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Let ZM1×N = T
1
2 X where (T

1
2 )2 = T is a positive definite matrix and X consists of independent random

variables with mean zero and variance one. This paper proposes a unified matrix model

� = (
ZU2UT

2 ZT
)−1ZU1UT

1 ZT ,

where U1 and U2 are isometric with dimensions N ×N1 and N × (N −N2) respectively such that UT
1 U1 =

IN1 , UT
2 U2 = IN−N2 and UT

1 U2 = 0. Moreover, U1 and U2 (random or non-random) are independent of
ZM1×N and with probability tending to one, rank(U1) = N1 and rank(U2) = N − N2. We establish the
asymptotic Tracy–Widom distribution for its largest eigenvalue under moment assumptions on X when
N1,N2 and M1 are comparable.

The asymptotic distributions of the maximum eigenvalues of the matrices used in Canonical Correlation
Analysis (CCA) and of F matrices (including centered and non-centered versions) can be both obtained
from that of � by selecting appropriate matrices U1 and U2. Moreover, via appropriate matrices U1 and
U2, this matrix � can be applied to some multivariate testing problems that cannot be done by both types of
matrices. To see this, we explore two more applications. One is in the MANOVA approach for testing the
equivalence of several high-dimensional mean vectors, where U1 and U2 are chosen to be two nonrandom
matrices. The other one is in the multivariate linear model for testing the unknown parameter matrix, where
U1 and U2 are random. For each application, theoretical results are developed and various numerical studies
are conducted to investigate the empirical performance.

Keywords: canonical correlation analysis; F matrix; largest eigenvalue; MANOVA; multivariate linear
model; random matrix theory; Tracy–Widom distribution

1. Introduction

Rapid development of modern technology nowadays necessitates statistical inference on high-
dimensional data in many scientific fields such as image processing, genetic engineering, ma-
chine learning and so on. This raises a boom in pursuing methodologies to remedy classical
theories which are designed for the fixed dimensions. For such a purpose one popular tool is the
spectral analysis of high-dimensional matrices in random matrix theory. The readers may refer
to the monograph [2] and the references therein for a comprehensive reading.

This paper focuses on the largest eigenvalues. Ever since the pioneer work discovering the
limiting distribution of the largest eigenvalue for the large Gaussian Wigner ensemble by Tracy
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and Widom in [15,16], the largest eigenvalues of large random matrices have been widely studied.
To name a few we mention [3,5,6] and [14]. The largest eigenvalues prove to be fruitful objects of
study, playing an important role in multivariate statistical analysis such as principle component
analysis (PCA), multivariate analysis of variance (MANOVA), canonical correlation analysis
(CCA) and discriminant analysis. Among the vast literature, we refer the readers to a seminal
work [12], as well as a recent work [10]. Johnstone in [12] considered a double Wishart setting
and developed the Tracy–Widom law of its largest root when the dimension of the data matrix
X and the sample size are comparable with the dimension being even. This limiting distribution
can be applied to conduct various statistical inferences in his companion paper [13]. Considering
that the results in [12] work for the Gaussian distribution only, the authors in [10] investigated
an F type matrix for the general distributions without even dimension restriction. However, one
may notice that the Tracy–Widom result in [10] is only verified for zero mean data.

We now set a stage to present our matrix model. The most initial motivation is the matrix
frequently used in CCA. Suppose that we are given two sets of random variables, organized into
two random vectors x and y with dimensions M1 and M2, respectively. Without loss of generality,
we may assume that M1 ≤ M2. In multivariate analysis, CCA is the favorite method to investigate
the correlation structure between two random vectors, which was introduced by Hotelling [11]
first. The aim of CCA is to seek two vectors a and b such that the linear combination of aT x and
bT y can get the highest correlation coefficient that is,

ρ(a,b) := Cov(aT x,bT y)√
Var(aT x)

√
Var(bT y)

. (1.1)

If ρ1 = ρ1(a1,b1) := maxa,b ρ(a,b), then ρ1 is called the first canonical correlation coefficient.
Given the first canonical correlation coefficient, one can continue to seek the second canonical
correlation coefficient which is the maximum correlation coefficient of aT

2 x and bT
2 y, uncorre-

lated to aT
1 x and bT

1 y. Iterating this procedure to the end, we can get the canonical correlation
coefficients ρ1, ρ2, . . . , ρM1 . Denote the population covariance matrix of any two random vectors
u and v by �uv. By (1.1), it is not hard to conclude that in order to find the population canonical
correlation coefficients ρ1, ρ2, . . . , ρM1 , one only need to solve the determinant equation

det
(
�xy�

−1
yy �T

xy − ρ2�xx
) = 0. (1.2)

If x and y are independent, then ρ2
1 = · · · = ρ2

M1
= 0 or equivalently the largest eigenvalue of

�−1
xx �xy�

−1
yy �T

xy, ρ2
1 = 0. For the moment, we assume that Ex = Ey = 0 for ease of illustration,

but bearing in mind that such conditions are not needed in this work. Then under the classical
low-dimensional setting, that is, both M1 and M2 are fixed but N is large, one can safely use γ1,
the largest eigenvalue of A−1

xx AxyA−1
yy AT

xy, to estimate ρ2
1 since the sample covariance matrices

converge to their population counterparts as N tends to infinity, where

Axx = XXT , Ayy = YYT , Axy = XYT .

However, when M1 and M2 are comparable with the sample size N , the consistency will no
longer hold for the sample covariance matrices and accordingly the largest sample canonical cor-
relation coefficient γ1. Putting forward a theory on high-dimensional CCA is then much needed.
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If x or y is Gaussian distributed, it is not difficult to derive that the largest eigenvalue of

Sxy = A−1
xx AxyA−1

yy AT
xy

reduces to that of the double Wishart matrices in [12], see the matrix (1.3) below. Thus after
centralizing and re-scaling, it converges to the Type-1 Tracy–Widom distribution as proved in
[12] and [10]. However, to our best knowledge, corresponding results are not yet available for
non-gaussian distributions, which is the starting point of this paper. Here we would also remark
some other existing works about CCA in the high-dimensional case. Central limit theorems of
linear spectral statistics of CCA have been established in [17], which are for zero mean data,
while spiked eigenvalues are investigated for CCA in [4]. There are also a lot of existing works
about sparse CCA and we mention [8] among others.

Denote the largest eigenvalue of Sxy by γ1. Then γ1 is also the largest eigenvalue of Txy :=
PyPxPy , where

Px = XT
(
XXT

)−1X, Py = YT
(
YYT

)−1Y.

Equivalently, it is the largest solution to det(XPyXT − γ1XXT ) = 0. Define λ1 = γ1
1−γ1

. Then

under the condition that lim infN→∞ N
M1+M2

> 1, λ1 is also the largest solution of

det
(
XPyXT − λ1X(I − Py)XT

) = 0.

The matrix of interest now becomes(
X(I − Py)XT

)−1XPyXT . (1.3)

Inspired by (1.3), we propose a unified matrix model

� = (
ZU2UT

2 ZT
)−1ZU1UT

1 ZT , (1.4)

where UT
1 U1 = IN1 , UT

2 U2 = IN−N2 and UT
1 U2 = 0 (see (2.1) below for more details). We es-

tablish the asymptotic Tracy–Widom law for its largest eigenvalue in this work. An intriguing
observation is that although our Tracy–Widom approximation is theoretically established for di-
verging dimensions, it keeps accurate for small ones (the dimension M1 can be as small as 5 in
Table 1).

The motivations behind the construction of such a matrix model � are illustrated as follows.
First, the matrix (1.3) used in CCA is a special case of � by noticing that Py and I − Py are
orthogonal projection matrices. In addition, the non-zero mean data can be accommodated by
writing U2UT

2 = PN(I − PNy)PN,U1UT
1 = PN PNyPN and observing that the mean vectors can

be absorbed into the matrix PN = IN − 1
N

1N 1T
N , see Remark 6 below (the definition of PNy is

given there). Further illustrations are given in Section 3, where we deal with the independence
testing via CCA in detail.

Second, the matrix � generalizes the models in [12] and [10]. We would like to point out that
if the matrix Z is generated from Gaussian distribution, then the two terms (ZU2UT

2 ZT ) and
(ZU1UT

1 ZT ) in � are independent with normal entries, which simply reduces to the one studied
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Table 1. Simulated quantiles for rescaled λ1, i.e. the values #{rescaled λ1≤“Percentile”}
10 000 based on 10 000 repli-

cations under different data distributions and different dimensions

M(1) = (M1,N1,N2,N) = (5,8,10,30) M(2) = (M1,N1,N2,N) = (15,8,10,50)

Percentile TW M(1) 2M(1) 8M(1) 16M(1) 20M(1) M(2) 2M(2) 8M(2) 16M(2) 20M(2)

Standard Normal
−3.90 0.01 0.0132 0.0083 0.0099 0.0080 0.0108 0.0109 0.0102 0.0085 0.0091 0.0090
−3.18 0.05 0.0546 0.0501 0.0497 0.0502 0.0491 0.0514 0.0495 0.0467 0.0450 0.0476
−2.78 0.10 0.1041 0.1011 0.0995 0.1030 0.0992 0.1028 0.0974 0.0981 0.0956 0.0975
−1.91 0.30 0.2941 0.2948 0.3024 0.3026 0.3028 0.3047 0.3049 0.2944 0.2908 0.3004
−1.27 0.50 0.5031 0.5007 0.5026 0.5114 0.5048 0.5072 0.5077 0.4987 0.4971 0.5009
−0.59 0.70 0.7101 0.7057 0.7116 0.7116 0.7081 0.7074 0.7040 0.7075 0.7037 0.7051

0.45 0.90 0.9138 0.9027 0.9050 0.9062 0.9014 0.9055 0.9019 0.9019 0.9048 0.9038
0.98 0.95 0.9610 0.9507 0.9552 0.9538 0.9519 0.9569 0.9525 0.9502 0.9560 0.9560
2.02 0.99 0.9933 0.9896 0.9898 0.9909 0.9912 0.9916 0.9906 0.9900 0.9910 0.9912

Discrete
−3.90 0.01 0.0116 0.0093 0.0094 0.0099 0.0082 0.0099 0.0091 0.0098 0.0104 0.0080
−3.18 0.05 0.0523 0.0464 0.0503 0.0514 0.0477 0.0496 0.0480 0.0529 0.0495 0.0460
−2.78 0.10 0.0996 0.0943 0.1034 0.0983 0.0998 0.0951 0.0986 0.1037 0.0978 0.0974
−1.91 0.30 0.3049 0.2954 0.3054 0.2974 0.3024 0.2933 0.2915 0.3069 0.2968 0.3050
−1.27 0.50 0.5068 0.5002 0.5114 0.4961 0.4984 0.4989 0.4965 0.5069 0.5015 0.4964
−0.59 0.70 0.7124 0.7080 0.7065 0.6986 0.7045 0.7065 0.6976 0.7062 0.7042 0.6946

0.45 0.90 0.9102 0.9098 0.9035 0.9014 0.9021 0.9065 0.9031 0.9058 0.9067 0.8966
0.98 0.95 0.9583 0.9565 0.9537 0.9508 0.9512 0.9559 0.9540 0.9515 0.9546 0.9494
2.02 0.99 0.9931 0.9917 0.9905 0.9911 0.9894 0.9921 0.9903 0.9915 0.9912 0.9894

Gamma(4,0.5)

−3.90 0.01 0.0109 0.0091 0.0099 0.0093 0.0104 0.0098 0.0069 0.0107 0.0096 0.0104
−3.18 0.05 0.0507 0.0502 0.0500 0.0501 0.0507 0.0494 0.0452 0.0503 0.0486 0.0495
−2.78 0.10 0.1025 0.1011 0.0996 0.1013 0.0991 0.1006 0.0957 0.1021 0.0965 0.1002
−1.91 0.30 0.3024 0.2953 0.3008 0.2993 0.2934 0.2985 0.2965 0.2970 0.2972 0.2983
−1.27 0.50 0.4992 0.4994 0.5013 0.4967 0.4865 0.5009 0.4890 0.5028 0.4995 0.5010
−0.59 0.70 0.7033 0.7097 0.6994 0.6935 0.6923 0.7100 0.7006 0.7015 0.7040 0.7080

0.45 0.90 0.9065 0.9062 0.9018 0.9005 0.9023 0.9052 0.9045 0.8970 0.9027 0.9037
0.98 0.95 0.9546 0.9531 0.9503 0.9509 0.9503 0.9515 0.9531 0.9499 0.9503 0.9523
2.02 0.99 0.9908 0.9912 0.9906 0.9895 0.9888 0.9910 0.9901 0.9904 0.9904 0.9900

in [12] without even dimension restriction. Without this Gaussian assumption, we indeed inves-
tigate a more general case–the two terms can only be considered as uncorrelated with each other.
We would also like to highlight that � not only covers the F -matrix in [10], but also generalizes
it to any non-zero mean vectors by choosing some special U2 and U1. Detailed explanations will
be given in Section 4.

Third, by selecting appropriate matrices U1 and U2 (random or nonrandom), the Tracy–
Widom distribution for the largest eigenvalue of this unified matrix � can be applied to the
other multivariate testing problems, which cannot be done by the traditional CCA matrix (1.3).
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To see this, we explore two more applications. One is the MANOVA approach in testing the
equivalence of g groups’ mean vectors. It is well known that classical MANOVA relies on the
eigenvalues of the matrix V = W−1B, where W is the within sum of squares and cross-product
matrix (SSCP) and B is the between SSCP, see [1]. The matrix V can be written in terms of �

by choosing nonrandom matrices U1 and U2 as in equations (5.2)–(5.3) below, with the deriva-
tion details postponed to Section 5. The other one is in the multivariate linear regression model
Y = XB+Z for testing the unknown parameter matrix B. We consider both the linear hypothesis
testing H0 : C1B = �1 and the general intra-subject hypothesis testing H0 : CBD = �. Taking
the linear one as an example, we can rewrite its testing matrix M1 = E−1

1 H1 in the form of �

by selecting random matrices U1UT
1 = PX̃ and U2UT

2 = I − PX in (6.3), where E1 is the error
SSCP and H1 the hypothesis SSCP described in Section 6. Simulation results in Sections 7.3–7.4
show that the largest eigenvalue performs well in these two applications for both dense but weak
alternative (DWA) and sparse but strong alternative (SSA).

This paper is organized as follows. In Section 2, the main theorem about the Tracy–Widom
distribution for the largest eigenvalue λ1 of the unified matrix � is presented. Three applications
are introduced in Sections 3, 5 and 6, regarding the high-dimensional independence testing via
CCA, MANOVA and multivariate linear regression, respectively. We remark that all these appli-
cations here cannot be done by either [12] or [10] because we neither assume Gaussian distribu-
tion for Z nor impose an independent structure on (ZU2UT

2 ZT ) and (ZU1UT
1 ZT ). The relation

between � and F-matrix is illustrated in Section 4. Except for theoretical results developed in
previous sections, we also conduct a series of simulations in Section 7 to investigate the accu-
racy of the proposed asymptotic Tracy–Widom distribution (Section 7.1) as well as its numerical
performance in our three applications (Sections 7.2–7.4). All detailed proofs are relegated to the
supplementary material [9].

2. Main result on �

We investigate the largest eigenvalue of the unified matrix

� = (
ZU2UT

2 ZT
)−1ZU1UT

1 ZT (2.1)

in this section and develop its Tracy–Widom distribution. Here ZM1×N = T
1
2 X, TM1×M1 can

be any positive definite matrix and X = (Xij )M1×N satisfies the following Condition 1. Assume
that U1 and U2 are two isometries with dimensions N × N1 and N × (N − N2), respectively
such that N1 ≤ N2, UT

1 U1 = IN1 , UT
2 U2 = IN−N2 and UT

1 U2 = 0. Moreover, U1 and U2 (random
or non-random) are independent of X and with probability tending to one, rank(U1) = N1 and
rank(U2) = N − N2. The notation “0” may indicate a zero value, a zero vector or a zero matrix
in this paper, changing from line to line.

Condition 1. A matrix X = (Xij )M1×N satisfies Condition 1 if its entries Xij are independent
(but not necessarily identically distributed) with all moments being finite and

EXij = 0, EX2
ij = EX2

it , 1 ≤ i ≤ M1,1 ≤ j, t ≤ N. (2.2)
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Remark 1. Note that the matrix T does not influence the largest eigenvalue of � and it can
be any positive definite matrix. Indeed, let �x = (XU2UT

2 XT )−1XU1UT
1 XT . One can easily

observe that � and �x share the same largest eigenvalue by the fact that AB and BA share the
same nonzero eigenvalues.

We now state the limiting distribution for the largest eigenvalue of the unified matrix �.

Theorem 2.1. Consider the matrix � defined in (2.1). Suppose that T is any positive definite
matrix and X satisfies Condition 1. Suppose that lim infN→∞ N

M1+N2
> 1, N1 ≤ N2, N1

N2
and

M1
N−N2

are both bounded away from 0, and N1
M1

is bounded away from 0 and ∞. Denote the
largest eigenvalue of � by λ1. Then there exist μN and σN such that

lim
N→∞P

(
σNN

2/3
1 (λ1 − μN) ≤ s

) = F1(s), (2.3)

where F1(s) is the Type-1 Tracy–Widom distribution. Moreover, the centering and scaling param-

eters μN and σN can be determined as follows. Suppose that cN ∈ [0, (1 −
√

M1
N−N2

)2] satisfies

the equation ∫ +∞

−∞

(
cN

λ − cN

)2

dF(λ) = N1

M1
, (2.4)

where F(λ) is the limit spectral density (LSD) of (XU2UT
2 XT )−1. Then

μN = 1

cN

(
1 + M1

N1

∫ +∞

−∞

(
cN

λ − cN

)
dF(λ)

)
(2.5)

and

1

σ 3
N

= 1

c3
N

(
1 + M1

N1

∫ +∞

−∞

(
cN

λ − cN

)3

dF(λ)

)
. (2.6)

Remark 2. The LSD of the empirical spectral distribution of (XU2UT
2 XT ) (equivalent to the

sample covariance matrix in the Gaussian case) is the famous Marcenko Pastur distribution.
From there one can easily find F(λ).

Remark 3. When X is a complex random matrix, Theorem 2.1 still holds but the Tracy–Widom
distribution F1(s) should be replaced by F2(s). One may refer to [16] for the definitions of
Fi(s), i = 1,2.

Remark 4. The condition UT
1 U2 = 0 imposed on the matrices U1 and U2 can be relaxed to

UT
1 U2 = (IN1 ,0). In fact, if UT

1 U2 = (IN1 ,0), then we can write U2 as U2 = (U1,U4) such
that UT

1 U4 = 0. This is because if we denote U2 = (U3,U4), then the relation UT
1 U2 = (IN1 ,0)

suggests that UT
1 U3 = IN1 , UT

1 U4 = 0. Denoting the ith columns of U1 and U3 by u1i and u3i
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respectively, we have uT
1iu3i = 1. By the Cauchy–Schwarz inequality, we see that

1 = uT
1iu3i ≤ ‖u1i‖‖u3i‖ = 1,

which forces u1i = u3i and consequently U1 = U3, U2 = (U1,U4) with UT
1 U4 = 0. By the argu-

ments above (1.3), the largest eigenvalue of(
XU2UT

2 XT
)−1XU1UT

1 XT = (
XU1UT

1 XT + XU4UT
4 XT

)−1XU1UT
1 XT

can be transferred to a function of the largest eigenvalue of (XU4UT
4 XT )−1XU1UT

1 XT so that
Theorem 2.1 is applicable. Therefore, one can also work out the asymptotic distribution for
the largest eigenvalue of the matrix (XU2UT

2 XT )−1XU1UT
1 XT under the condition UT

1 U2 =
(IN1 ,0).

Remark 5. Theorem 2.1 can be extended to the joint distribution of the first k largest eigenval-
ues, that is,

lim
N→∞P

(
σNN

2/3
1 (λ1 − μN) ≤ s1, . . . , σNN

2/3
1 (λk − μN) ≤ sk

)
(2.7)

= lim
N→∞P

(
N

2/3
1

(
λGOE

1 − 2
) ≤ s1, . . . ,N

2/3
1

(
λGOE

k − 2
) ≤ sk

)
,

where λGOE
1 ≥ · · · ≥ λGOE

k are the first k largest eigenvalues of N1 × N1 GOE matrix and k is a
finite number independent of N . In fact, such an extension can be accomplished by a discussion
parallel to Corollary 3.19 of [14] since we show the local behavior of the Stieltjes transform near
the edge (such as Theorem 8.1). Here we omit the proof.

In the simulations of Section 7.1 to study the Tracy–Widom approximation accuracy
of Theorem 2.1, we set two initial choices for the dimensions (M1,N1,N2,N), M(1) =
(M1,N1,N2,N) = (5,8,10,30) and M(2) = (M1,N1,N2,N) = (15,8,10,50). The magnifi-
cation factor k attached to the initial choices changed from 1 to 20, so in Table 1, one can see
the results under dimensions kM(i). Although our Tracy–Widom approximation is theoretically
developed for large dimension sets, that is, when k is large, we observe that it keeps accurate for
small dimensions regardless of the data distribution, see the case when k = 1 and correspond-
ingly M1 = 5 in Table 1, the estimated quantiles are well matched with theoretical ones. In the
following applications, M1 corresponds to the data dimension. That is to say, our Tracy–Widom
approximation can be applied even when the data dimension is as small as 5. We guess the
reason is that in our numerical study, μ̃ and σ̃ (see Section 7) are used to replace μN and σN

respectively, which are calculated explicitly by orthogonal polynomial (see [12]). Such replace-
ment may make the approximation more accurate and thus improves the empirical performance.
Moreover, to get a rule of thumb how small the dimensions could be, we also try other values.
According to our empirical experience, when the dimension M1 is 2, (N1,N2,N) can be as small
as (2,3,8). When the dimension is M1 is 4, (N1,N2,N) can be as small as (2,2,11). And when
the dimension M1 is 5, (N1,N2,N) can be as small as (2,3,14).
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In the following Sections 3, 5 and 6, we propose three applications of this limiting Tracy–
Widom distribution for λ1. The first one is our motivation of studying � as stated in the In-
troduction, the high-dimensional independence testing by using canonical correlation analysis.
The second one is the MANOVA approach in testing the equivalence of g groups’ mean vectors.
And the last one is the unknown parameter matrix testing in the multivariate linear model. In
Section 4, we briefly illustrate how to simplify the unified matrix � to the F-matrix.

2.1. Outline of the proof for Theorem 2.1

Before proceeding to the applications, we first give a sketch of the strategy of proof here. Note
that the matrix T does not influence the largest eigenvalue of � in (2.1) and hence we can directly
work on the matrix (XU2UT

2 XT )−1XU1UT
1 XT . However, unlike sample covariance matrices,

it involves four X. Moreover XU1UT
1 XT is not independent of XU2UT

2 XT for general X (not
necessarily consisting of Gaussian entries), which makes it even harder to work on this matrix
directly. In view of this, we construct a Wigner-type linearization matrix

H = H(X) :=
⎛⎝−zI UT

1 XT 0
XU1 0 XU2

0 UT
2 XT I

⎞⎠ . (2.8)

As will be seen, the linearization matrix is much more convenient when taking derivative with
respect to the entries of X than �. By the Schur complement formula (8.4) in the supplement
it turns out that the upper-left block of the 3 × 3 block matrix H−1 is the Stieltjes transform
of UT

1 XT (XU2UT
2 XT )−1XU1 (one can also refer to (9.9) in the supplement). It then suffices

to consider the linearization matrix H instead. First the strong local law of H−1 around μN

(Theorem 8.1 in the supplement) is developed which is the main body of the proof. The overall
strategy of proving Theorem 8.1 is similar to that used in [14] and it consists of two main parts.
Part one is to prove Theorem 8.1 by applying a new Linderberg’s comparison approach raised
by [14] under the first three moments of the entries of X matching those of standard Gaussian
entries. This part is similar to [10]. However, in order to make this paper more self-consistent
and clear, we also repeat the necessary steps but omit some parts done in [10]. Building on part
one, part two further proves Theorem 8.1 when the first two moments of the entries of X match
those of standard Gaussian entries (by dropping the 3rd moment matching condition). After that,
we use this local law to prove the edge universality (i.e., (2.3) is not affected by the distribution
of X) by adopting the strategy stated in [3] and [6]. The proof of Theorem 2.1 is complete by
the fact that (2.3) holds because � becomes a F matrix when X consists of the Gaussian random
variable (one can refer to Theorem 1 of [12] and Theorem 2.1 of [10]).

We would highlight the difference between the proof of this paper and that of [10]. The result
about the edge university for F matrices (corresponding to � in the Gaussian case) in [10] is
our starting point because we need to use Linderberg’s comparison approach to link the edge
universality of � in the general case to that of F matrices. However, in order to prove the strong
local law, a main difficulty is that our main result about � doesn’t assume EZ3

ij = 0 (matching
the Gaussian third moment), which is much different from the paper [10] when handling the
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dimension is bigger than the sample size there. As a consequence, the expectation of the higher
moments of the variable of interest has to be evaluated by a much more complicated method.
For example, in order to calculate the higher moments, we need to extract the ith row of X from
�(z) defined at (8.5) in the supplement. However �(z) is a complex function of X, which is not
easy to deal with. To handle this, we introduce a transition matrix �1(z) (defined at (9.55)) to
find out a compact and manageable expansion of �(z).

3. Unified matrix in CCA

Suppose that we have two sets of random variables, organized into two random vectors z =
(z1, . . . , zM1)

T and y = (y1, . . . , yM2)
T , with mean vectors and covariance matrices (μz,�zz)

and (μy,�yy), respectively. For each of them, N observations are measured and the data matrices
are denoted as Z = (z1, . . . , zN)M1×N and Y = (y1, . . . ,yN)M2×N . We want to test

H0 : z and y are independent. (3.1)

As illustrated in the Introduction, if z and y are independent, the largest eigenvalue ρ2
1 of the

matrix �−1
zz �zy�

−1
yy �T

zy should be zero. The corresponding sample version is

Szy =
(

N∑
i=1

(zi − z̄)(zi − z̄)T
)−1( N∑

i=1

(zi − z̄)(yi − ȳ)T

)
(3.2)

×
(

N∑
i=1

(yi − ȳ)(yi − ȳ)T

)−1( N∑
i=1

(zi − z̄)(yi − ȳ)T

)T

= (
ZPN ZT

)−1(ZPNYT
)(

YPNYT
)−1(ZPN YT

)T
, (3.3)

where PN = IN − 1
N

1N1T
N and 1N indicates an N -dimensional column vector with all entries

being one. Denote the largest eigenvalue of Szy by γ S
1 and let λS

1 = γ S
1

1−γ S
1

. Note that PN is a

projection matrix. Then the property of λS
1 is a special case of λ1 in Theorem 2.1 by observing

that we can equivalently consider λS
1 as the largest eigenvalue of the matrix(

ZPN(I − PNy)PN ZT
)−1ZPN PNyPNZT ,

where PNy = (YPN)T (YPN YT )−1(YPN). This equivalence has been specified in the Introduc-
tion, see the derivation of (1.3). It is easy to check that (PN(I −PNy)PN)(PN PNyPN) = 0. Since
both PN(I −PNy)PN and PN PNyPN are projection matrices such that rank(PN(I −PNy)PN) =
N − M2 and rank(PN PNyPN) = M2 with high probability by Lemma 2 in the supplement, we
can take N1 = N2 = M2 in Theorem 2.1 to obtain the following Corollary 1.

Corollary 1. Suppose that the data matrix Z can be written as Z = T
1
2 X + μz1T

N for some
positive definite matrix T and the matrix XM1×N satisfies Condition 1. We do not impose any
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condition on the random vector y. Here μz is the mean vector of z and can be any possible value.
Assume that lim infN→∞ N

M1+M2
> 1, M1

N−M2
is bounded away from 0 and M2

M1
is bounded away

from 0 and ∞. Denote the largest eigenvalue of Szy by γ S
1 and let λS

1 = γ S
1

1−γ S
1

. Then under the

null hypothesis (3.1), there exist μN and σN such that

lim
N→∞P

(
σNM

2/3
2

(
λS

1 − μN

) ≤ s
) = F1(s),

where F1(s) is the Type-1 Tracy–Widom distribution. Denote the LSD of (XPN(I − PNy) ×
PN XT )−1 by F(λ) and suppose that cN ∈ [0, (1 −

√
M1

N−N1
)2). Then the centering and scaling

parameters μN and σN can be decided in the same way as in Theorem 1 by replacing N1 and
N2 with M2.

According to Corollary 1, we suggest to use λS
1 for the hypothesis testing (3.1) by comparing

the rescaled λS
1 value with the theoretical critical point obtained from the Type-1 Tracy–Widom

distribution. One can also refer to the numerical studies in Section 7.2.

Remark 6. One may notice that there is an additional term μz1T
N in the expression of Z in

Corollary 1 compared with the one in Theorem 2.1. This allows the mean vectors to be any
possible values. We would like to point out that this mean vector does not influence the analysis
of λS

1 due to the observation that μz1T
NPN = 0.

Remark 7. For the Tracy–Widom distribution in Corollary 1, a similar result can be concluded

if we assume that the data matrix Y = T
1
2 X + μy1T

N for some positive definite matrix T instead
and μy is the mean vector of y. In this case, no condition is imposed on the random vector z.
And we only need to exchange the roles of M1 and M2 in the conclusions of Corollary 1. This is
easy to see according to the fact that the largest eigenvalue of Szy does not change if the roles of
Z and Y are exchanged in (3.2).

Remark 8. For the case N < M1 + M2, it is trivial that γ S
1 ≡ 1 and λS

1 = +∞.

4. Unified matrix in F-matrix model

We would like to point out that the unified matrix � not only covers the F -matrix model studied
in [10], but also generalizes it to the nonzero mean value case. To see this, choose

Z = (YM1×n1,WM1×n2), U2 =
(

0
P2

)
, U1 =

(
P1
0

)
with appropriate dimensions, respectively. Let

P2PT
2 = In2 − 1

n2
1n2 1T

n2
, P1PT

1 = In1 − 1

n1
1n11T

n1
,

PT
2 P2 = UT

2 U2 = IN−N2 , PT
1 P1 = UT

1 U1 = IN1,
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where 1ni
indicates an ni -dimensional column vector with all entries being one (i = 1,2). Then

� = (
ZU2UT

2 ZT
)−1ZU1UT

1 ZT = (
WP2PT

2 WT
)−1YP1PT

1 YT

=
[

W
(

In2 − 1

n2
1n2 1T

n2

)
WT

]−1

Y
(

In1 − 1

n1
1n11T

n1

)
YT .

Noticing that the data matrices W and Y are centralized in �, we thus extend the results of
F -matrix under the assumption of zero mean values in [10] to the nonzero mean vectors.

5. Unified matrix in multivariate analysis of variance
(MANOVA)

Suppose that we have g populations. Let ni samples (xi1, . . . ,xini
) be available from the ith pop-

ulation with mean vector μi (p-dimensional) and common covariance matrix � (i = 1, . . . , g).
The total sample size is denoted by n = ∑g

i=1 ni . One frequently discussed problem in multi-
variate analysis is to investigate whether the g groups have the same mean vector that is,

H0 : μ1 = · · · = μg. (5.1)

The MANOVA approach is well-known for this testing problem. Two main SSCPs, the between
SSCP B and the within SSCP W are constructed as

B =
g∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T , W =
g∑

i=1

ni∑
j=1

(xij − x̄i )(xij − x̄i )
T ,

where x̄i = 1
ni

∑ni

j=1 xij is the ith group sample mean and x̄ = 1
n

∑g

i=1

∑ni

j=1 xij = ∑g

i=1
ni

n
x̄i

is the overall sample mean. The classical testing methods for (5.1) are based on the eigenvalues
of the matrix V = W−1B. We can show that under the null hypothesis (5.1), the matrix V can
be written as a special form of � in Section 2 and thus the limiting distribution of its largest
eigenvalue λV

1 follows from Theorem 1.
To see this, denote Xi = (xi1, . . . ,xini

)T (of size ni × p). Note that under the null hypothe-
sis (5.1), the common mean vector does not influence the matrix V. Then without loss of gen-
erality, we can simply assume that μ1 = · · · = μg = 0 under H0. In this section, we use i to
denote the ith group (i = 1, . . . , g) and use j to denote the j th observation from the ith group
(j = 1, . . . , ni ). For each Xi , let Hi be an ni × ni orthogonal matrix with the first column being

1√
ni

1ni
. The matrix Ini

indicates an ni × ni identity matrix, Ui1 indicates the first column of

Ini
and Ui2 indicates the remaining ni × (ni − 1) block of Ini

. An intuitive example for easy
understanding when n1 = 3 is

In1 =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠ , U11 =
⎛⎝1

0
0

⎞⎠ and U12 =
⎛⎝0 0

1 0
0 1

⎞⎠ .
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Arrange these Ui1’s as blocks placed on the diagonal of a block matrix U1 and Ui2’s as blocks
placed on the diagonal of another block matrix U2, that is,

U1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

U11
(n1×1)

U21
(n2×1)

. . .

Ug1
(ng×1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
n×g

,

(5.2)

U2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

U12
(n1×(n1−1))

U22
(n2×(n2−1))

. . .

Ug2
(ng×(ng−1))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
n×(n−g)

.

Consider the orthogonal transformations Zi = (zi1, zi2, . . . , zini
)T = HT

i Xi (of size ni ×p). It is

easy to find that zi1 = √
ni x̄i . Furthermore, denote ag = (

√
n1
n

, . . . ,

√
ng

n
)T , Pg = Ig − agaT

g and

Z = (ZT
1 ,ZT

2 , . . . ,ZT
g )p×n. Considering the relationship

√
nx̄ = (z11, . . . , zg1)ag , we can obtain

B =
g∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T =
g∑

i=1

ni x̄i x̄T
i − √

nx̄ · √nx̄

= (z11, . . . , zg1)
(
Ig − agaT

g

)
(z11, . . . , zg1)

T = ZU1PgUT
1 ZT = ZŨ1ŨT

1 ZT ,
(5.3)

W =
g∑

i=1

ni∑
j=1

(xij − x̄i )(xij − x̄i )
T =

g∑
i=1

(
ni∑

j=1

xij xT
ij − ni x̄i x̄T

i

)
=

g∑
i=1

(
XT

i Xi − zi1zT
i1

)

=
n1∑

j=2

z1j zT
1j +

n2∑
j=2

z2j zT
2j + · · · +

ng∑
j=2

zgj zT
gj = ZU2UT

2 ZT ,

where Ũ1 = U1Pg and E(Z) = 0 under H0. According to the construction of U1 and U2 in (5.2),
we can easily conclude that ŨT

1 U2 = 0. Then the limiting distribution of the largest eigenvalue
λV

1 of

V = W−1B = (
ZU2UT

2 ZT
)−1ZŨ1ŨT

1 ZT

can follow from Theorem 2.1 by assigning M1 = p, N1 = g − 1 and N2 = g since rank(Ũ1) =
g − 1, rank(U2) = n − g. See the following Corollary 2.
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Table 2. Simulated values for
#{rescaled λV

1 >cα}
10 000 based on 10 000 replications. The “H0” columns record

estimated sizes and other columns record estimated powers. The significance level is α = 0.05

M(1) = (p,n0) = (5,8) M(2) = (p,n0) = (8,5)

H0 H
(1)
1 H

(1)′
1 H

(2)
1 H0 H

(1)
1 H

(1)′
1 H

(2)
1

M(1) 0.0375 0.0831 0.5317 0.5589 M(2) 0.0374 0.0511 0.1502 0.1098
2M(1) 0.0392 0.2454 0.9955 0.8693 2M(2) 0.0399 0.1099 0.7505 0.2449
4M(1) 0.0405 0.8535 1.0000 0.9907 4M(2) 0.0386 0.4395 1.0000 0.5020
8M(1) 0.0414 1.0000 1.0000 1.0000 8M(2) 0.0375 0.9956 1.0000 0.8341
16M(1) 0.0445 1.0000 1.0000 1.0000 16M(2) 0.0424 1.0000 1.0000 0.9897
32M(1) 0.0429 1.0000 1.0000 1.0000 32M(2) 0.0432 1.0000 1.0000 0.9999
64M(1) 0.0396 1.0000 1.0000 1.0000 64M(2) 0.0390 1.0000 1.0000 1.0000
100M(1) 0.0442 1.0000 1.0000 1.0000 100M(2) 0.0452 1.0000 1.0000 1.0000

Corollary 2. Consider the multivariate mean vectors’ hypothesis testing problem in (5.1). We
use the largest eigenvalue λV

1 of the matrix V = W−1B as the test criterion. Under the null

hypothesis, suppose that Z can be written as Z = T
1
2 X for some positive definite matrix Tp×p

and the matrix Xp×n satisfies Condition 1. Assume that lim infn→∞ n
p+g

> 1 and g−1
p

is bounded
away from 0 and ∞. Then there exist μn and σn such that

lim
n→∞P

(
σn(g − 1)2/3(λV

1 − μn

) ≤ s
) = F1(s),

where F1(s) is the Type-1 Tracy–Widom distribution. The centering and scaling parameters μn

and σn can be decided in the same way as in Theorem 2.1 by replacing M1 with p and N1 with
(g − 1).

According to Corollary 2, if the rescaled λV
1 value is smaller than the theoretical critical point

obtained from Type-1 Tracy–Widom distribution, we fail to reject the null hypothesis (5.1), that
is, we accept that the g groups share the same mean vector. Otherwise, reject H0. In the simula-
tion studies of Section 7.3, regarding the pattern of different mean vectors under the alternative,
we consider two cases. One is the dense but weak alternative (DWA), which means that there
are many different entries among the mean vectors, but these differences are faint, see the setting

H
(1)
1 and H

(1)′
1 in Section 7.3(1). The other one is the sparse but strong alternative (SSA), which

means that the differences are rare, but significant where they appear, see the alternative H
(2)
1 ,

where the differences only appear in one out of p components. The numerical results in Table 2
indicate that this λV

1 shows satisfactory performance for both alternatives.

Remark 9. If we assume that all the observations come from multivariate normal distribution
as in the classical setting, then the positive definite matrix T in Corollary 2 obviously exists by

choosing T = �. This is due to the fact that we can write each Xi as XT
i = �

1
2 X̃i = T

1
2 X̃i and
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the entries of X̃i are i.i.d. N(0,1). Then

Z = (
ZT

1 ,ZT
2 , . . . ,ZT

g

) = (
XT

1 H1,XT
2 H2, . . . ,XT

g Hg

) = T
1
2 (X̃1H1, X̃2H2, . . . , X̃gHg)

:= T
1
2 X,

where X = (X̃1H1, X̃2H2, . . . , X̃gHg)p×n satisfies Condition 1, taking into account the orthogo-
nality of each Hi and the independence among each X̃i .

6. Unified matrix in high-dimensional multivariate linear model

In this section, we investigate one more application of the unified matrix � in the multivariate
linear model. Let us consider a linear relationship between p2 response variables y1, . . . , yp2 and
p1 explanatory variables x1, . . . , xp1 . Suppose that there are N observations, organized into two
data matrices:

Y =
⎛⎜⎝YT

1
...

YT
N

⎞⎟⎠
N×p2

, X =
⎛⎜⎝XT

1
...

XT
N

⎞⎟⎠
N×p1

.

Then the multivariate linear model assumes that

Y = XB + Z, (6.1)

where B is a p1 × p2 unknown parameter matrix and Z is a N × p2 error matrix with the
assumption that the rows of Z are independent having mean zero and common covariance matrix
�. We first consider the linear hypothesis testing of the form

H0 : C1B = �1, (6.2)

where C1 is a g1 × p1 known matrix of rank g1 and �1 is a g1 × p2 known matrix of rank
min{g1,p2}. As an example, in the simulation studies of Section 7.4, if we select C1 = C(b)

1 =
[Ig1 ,0] and �1 = �

(a)
1 = 0, then the testing problem (6.2) reduces to analyzing whether the first

g1 rows of B equal to zeros.
The initial step in conducting the linear hypothesis testing (6.2) is to estimate the unknown

parameter matrix B. As stated in Section 2, our proposed Tracy–Widom distribution performs
well when the dimensions are small so that we can simply apply the classic least square estimator
for B, which is well known to be B̂ = (XT X)−1XT Y. The hypothesis SSCP for testing (6.2)
is given by H1 = (C1B̂ − �1)

T [C1(XT X)−1CT
1 ]−1(C1B̂ − �1) and the error SSCP is E1 =

YT [I − X(XT X)−1XT ]Y. One can refer to Chapter 7 of [7] for detailed derivations. Under the
null hypothesis (6.2), H1 and E1 can be further rewritten as

H1 = [
C1

(
XT X

)−1XT Z
]T [

C1
(
XT X

)−1CT
1

]−1[C1
(
XT X

)−1XT Z
] = ZT PX̃Z,

(6.3)
E1 = (XB + Z)T

[
I − X

(
XT X

)−1XT
]
(XB + Z) = ZT [I − PX]Z,



CCA, F matrices etc. 3461

where X̃ = X(XT X)−1CT
1 , PX̃ = X̃(X̃T X̃)−1X̃T and PX = X(XT X)−1XT . It is easy to check

that PX̃(I − PX) = 0. Denote the largest eigenvalue of

M1 = E−1
1 H1 = (

ZT (I − PX)Z
)−1ZT PX̃Z (6.4)

by λ
M1
1 . As stated in Section 3, both I − PX and PX̃ are projection matrices with rank(I − PX) =

N − p1 and rank(PX̃) = g1 with high probability. Assuming N2 = p1, N1 = g1 and M1 = p2 in

Theorem 2.1, we can develop the following corollary for λ
M1
1 .

Corollary 3. Assume that Z in the multivariate linear model (6.1) can be written as Z = WT
1
2

for some positive definite matrix Tp2×p2 and the matrix WN×p2 satisfies Condition 1. Suppose
that lim infN→∞ N

p2+p1
> 1, g1

p1
and p2

N−p1
are both bounded away from 0 and g1

p2
is bounded

away from 0 and ∞. Denote the largest eigenvalue of M1 = E−1
1 H1 by λ

M1
1 . Then under the null

hypothesis (6.2), there exist μN and σN such that

lim
N→∞P

(
σNg

2/3
1

(
λ

M1
1 − μN

) ≤ s
) = F1(s),

where F1(s) is the Type-1 Tracy–Widom distribution. Denote the LSD of (WT (I − PX)W)−1 by

F(λ) and suppose that cN ∈ [0, (1 −
√

p2
N−g1

)2]. Then the centering and scaling parameters μN

and σN can be decided in the same way as in Theorem 2.1 by replacing N2 with p1, N1 with g1
and M1 with p2.

Remark 10. One should notice that Z in this Corollary and Corollary 4 corresponds to ZT in
Theorem 2.1. To see this, one may compare (6.4) with (2.1).

By Corollary 3, we can use λ
M1
1 for the linear hypothesis testing (6.2) and reject H0 if the

rescaled λ
M1
1 is larger than the theoretical critical point obtained from Type-1 Tracy–Widom

distribution. In Section 7.4, we consider the special testing of whether a certain part of B, say B2,
equals a zero matrix. And as in MANOVA, with regard to the pattern under the alternative, both
DWA and SSA are applied, i.e. when many entries of B2 are nonzero but the values are small,
see the third combination (C(a)

1 ,B(d)
2 ,�

(a)
1 ), as well as when only two entries of B2 are nonzero

but the values are significant, see the last combination (C(a)
1 ,B(s)

2 ,�
(a)
1 ). The numerical results

in Table 3 show that λ
M1
1 performs well under both alternatives.

We next consider the intra-subject hypothesis testing of the form

H0 : CBD = �, (6.5)

where C is a g1 × p1 known matrix of rank g1, D is a p2 × g2 known matrix of rank g2 and �
is a g1 × g2 known matrix of rank min{g1, g2}. The hypothesis and error SSCPs for (6.5) can
be obtained from H1 and E1 by modifying the multivariate linear model (6.1) to the following
expression

YD = XBD + ZD.
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Table 3. Simulated values for
#{rescaled λ

M1
1 >cα}

10 000 based on 10 000 replications. The first two combinations
record estimated sizes and the last two record estimated powers. The significance level is α = 0.05

(C1,B2,�1) M(0) 2M(0) 3M(0) 4M(0) 6M(0) 8M(0) 10M(0) 20M(0)

M(0) = (p1,p2,N) = (10,6,25)

(C(b)
1 ,B(d)

2 ,�
(a)
1 ) 0.0400 0.0447 0.0453 0.0469 0.0487 0.0460 0.0466 0.0468

(C(a)
1 ,B(d)

2 ,�
(b)
1 ) 0.0397 0.0467 0.0450 0.0490 0.0466 0.0470 0.0501 0.0481

(C(a)
1 ,B(d)

2 ,�
(a)
1 ) 0.2298 0.8923 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

(C(a)
1 ,B(s)

2 ,�
(a)
1 ) 0.8337 0.9451 0.9821 0.9940 0.9992 1.0000 0.9999 1.0000

Replacing Y,B and Z by YD,BD and ZD respectively, we can then conclude that the SSCPs for
conducting the hypothesis testing (6.5) are

H = (ZD)T PX̃(ZD), E = (ZD)T [I − PX](ZD), (6.6)

where X̃ = X(XT X)−1CT , PX̃ = X̃(X̃T X̃)−1X̃T and PX = X(XT X)−1XT . It is easy to check
that PX̃(I − PX) = 0. Denote the largest eigenvalue of M = E−1H by λM

1 . The only difference

between the analysis of λ
M1
1 and λM

1 is that ZN×p2 in (6.3) is replaced by (ZD)N×g2 in (6.6). So
assigning p2 = g2 in Corollary 3, we can obviously obtain the following conclusion for λM

1 .

Corollary 4. For the known matrix D and the error matrix Z in the multivariate linear model

(6.1), assume that ZD can be written as ZD = WT
1
2 for some positive definite matrix Tg2×g2 and

the matrix WN×g2 satisfies Condition 1. Suppose that lim infN→∞ N
g2+p1

> 1, g1
p1

and g2
N−p1

are

both bounded away from 0 and g1
g2

is bounded away from 0 and ∞. Denote the largest eigenvalue

of M = E−1H by λM
1 . Then under the null hypothesis (6.2), there exist μN and σN such that

lim
N→∞P

(
σNg

2/3
1

(
λM

1 − μN

) ≤ s
) = F1(s),

where F1(s) is the Type-1 Tracy–Widom distribution. The centering and scaling parameters μN

and σN can be decided in the same way as in Corollary 3 by replacing p2 with g2.

7. Numerical studies

This section is to investigate the accuracy of our proposed asymptotic Tracy–Widom distribution
(Section 7.1) as well as its numerical performance in various applications (Sections 7.2–7.4).
Before proceeding to the simulation results, we first introduce an asymptotic substitution of the
limiting distribution for the largest eigenvalue in Theorem 2.1. The formulae for calculating μN

and σN in (2.4)–(2.6) are difficult to work with. Referring to [12] and [10], we facilitate the
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computation by using an approximation in terms of the log transform of λ1 in Theorem 2.1 as

lim
N→∞P

(
lnλ1 − μ̃

σ̃
≤ s

)
= F1(s), (7.1)

where F1(s) still indicates the Type-1 Tracy–Widom distribution and μ̃ and σ̃ are defined by

μ̃ = 2 ln tan

(
φ + ϕ

2

)
, σ̃ 3 = 16

(N − N2 + N1 − 1)2

1

sin2(φ + ϕ) sinφ sinϕ
.

The angle parameters φ and ϕ are defined by

sin2
(

ϕ

2

)
= min(M1,N1) − 1/2

N − N2 + N1 − 1
, sin2

(
φ

2

)
= max(M1,N1) − 1/2

N − N2 + N1 − 1
.

The asymptotic equivalence between the approximation (7.1) and the one in Theorem 2.1 have
been proved in [12] and [10]. All simulations in this section are conducted by adopting this lnλ1’s
asymptotic expression. In the sequel, we also use the word “rescaled λ1” to denote the term
lnλ1−μ̃

σ̃
in (7.1). The values of μ̃ and σ̃ in the applications can be obtained simply by replacing

N,N1,N2,M1 with their corresponding notations in Sections 3–6. All simulated results below
are recorded based on 10 000 replications of such a re-scaled largest eigenvalue.

7.1. Approximation accuracy

This subsection is to investigate the Tracy–Widom approximation accuracy for the unified matrix
� in Section 2. Since the positive definite matrix T does not influence λ1, we simply let T = IM1 .
Other settings to be used in the simulation are summarized below.

(1) Data distribution: Three data distributions will be used to generate the entries of X in the
model (2.1).

• Data 1: Standard Normal distribution N(0,1).
• Data 2: Discrete distribution with probability mass function P(x = −√

3) = P(x =√
3) = 1/6 and P(x = 0) = 2/3.

• Data 3: Standardized Gamma distribution Gamma(4,0.5).

The three distributions are used to verify Condition 1, that is, for the data distribution, we
do not need other restrictions except for the first two moments match and all moments
are finite. Data 2 supports that the distribution can be a discrete one, while Data 3 is a
skewed one with the third and fourth moments different from those of the standard normal
distribution.

(2) Dimensions (M1,N1,N2,N): Considering the restrictions on the dimensions, we set two
initial choices: M(1) = (M1,N1,N2,N) = (5,8,10,30) and M(2) = (M1,N1,N2,N) =
(15,8,10,50), with M1 being smaller than (N1,N2) and larger than (N1,N2), respec-
tively. Then we change the magnification factor attached to the initial choices to investi-
gate the performance when the dimensions increase. See the second row of Table 1.
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(3) Matrices U1 and U2: We randomly generate two matrices LN×N2 and DN2×N1 with entries
from standard normal distribution. Let U1UT

1 = (LD)(DT LT LD)−1(LD)T and U2UT
2 =

IN − L(LT L)−1LT in the model (2.1). It is easy to check that such settings satisfy the
conditions on U1 and U2, taking into account the properties of projection matrices.

Simulated results based on above settings are recorded in Table 1. The column titled “Per-
centile” lists the percentiles of Tracy–Widom distribution corresponding to quantiles in the col-
umn “TW”. The next ten columns record our estimated cumulative probabilities (i.e., estimated
quantiles) for the rescaled λ1 under various settings stated above, that is, repeating 10 000 times
and finding 10 000 rescaled λ1’s, then the proportion of values that are less than corresponding
percentiles are recorded in Table 1 that is, #{rescaled λ1≤“Percentile”}

10 000 . Comparing the empirical re-
sults (the last ten columns) with the theoretical ones (the “TW” column), we can see that the
rescaled λ1 matches with the Tracy–Widom law quite well, which supports the accuracy of ap-
proximation in Theorem 2.1. Moreover, although our theoretical result is developed for large
dimensions, Table 1 indicates that such approximation also works well even when the dimen-
sions are small.

7.2. Performance in the independence testing

This subsection is to investigate the performance of our proposed largest eigenvalue λS
1 in the

independence testing of Section 3. For ease of construction, we let M1 = M2 and consider a
series of settings for the two random vectors z and y in the following way:

z = √
1 − τx + √

τy, 0 ≤ τ ≤ 1,

where two (M1 × 1) random vectors x and y are independent and τ is a parameter determining
the level of dependence between z and y. When τ = 0, z and y are independent, which is the
null hypothesis (3.1) in Section 3. Otherwise, as τ > 0 becomes larger, the dependence between
z and y increases.

Considering the conditions on the dimensions, as in Section 7.1, we also set an initial choice
for (M1,M2,N) as M(0) = (M1,M2,N) = (10,10,40) and then change the magnification factor
to check the influence of dimensionality. The nominal significance level is set to be α = 0.05.
According to Table 1, the corresponding theoretical quantile value is cα = 0.98. That is to say,
we compare the rescaled λS

1 introduced in Section 3 with cα . If it is smaller than cα , then the null
hypothesis (3.1) is accepted, i.e. z and y are independent. Otherwise, we conclude that they are
dependent. We use discrete distribution or Gamma distribution, stated in above Section 7.1(1), to
generate N samples for x and y. Repeating 10 000 times, we can find 10 000 rescaled λS

1’s and

the proportion of values that are larger than cα are recorded in Table 4 that is,
#{rescaled λS

1>cα}
10 000 .

So when τ = 0, the fourth row of Table 4 records the estimated sizes, which are close to 0.05.
When τ changes from 0.1 to 0.4, the corresponding rows give the estimated powers. We can
observe that as the dependence between z and y becomes stronger and as the dimensions become
larger, the power values increase. We do not attach the results when τ > 0.4 here because the
powers are always around 1. One can also expect such a phenomenon according to the trend in
Table 4.
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Table 4. Simulated values for
#{rescaled λS

1>cα}
10 000 based on 10 000 replications. So “τ = 0” row records esti-

mated sizes and other rows record estimated powers. The significance level is α = 0.05

Discrete distribution Gamma distribution

τ M(0) 2M(0) 4M(0) 8M(0) 10M(0) M(0) 2M(0) 4M(0) 8M(0) 10M(0)

M(0) = (M1,M2,N) = (10,10,40)

0 0.0663 0.0618 0.0622 0.0608 0.0559 0.0672 0.0663 0.0591 0.0589 0.0563
0.1 0.2766 0.5049 0.8428 0.9978 0.9998 0.2932 0.5117 0.8540 0.9981 1.0000
0.15 0.4533 0.7754 0.9915 1.0000 1.0000 0.4641 0.7887 0.9909 1.0000 1.0000
0.2 0.6280 0.9396 0.9999 1.0000 1.0000 0.6483 0.9463 1.0000 1.0000 1.0000
0.25 0.7828 0.9911 1.0000 1.0000 1.0000 0.7959 0.9934 1.0000 1.0000 1.0000
0.3 0.8959 0.9997 1.0000 1.0000 1.0000 0.9113 0.9997 1.0000 1.0000 1.0000
0.4 0.9908 1.0000 1.0000 1.0000 1.0000 0.9920 1.0000 1.0000 1.0000 1.0000

7.3. Performance in MANOVA

This subsection is to investigate the performance of our proposed largest eigenvalue λV
1 in the

MANOVA approach of Section 5. The nominal significance level is set to be α = 0.05. Consider
g = 3 groups with mean vectors μ1,μ2,μ3 and common covariance matrix �. We select � as
the covariance matrix of MA(1) model with the parameter θ1 = 0.2 and use Gamma distribution
stated in Section 7.1(1) to generate the data. Other settings that will be used in the simulation are
summarized below.

(1) Mean vectors: Let μ1 = 0p , a p-dimensional zero vector, a1 = (τ1, . . . , τ1)
T , a p-

dimensional vector with all entries being τ1 and a2 = (τ2,0, . . . ,0)T , a p-dimensional
vector with only the first entry having a nonzero value τ2. Three different settings on the
mean vectors are considered.

• H0: μ1 = μ2 = μ3 = 0p . This setting corresponds to the null hypothesis (5.1) in
Section 5. It is used to check the empirical size performance when the null hypothesis
is true. Both of the following two settings are under the alternative hypothesis, that
is, the three groups do not share the same mean vector.

• H
(1)
1 and H

(1)′
1 : μ1 = 0p , μ2 = μ1 + a1 and μ3 = μ2 + a1. This setting reflects the

dense but weak alternative (DWA), which means that there are many different entries,
but these differences are faint. We choose τ1 = 0.2 for H

(1)
1 and a larger τ1 = 0.5 for

H
(1)′
1 . The magnitude of the difference vector a1 is ‖a1‖2 = τ 2

1 p = 0.04p or 0.25p.

• H
(2)
1 : μ1 = 0p , μ2 = μ1 + a2 and μ3 = μ2 + a2. This setting reflects the sparse but

strong alternative (SSA), which means that the differences are rare, but significant
where they appear. We choose τ2 = 1. Then the magnitude of the difference vector
a2 is always 1.

(2) Dimensions (n0,p): For simplicity, let n1 = n2 = n3 := n0. Then n = 3n0. We select
two initial choices for (n0,p) as M(1) = (p,n0) = (5,8) and M(2) = (p,n0) = (8,5),
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with p < n0 and p > n0, respectively. Then we change the magnification factor for the
initial choices from 1 to 100 (see the first and sixth columns of Table 2) to investigate the
influence of dimensions on the numerical performance.

As in the above Section 7.2, by repeating 10 000 times, we can find 10 000 rescaled λV
1 ’s and the

proportion of values that are larger than cα are recorded in Table 2 that is,
#{rescaled λV

1 >cα}
10 000 . The

two columns titled “H0” record estimated sizes, from which we can see that the size performance
becomes better as the dimensions become larger. This matches with our theoretical conclusion,
which relies on n → ∞. Other columns report estimated powers under different mean vectors’
settings. Generally speaking, the powers increase fast as the dimensions become larger, say the
power values of the 8M(i) row already all exceed 0.8. And for small dimensions, the M(1) domain
shows better performance than M(2), which indicates that λV

1 prefers p < n0 when both p and n0
are small. However, for moderate and large dimensions, such preference will be weakened since
all the power values are close to 1.

7.4. Performance in multivariate linear model

This subsection is to investigate the performance of our proposed largest eigenvalue λ
M1
1 in the

multivariate linear model of Section 6. The nominal significance level is set to be α = 0.05.
The covariance matrix � of the error matrix Z is selected to be a Toeplize matrix with first
row (1,0.5,0.52,0.53, . . . ,0.5p−1), that is, the covariance matrix for the AR(1) model with the
parameter σ1 = 0.5. And we use Gamma distribution stated in Section 7.1(1) to generate the
data Z. According to Section 6, the distribution of X does not influence the result. So we simply
obtain the entries X from a uniform distribution U(−2,2). Considering the conditions on the
dimensions, we set an initial choice for (p1,p2,N) as M(0) = (p1,p2,N) = (10,6,25) and
then change the magnification factor from 1 to 20 to check the influence of dimensionality. Other
settings for the model (6.1) that will be used in the simulation are summarized below.

(1) Parameter matrix B: Set B = ( (B1)g1×p2
(B2)(p1−g1)×p2

)
p1×p2

. For ease of matrix construction, we let

g1 = 1
2p1 in the simulation. B1 is chosen to be a (g1 × p2) zero matrix, i.e. B1 = 0g1×p2 .

(B2)g1×p2 has two different settings.

• B(d)
2 : All entries of B(d)

2 are generated from a discrete distribution with probability

mass function P(x = 0.1) = P(x = 0.2) = P(x = 0.3) = 1/3. Then this B(d)
2 con-

sists of nonzero small components. This corresponds to the DWA (dense but weak
alternative) stated in the mean vectors’ setting of Section 7.3.

• B(s)
2 : The entries of B(s)

2 are all zeros except for the first 2 diagonal elements being

ones, that is, B(s)
2 = ( I2

0

)
. This corresponds to the SSA (sparse but strong alterna-

tive) stated in the mean vectors’ setting of Section 7.3.

The two different settings of B2 are to investigate the power performance of λ
M1
1 in testing

(6.2) under different alternatives.
(2) Matrix C1: We consider two special cases: C(a)

1 = [0, Ig1] and C(b)
1 = [Ig1 ,0].
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(3) Matrix �1: �1 is selected to be �
(a)
1 = 0 or �

(b)
1 = B2.

Four combinations of (C1,B2,�1) are used in Table 3. For each combination, as in previous
sections, by repeating 10 000 times, we can find 10 000 rescaled λ

M1
1 ’s and the proportion of

values that are larger than cα are recorded in Table 3 that is,
#{rescaled λ

M1
1 >cα}

10 000 .
The first two combinations are used for size testing. Since the two settings of B2 are con-

structed to investigate power performance under different alternatives, for size purpose, we
just adopt one of them – B(d)

2 . The first combination (C(b)
1 ,B(d)

2 ,�
(a)
1 ) is to test whether the

first (g1 × p2) block of B is a zero block, that is, H0 : B1 = 0. The second combination
(C(a)

1 ,B(d)
2 ,�

(b)
1 ) is to test whether the second ((p1 − g1) × p2) block of B equals to a given

matrix, that is, H0 : B2 = �
(b)
1 . One can observe that the sizes are always close to 0.05, confirm-

ing the asymptotic distribution developed for λ
M1
1 in Section 6.

The last two combinations are used for power testing, that is, testing whether B2 = 0. Two
alternatives are considered. The third combination (C(a)

1 ,B(d)
2 ,�

(a)
1 ) is for DWA (dense but weak

alternative) and the last one (C(a)
1 ,B(s)

2 ,�
(a)
1 ) is for SSA (sparse but strong alternative). We can

see that for small dimensions, SSA works better than DWA, while as the dimensions increase,
a reversal takes place. This is reasonable because the magnitude of difference for DWA is much
involved by values of dimensions. And for appropriate large dimensions, all power values are
close to 1.

Acknowledgements

G. M. Pan (corresponding author) was partially supported by a MOE Tier 2 Grant 2014-T2-2-060
and by a MOE Tier 1 Grant RG25/14 at the Nanyang Technological University, Singapore.

Supplementary Material

Supplement to “A unified matrix model including both CCA and F matrices in multivariate
analysis: The largest eigenvalue and its applications” (DOI: 10.3150/17-BEJ965SUPP; .pdf).
We provide the detailed proof of Theorem 2.1 in the supplementary file.

References

[1] Anderson, T.W. (1984). An Introduction to Multivariate Statistical Analysis, 2nd ed. Wiley Series in
Probability and Mathematical Statistics: Probability and Mathematical Statistics. New York: Wiley.
MR0771294

[2] Bai, Z. and Silverstein, J.W. (2006). Spectral Analysis of Large Dimensional Random Matrices, 1st
ed. New York: Springer.

[3] Bao, Z., Pan, G. and Zhou, W. (2015). Universality for the largest eigenvalue of sample covariance
matrices with general population. Ann. Statist. 43 382–421. MR3311864

https://doi.org/10.3150/17-BEJ965SUPP
http://www.ams.org/mathscinet-getitem?mr=0771294
http://www.ams.org/mathscinet-getitem?mr=3311864


3468 X. Han, G. Pan and Q. Yang

[4] Bao, Z.G., Hu, J., Pan, G.M. and Zhou, W. (2015). Canonical correlation coefficients of high-
dimensional normal vectors: Finite rank case. Available at http://arxiv.org/abs/1407.7194.

[5] El Karoui, N. (2007). Tracy–Widom limit for the largest eigenvalue of a large class of complex sample
covariance matrices. Ann. Probab. 35 663–714. MR2308592
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