and other correlation models are special cases of Gaussian
Markov random fields, and therefore this setting is a special case of our general framework,
with C being the class of discrete intervals of length k. In the simplest case, the length of the
anomalous interval is known beforehand. In more complex settings, it is unknown, in which case
C may be taken to be the class of all intervals within V of length at least kmin.

This testing problem has been extensively studied in the slightly different context of change-
point analysis, where under the null hypothesis X1, . . . ,Xn are generated from an ARh(ψ

0)

process for some ψ0 ∈ R
h, while under the alternative hypothesis there is an i ∈ V such that

X1, . . . ,Xi and Xi+1, . . . ,Xn are generated from ARh(ψ
0) and ARh(ψ

1), with ψ0 �= ψ1, re-
spectively. The order h is often given. In fact, instead of assuming autoregressive models, non-
parametric models are often favored. See, for example, [19,26,30,32,43,49,50,52] and many other
references therein. These papers often suggest maximum likelihood tests whose limiting distri-
butions are studied under the null and (sometimes fixed) alternative hypotheses. For example, in
the special case of h = 1, such a test would reject H0 when |ψ̂ | is large, where ψ̂ is the max-
imum likelihood estimate for ψ . In particular, from [50], we can speculate that such a test can
asymptotically separate the hypotheses in the simplest setting described above when ψkα → ∞
for some α < 1/2 fixed. See also [32,49] for power analyses against fixed alternatives.

Our general results imply the following in the special case when the anomaly comes in the
form of an autoregressive process with unknown parameter ψ ∈ R

h. We note that the order of
the autoregressive model h is allowed to grow with n in this asymptotic result.

Corollary 1. Assume n, k → ∞, and that h = o(
√

k/ log(n)∧k1/4). Denote by F(h, r) the class
of covariance operators corresponding to ARh processes with valid parameter ψ = (ψ1, . . . ,ψh)
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satisfying ‖ψ‖2
2 ≥ r2. Then R∗

C,F(h,r)
→ 1 when

r2 ≤ C1
(
log(n/k)/k + √

h log(n/k)/k
)
. (7)

Conversely, if f denotes the pseudo-likelihood test of Section 4.2, then RC,F(h,r)(f ) → 0 when

r2 ≥ C2
(
log(n)/k + √

h log(n)/k
)
. (8)

In both cases, C1 and C2 denote numerical constants.

Remark 1. In the interesting setting where k = nκ for some κ > 0 fixed, the lower and upper
bounds provided by AR match up to a multiplicative constant that depends only on κ .

Despite an extensive literature on the topic, we are not aware of any other minimax optimality
result for time series detection.

1.4. Example: Detecting a textured region

In image processing, the detection of textured objects against a textured background is relevant in
a number of applications, such as in the detection of local fabric defects in the textile industry by
automated visual inspection [40], the detection of a moving object in a textured background [39,
61], the identification of tumors in medical imaging [36,37], the detection of man-made objects
in natural scenery [41], the detection of sites of interest in archeology [45] and of weeds in crops
[23]. In all these applications, the object is generally small compared to the size of the image.

Common models for texture include Markov random fields [17] and joint distributions over
filter banks such as wavelet pyramids [47,51]. We focus here on textures that are generated via
Gaussian Markov random fields [16,56]. Our goal is to detect a textured object hidden in white
noise. For this discussion, we place ourselves in the lattice setting (1) in dimension d = 2. Just
like before, under H0, the (Xi : i ∈ V) are independent standard normal random variables. Under
H1, when the region S ⊂ V is anomalous, the (Xi : i /∈ S) are still i.i.d. standard normal, while
(Xi : i ∈ S) ∼ (Yi : i ∈ S), where (Yi : i ∈ Z

2) is such that for each i ∈ Z
2, the conditional

distribution of Yi given the rest of the variables Y (−i) := (Yj : j �= i) is normal with mean

∑
(t1,t2)∈[−h,h]2\{(0,0)}

φt1,t2Yi+(t1,t2) (9)

and variance σ 2
φ , where the φt1,t2 ’s are the coefficients of the process and σφ is such that

Var(Yi) = 1 for all i. The set of valid parameters φ is defined in Section 2.1. A simple sufficient
condition is ‖φ‖1 = ∑

(t1,t2)∈[−h,h]2\{(0,0)} |φt1,t2 | < 1. In this model, the dependency neighbor-

hood of i ∈ Z
2 is i +[−h,h]2 ∩Z

2. One of the simplest cases is when h = 1 and φt1,t2 = φ when
(t1, t2) ∈ {(±1,0), (0,±1)} for some φ ∈ (−1/4,1/4), and the anomalous region is a discrete
square; see Figure 2 for a realization of the resulting process.
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Figure 2. Left: white noise, no anomalous region is present. Right: a squared anomalous region is present.
In this example on the 50 × 50 grid, the anomalous region is a 15 × 15 square piece from a Gaussian
Markov random field with neighborhood radius h = 1 and coefficient vector φt1,t2 = φ := 1

4 (1 − 10−4)

when (t1, t2) ∈ {(±1,0), (0,±1)}, and zero otherwise.

This is a special case of our setting. While intervals are natural in the case of time series,
squares are rather restrictive models of anomalous regions in images. We consider instead the
“blob-like” regions (to be defined later) that include convex and star-shaped regions.

A number of publications address the related problems of texture classification [38,56,58]
and texture segmentation [25,27,29,35,46]. In fact, this literature is quite extensive. Only very
few papers address the corresponding change-point problem [48,55] and we do not know of
any theoretical results in this literature. Our general results (in particular, Corollary 4) imply the
following.

Corollary 2. Assume n, k → ∞, and that h = o(
√

k/ log(n)∧k1/5). Denote by G(h, r) the class
of covariance operators corresponding to stationary Gaussian Markov Random Fields with valid
parameter (see Section 2.1 for more details) φ = (φi,j )(i,j)∈{−h,...,h}2\{0} satisfying ‖φ‖2

2 ≥ r2.
Then R∗

C,G(h,r)
→ 1 when

r2 ≤ C1

[
log(n/k)

k
+

√
h2 log(n/k)

k

]
. (10)

Conversely, if f denotes the pseudo-likelihood test of Section 4.2, then RC,G(h,r)(f ) → 0 when

r2 ≥ C2

[
log(n)

k
+

√
h2 log(n)

k

]
. (11)

In both cases, C1 and C2 denote positive numerical constants.

Informally, the lower bound on the magnitude of the coefficient vector φ, namely r2, quantifies
the extent to which the variables Yi are explained by the rest of variables Y (−i) as in (9).
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Although not in the literature on change-point or object detection, [2] is the only other paper
developing theory in a similar context. It considers a spatial model where points {xi, i ∈ [N ]} are
sampled uniformly at random in some bounded region and a nearest-neighbor graph is formed.
On the resulting graph, variables are observed at the nodes. Under the (simple) null hypothesis,
the variables are i.i.d. zero mean normal. Under the (simple) alternative, the variables arise from a
Gaussian Markov random field with covariance operator of the form �i,j ∝ g(‖xi − xj‖), where
g is a known function. The paper analyzes the large-sample behavior of the likelihood ratio test.

1.5. More related work

As we mentioned earlier, the detection-of-means setting is much more prevalent in the literature.
When the anomaly has no a priori structure, the problem is that of multiple testing; see, for
example, [9,22,34] for papers testing the global null hypothesis. Much closer to what interests
us here, the problem of detecting objects with various geometries or combinatorial properties
has been extensively analyzed, for example, in some of our earlier work [1,6,7] and elsewhere
[20,60]. We only cite a few publications that focus on theory. The applied literature is vast; see
[6] for some pointers.

Despite its importance in practice, as illustrated by the examples and references given in Sec-
tions 1.3 and 1.4, the detection-of-correlations setting has received comparatively much less at-
tention, at least from theoreticians. Here we find some of our own work [3,4]. In the first of
these papers, we consider a sequence X1, . . . ,Xn of standard normal random variables. Under
the null, they are independent. Under the alternative, there is a set S in a class of interest C where
the variables are correlated. We consider the unstructured case where C is the class of all sets of
size k (given) and also various structured cases, and in particular, that of intervals. This would
appear to be the same as in the present lattice setting in dimension d = 1, but the important
difference is that that correlation operator � is not constrained, and in particular no Markov ran-
dom field structure is assumed. The second paper extends the setting to higher dimensions, thus
testing whether some coordinates of a high-dimensional Gaussian vector are correlated or not.
When the correlation structure in the anomaly is arbitrary, the setting overlaps with that of sparse
principal component analysis [10,57]. The problem is also connected to covariance testing in
high-dimensions; see, for example, [15]. We refer the reader to the above-mentioned papers for
further references.

1.6. Contribution and content

The present paper thus extends previous work on the detection-of-means setting to the detection-
of-correlations setting in the (structured) context of detecting signals/objects in time se-
ries/images. The paper also extends some of our own work on the detection-of-correlations to
Markov random field models, which are typically much more appropriate in the context of detec-
tion in signals and images. The theory in the detection-of-correlations setting is more complicated
than in the detection-of-means setting, and in particular deriving exact minimax (first-order) re-
sults remains an open problem. Compared to our previous work on the detection-of-correlations
setting, the Markovian assumption makes the problem significantly more complex as it requires
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handling Markov random fields which are conceptually more complex objects. As a result, the
proof technique is by-and-large novel, at least in the detection literature.

The rest of the paper is organized as follows. In Section 2, we lay down some foundations
on Gaussian Markov Random Fields, and in particular, their covariance operators, and we also
derive a general minimax lower bound that is used several times in the paper. In the remainder of
the paper, we consider detecting correlations in a finite-dimensional lattice (1), which includes
the important special cases of time series and textures in images. We establish lower bounds,
both when the covariance matrix is known (Section 3) or unknown (Section 4) and propose
test procedures that are shown to achieve the lower bounds up to multiplicative constants. In
Section 5, we specialize our general results to specific classes of anomalous regions such as
classes of cubes, and more generally, “blobs.” In Section 6, we outline possible generalizations
and further work. The proofs are gathered in Section 7 and the Supplement.

2. Preliminaries

In this paper, we derive upper and lower bounds for the minimax risk, both when � is known as
in (3) and when it is unknown as in (5), the latter requiring a substantial amount of additional
work. For the sake of exposition, we sketch here the general strategy for obtaining minimax lower
bounds by adapting the general strategy initiated in [33] to detection-of-correlation problems.
This allows us to separate the technique used to derive minimax lower bounds from the technique
required to handle Gaussian Markov random fields.

2.1. Some background on Gaussian Markov random fields

We elaborate on the setting described in Sections 1.1 and 1.2. As the process Y is indexed
by Z

d , note that all the indices i of φ and � are d-dimensional. Since Y is stationary, all the
diagonal elements �i,i are equal. Given a positive integer h, denote by Nh the integer lattice
{−h, . . . , h}d \ {0}d with (2h + 1)d − 1 nodes. For any nonsingular covariance operator � of
a stationary Gaussian Markov random field over Zd with unit variance and neighborhood Nh,
there exists a unique vector φ indexed by the nodes of Nh satisfying φi = φ−i such that, for all
i, j ∈ Z

d ,

�−1
i,j /�−1

i,i =

⎧⎪⎨
⎪⎩

−φi−j if 1 ≤ |i − j |∞ ≤ h,

1 if i = j,

0 otherwise,

(12)

where �−1 denotes the inverse of the covariance operator �. Consequently, there exists a bijective
map from the collection of invertible covariance operators of stationary Gaussian Markov random
fields over Zd with unit variance and neighborhood Nh to some subset �h ⊂R

Nh . Given φ ∈ �h,
�(φ) denotes the unique covariance operator satisfying �i,i = 1 and (12). It is well known that
�h contains the set of vectors φ whose 	1-norm is smaller than one, that is,{

φ ∈ R
Nh : ‖φ‖1 < 1

} ⊂ �h,
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as the corresponding operator �−1(φ) is diagonally dominant in that case. In fact, the parameter
space �h is characterized by the Fast Fourier Transform (FFT) as follows

�h =
{
φ : 1 +

∑
1≤|i|∞≤h

φi cos
(〈i,ω〉) > 0,ω ∈ (−π,π]d

}
,

where and i ∈ Z
d and 〈·, ·〉 denotes the scalar product in R

d . The interested reader is referred
to [28], Section 1.3, or [53], Section 2.6, for further details and discussions. For φ ∈ �h, define
σ 2

φ = 1/�−1
i,i (φ).

The correlated process Y = (Yi : i ∈ Z
d) is centered Gaussian with covariance operator �(φ)

and is such that, for each i ∈ Z
d , the conditional distribution of Yi given the rest of the variables

Y (−i) is

Yi |Y (−i) ∼N
( ∑

j∈Nh

φjYi+j , σ
2
φ

)
. (13)

Define the h-boundary of S, denoted �h(S), as the collection of vertices in S whose distance
to Z

d \ S is at most h. We also define the h-interior S as Sh = S \ �h(S). If S ⊂ V is a finite
set, we denote by �S the principal submatrix of the covariance operator � indexed by S. If � is
nonsingular, each such submatrix is invertible.

2.2. A general minimax lower bound

As is standard, an upper bound is obtained by exhibiting a test f and then upper-bounding its
risk—either (2) or (4) according to whether � is known or unknown. In order to derive a lower
bound for the minimax risk, we follow the standard argument of choosing a prior distribution
on the class of alternatives and then lower-bounding the minimax risk with the resulting average
risk. When � is known, this leads us to select a prior on C, denoted by ν, and consider

R̄ν,�(f ) = P0
{
f (X) = 1

} +
∑
S∈C

ν(S)PS,�

{
f (X) = 0

}
and R̄∗

ν,� = inf
f

R̄ν,�(f ). (14)

The latter is the Bayes risk associated with ν. By placing a prior on the class of alternative
distributions, the alternative hypothesis becomes effectively simple (as opposed to composite).
The advantage of this is that the optimal test may be determined explicitly. Indeed, the Neyman-
Pearson fundamental lemma implies that the likelihood ratio test f ∗

ν,�(x) = I{Lν,�(x) > 1}, with

Lν,� =
∑
S∈C

ν(S)
dPS,�

dP0
,

minimizes the average risk. In most of the paper, ν will be chosen as the uniform distribution on
the class C. This is because the sets in C play almost the same role (although not exactly because
of boundary effects).
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When � is only known to belong to some class G we also need to choose a prior on G, which
we denote by π , leading to

R̄ν,π (f ) = P0
{
f (X) = 1

} +
∑
S∈C

ν(S)

∫
PS,�

{
f (X) = 0

}
π(d�) and

(15)
R̄∗

ν,π = inf
f

R̄ν,π (f ).

In this case, the likelihood ratio test becomes f ∗
ν,π (x) = I{Lν,π (x) > 1}, where

Lν,π =
∑
S∈C

ν(S)
dPS,π

dP0
, PS,π =

∫
PS,�π(d�),

minimizes the average risk.
In both cases, we then proceed to bound the second moment of the resulting likelihood ratio

under the null. Indeed, in a general setting, if L is the likelihood ratio for P0 versus P1 and R

denotes its risk, then [44], Problem 3.10

R = 1 − 1

2
E0

∣∣L(X) − 1
∣∣ ≥ 1 − 1

2

√
E0

[
L(X)2

] − 1, (16)

where the inequality follows by the Cauchy–Schwarz inequality.

Remark 2. Working with the minimax risk (as we do here) allows us to bypass making an
explicit choice of prior, although one such choice is eventually made when deriving a lower
bound. Another advantage is that the minimax risk is monotone with respect to the class C in
the sense that if C′ ⊂ C, then the minimax risk corresponding to C′ is at most as large as that
corresponding to C. This monotonicity does not necessarily hold for the Bayes risk. See [1] for a
discussion in the context of the detection-of-means problem.

We now state a general minimax lower bound. (Recall that all the proofs are in Section 7.)
Although the result is stated for a class C of disjoint subsets, using the monotonicity of the mini-
max risk, the result can be used to derive lower bounds in more general settings. It is particularly
useful in the context of detecting blob-like anomalous regions in the lattice. (The same general
approach is also fruitful in the detection-of-means setting.) We emphasize that this result is quite
straightforward given the work flow outlined above. The technical difficulties will come with
its application to the context that interest us here, which will necessitate a good control of (17)
below.

Proposition 1. Let {�(φ) : φ ∈ �} be a class of nonsingular covariance operators and let C be
a class of disjoint subsets of V . Put the uniform prior ν on C and let π be a prior on �. Recall
the definition (15) of R̄∗

ν,π . Then

R̄∗
ν,π ≥ 1 − 1

2|C|
(∑

S∈C
VS

)1/2

,
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where

VS := Eπ

[(
det(�−1

S (φ1))det(�−1
S (φ2))

det(�−1
S (φ1) + �−1

S (φ2) − IS)

)1/2]
, (17)

and the expected value is with respect to φ1, φ2 drawn i.i.d. from the distribution π .

3. Known covariance

We start with the case where the covariance operator � is known. Although this setting is of less
practical importance, as this operator is rarely known in applications, we treat this case first for
pedagogical reasons and also to contrast with the much more complex setting where the operator
is unknown, treated later on.

3.1. Lower bound

Recall the definition of the minimax risk (3) and the average risk (14). (Henceforth, to lighten
the notation, we replace subscripts in �(φ) with subscripts in φ.) For any prior ν on C, the
minimax risk is at least as large as the ν-average risk, R∗

C,φ
≥ R̄∗

ν,φ , and the following corollary
of Proposition 1 provides a lower bound on the latter.

Corollary 3. Let C be a class of disjoint subsets of V and fix φ ∈ �h satisfying ‖φ‖1 < 1/2.
Then, letting ν denote the uniform prior over C, we have

R̄∗
ν,φ ≥ 1 − 1

2|C|
[∑

S∈C
exp

(
10|S|‖φ‖2

2

1 − 2‖φ‖1

)]1/2

. (18)

In particular, the corollary implies that, for any fixed a ∈ (0,1), R∗
C,φ

≥ 1 − a as soon as

‖φ‖2
2

1 − 2‖φ‖1
≤ min

S∈C
log(4a2|C|)

10|S| . (19)

Furthermore, the hypotheses merge asymptotically (i.e., R∗
C,φ

→ 1) when

log
(|C|) − 10‖φ‖2

2

1 − 2‖φ‖1
max
S∈C

|S| → ∞. (20)

Remark 3. The condition ‖φ‖1 < 1/2 in is technical and likely an artifice of our proof method.
This condition arises from the term det−1/2(2�S(φ) − IS) in VS in (17). For this determinant to
be positive, the smallest eigenvalue of �S(φ) has to be larger than 1/2, which in turn is enforced
by ‖φ‖1 < 1/2. In order to remove, or at least improve on this constraint, we would need to adopt
a more subtle approach than applying the Cauchy–Schwarz inequality in (16). We did not pursue
this as typically one is interested in situations where φ is small—see, for example, how the result
is applied in Section 5.
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3.2. Upper bound: The generalized likelihood ratio test

When the covariance operator �(φ) is known, the generalized likelihood ratio test rejects the null
hypothesis for large values of

max
S∈C

X�
S

(
IS − �−1

S (φ)
)
XS.

We use instead the statistic

U(X) = max
S∈C

X�
S (IS − �−1

S (φ))XS − Tr(IS − �−1
S (φ))

‖IS − �−1
S (φ)‖F

√
log(|C|) + ‖IS − �−1

S (φ)‖ log(|C|) , (21)

which is based on the centering and normalization of the statistics X�
S (IS − �−1

S (φ))XS where
S ∈ C.

In the following result, we implicitly assume that |C| → ∞, which is the most interesting case.

Proposition 2. Assume that φ ∈ �h satisfies ‖φ‖1 ≤ η < 1 and that |Sh| ≥ |S|/2. The test
f (x) = I{U(x) > 4} has risk RC,φ(f ) ≤ 2/|C| when

‖φ‖2
2 min

S∈C
|S| ≥ C0 log

(|C|), (22)

where C0 > 0 only depends on the dimension d of the lattice and η.

Comparing with Condition (20), we see that condition (22) matches (up to constants) the
minimax lower bound when minS |S| is of order maxS |S|, so that (at least when ‖φ‖1 < 1/2)
the normalized generalized likelihood ratio test based on (21) is asymptotically minimax up to a
multiplicative constant. The 	1-norm ‖φ‖1 arises in the proof of Corollary 3 when bounding the
largest eigenvalue of �(φ) (see Lemma 5).

4. Unknown covariance

We now consider the case where the covariance operator �(φ) of the anomalous Gaussian
Markov random field is unknown. We therefore start by defining a class of covariance opera-
tors via a class of vectors φ. Given a positive integer h > 0 and some r > 0, define

�h(r) := {
φ ∈ �h,‖φ‖2 ≥ r

}
, (23)

and let

G(h, r) := {
�(φ) : φ ∈ �h(r)

}
, (24)

which is the class of covariance operators corresponding to stationary Gaussian Markov Random
Fields with parameter in the class (23).
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4.1. Lower bound

The theorem below establishes a lower bound for the risk following the approach outlined in
Section 2, which is based on the choice of a suitable prior π on �h, defined as follows. By
symmetry of the elements of �h, one can fix a sublattice N′

h of size |Nh|/2 such that any φ ∈ �h

is uniquely defined (via symmetry) by its restriction to N
′
h. Choose the distribution π such that

φ ∼ π is the unique extension to Nh of the random vector r|Nh|−1/2ξ , where the coordinates of
the random vector ξ—indexed by N

′
h—are i.i.d. Rademacher random variables (i.e., symmetric

±1-valued random variables). Note that, if r|Nh| < 1, π is acceptable since it concentrates on the
set {φ ∈ �h,‖φ‖2 = r} ⊂ �h(r). Recall the definition of the minimax risk (5) and the average
risk (15). As before, for any priors ν on C and π on �h(r), the minimax risk is at least as large
as the average risk with these priors, R∗

C,G(h,r)
≥ R̄∗

ν,π , and the following (much more elaborate)
corollary of Proposition 1 provides a lower bound on the latter.

Theorem 1. There exists a constant C0 > 0 such that the following holds. Let C be a class of
disjoint subsets of V and let ν denote the uniform prior over C. Let a ∈ (0,1) and assume that
the neighborhood size |Nh| satisfies

|Nh| ≤ min
S∈C

[ |S|
log(a2|C|) ∧ |S|2/5 log1/5(a2|C|) ∧

( |S|
|�2h(S)|

)2

log−1/6(a2|C|)]. (25)

Then R̄∗
ν,π ≥ 1 − a as soon as

r2 max
S∈C

|S| ≤ C0

[√
|Nh| log

(
a2|C|) ∨ log

(
a2|C|)]. (26)

This bound is our main impossibility result. Its proof relies on a number of auxiliary results
for Gaussian Markov Random Fields (Section 7.3) that may be useful for other problems of
estimating Gaussian Markov Random Fields. Notice that the second term in (26) is what appears
in (19), which we saw arises in the case where the covariance is known. In light of this fact, we
may interpret the first term in (26) as the ‘price to pay’ for adapting to an unknown covariance
operator in the class of covariance operators of Gaussian Markov random fields with dependency
radius h.

4.2. Upper bound: A Fisher-type test

We introduce a test whose performance essentially matches the minimax lower bound of Theo-
rem 1. Comparatively, the construction and analysis of this test is much more involved than that
of the generalized likelihood ratio test of Section 3.2.

Let Fi = (Xi+v : 1 ≤ |v|∞ ≤ h), seen as a vector, and let FS,h be the matrix with row vectors
Fi, i ∈ Sh. Also, let XS,h = (Xi : i ∈ Sh). Under the null hypothesis, each variable Xi is inde-
pendent of Fi , although Xi is correlated with some (Fj , j �= i). Under the alternative hypothesis,
there exists a subset S and a vector φ ∈ �h such that

XS,h = FS,hφ + εS,h, (27)
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where each component εi of εS,h is independent of the corresponding vector Fi , but the εi ’s
are not necessarily independent. Equation (27) is the so-called conditional autoregressive (CAR)
representation of a Gaussian Markov random field [28]. For Gaussian Markov random fields,
the celebrated pseudo-likelihood method [11] amounts to estimating φ by taking least-squares
in (27).

Returning to our testing problem, observe that the null hypothesis is true if and only if all
the parameters of the conditional expectation of XS,h given FS,h are zero. In analogy with the
analysis-of-variance approach for testing whether the coefficients of a linear regression model
are all zero, we consider a Fisher-type statistic

T ∗ = max
S∈C

TS, TS := |Sh|‖�S,hXS,h‖2
2

‖XS,h − �S,hXS,h‖2
2

, (28)

where �S,h := FS,h(F�
S,hFS,h)

−1F�
S,h is the orthogonal projection onto the column space of FS,h.

Since in the linear model (27) the response vector XS,h is not independent of the design matrix
FS,h, the statistic TS does not follow an F -distribution. Nevertheless, we are able to control the
deviations of T ∗, both under null and alternative hypotheses, leading to the following perfor-
mance bound. Recall the definition (4).

Theorem 2. There exist four positive constants C1,C2,C3,C4 depending only on d such that
the following holds. Assume that

|Nh|4 ∨ |Nh|2 log
(|C|) ≤ C1 min

S∈C
∣∣Sh

∣∣. (29)

Fix α and β in (0,1) such that

log

(
1

α

)
∨ log

(
1

β

)
≤ C2

minS∈C |Sh|
|Nh|2 log(|C|) . (30)

Then, under the null hypothesis,

P
{
T ∗ ≥ |Nh| + C3

[√|Nh|
(
log

(|C|) + 1 + log
(
α−1

)) + log
(|C|) + log

(
α−1)]} ≤ α, (31)

while under the alternative,

P

{
T ∗ ≥ |Nh| + C4

[∣∣Sh
∣∣(‖φ‖2

2 ∧ 1

|Nh|
)

− √
Nh

(
1 + log4(β−1))]}

≥ 1 − β. (32)

In particular, if αn,βn → 0 are arbitrary positive sequences, then the test f that rejects the null
hypothesis if

T ∗ ≥ |Nh| + C3

[√
|Nh|

(
log

(|C|) + 1 + log
(
α−1

n

)) + log
(|C|) + log

(
α−1

n

)]
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satisfies RC,G(h,r)(f ) → 0 as soon as

r2 >
C0

minS∈C |Sh|
[√

|Nh|
(

log
(|C|) + log

(
1

αn

)
+ log8

(
1

βn

))
∨ log

(|C|) ∨ log

(
1

αn

)]
, (33)

where C0 > 0 depends only on d .

Comparing with the minimax lower bound established in Theorem 1, we see that this test is
nearly optimal with respect to h, the size of the collection |C|, and the size |S| of the anomalous
region (under the alternative).

5. Examples: Cubes and blobs

In this section, we specialize our general results proved in the previous subsections to classes of
cubes, and more generally, blobs.

5.1. Cubes

Consider the problem of detecting an anomalous cube-shaped region. Let 	 ∈ {1, . . . ,m} and
assume that m is an integer multiple of 	 (for simplicity). Let C denote the class of all discrete
hypercubes of side length 	, that is, sets of the form S = ∏d

s=1{bs, . . . , bs + 	 − 1}, where bs ∈
{1, . . . ,m + 1 − 	}. Each such hypercube S ∈ C contains |S| = k := 	d nodes, and the class is of
size |C| = (m − 1 − 	)d ≤ n.

The lower bounds for the risk established in Corollary 3 and Theorem 1 are not directly appli-
cable here since these results require subsets of the class C to be disjoint. However, they apply to
any subclass C′ ⊂ C of disjoint subsets and, as mentioned in Section 2, any lower bound on the
minimax risk over C′ applies to the minimax risk over C. A natural choice for C′ here is that of
all cubes of the form S = ∏d

s=1{as	 + 1, . . . , (as + 1)	}, where as ∈ {0, . . . ,m/	 − 1}. Note that
|C′| = (m/	)d = n/k.

h bounded. Consider first the case where the radius h of the neighborhood is bounded. We
may apply Corollary 3 to get

R∗
C,φ ≥ 1 − k1/2

2n1/2
exp

{
5k‖φ‖2

2

1 − 2‖φ‖1

}
.

For a given r > 0 satisfying 2|Nh|r ≤ 1, we can choose a parameter φ constant over Nh such that
‖φ‖2 = r and ‖φ‖1 = r

√
(2h + 1)d − 1. Since R∗

C,G(h,r)
≥ R∗

C,φ
, we thus have R∗

C,G(h,r)
→ 1

when n → ∞, if (k,φ) = (k(n),φ(n)) satisfies log(n) � k � n and r2 ≤ log(n/k)/(11k). Com-
paring with the performance of the Fisher test of Section 4.2, in this particular case, Condition
(29) is met, and letting α = α(n) → 0 and β = β(n) → 0 slowly, we conclude from (33) that this
test (denoted f ) has risk RC,G(h,r)(f ) → 0 when r2 ≥ C0 log(n)/k for some constant C0. Thus,
in this setting, the Fisher test, without knowledge of φ, achieves the correct detection rate as long
as k ≤ nb for some fixed b < 1.
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h unbounded. When h is unbounded, we obtain a sharper bound by using Theorem 1 instead
of Corollary 3. Specialized to the current setting, we derive the following.

Corollary 4. There exist two positive constants C1 and C2 depending only on d such that the
following holds. Assume that the neighborhood size h is small enough that

|Nh| ≤ C1

[
k

log1∨(d/2)( n
k
)

∧ k2/5 log1/5
(

n

k

)
∧ d− 2d

d+2 k
2

d+2 log
d

3d+6

(
n

k

)]
. (34)

Then the minimax risk tends to one when n → ∞ as soon as (k,h, r) = (k(n),h(n), r(n)) satis-
fies n/k → ∞ and

r2 ≤ C2

[
log( n

k
)

k
∨

√
|Nh| log( n

k
)

k

]
. (35)

Note that, in the case of a square neighborhood, |Nh| = (2h + 1)d − 1. Comparing with
the performance of the Fisher test, in this particular case, Condition (29) is equivalent to
|Nh| ≤ C0(k

1/4 ∧ √
k/ log(n)) for some constant C0. When k is polynomial in n, this condi-

tion is stronger than Condition (34) unless d ≤ 5. In any case, assuming h is small enough that
both (29) and (34) hold, and letting α = α(n) → 0 and β = β(n) → 0 slowly, we conclude from
(33) that the Fisher test has risk RC,G(h,r) tending to zero when

r2 ≥ C0

[
log(n)

k
∨

√|Nh| log(n)

k

]
,

for some large-enough constant C0 > 0, matching the lower bound (35) up to a multiplicative
constant as long as k ≤ nb for some fixed b < 1.

In conclusion, whether h is fixed or unbounded but growing slowly enough, the Fisher test
achieves a separation parameter matching the lower bound up to a multiplicative constant.

5.2. Blobs

So far, we only considered hypercubes, but our results generalize immediately to much larger
classes of blob-like regions. Here, we follow the same strategy used in the detection-of-means
setting, for example, in [6,8,31].

Fix two positive integers 	◦ ≤ 	◦ and let C be a class of subsets S such that there are hypercubes
S◦ and S◦, of respective side lengths 	◦ and 	◦, such that S◦ ⊂ S ⊂ S◦. Letting C◦ and C◦ denote
the classes of hypercubes of side lengths 	◦ and 	◦, respectively, our lower bound for the worst-
case risk associated with the class C◦ obtained from Corollary 4 applies directly to C—although
not completely obvious, this follows from our analysis—while scanning over C◦ in the Fisher test
yields the performance stated above for the class of cubes. In particular, if 	◦/	◦ remains bounded
away from 0, the problem of detecting a region in C is of difficulty comparable to detecting a
hypercube in C◦ or C◦.
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When the size of the anomalous region k is unknown, meaning that the class C of interest
includes regions of different sizes, we can simply scan over dyadic hypercubes as done in the
first step of the multiscale method of [8]. This does not change the rate as there are less than 2n

dyadic hypercubes. See also [6].
We note that when 	◦/	◦ = o(1), scanning over hypercubes may not be very powerful. For

example, for “convex” sets, meaning when

C = {
S = K ∩ V : K ⊂R

d convex, |K ∩ V| = k
}
,

it is more appropriate to scan over ellipsoids due to John’s ellipsoid theorem [24], which implies
that for each convex set K ⊂R

d , there is an ellipsoid E ⊂ K such that vol(E) ≥ d−dvol(K). For
the case where d = 2 and the detection-of-means problem, [31]—expanding on ideas proposed
in [8]—scan over parallelograms, which can be done faster than scanning over ellipses.

Finally, we mention that what we said in this section may apply to other types of regular
lattices, and also to lattice-like graphs such as typical realizations of a random geometric graph.
See [6,60] for detailed treatments in the detection-of-means setting.

6. Discussion

We provided lower bounds and proposed near-optimal procedures for testing for the presence of a
piece of a Gaussian Markov random field. These results constitute some of the first mathematical
results for the problem of detecting a textured object in a noisy image. We leave open some
questions and generalization of interest.

Adaptation to unknown neighborhood. When the size h of the neighborhood is unknown, we
may build a test rejecting the null hypothesis if for some positive h, the Fisher-type test T ∗ of
Section 4.2 with radius h and level αh = 6α

h26π2 rejects the null hypothesis. The corresponding
test would simultaneously achieve, over all h, the detection rate (33) up to a multiplicative term
of (log(h) ∨ 1).

More refined results. We leave behind the delicate and interesting problem of finding the ex-
act detection rates, with tight multiplicative constants. This is particularly appealing for simple
settings such as finding an interval of an autoregressive process, as described in Section 1.3. Our
proof techniques, despite their complexity, are not sufficiently refined to get such sharp bounds.
We already know that, in the detection-of-means setting, bounding the variance of the likelihood
ratio does not yield the right constant. The variant which consists of bounding the first two mo-
ments of a carefully truncated likelihood ratio, possibly pioneered in [34], is applicable here, but
the calculations are quite complicated and we leave them for future research.

Texture over texture. Throughout the paper, we assumed that the background is Gaussian white
noise. This is not essential, but makes the narrative and results more accessible. A more general,
and also more realistic setting, would be that of detecting a region where the dependency structure
is markedly different from the remainder of the image. This setting has been studied in the context
of time series, for example, in some of the references given in Section 1.3. However, we are not
aware of existing theoretical results in higher-dimensional settings such as in images.

Other dependency structures. We focused on Markov random fields with limited neighborhood
range (quantified by h earlier in the paper). This is a natural first step, particularly since these
are popular models for time series and textures. However, one could envision studying other
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dependency structures, such as short-range dependency, defined in [54] as situations where the
covariances are summable in the following sense

sup
i∈V∞

∑
j∈V∞\i

|�i,j | < ∞.

Estimation of the anomalous region. The detection of the presence of an anomalous region
is often followed by the estimation of that region. Since we consider a form of max-test (as
opposed to sum-tests), the same procedure can be used for estimating the anomalous region.
Indeed, suppose one uses a test statistic of the form maxS∈C US , typically originating from the
generalized likelihood ratio test, or a variant of it. This naturally leads one to using the estimate
arg maxS∈C US , which corresponds to maximum likelihood, or a variant of it. A full-fledged
performance analysis of this estimator is well beyond the scope of this paper. One may easily
check that, if the null hypothesis is rejected by the test, and the “signal” is strong enough for
the test to be reliable, then the estimated region and the true region intersect. Going beyond this
would require considerably more effort.

7. Proofs

7.1. Proof of Proposition 1

The Bayes risk is achieved by the likelihood ratio test f ∗
ν,π (x) = I{Lν,π (x) > 1} where

Lν,π (x) = 1

|C|
∑
S∈C

LS(x), with LS(x) =
∫

dPS,�(φ)(x)

dP0(x)
π(dφ).

In our Gaussian model,

LS(x) = Eπ

[
exp

(
1

2
x�
S

(
IS − �−1

S (φ)
)
xS − 1

2
log det

(
�S(φ)

))]
, (36)

where the expectation is taken with respect to the random draw of φ ∼ π . Then, by (16),

R̄∗
ν,π = 1 − 1

2
E0

∣∣Lν,π (X) − 1
∣∣ ≥ 1 − 1

2

√
E0

[
Lν,π (X)2

] − 1. (37)

(Recall that E0 stands for expectation with respect to the standard normal random vector X.)
We proceed to bound the second moment of the likelihood ratio under the null hypothesis.

Summing over S,T ∈ C, we have

E0
[
Lν,π (X)2] = 1

|C|2
∑

S,T ∈C
E0

[
LS(X)LT (X)

]

= 1

|C|2
∑
S �=T

E0
[
LS(X)

]
E0

[
LT (X)

] + 1

|C|2
∑
S∈C

E0
[
L2

S(X)
]
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= |C| − 1

|C| + 1

|C|2
∑
S∈C

E0Eπ

[
exp

(
X�

S

(
IS − 1

2
�−1

S (φ1) − 1

2
�−1

S (φ2)

)
XS

− 1

2
log det

(
�S(φ1)

) − 1

2
log det

(
�S(φ2)

))]

≤ 1 + 1

|C|2
∑
S

Eπ

[
exp

(
−1

2
log det

(
�−1

S (φ1) + �−1
S (φ2) − IS

)

− 1

2
log det

(
�S(φ1)�S(φ2)

))]

= 1 + 1

|C|2
∑
S

VS,

where in the second equality we used the fact that S �= T are disjoint, and therefore LS(X) and
LT (X) are independent, and in the third we used the fact that E0[LS(X)] = 1 for all S ∈ C.

7.2. Deviation inequalities

Here we collect a few more-or-less standard inequalities that we need in the proofs. We start with
the following standard tail bounds for Gaussian quadratic forms. See, for example, Example 2.12
and Exercise 2.9 in [13].

Lemma 1. Let Z be a standard normal vector in R
d and let R be a symmetric d × d matrix.

Then

P
{
Z�RZ − Tr(R) ≥ 2‖R‖F

√
t + 2‖R‖t} ≤ e−t , ∀t ≥ 0.

Furthermore, if the matrix R is positive semidefinite, then

P
{
Z�RZ − Tr(R) ≤ −2‖R‖F

√
t
} ≤ e−t , ∀t ≥ 0.

Lemma 2. There exists a positive constant C such that the following holds. For any Gaussian
chaos Z up to order 4 and any t > 0,

P
{∣∣Z −E[Z]∣∣ ≥ C Var1/2(Z)t2} ≤ e−t .

Proof. This deviation inequality is a consequence of the hypercontractivity of Gaussian chaos.
More precisely, Theorem 3.2.10 and Corollary 3.2.6 in [21] state that

E exp

[(
Z −E[Z]

C Var1/2(Z)

)1/2]
≤ 2,

where C is a numerical constant. Then, we apply Markov inequality to prove the lemma. �
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Lemma 3. There exists a positive constant C such that the following holds. Let F be a compact
set of symmetric r × r matrices and let Y ∼ N (0, Ir ). For any t > 0, the random variable Z :=
supR∈F Tr[RYY�] satisfies

P
{
Z ≥ E(Z) + t

} ≤ exp

(
−C

(
t2

E(W)
∧ t

B

))
, (38)

where W := supR∈F Tr(RYY�R) and B := supR∈F ‖R‖.

A slight variation of this result where Z is replaced by supR∈F Tr[R(YY� − Ir )] is proved
in [59] using the exponential Efron-Stein inequalities of [12]. Their arguments straightforwardly
adapt to Lemma 3.

Lemma 4 ([18]). Let W be a standard Wishart matrix with parameters (n, d) satisfying n > d .
Then for any number 0 < x < 1,

P
{
λmax(W) ≥ n(1 + √

d/n + √
2x/n)2} ≤ e−x,

P
{
λmin(W) ≤ n(1 − √

d/n − √
2x/n)2+

} ≤ e−x.

7.3. Auxiliary results for Gaussian Markov random fields on the lattice

Here we gather some technical tools and proofs for Gaussian Markov random fields on the lattice.
Recall the notation introduced in Section 2.1.

Lemma 5. For any positive integer h and φ ∈ �h with ‖φ‖1 < 1, we have that if λ is an eigen-
value of the covariance operator �(φ), then

σ 2
φ

1 + ‖φ‖1
≤ λ ≤ σ 2

φ

1 − ‖φ‖1
.

Also, we have

‖φ‖2
2

1 + ‖φ‖1
≤ 1 − σ 2

φ

σ 2
φ

≤ ‖φ‖2
2

1 − ‖φ‖1
and 1 − ‖φ‖1 ≤ σ 2

φ ≤ 1. (39)

Proof. Recall that ‖ · ‖ denotes the 	2 → 	2 operator norm. First, note that by the definition of
φ, σ 2

φ�−1(φ) − I = (−φi−j )i,j∈Zd , and therefore

∥∥σ 2
φ�−1(φ) − I

∥∥ ≤ ‖φ‖1, (40)

where we used the bound ‖A‖ ≤ supi∈Zd

∑
j∈Zd |Aij |. This implies that the largest eigenvalue

of �(φ) is bounded by σ 2
φ/(1 − ‖φ‖1) if ‖φ‖1 < 1 and that the smallest eigenvalue of �(φ) is at
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least σ 2
φ/(1 + ‖φ‖1). Considering the conditional regression of Yi given Y−i mentioned in (13),

that is,

Yi =
∑

1≤|j |∞≤h

φjYi+j + εi

(with εi being standard normal independent of the Yj for j �= i) and taking the variance of both
sides, we obtain

1 − σ 2
φ = Var

[ ∑
1<|j |∞≤h

φjYi+j

]
= φ��(φ)φ ≤ ∥∥�(φ)

∥∥‖φ‖2
2 ≤ ‖φ‖2

2

1 − ‖φ‖1
σ 2

φ ,

and therefore

1 − σ 2
φ ≤ ‖φ‖2

2

1 − ‖φ‖1
σ 2

φ .

Rearranging this inequality and using the fact that ‖φ‖2
2 ≤ ‖φ‖2

1 ≤ ‖φ‖1, we conclude that σ 2
φ ≥

1 − ‖φ‖1. The remaining bound
‖φ‖2

2
1+‖φ‖1

≤ 1−σ 2
φ

σ 2
φ

is obtained similarly. �

Recall that for any v ∈ Z
d , γv is the correlation between Yi and Yi+v and is therefore equal to

�i,i+v . This definition does not depend on the node i since � is the covariance of a stationary
process.

Lemma 6. For any h and any φ ∈ �h, let Y ∼ N (0,�(φ)). As long as ‖φ‖1 < 1, the 	2 norm
of the correlations satisfies

∑
v �=0

γ 2
v ≤ ‖φ‖2

2

(1 − ‖φ‖1)2
+

( ‖φ‖2
2σ

2
φ

(1 − ‖φ‖1)2

)2

. (41)

Proof. In order to compute ‖γ ‖2
2, we use the spectral density of Y defined by

f (ω1, . . . ,ωd) = 1

(2π)d

∑
(v1,...,vd )∈Zd

γv1,...,vd
exp

(
ι

d∑
i=1

viωi

)
, (ω1, . . . ,ωd) ∈ (−π,π]d .

Following [28], Section 1.3, or [53], Section 2.6.5, we express the spectral density in terms of φ

and σ 2
φ :

1

f (ω1, . . . ,ωd)
= (2π)d

σ 2
φ

[
1 −

∑
v,1≤|v|∞≤h∈Zd

φve
ι〈v,ω〉

]
,

where 〈·, ·〉 denotes the scalar product in R
d . As a consequence,∣∣f (ω1, . . . ,ωd)

∣∣ ≤ σ 2
φ

[
(2π)d

(
1 − ‖φ‖1

)]−1
.
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Relying on Parseval formula, we conclude

∑
v �=0

γ 2
v = (2π)d

∫
[−π;π]d

[
f (ω1, . . . ,ωd) − 1

(2π)d

]2

dω1 · · ·dωd

≤ σ 4
φ

(2π)d(1 − ‖φ‖1)2

∫
[−π;π]d

∣∣∣∣ 1

(2π)df (ω1, . . . ,ωd)
− 1

∣∣∣∣
2

dω1 · · ·dωd

≤ σ 4
φ

(2π)d(1 − ‖φ‖1)2

∫
[−π;π]d

∣∣∣∣ 1

σ 2
φ

− 1 − 1

σ 2
φ

∑
v,1≤|v|∞≤h∈Zd

φve
ι〈v,ω〉

∣∣∣∣
2

dω1 · · ·dωd

≤ σ 4
φ

(2π)d(1 − ‖φ‖1)2

[
(2π)d

(
1

σ 2
φ

− 1

)2

+
∑

v,1≤|v|∞

(2π)dφ2
v

σ 4
φ

]

≤
( 1 − σ 2

φ

1 − ‖φ‖1

)2

+ ‖φ‖2
2

(1 − ‖φ‖1)2

≤
( ‖φ‖2

2σ
2
φ

(1 − ‖φ‖1)2

)2

+ ‖φ‖2
2

(1 − ‖φ‖1)2
,

where we used (39) in the last line. �

Lemma 7 (Conditional representation). For any h and any φ ∈ �h, let Y ∼ N (0,�(φ)).
Then for any i ∈ Z

d , the random variable εi defined by the conditional regression Yi =∑
v∈Nh

φvYi+v + εi satisfies that:

1. εi is independent of all Xj , j �= i and Cov(εi,Xi) = Var(εi) = σ 2
φ .

2. For any i �= j , Cov(εi, εj ) = −φi−j σ
2
φ if |i − j |∞ ≤ h and 0 otherwise.

Proof. The first independence property is a classical consequence of the conditional regression
representation for Gaussian random vectors, see, for example, [42]. Since Var(εi) is the condi-
tional variance of Yi given Y (−i), it equals [(�−1(φ))i,i]−1 = σ 2

φ . Furthermore,

Cov(εi, Yi) = Var(εi) +
∑
v∈Nh

φj Cov(εi, Yi+v) = Var(εi),

by the independence of εi and Y (−i). Finally, consider any i �= j ,

Cov(εi, εj ) = Cov(εi, Yj ) −
∑
v∈Nh

φv Cov(εi, Yj+v),

where all the terms are equal to zero with the possible exception of v = i − j . The result fol-
lows. �

The proofs of the two following lemma are postponed to the supplementary material [5].
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Lemma 8 (Comparison of �−1(φ) and �−1
S (φ)). As long as ‖φ‖1 < 1, the following properties

hold:

1. If i ∈ Sh or if j ∈ Sh, then (�−1
S (φ))i,j = (�−1(φ))i,j .

2. If i ∈ Sh and j ∈ �h(S), then 1 ≤ (�−1
S (φ))j,j ≤ (�−1

S (φ))i,i .

3. If i ∈ �h(S), then
∑

j∈S:j �=i (�
−1
S (φ))2

i,j ≤ 2‖φ‖2
2

(1−‖φ‖1)
3 .

Lemma 9. For any φ1, φ2 ∈ �h, define

Bφ1,φ2 :=
(

det(�−1
S (φ1))det(�−1

S (φ2))

det(�−1
S (φ1) + �−1

S (φ2) − IS)

)1/2

.

(Note that VS defined in Proposition 1 equals the expected value of Bφ1,φ2 when φ1 and φ2 are
drawn independently from the distribution π .) Assuming that ‖φ1‖1 ∨ ‖φ2‖1 < 1/5, we have

logBφ1,φ2 ≤ 1

2
|S|〈φ1, φ2〉 + 8QS,

where

QS := |S|
2∑

s1,s2,s3=1

∣∣∣∣ ∑
j,k∈Nh

φs1,j φs2,kφs3,k−j

∣∣∣∣
+ 15|S|(‖φ1‖3

2 ∨ ‖φ2‖3
2

) + ∣∣�h(S)
∣∣(‖φ1‖2

2 ∨ ‖φ2‖2
2

)
+ 28

∣∣�2h(S)
∣∣(∣∣�2h(S)

∣∣ ∨ (|Nh| + 1
))1/2(‖φ1‖3

2 ∨ ‖φ2‖3
2

)
.

7.4. Proof of Corollary 3

As stated in Lemma 5, all eigenvalues of the covariance operator �−1(φ) lie in (1 −
‖φ‖1,

1+‖φ‖1
1−‖φ‖1

). Since the spectrum of �−1
S (φ) lies between the extrema of the spectrum of

�−1(φ), and using the assumption that ‖φ‖1 < 1/2, this entails

∥∥�S(φ) − IS

∥∥ ≤ max

[
2‖φ‖1

1 + ‖φ‖1
,

‖φ‖1

1 − ‖φ‖1

]
< 1. (42)

We now apply Proposition 1 with the probability measure π concentrating on φ. In this case,

VS = det(�−1
S (φ))

det(2�−1
S (φ) − IS)1/2

= det
(
IS − (

IS − �S(φ)
)2)−1/2

,

and we get

R̄∗
ν,φ ≥ 1 − 1

2|C|
[∑

S∈C
det

(
IS − (

IS − �S(φ)
)2)−1/2

]1/2
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≥ 1 − 1

2|C|
[∑

S∈C
exp

( ‖�S(φ) − IS‖2
F

2(1 − ‖�S(φ) − IS‖)
)]1/2

≥ 1 − 1

2|C|
[∑

S∈C
exp

(‖�S(φ) − IS‖2
F

2(1 − 2‖φ‖1)

)]1/2

,

where ‖·‖F denotes the Frobenius norm. The second inequality above is obtained by applying the
inequality 1/(1−λ) ≤ eλ/(1−λ) for 0 ≤ λ < 1 to the eigenvalues of (�S(φ)− IS)2, while the third
inequality follows from (42) and the fact that ‖φ‖1 < 1/2. It remains to bound ‖�S(φ) − IS‖2

F :

∥∥�S(φ) − IS

∥∥2
F

=
∑

(i,j∈S),i �=j

Cor2(Yi, Yj )

≤ |S|
∑
v �=0

γ 2
v

≤ 20|S|‖φ‖2
2,

where we used Lemma 6, σ 2
φ ≤ 1, and ‖φ‖2 ≤ ‖φ‖1 ≤ 1/2 in the last line.

7.5. Proof of Theorem 1

Recall the definition of the prior π defined just before the statement of the theorem. Taking the
numerical constant C0 in (26) sufficiently small and relying on condition (25), we have ‖φ‖1 =
r
√
Nh < 1/5. Consequently, the support of π is a subset of the parameter space �h and we are

in position to invoke Lemma 9.
Let φ1, φ2 be drawn independently according to the distribution π and denote by ξ1 and ξ2 the

corresponding random vectors defined on N
′
h. By Lemma 9,

logBφ1,φ2 ≤ |S|r2
N

−1
h 〈ξ1, ξ2〉 + 8QS,

where

QS ≤ 23|S|r3
√|Nh| +

∣∣�h(S)
∣∣r2 + 28

∣∣�2h(S)
∣∣(∣∣�2h(S)

∣∣ ∨ (|Nh| + 1
))1/2

r3.

Since 〈ξ1, ξ2〉 is distributed as the sum of |Nh|/2 independent Rademacher random variables, we
deduce that

VS ≤ cosh

(
r2|S|
|Nh|

)|Nh|/2

exp
(
383

(|S|√|Nh| ∨
∣∣�2h(S)

∣∣3/2)
r3 + 8

∣∣�h(S)
∣∣r2)

≤ exp

(
r4|S|2
4|Nh| ∧ r2|S|

2
+ 383

(|S|√|Nh| ∨
∣∣�2h(S)

∣∣3/2) + 8
∣∣�h(S)

∣∣r2
)

,
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since cosh(x) ≤ exp(x) ∧ exp(x2/2) for any x > 0. Combining this bound with Proposition 1,
we conclude that the Bayes risk R̄∗

ν,π is bounded from below by

1 − 1

2
√|C|

[
max
S∈C

exp

( |S|2r4

4|Nh| ∧ |S|r2

2
(43)

+ 383
(|S|√|Nh| + 1 ∨ ∣∣�2h(S)

∣∣3/2)
r3 + 8

∣∣�h(S)
∣∣r2

)]1/2

.

If the numerical constant C0 in Condition (26) is sufficiently small, then |S|2r4

4|Nh| ∧ |S|r2

2 ≤
0.5 log(a2|C|). Also, choosing C0 small enough in Condition (26), relying on Condition (25)
and on |Nh| ≥ 1, we also have

383
(|S|√|Nh| + 1 ∨ ∣∣�2h(S)

∣∣3/2)
r3 + 8

∣∣�h(S)
∣∣r2 ≤ 0.5 log

(
a2|C|).

Thus, we conclude that R̄∗
ν,π ≥ 1 − a/2 ≥ 1 − a.

7.6. Proof of Corollary 4

We deduce the result by closely following the proof of Theorem 1. We first prove that 5r
√|Nh| ≤

1 is satisfied for n large enough. Starting from (35), we have, for n large enough,

25r2|Nh| ≤ 25C2

( |Nh| log( n
k
)

k
∨

|Nh|3/2
√

log( n
k
)

k

)

≤ 25C2

(
C1 ∨

|Nh|3/2
√

log( n
k
)

k

)
,

where we used Condition (34) in the second line. Taking C1 and C2 small enough, we only have

to bound |Nh|3/2
√

log( n
k
)/k. We distinguish two cases.

• Case 1: |Nh| ≤ log(n/k). Since |Nh| ≤ C1k/ log( n
k
), it follows that |Nh|3/2

√
log( n

k
)/

k ≤ C1.
• Case 2: |Nh| ≥ log(n/k). Then the second part of Condition (34) enforces log4/5(n/k) ≤

C1k
2/5. Using again the second part of Condition (34) yields

|Nh|3/2
√

log( n
k
)

k
≤ C

3/2
1

log4/5(n/k)

k2/5
≤ C

5/2
1 .

As 5r
√|Nh| ≤ 1, we can use the same prior π as in the proof of Theorem 1 and arrive at the

same lower bound (43) on R∗
π . It remains to prove that this lower bound goes to one, namely that

|S|2r4

4|Nh| ∧ |S|r2

2
+ 383

(|S|√|Nh| + 1 ∨ ∣∣�2h(S)
∣∣3/2)

r3 + 8
∣∣�2h(S)

∣∣r2 − log(n/k) → −∞,
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where S is a hypercube of size k. Taking the constant C2 small enough in (35) leads to k2r4

4|Nh| ∧
kr2

2 ≤ log(n/k)/2.

kr3
√|Nh| ≤ C

3/2
2

[
log(n/k)3|Nh|

k
∨ log(n/k)3/2|Nh|5/2

k

]1/2

≤ C
3/2
2

(
C

1/2
1 ∨ C

5/4
1

)
log(n/k),

where we used again the second part of Condition (34). Taking C1 and C2 small enough en-
sures that 383kr3√|Nh| + 1 ≤ log(n/k)/4. Finally, it suffices to control |�2h(S)|3/2r3 since
|�2h(S)|r2 ≤ |�2h(S)|3/2r3 ∨ 1. Observe that

∣∣�2h(S)
∣∣ = 	d − (	 − 4h)d = 	d

[
1 − (1 − 4h/	)d

] ≤ 4	d dh/	 ≤ 4d|Nh|1/dk
d−1
d .

It then follows from Condition (35) that

(
d|Nh|1/dk

d−1
d

)3/2
r3 ≤ C

3/2
2

[
d3/2|Nh|3/(2d)

k3/(2d)
log1/2

(
n

k

)
∨ d3/2|Nh|3/(2d)+3/4

k3/(2d) log1/4( n
k
)

]
log

(
n

k

)

≤ C
3/2
2

[
C

3/(2d)

1 d3/2 log−1/4
(

n

k

)
C

6+3d
4d

1

]
log

(
n

k

)
,

where we used again (34) in the second line. Choosing C1 and C2 small enough concludes the
proof.
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