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We obtain formulae for the expected number and height distribution of critical points of smooth isotropic
Gaussian random fields parameterized on Euclidean space or spheres of arbitrary dimension. The results
hold in general in the sense that there are no restrictions on the covariance function of the field except for
smoothness and isotropy. The results are based on a characterization of the distribution of the Hessian of
the Gaussian field by means of the family of Gaussian orthogonally invariant (GOI) matrices, of which the
Gaussian orthogonal ensemble (GOE) is a special case. The obtained formulae depend on the covariance
function only through a single parameter (Euclidean space) or two parameters (spheres), and include the
special boundary case of random Laplacian eigenfunctions.
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1. Introduction

Computing the expected number of critical points of smooth Gaussian random fields is an im-
portant problem in probability theory [1,2,20] and has extensive applications in various areas
such as physics [4,13,21,27], statistics [3,14,16,20,29], neuroimaging [36,42,44,46], oceanogra-
phy [30,32] and astronomy [9,28]. Many researchers from different areas have worked on this
problem and created certain powerful tools, including the famous Kac–Rice formula [2,38]. Al-
though one can use the Kac–Rice formula to find an implicit formula for the expected number of
critical points, it remains difficult to evaluate the expectation explicitly for most smooth Gaussian
random fields defined on Euclidean space RN or the N -dimensional unit sphere SN when N > 1.

An exciting breakthrough was made by Fyodorov [22], making the explicit evaluation avail-
able for a large class of isotropic Gaussian random fields. The main novel idea was to write
the Hessian of the Gaussian field as a Gaussian random matrix involving the Gaussian Orthog-
onal Ensemble (GOE). This has lead to many important applications and further developments
[10,23,25,26], including the study of critical points of spin glasses [5–7,24], which is related to
Gaussian random fields on S

N .
However, the result of Fyodorov [22] and its existing further developments do not apply to

all isotropic fields but are in fact restricted to the class of fields for which the algebraic form of
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the covariance function of the Gaussian field needs to give a valid covariance function in R
N or

S
N for every N ≥ 1 [8,15]. This restriction appears naturally in physics when one is interested

in studying the asymptotics as N → ∞, but it becomes limiting in studying the random spher-
ical harmonic (see Example 4.9) in astronomy [12] and also in recent applications in statistics
[14,16] where the estimated parameters can be beyond Fyodorov’s restriction for isotropic Gaus-
sian random fields defined on R

N0 or SN0 for some specific N0. Fyodorov’s restriction ignores
those covariance functions whose forms are valid in R

N0 (SN0 , respectively) but invalid in R
N

(SN respectively) when N > N0, which correspond to a large class of Gaussian random fields.
Motivated by these real applications and the completeness of the theory as well, we show in this
paper that the restriction can be in fact removed, so that the explicit evaluation of the expected
number of critical points is available for general isotropic Gaussian random fields.

More specifically, let X = {X(t), t ∈ T } be a centered, unit-variance, smooth isotropic Gaus-
sian random field, where T is RN or SN . For i = 0, . . . ,N , let

μi(X,u) = #
{
t ∈ D : X(t) ≥ u,∇X(t) = 0, index

(∇2X(t)
)= i
}
, (1.1)

where D is an N -dimensional unit-area disc on T , ∇X(t) and ∇2X(t) are respectively the gradi-
ent and Hessian of X, and index(∇2X(t)) denotes the number of negative eigenvalues of ∇2X(t).
That is, μi(X,u) is the number of critical points of index i of X exceeding u over the unit-area
disc D. Notice that μi(X,u) depends also on the parameter set D. Since we will focus mainly
on the expectation of μi(X,u), which depends only on the volume of D (which is one for a
unit disc) due to isotropy, we omit D in the notation for simplicity. Our first goal is to compute
E[μi(X,u)] for general smooth isotropic Gaussian fields, especially to remove the restriction in
[22]. The main tool is still the Kac–Rice formula. However, by investigating the covariance struc-
ture of general isotropic Gaussian fields, we find that the problem can be solved by writing the
Hessian as a class of Gaussian random matrices called Gaussian Orthogonally Invariant (GOI)
matrices [40] or isotropic matrices [18]. This is the class of matrices M whose distribution is in-
variant under all transformations of the form QMQT with orthogonal Q. This class of Gaussian
random matrices, originally introduced by Mallows [34], extends GOE matrices in the sense that
GOE is a special case when the diagonal entries are independent. The additional dependence in
GOI is captured by a covariance parameter c ≥ −1/N .

Using this construction (see Lemmas 3.4 and 4.3), we can write the Kac–Rice integral in terms
of the density of the ordered GOI eigenvalues and obtain general implicit computable formulae
of E[μi(X,u)] (see Theorems 3.5, 3.13, 4.4 and 4.10). Because of the isotropy assumption, the
obtained formulae depend on the covariance function only through its first and second derivatives
at zero. Explicit calculations are shown for isotropic Gaussian fields on R

2 and S
2.

As we shall see here, Fyodorov’s construction corresponds to the subset of GOI matrices cor-
responding to c ≥ 0, see (2.2). The resulting restriction can be characterized by the covariances
of the first and second derivatives of the field and it reduces to simple constraints on a single
parameter κ in the case of R

N (0 < κ2 ≤ 1) and two parameters η and κ in the case of S
N

(κ2 − η2 ≤ 1) (see Sections 3.3 and 4.3). By removing this restriction, we are able to obtain
results for the entire range of these parameters (0 < κ2 ≤ (N +2)/N and κ2 −η2 ≤ (N +2)/N ).

Of special interest is the case of random eigenfunctions of the Laplace operator, obtained
at the boundary of the parameter space (κ2 = (N + 2)/N and κ2 − η2 = (N + 2)/N ). These
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random fields satisfy the Helmholtz partial differential equation and have a degenerate covariance
between the field and its Hessian. On the sphere, these become random spherical harmonics,
which have been widely studied [11,12,43] due to applications in physics and astronomy. We
obtain results for this boundary case as well using a different technique involving the Helmholtz
equation. We show that fields in R

N satisfying 1 < κ2 < (N + 2)/N can be obtained by convex
combinations of a field with κ2 ≤ 1 and another with κ2 = (N + 2)/N .

The second goal of this paper is to obtain the height distribution of critical points. Define the
height distribution of a critical value of index i of X at some point, say t0, as

Fi(u) := lim
ε→0

P
{
X(t0) > u|∃ a critical point of index i of X(t) in B(t0, ε)

}
, (1.2)

where B(t0, ε) is the geodesic ball on T of radius ε centered at t0. Such distribution has been of
interest for describing fluctuations of the cosmic background in astronomy [9,28] and describing
the height of sea waves in oceanography [30,31,33,41]. It has also been found to be an important
tool for computing p-values in peak detection and thresholding problems in statistics [14,16,39]
and neuroimaging [19,37,44,45]. The height distribution of local maxima of Gaussian random
fields has been studied under Fyodorov’s restriction in [15]. For general critical points of index
i, it follows from similar arguments in [15] that

Fi(u) = E[μi(X,u)]
E[μi(X)] , (1.3)

where μi(X) = μi(X,−∞). Therefore, Fi(u) can be obtained immediately once the form of
E[μi(X,u)] is known. In fact, due to the ratio in (1.3), the form of Fi(u) is actually simpler,
depending only on the single parameter κ in the case of RN (see Corollaries 3.6 and 3.14) but
the two parameters η and κ in the case of SN (see Corollaries 4.5 and 4.11).

This article is organized as follows. We first investigate in Section 2 the GOI matrices, espe-
cially the density of their ordered eigenvalues. In Section 3, we study the expected number and
height distribution of critical points of isotropic Gaussian fields on Euclidean space, including the
case of random Laplacian eigenfunctions, and the comparison with Fyodorov’s restricted case.
These studies are then extended in a parallel fashion to Gaussian fields on spheres in Section 4.
We consider some interesting open problems for future work in Section 5.

2. Gaussian orthogonally invariant (GOI) matrices

In this section, we study a class of Gaussian random matrices called GOI, extending the well-
known GOE matrices in the sense that it contains all random matrices whose distributions, like
the GOE, are invariant under orthogonal transformations. We shall see in Sections 3 and 4 that
the computation of the expected number of critical points of isotropic Gaussian fields can be
transformed to the distribution of the ordered eigenvalues of such random matrices.

2.1. Characterization of GOI matrices

Recall that an N ×N random matrix H = (Hij )1≤i,j≤N is said to have the Gaussian Orthogonal
Ensemble (GOE) distribution if it is symmetric and all entries are centered Gaussian variables
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such that

E[HijHkl] = 1

2
(δikδjl + δilδjk),

where δij is the Kronecker delta function. It is well known that the GOE matrix H is orthogonally
invariant, i.e., the distribution of H is the same as that of QHQT for any N × N orthogonal
matrix Q. Moreover, the entries (Hij ,1 ≤ i ≤ j ≤ N) are independent.

We call an N ×N random matrix M = (Mij )1≤i,j≤N Gaussian Orthogonally Invariant (GOI)
with covariance parameter c, denoted by GOI(c), if it is symmetric and all entries are centered
Gaussian variables such that

E[MijMkl] = 1

2
(δikδjl + δilδjk) + cδij δkl . (2.1)

Mallows [34] showed that, up to a scaling constant, a symmetric Gaussian random matrix M is
orthogonally invariant if and only if it satisfies (2.1) for certain c. Notice that E[MiiMjj ] = c for
i 	= j . In other words, c introduces a covariance between the diagonal entries of M that is absent
in the GOE. It is evident that GOI(c) becomes a GOE if c = 0.

Throughout this paper, we denote by 1N and IN the N × 1 column vector of ones and the
N × N identity matrix, respectively. The following result shows that the real covariance param-
eter c in a GOI matrix cannot be too negative. For this, define a symmetric random matrix M

to be nondegenerate if the random vector of diagonal and upper (or lower) diagonal entries is
nondegenerate.

Lemma 2.1. Let M be GOI(c) of size N . Then c ≥ −1/N . In particular, M is nondegenerate if
and only if c > −1/N .

Proof. It follows from (2.1) that Cov(M11, . . . ,MNN) = IN + c1N1T
N . Due to symmetry and the

independence between diagonal and off-diagonal entries, we see that M is nondegenerate if and
only if the vector of diagonal entries (M11, . . . ,MNN) is nondegenerate, which is equivalent to
detCov(M11, . . . ,MNN) = 1 + Nc > 0. �

As a characterization of GOI matrices, let M be GOI(c) of size N . If c ≥ 0, then M can be
represented as

M = H + √
cξIN , (2.2)

where H is GOE of size N and ξ is a standard Gaussian variable independent of H [34,40]. For
c ∈ [−1/N,0), M can be represented as

M = H + √−cξ ′IN ,

where ξ ′ is a standard Gaussian variable such that E[Hξ ′] = −√−cIN .
As it will become clear later, Fyodorov’s method [22] is essentially based on the characteri-

zation (2.2), so its restriction on the covariance function translates to the constraint c ≥ 0. Our
characterization of the covariance function in Sections 3 and 4 below will include all valid values
c ∈ [−1/N,∞).
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2.2. Density of the ordered eigenvalues of GOI matrices

Recall [35] that the density of the ordered eigenvalues λ1 ≤ · · · ≤ λN of a GOE matrix H is given
by

f0(λ1, . . . , λN) = 1

KN

exp

{
−1

2

N∑
i=1

λ2
i

} ∏
1≤i<j≤N

|λi − λj |1{λ1≤···≤λN }, (2.3)

where the normalization constant KN can be computed from Selberg’s integral

KN = 2N/2
N∏

i=1

�

(
i

2

)
. (2.4)

We use the notation E
N
GOE to represent the expectation under the GOE density (2.3), i.e., for a

measurable function g,

E
N
GOE

[
g(λ1, . . . , λN)

]= ∫
RN

g(λ1, . . . , λN)f0(λ1, . . . , λN)dλ1 · · · dλN . (2.5)

Next, we shall derive the density of the ordered eigenvalues of a GOI matrix.

Lemma 2.2. Let M be an N × N nondegenerate GOI(c) matrix (c > −1/N ). Then the density
of the ordered eigenvalues λ1 ≤ · · · ≤ λN of M is given by

fc(λ1, . . . , λN) = 1

KN

√
1 + Nc

exp

{
−1

2

N∑
i=1

λ2
i + c

2(1 + Nc)

(
N∑

i=1

λi

)2}

×
∏

1≤i<j≤N

|λi − λj |1{λ1≤···≤λN },
(2.6)

where KN is given in (2.4).

Proof. Define the operator “vec” that takes the diagonal and above-diagonal entries of M as a
new vector, that is,

vec(M) = (M11, . . . ,MNN,Mij ,1 ≤ i ≤ j ≤ N)T .

By (2.1), we have

	 := E
[
vec(M)vec(M)T

]=
⎛⎝IN + c1N1T

N 0

0
1

2
IN(N−1)/2

⎞⎠ ,

such that

det(	) = 1 + Nc

2N(N−1)/2
and 	−1 =

(
IN − c

1 + Nc
1N1T

N 0

0 2IN(N−1)/2

)
.
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Therefore, vec(M)T 	−1 vec(M) = tr(M2)− (tr(M))2c/(1+Nc). Now, we obtain the following
joint density of vec(M):

f
(
vec(M)

)= 2N(N−1)/4

(2π)N(N+1)/4
√

1 + Nc
exp

{
−1

2
tr
(
M2)+ c

2(1 + Nc)

(
tr(M)

)2}
.

It then follows from similar arguments in Mehta [35] that the joint density of the ordered eigen-
values of M is given by

fc(λ1, . . . , λN) = 1

KN

√
1 + Nc

exp

{
−1

2

N∑
i=1

λ2
i + c

2(1 + Nc)

(
N∑

i=1

λi

)2}

×
∏

1≤i<j≤N

|λi − λj |1{λ1≤···≤λN },

where KN is given in (2.4), yielding the desired result. �

We use the notation E
N
GOI(c) to represent the expectation under the GOI density (2.6), that is,

for a measurable function g,

E
N
GOI(c)

[
g(λ1, . . . , λN)

]= ∫
RN

g(λ1, . . . , λN)fc(λ1, . . . , λN)dλ1 · · · dλN . (2.7)

Notice that when c = 0, GOI(c) becomes GOE and fc in (2.6) becomes f0 in (2.3), making the
notations consistent.

3. Isotropic Gaussian random fields on Euclidean space

Let X = {X(t), t ∈ R
N } be a centered, unit-variance, smooth isotropic Gaussian random field on

R
N . Here and in the sequel, the smoothness assumption means that the field satisfies the condition

(11.3.1) in [2], which is slightly stronger than C2 but can be implied by C3. Due to isotropy, we
can write the covariance function of X as E{X(t)X(s)} = ρ(‖t −s‖2) for an appropriate function
ρ(·) : [0,∞) →R, and denote

ρ′ = ρ′(0), ρ′′ = ρ′′(0), η =√−ρ′/
√

ρ′′, κ = −ρ′/
√

ρ′′. (3.1)

Remark 3.1. The parameters in (3.1) have the following useful property with respect to scal-
ing of the parameter space. Suppose we define a field X̃(t) = X(at) for a > 0 with covariance
function E{X̃(t)X̃(s)} = ρ̃(‖t − s‖2) = ρ(a2‖t − s‖2). Then the corresponding parameters are
η̃ = η/a and κ̃ = κ . In other words, the parameter η scales inversely proportionally to the scaling
of the parameter space, while the parameter κ is invariant to it.
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Throughout this paper, we always assume ρ′ρ′′ 	= 0, which is equivalent to the nondegeneracy
of the first and second derivatives of the field (see Lemma 3.2 below). Let

Xi(t) = ∂X(t)

∂ti
, ∇X(t) = (X1(t), . . . ,XN(t)

)T
,

Xij (t) = ∂2X(t)

∂ti tj
, ∇2X(t) = (Xij (t)

)
1≤i,j≤N

.

Since the covariance function of X has the form E{X(t)X(s)} = ρ(‖t − s‖2), it follows from
the formula (5.5.5) in Adler and Taylor [2] that the following result holds, characterizing the
covariance of (X(t),∇X(t),∇2X(t)); see also [8].

Lemma 3.2. Let {X(t), t ∈ R
N } be a centered, unit-variance, smooth isotropic Gaussian ran-

dom field. Then for each t ∈R
N and i, j , k, l ∈ {1, . . . ,N},

E
{
Xi(t)X(t)

}= E
{
Xi(t)Xjk(t)

}= 0,

E
{
Xi(t)Xj (t)

}= −E
{
Xij (t)X(t)

}= −2ρ′δij ,

E
{
Xij (t)Xkl(t)

}= 4ρ′′(δij δkl + δikδjl + δilδjk),

where ρ′ and ρ′′ are defined in (3.1).

In particular, it follows from Lemma 3.2 that Var(Xi(t)) = −2ρ′ and Var(Xii(t)) = 12ρ′′ for
any i ∈ {1, . . . ,N}, implying ρ′ < 0 and ρ′′ > 0 and hence η > 0 and κ > 0.

3.1. The non-boundary case: 0 < κ2 < (N + 2)/N

We have the following results on the constrain of κ2 and the nondegeneracy of joint distribution
of the field and its first and second derivatives.

Proposition 3.3. Let the assumptions in Lemma 3.2 hold. Then κ2 ≤ (N + 2)/N . In particular,
the Gaussian vector (X(t),∇X(t),Xij (t),1 ≤ i ≤ j ≤ N) is nondegenerate if and only if κ2 <

(N + 2)/N .

Proof. Recall ρ′ρ′′ 	= 0. Applying Lemma 3.2, we see that for each t , (∇X(t),Xij (t),1 ≤ i <

j ≤ N) is nondegenerate and independent of (X(t),X11(t), . . . ,XNN(t)). Thus, the degeneracy
of (X(t),∇X(t),Xij (t),1 ≤ i ≤ j ≤ N) is equivalent to that of (X(t),X11(t), . . . ,XNN(t)).

Write

Cov
(
X(t),X11(t), . . . ,XNN(t)

)= (1 BT

B D

)
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with D = 8ρ′′IN + 4ρ′′1N 1T
N and B = 2ρ′1N . Its determinant is detCov(X(t),X11(t), . . . ,

XNN(t)) = (1 − BD−1BT )det(D), where

D−1 = 1

8(N + 2)ρ′′
[
(N + 2)IN − 1N 1T

N

]
.

Therefore, detCov(X(t),X11(t), . . . ,XNN(t)) > 0 if and only if 1 − BT D−1B = 1 − κ2N/(N +
2) > 0, yielding the desired result.

�

Lemma 3.4. Let the assumptions in Lemma 3.2 hold. Let M̃ and M be GOI(1/2) and GOI((1 −
κ2)/2) matrices, respectively.

(i) The distribution of ∇2X(t) is the same as that of
√

8ρ′′M̃ .
(ii) The distribution of (∇2X(t)|X(t) = x) is the same as that of

√
8ρ′′[M − (κx/

√
2)IN ].

Proof. Part (i) is a direct consequence of Lemma 3.2. For part (ii), applying Lemma 3.2 and the
well-known conditional formula for Gaussian variables, we see that (∇2f (t)|f (t) = x) can be
written as 
 + 2ρ′xIN , where 
 = (
ij )1≤i,j≤N is a symmetric N × N matrix with centered
Gaussian entries such that

E{
ij
kl} = 4ρ′′(δikδjl + δilδjk) + 4
(
ρ′′ − ρ′2)δij δkl .

Therefore, 
 has the same distribution as the matrix
√

8ρ′′M , completing the proof. �

Notice that κ2 < (N +2)/N implies (1−κ2)/2 > −1/N , making the Gaussian random matrix
GOI((1 − κ2)/2) in Lemma 3.4 nondegenerate. Since c = (1 − κ2)/2 here, the condition for
nondegeneracy in Proposition 3.3 corresponds to the GOI condition c > −1/N of Lemma 2.1.
Therefore, the parameter 0 < κ2 < (N + 2)/N covers all smooth isotropic Gaussian random
fields in R

N with nondegenerate Hessian conditional on the field.

3.2. Expected number and height distribution of critical points

Recall μi(X,u), the number of critical points of index i of X exceeding u, defined in (1.1)
and that μi(X) = μi(X,−∞). We have the following result for computing E[μi(X)] and
E[μi(X,u)].

Theorem 3.5. Let {X(t), t ∈ R
N } be a centered, unit-variance, smooth isotropic Gaussian ran-

dom field satisfying κ2 < (N + 2)/N . Then for i = 0, . . . ,N ,

E
[
μi(X)

]= 2N/2

πN/2ηN
E

N
GOI(1/2)

[
N∏

j=1

|λj |1{λi<0<λi+1}

]
(3.2)
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and

E
[
μi(X,u)

]= 2N/2

πN/2ηN

∫ ∞

u

φ(x)EN
GOI((1−κ2)/2)

[
N∏

j=1

|λj − κx/
√

2|1{λi<κx/
√

2<λi+1}

]
dx,

where E
N
GOI(c) is defined in (2.7) and λ0 and λN+1 are regarded respectively as −∞ and ∞ for

consistency.

Proof. Due to the smoothness assumption and the regularity properties implied by Lemma 3.2,
one can apply the Kac–Rice metatheorem in Theorem 11.2.1 in Adler and Taylor [2]. Together
with Lemmas 3.2 and 3.4, we obtain

E
[
μi(X)

]= 1

(2π)N/2(−2ρ′)N/2
E
[|det
(∇2X(t)

)|1{index(∇2X(t))=i}
]

=
(

2ρ′′

−πρ′

)N/2

E
N
GOI(1/2)

[
N∏

j=1

|λj |1{λi<0<λi+1}

]

and

E
[
μi(X,u)

]= 1

(2π)N/2(−2ρ′)N/2

∫ ∞

u

φ(x)E
[∣∣det
(∇2X(t)

)|1{index(∇2X(t))=i}
∣∣X(t) = x

]
dx

=
(

2ρ′′

−πρ′

)N/2 ∫ ∞

u

φ(x)EN
GOI((1−κ2)/2)

[
N∏

j=1

|λj − κx/
√

2|1{λi<κx/
√

2<λi+1}

]
dx.

The desired results then follow from the definition of η. �

Recall Fi(u), the height distribution of a critical point of index i of X, defined in (1.2) or
(1.3). Denote by h the corresponding density, that is, hi(u) = −F ′

i (u). The following result is an
immediate consequence of (1.3) and Theorem 3.5.

Corollary 3.6. Let the assumptions in Theorem 3.5 hold. Then for i = 0, . . . ,N ,

Fi(u) =
∫∞
u

φ(x)EN
GOI((1−κ2)/2)

[∏N
j=1 |λj − κx/

√
2|1{λi<κx/

√
2<λi+1}]dx

E
N
GOI(1/2)

[∏N
j=1 |λj |1{λi<0<λi+1}]

.

Remark 3.7. Note that E[μi(X)] in (3.2) depends only on η, while Fi and hence hi depend
only on κ . By the scaling properties of η and κ in Remark 3.1, if we transform t to at for some
positive constant a, then the number of critical points increases proportionally to aN , while the
height distribution does not change.

All the expectations in Theorem 3.5 and Corollary 3.6 can be now solved in explicit form
plugging in the GOI density (2.6) directly. Note that it is sufficient to evaluate the expectations
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for i = 
N/2�, . . . ,N since the rest of the indices can be obtained by symmetry:

E
[
μN−i (X,u)

]= E
[
μi(X,−u)

]
, i = 0, . . . ,N.

Note that if N is even, then E[μN/2(X,u)] = E[μN/2(X,−u)], and thus the density hN/2(x) of
the height of a critical point of index N/2 is symmetric around zero.

As an example, we show the explicit formulae for the expected number and height distribution
of critical points for isotropic Gaussian fields on R

2 satisfying κ2 < (N + 2)/N .

Example 3.8. Let the assumptions in Theorem 3.5 hold and let N = 2. Then the GOI density in
Lemma 2.2 becomes

fc(λ1, λ2) = 1

2
√

π(1 + 2c)
exp

{
−1

2

(
λ2

1 + λ2
2

)+ c

2(1 + 2c)
(λ1 + λ2)

2
}
(λ2 − λ1)1{λ1≤λ2}.

Applying Theorem 3.5 and Corollary 3.6, we obtain

E
[
μ2(X)

]= E
[
μ0(X)

]= E[μ1(X)]
2

= 1√
3πη2

and

h2(x) = h0(−x) = √
3κ2(x2 − 1

)
φ(x)�

(
κx√

2 − κ2

)
+ κx

√
3(2 − κ2)

2π
e
− x2

2−κ2

+
√

6√
π(3 − κ2)

e
− 3x2

2(3−κ2) �

(
κx√

(3 − κ2)(2 − κ2)

)
,

h1(x) =
√

3√
2π(3 − κ2)

e
− 3x2

2(3−κ2) ,

where h1(x) is noticeably a normal distribution (see Figure 1). For each i = 0,1,2, one has

E
[
μi(X,u)

]= E
[
μi(X)

]
Fi(u) = E

[
μi(X)

] ∫ ∞

u

hi(x) dx. (3.3)

3.3. GOE formulae and Fyodorov’s restricted case: 0 < κ2 ≤ 1

In [22], Fyodorov restricted his analysis to Gaussian fields in R
N whose isotropic form is valid

for every dimension N ≥ 1. It can be seen from Proposition 3.3 that X = {X(t), t ∈ R
N } is an

isotropic Gaussian random field in R
N for every N ≥ 1 if and only if

κ2 ≤ inf
N≥1

N + 2

N
= 1.
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Figure 1. Left panel: The height densities h0(x) (blue), h1(x) (green) and h2(x) (red) on Euclidean
space R

2, with parameters κ = 0.1 (solid), κ = 1 (dashed), and the boundary case κ = √
2 (dotted). Right

panel: The height densities h0(x) (blue), h1(x) (green) and h2(x) (red) on the sphere S
2, with parameters

η2 = κ2 = 0.05 (solid), η2 = 0.5 and κ2 = 1 (dashed), and the boundary case η2 = 1 and κ2 = 3 (dotted).

In that case, a GOI(c) with c = (1 − κ2)/2 ≥ 0 can be written in the form (2.2). Therefore, one
can apply Lemma 3.4 and the integral techniques in Fyodorov [22] to compute E[μi(X,u)].

Recall Theorem 3.5 that E[μi(X)] and E[μi(X,u)] can be computed by GOI integrals
E

N
GOI(1/2) and E

N
GOI((1−κ2)/2)

, respectively. The supporting Lemma A.1 in the Appendix shows
that such GOI integrals can be written as GOE integrals if the covariance parameter c is positive.
Since the first covariance parameter c = 1/2 > 0 and the second one c = (1 − κ2)/2 becomes
positive under the condition κ2 < 1, we can apply our general formulae in Theorem 3.5 and
Lemma A.1 to derive immediately Proposition 3.9 below, which is essentially the same as in
Fyodorov [22]. This shows the generality of the results in Theorem 3.5. Notice that although the
case κ2 = 1 was not considered in [22], it corresponds to the pure GOE case [see (2.2)], which
is easier to handle and therefore the comparison for this case is omitted here.

Proposition 3.9. Let the assumptions in Theorem 3.5 hold. Then for i = 0, . . . ,N ,

E
[
μi(X)

]= �

(
N + 1

2

)
2(N+1)/2

π(N+1)/2ηN
E

N+1
GOE

{
exp

[
−λ2

i+1

2

]}
;

and under κ2 < 1,

E
[
μi(X,u)

]= �

(
N + 1

2

)
2(N+1)/2

π(N+1)/2ηN

(
1 − κ2)−1/2

×
∫ ∞

u

φ(x)EN+1
GOE

{
exp

[
λ2

i+1

2
− (λi+1 − κx/

√
2)2

1 − κ2

]}
dx,

where E
N+1
GOE is defined in (2.5).
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3.4. The boundary case of random Laplacian eigenfunctions:
κ2 = (N + 2)/N

Here, we shall consider the case when the condition κ2 < (N + 2)/N does not hold.

Proposition 3.10. Let the assumptions in Lemma 3.2 hold. Then (X(t),∇X(t),Xij (t),1 ≤ i ≤
j ≤ N) is degenerate if and only if κ2 = (N + 2)/N , which is equivalent to the field satisfying
the partial differential equation

N∑
i=1

Xii(t) = 2Nρ′X(t). (3.4)

Relation (3.4) is also known as Helmholtz equation. It indicates that X(t) is an eigenfunction
of the Laplace operator with eigenvalue 2Nρ′ < 0. This relation will be critical for deriving the
formula of E[μi(X,u)] in the boundary case in Theorem 3.13.

Proof. By Proposition 3.3 and its proof, we only need to consider (X(t),X11(t), . . . ,XNN(t))

and show the equivalence between κ2 = (N + 2)/N and (3.4). When κ2 = (N + 2)/N , that is
ρ′′ = ρ′2N/(N + 2), we have

	 := Cov
(
X(t),X11(t), . . . ,XNN(t)

)=
⎛⎝ 1 2ρ′1T

N

2ρ′1N

4N

N + 2
ρ′2(2IN + 1N 1T

N

)
⎞⎠ .

It can be checked that all eigenvectors of 	 corresponding to eigenvalue λ1 = 0 can be repre-
sented as a(−2Nρ′,1T

N)T , where a ∈ R. We can diagonalize the matrix as 	 = V �V T , where
� = diag(0, λ2, . . . , λN+1) (here λ2, . . . , λN+1 are the nonzero eigenvalues of 	) and V is an
orthogonal matrix.

Let Z ∼N (0, IN). Notice that, we can write(
X(t),X11(t), . . . ,XNN(t)

)T = 	1/2Z = V �1/2V T Z = V �1/2W,

where W = V T Z ∼ N (0, IN). This implies V T (X(t),X11(t), . . . ,XNN(t))T = �1/2W , and
hence (−2Nρ′,1T

N)(X(t),X11(t), . . . ,XNN(t))T = 0. Therefore, (3.4) holds. Conversely, it fol-
lows directly from Lemma 3.2 that (3.4) implies κ2 = (N + 2)/N . �

We show below two examples of isotropic Gaussian fields satisfying (3.4).

Example 3.11. The cosine random process on R is defined by X(t) = ξ cos(ωt) + ξ ′ sin(ωt),
where ξ and ξ ′ are independent, standard Gaussian variables and the ω is a positive constant.
It is an isotropic, unit-variance, smooth Gaussian field with covariance C(t) = E[X(t)X(0)] =
cos(ωt). In particular, X′′(t) = −ω2X(t).
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Example 3.12. Let rSN−1 = {t ∈ R
N, t/r ∈ S

N−1}, where r > 0. For t ∈R
N , define the random

field

X(t) = a

∫
rSN−1

cos〈ω, t〉dB(ω) + a

∫
rSN−1

sin〈ω, t〉dW(ω),

where dB(ω) and dW(ω) are independent zero-mean, unit-variance, Gaussian white noise fields
on rSN−1 and a is the inverse square root of the volume of rSN−1. Then X(t) is a zero-mean,
unit-variance, isotropic Gaussian random field satisfying

∑N
i=1 Xii(t) = −r2X(t). The covari-

ance of X is given by

C(t) = E
[
X(t)X(0)

]= a2
∫

rSN−1
cos〈ω, t〉dω, t ∈R

N,

which is isotropic, and C(0) = 1.

3.5. Expected number and height distribution of critical points

At the boundary κ2 = (N + 2)/N , by Lemma 2.1, the Hessian conditional on the field in
Lemma 3.4(ii) is a degenerate symmetric random matrix. By Lemma 2.2, the density of eigen-
values of such a random matrix degenerates as well. Consequently, the technique employed to
obtain E[μi(X,u)] in the proof of Theorem 3.13 is no longer applicable. Instead, we use below
a different technique by applying the Helmholtz equation (3.4).

Theorem 3.13. Let {X(t), t ∈ R
N } be a centered, unit-variance, smooth isotropic Gaussian ran-

dom field satisfying κ2 = (N + 2)/N . Then for i = 0, . . . ,N , E[μi(X)] is given by (3.2) and

E
[
μi(X,u)

]= 2N/2

πN/2ηN
E

N
GOI(1/2)

[
N∏

j=1

|λj |1{λi<0<λi+1}1{∑N
j=1 λj /N≤−√

(N+2)/(2N)u}

]
,

where E
N
GOI(c) is defined in (2.7) and λ0 and λN+1 are regarded respectively as −∞ and ∞ for

consistency.

Proof. We only need to prove the second part since E[μi(X)] follows directly from Theorem 3.5
and κ2 = (N + 2)/N . By the Kac–Rice metatheorem, the condition κ2 = (N + 2)/N and Lem-
mas 3.2 and 3.4,

E
[
μi(X,u)

]= 1

(2π)N/2(−2ρ′)N/2
E
[∣∣det
(∇2X(t)

)∣∣1{index(∇2X(t))=i}1{X(t)≥u}
]

= 1

(2π)N/2(−2ρ′)N/2
E
[∣∣det
(∇2X(t)

)∣∣1{index(∇2X(t))=i}1{Tr(∇2X(t))≤2Nρ′u}
]

=
(

2ρ′′

−πρ′

)N/2

E
N
GOI(1/2)

[(
N∏

j=1

|λj |
)

1{λi<0<λi+1}1{√8ρ′′∑N
j=1 λj ≤2Nρ′u}

]
.
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The result follows by replacing η = √−ρ′/
√

ρ′′ and κ = −ρ′/
√

ρ′′ = √
(N + 2)/N under κ2 =

(N + 2)/N . �

The following result is an immediate consequence of (1.3) and Theorem 3.13.

Corollary 3.14. Let the assumptions in Theorem 3.13 hold. Then for i = 0, . . . ,N ,

Fi(u) =
E

N
GOI(1/2)[

∏N
j=1 |λj |1{λi<0<λi+1}1{∑N

j=1 λj /N≤−√
(N+2)/(2N)u}]

E
N
GOI(1/2)[

∏N
j=1 |λj |1{λi<0<λi+1}]

.

Example 3.15. Let the assumptions in Theorem 3.13 hold and let N = 2, implying κ2 = 2. Then

E
[
μ2(X)

]= E
[
μ0(X)

]= E[μ1(X)]
2

= 1√
3πη2

and

h2(x) = 2
√

3√
2π

[(
x2 − 1

)
e−x2/2 + e−3x2/2]1{x≥0},

h0(x) = 2
√

3√
2π

[(
x2 − 1

)
e−x2/2 + e−3x2/2]1{x≤0},

h1(x) =
√

3√
2π

e− 3x2
2 ;

see Figure 1. The expected number of critical points E[μi(X,u)] for each i = 0,1,2 can be
obtained from the densities in the same way as in Example 3.8.

It can be seen that the densities of height distributions of critical points in Example 3.15
are the limits of those in Example 3.8 when κ2 ↑ 2. This is because, the expected number of
critical points can be written by the Kac–Rice formula, which is continuous with respect to the
parameters of the covariance of the field.

3.6. The sub-boundary case: 1 < κ2 < (N + 2)/N

Many of the typical isotropic covariance functions known in the literature, such as the powered
exponential and the Cauchy covariance functions in Example 2.6 in [15], satisfy κ2 ≤ 1. On the
other hand, the covariance functions of Laplacian eigenfunctions (the boundary case), such as
Examples 3.11 and 3.12 shown above, satisfy κ2 = (N + 2)/N . Here we show that the sub-
boundary case, 1 < κ2 < (N + 2)/N , can be constructed from a combination of the two.

Let C1(t) = ρ1(‖t‖2) and C2(t) = ρ2(‖t‖2) be two isotropic covariance functions in R
N with

parameters κ2
1 = (ρ′

1)
2/ρ′′

1 and κ2
2 = (ρ′

2)
2/ρ′′

2 , respectively. For a constant a ∈ (0,1), define

C(t) = aC1(t) + (1 − a)C2(t), t ∈R
N.
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This is also an isotropic covariance function with C(0) = 1 and has parameter

κ2 = (ρ′)2

ρ′′ = [aρ′
1 + (1 − a)ρ′

2]2

aρ′′
1 + (1 − a)ρ′′

2
. (3.5)

Proposition 3.16. Suppose κ2
1 < κ2

2 . Then, κ2
1 < κ2 < κ2

2 if and only if 0 < a < min{(1 −
κ2

1 /κ2
2 )/(ρ′

1/ρ
′
2 − 1)2,1}.

Proof. Let r ′ = ρ′
1/ρ

′
2 − 1 and r ′′ = ρ′′

1 /ρ′′
2 − 1. We may write

κ2 = κ2
2
(1 + ar ′)2

1 + ar ′′ . (3.6)

Since κ2
1 < κ2

2 , it follows from the definitions of κ1 and κ2 that r ′′ > 2r ′ + r ′2. Replacing in (3.6)
gives that κ2 < κ2

2 for all a ∈ (0,1). On the other hand, in (3.5), κ2 = κ2
1 when a = 1. Together

with (3.6), the inequality κ2 > κ2
1 is satisfied if an only if

(1 + ar ′)2

1 + ar ′′ >
(1 + r ′)2

1 + r ′′ .

Solving for a gives that the inequality is satisfied if and only if 0 < a < min{(1 − κ2
1 /κ2

2 )/

(r ′)2,1}. �

As a specific example, consider an isotropic covariance function on the real line, C(t) =
aC1(t) + (1 − a)C2(t), where C1(t) = e−t2

(powered exponential covariance, with ρ′
1 = −1,

ρ′′
1 = 1 and κ2

1 = 1) and C2(t) = cos(t) (cosine field, with ρ′
2 = −1/2, ρ′′

2 = 1/12 and κ2
2 = 3),

t ∈ R. It then follows that if 0 < a < 2/3, then κ2 ∈ (1,3).

4. Isotropic Gaussian random fields on spheres

Let SN denote the N -dimensional unit sphere and let X = {X(t), t ∈ S
N } be a centered, unit-

variance, smooth isotropic Gaussian random field on S
N . Due to isotropy, we may write the

covariance function of X as C(〈t, s〉), t, s ∈ S
N , where C(·) : [−1,1] → R is a real function and

〈·, ·〉 is the inner product in R
N+1. See [15,17] for more results on the covariance function of an

isotropic Gaussian field on S
N . Define

C′ = C′(1), C′′ = C′′(1), η = √
C′/

√
C′′, κ = C′/

√
C′′. (4.1)

Throughout this paper, we always assume C′C′′ 	= 0, which is equivalent to the nondegeneracy
of the first and second derivatives of the field (see Lemma 4.1 below).

Similarly to the Euclidean case, for an orthonormal frame {Ei}1≤i≤N on S
N , let Xi(t) =

EiX(t) and Xij (t) = EiEjX(t). The following result can be derived easily by elementary cal-
culations; see also [5].



Critical points of isotropic Gaussian fields 3437

Lemma 4.1. Let {X(t), t ∈ S
N } be a centered, unit-variance, smooth isotropic Gaussian random

field. Then for each t ∈R
N and i, j , k, l ∈ {1, . . . ,N},

E
{
Xi(t)X(t)

}= E
{
Xi(t)Xjk(t)

}= 0,

E
{
Xi(t)Xj (t)

}= −E
{
Xij (t)X(t)

}= C′δij ,

E
{
Xij (t)Xkl(t)

}= C′′(δikδjl + δilδjk) + (C′′ + C′)δij δkl,

where C′ and C′′ are defined in (4.1).

It can be seen from Lemma 4.1 that C ′ = Var[Xi(t)] > 0 and C′′ = Var[Xij (t)] > 0 for i 	= j ,
implying that η > 0 and κ > 0.

4.1. The non-boundary case: 0 < κ2 − η2 < (N + 2)/N

Similarly to Proposition 3.3, we have the following result.

Proposition 4.2. Let the assumptions in Lemma 4.1 hold. Then κ2 − η2 ≤ (N + 2)/N . In par-
ticular, the Gaussian vector (X(t),∇X(t),Xij (t),1 ≤ i ≤ j ≤ N) is nondegenerate if and only
if κ2 − η2 < (N + 2)/N .

Proof. The desired results follow from similar arguments in the proof of Proposition 3.3 and the
observation, due to Lemma 4.1, that

Cov
(
X(t),X11(t), . . . ,XNN(t)

)= ( 1 −C′1T
N

−C′1N 2C′′IN + (C′′ + C′)1N1T
N

)
. �

Lemma 4.3. Let the assumptions in Lemma 4.1 hold. Let M̃ and M be GOI((1 + η2)/2) and
GOI((1 + η2 − κ2)/2) matrices respectively.

(i) The distribution of ∇2X(t) is the same as that of
√

2C′′M̃ .
(ii) The distribution of ∇2X(t)|X(t) = x is the same as that of

√
2C′′[M − (κx/

√
2)IN ].

Proof. Part (i) is a direct consequence of Lemma 4.1. For part (ii), applying Lemma 3.2 and the
well-known conditional formula for Gaussian variables, we see that (∇2X(t)|X(t) = x) can be
written as 
 − C′xIN , where 
 = (
ij )1≤i,j≤N is a symmetric N × N matrix with centered
Gaussian entries such that

E{
ij
kl} = C′′(δikδjl + δilδjk) + (C′′ + C′ − C′2)δij δkl .

Therefore, 
 has the same distribution as the matrix
√

2C′′M , completing the proof. �

Note that κ2 − η2 < (N + 2)/N implies (1 + η2 − κ2)/2 > −1/N , making the Gaussian
random matrix GOI((1 + η2 − κ2)/2) in Lemma 4.3 nondegenerate.



3438 D. Cheng and A. Schwartzman

4.2. Expected number and height distribution of critical points

Theorem 4.4. Let {X(t), t ∈ S
N } be a centered, unit-variance, smooth isotropic Gaussian ran-

dom field satisfying κ2 − η2 < (N + 2)/N . Then for i = 0, . . . ,N ,

E
[
μi(X)

]= 1

πN/2ηN
E

N
GOI((1+η2)/2)

[
N∏

j=1

|λj |1{λi<0<λi+1}

]
(4.2)

and

E
[
μi(X,u)

]= 1

πN/2ηN

∫ ∞

u

φ(x)EN
GOI((1+η2−κ2)/2)

[
N∏

j=1

∣∣λj − κx/
√

2
∣∣1{λi<κx/

√
2<λi+1}

]
dx,

where φ(x) is the density of standard Gaussian variable, EN
GOI(c) is defined in (2.7), and λ0 and

λN+1 are regarded respectively as −∞ and ∞ for consistency.

Proof. By the Kac–Rice metatheorem and Lemmas 4.1 and 4.3,

E
[
μi(X)

]= 1

(2π)N/2(C′)N/2
E
[∣∣det
(∇2X(t)

)∣∣1{index(∇2X(t))=i}
]

=
(

C′′

πC′

)N/2

E
N
GOI((1+η2)/2)

[(
N∏

j=1

|λj |
)

1{λi<0<λi+1}

]

and

E
[
μi(X,u)

]= 1

(2π)N/2(C′)N/2

∫ ∞

u

φ(x)E
[∣∣det
(∇2X(t)

)∣∣1{index(∇2X(t))=i}|X(t) = x
]
dx

=
(

C′′

πC′

)N/2 ∫ ∞

u

φ(x)

×E
N
GOI((1+η2−κ2)/2)

[(
N∏

j=1

∣∣λj − κx/
√

2
∣∣)1{λi<κx/

√
2<λi+1}

]
dx.

The desired results follow from the definition of η. �

The following result is an immediate consequence of (1.3) and Theorem 4.4.

Corollary 4.5. Let the assumptions in Theorem 4.4 hold. Then for i = 0, . . . ,N ,

Fi(u) =
∫∞
u

φ(x)EN
GOI((1+η2−κ2)/2)

[∏N
j=1 |λj − κx/

√
2|1{λi<κx/

√
2<λi+1}]dx

E
N
GOI((1+η2)/2)

[∏N
j=1 |λj |1{λi<0<λi+1}]

.
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Example 4.6. Let the assumptions in Theorem 4.4 hold and let N = 2. Then

E
[
μ2(X)

]= E
[
μ0(X)

]= 1

4π
+ 1

2πη2
√

3 + η2
and E

[
μ1(X)

]= 1

πη2
√

3 + η2
.

Moreover,

h2(x) = h0(−x) = 2
√

3 + η2

2 + η2
√

3 + η2

{[
η2 + κ2(x2 − 1

)]
φ(x)�

(
κx√

2 + η2 − κ2

)

+ κ
√

(2 + η2 − κ2)

2π
xe

− (2+η2)x2

2(2+η2−κ2)

+
√

2√
π(3 + η2 − κ2)

e
− (3+η2)x2

2(3+η2−κ2) �

(
κx√

(2 + η2 − κ2)(3 + η2 − κ2)

)}
and

h1(x) =
√

3 + η2√
2π(3 + η2 − κ2)

e
− (3+η2)x2

2(3+η2−κ2) ,

which is a normal distribution (see Figure 1). For each i = 0,1,2, one has

E
[
μi(X,u)

]= E
[
μi(X)

]
Fi(u) = E

[
μi(X)

] ∫ ∞

u

hi(x) dx.

4.3. GOE formulae and Fyodorov’s restricted case: κ2 − η2 ≤ 1

It can be seen from Proposition 4.2 that X = {X(t), t ∈ S
N } is an isotropic Gaussian random

field on S
N for every N ≥ 1 if and only if

κ2 − η2 ≤ inf
N≥1

N + 2

N
= 1.

In that case, a GOI(c) with c = (1 + η2 − κ2)/2 ≥ 0 can be written in the form (2.2). Therefore,
one can apply Lemma 3.4 and the integral techniques in Fyodorov [22] to compute E[μi(X,u)].

Recall Theorem 4.4 that E[μi(X)] and E[μi(X,u)] can be computed by GOI integrals
E

N
GOI((1+η2)/2)

and E
N
GOI((1+η2−κ2)/2)

, respectively. Since the first covariance parameter c =
(1 + η2)/2 > 0 and the second one c = (1 + η2 − κ2)/2 becomes positive under the condi-
tion κ2 − η2 < 1, we can apply our general formulae in Theorem 4.4 and supporting Lemma A.1
in the Appendix to derive immediately Proposition 4.7 below, which is essentially the same as
those in [5,24] (applications of Fyodorov [22] for Gaussian fields on S

N ). This shows the gener-
ality of the results in Theorem 3.5. Notice that although the case κ2 − η2 = 1 was not considered
in [5,24], it corresponds to the pure GOE case [see (2.2)], which is easier to handle and therefore
the comparison for this case is omitted here.
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Proposition 4.7. Let the assumptions in Theorem 4.4 hold. Then for i = 0, . . . ,N ,

E
[
μi(X)

]= √
2�(N+1

2 )

π(N+1)/2ηN
√

1 + η2
E

N+1
GOE

{
exp

[
λ2

i+1

2
− λ2

i+1

1 + η2

]}
;

and under κ2 − η2 < 1,

E
[
μi(X,u)

]= √
2�(N+1

2 )

π(N+1)/2ηN
√

1 + η2 − κ2

×
∫ ∞

u

φ(x)EN+1
GOE

{
exp

[
λ2

i+1

2
− (λi+1 − κx/

√
2)2

1 + η2 − κ2

]}
dx,

where E
N+1
GOE is defined in (2.5).

4.4. The boundary case of random Laplacian eigenfunctions on spheres:
κ2 − η2 = (N + 2)/N

Similarly to Proposition 3.10, we have the following result. Here X(t) is an eigenfunction of the
Laplace operator with eigenvalue −NC′ < 0.

Proposition 4.8. Let the assumptions in Lemma 4.1 hold. Then (X(t),∇X(t),Xij (t),1 ≤ i ≤
j ≤ N) is degenerate if and only if κ2 − η2 = (N + 2)/N , which is equivalent to

N∑
i=1

Xii(t) = −NC′X(t). (4.3)

Proof. The desired result follows from similar arguments in the proof of Proposition 3.10 and
the observation that

Cov
(
X(t),X11(t), . . . ,XNN(t)

)=
⎛⎝ 1 −C′1T

N

−C′1N

C′

N + 2

[
2N
(
C′ − 1

)
IN + (NC′ + 2

)
1N1T

N

]
⎞⎠

when κ2 − η2 = (N + 2)/N . �

The following is an example of isotropic Gaussian fields on spheres satisfying (4.3).

Example 4.9. Consider an isotropic Gaussian field X = {X(t), t ∈ S
2} with covariance

C(t, s) = E
[
X(t)X(s)

]= P�

(〈t, s〉), t, s ∈ S
2,
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where P� are Legendre polynomials and 〈·, ·〉 denotes the usual Euclidean inner product in R
3.

Then

X11(t) + X22(t) = −�(� + 1)X(t).

That is, X(t) is a random spherical harmonic and a Laplacian eigenfunction with eigenvalue
−�(� + 1) [11,12,43].

4.5. Expected number and height distribution of critical points

Theorem 4.10. Let {X(t), t ∈ S
N } be a centered, unit-variance, smooth isotropic Gaussian ran-

dom field satisfying κ2 − η2 = (N + 2)/N . Then for i = 0, . . . ,N , E[μi(X)] is given in (4.2)
and

E
[
μi(X,u)

]
= 1

πN/2ηN
E

N
GOI((1+η2)/2)

[
N∏

j=1

|λj |1{λi<0<λi+1}1{∑N
j=1 λj /N≤−

√
(N+2+Nη2)/(2N)u}

]
,

where E
N
GOI(c) is defined in (2.7) and λ0 and λN+1 are regarded respectively, as −∞ and ∞ for

consistency.

Proof. We only need to prove the second part since E[μi(X)] follows directly from Theorem 4.4
and κ2 − η2 = (N + 2)/N . By the Kac–Rice metatheorem, the condition κ2 − η2 = (N + 2)/N

and Lemmas 4.1 and 4.3,

E
[
μi(X,u)

]= ( C′′

πC′

)N/2

E
N
GOI((1+η2)/2)

[(
N∏

j=1

|λj |
)

1{λi<0<λi+1}1{√2C′′∑N
j=1 λj ≤−NC′u}

]
.

The desired result then follows from definitions of η and κ and that κ = √(N + 2 + Nη2)/N

under κ2 − η2 = (N + 2)/N . �

The following result is an immediate consequence of (1.3) and Theorem 4.10.

Corollary 4.11. Let the assumptions in Theorem 4.10 hold. Then for i = 0, . . . ,N ,

Fi(u) =
E

N
GOI((1+η2)/2)

[∏N
j=1 |λj |1{λi<0<λi+1}1{∑N

j=1 λj /N≤−
√

(N+2+Nη2)/(2N)u}]
E

N
GOI((1+η2)/2)

[∏N
j=1 |λj |1{λi<0<λi+1}]

.

Example 4.12. Let the assumptions in Theorem 4.10 hold and let N = 2, implying κ2 − η2 = 2.
Then

E
[
μ2(X)

]= E
[
μ0(X)

]= 1

4π
+ 1

2πη2
√

3 + η2
and E

[
μ1(X)

]= 1

πη2
√

3 + η2
.
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Moreover,

h2(x) = 2
√

3 + η2
√

2π(2 + η2
√

3 + η2)

([(
η2 + 2

)
x2 − 2

]
e− x2

2 + 2e− (3+η2)x2

2
)
1{x≥0},

h0(x) = 2
√

3 + η2
√

2π(2 + η2
√

3 + η2)

([(
η2 + 2

)
x2 − 2

]
e− x2

2 + 2e− (3+η2)x2

2
)
1{x≤0},

h1(x) =
√

3 + η2
√

2π
e− (3+η2)x2

2 ;

see Figure 1. The expected number of critical points E[μi(X,u)] for each i = 0,1,2 can be
obtained from the densities in the same way as in Example 4.6.

It can be seen that the densities of height distributions of critical points in Example 4.12 are
the limits of those in Example 4.6 when κ2 − η2 ↑ 2. Again, this is due to the continuity of the
expectations with respect to η and κ .

5. Discussion

In this paper, we have used GOI matrices to model the Hessian of smooth isotropic Gaussian
random fields, providing a tool for computing the expected number of critical points via the
Kac–Rice formula. Some potential extensions are in sight.

We see from (3.3) that E[μi(X,u)] can be computed by integrating hi(x). As an extension,
if one considers the expected number of critical points of X with height within certain inter-
val I , then such expectation can be computed similarly to (3.3) with the integral domain (u,∞)

replaced by I .
There are several interesting properties of the height density hi(x) that remain to be discov-

ered. When N is even, we conjecture that hN/2(x) may be an exact Gaussian density. It would be
interesting to study the mean, variance and mode of hi(x) and to establish a stochastic ordering
between hi(x) and hj (x) for i < j . For application, it is useful to investigate general explicit
formulas for the expected number and height density of critical points of Gaussian fields on any
dimension N .

The expected number and height distribution of critical points of stationary non-isotropic
Gaussian random fields remain unknown in general. We think that the problem can be solved
by investigating more general Gaussian random matrices beyond GOI and making connections
between them and the Hessian of the field. This would be our major future work.

Appendix

The following result shows that when c > 0, the integral for GOI(c) in (A.1), which will be
useful for deriving E[μi(X,u)], can be written in terms of an expectation of GOE of size N + 1.
This result has been applied in Sections 3.3 and 4.3 to show that under Fyodorov’s restriction,
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our general formulae of E[μi(X,u)] obtained in Theorems 3.5 and 4.4 are exactly the same as
the existing results in [5,22].

Lemma A.1. Let M be an N × N nondegenerate GOI(c) matrix and let a ∈ R. If c > 0, then
for any i0 = 0, . . . ,N ,

E
[∣∣det(M − aIN)

∣∣1{index(M−aIN )=i0}
]

= �(N+1
2 )√
πc

E
N+1
GOE

{
exp

[
1

2
λ2

i0+1 − 1

2c
(λi0+1 − a)2

]}
.

(A.1)

Proof. By Lemma 2.2, the left side of (A.1) becomes

∫
RN

(
N∏

i=1

|λi − a|
)

1{λi0<a<λi0+1}fc(λ1, . . . , λN)dλ1 · · · dλN

= 1

2N/2
√

1 + Nc
∏N

i=1 �( i
2 )

∫
RN

dλ1 · · · dλN

(
N∏

i=1

|λi − a|
)

1{λi0 <a<λi0+1}

× exp

{
−1

2

N∑
i=1

λ2
i + c

2(1 + Nc)

(
N∑

i=1

λi

)2} ∏
1≤i<j≤N

|λi − λj |1{λ1≤···≤λN }.

(A.2)

By introducing an additional integral of standard Gaussian variable, we can write (A.2) as

1√
2π2N/2

√
1 + Nc

∏N
i=1 �( i

2 )

∫
RN+1

(
N∏

i=1

|λi − a|
)

× exp

{
−1

2

N∑
i=1

λ2
i + c

2(1 + Nc)

(
N∑

i=1

λi

)2}
exp

{
−λ2∗

2

} ∏
1≤i<j≤N

|λi − λj |

× 1{λ0≤λ1≤···≤λi0 <a<λi0+1≤···≤λN≤λN+1} dλ1 · · · dλN dλ∗,

where λ0 = −∞ and λN+1 = ∞. Make the following change of variables:

λi = λ̃i − λ̃∗, ∀i = 1, . . . ,N,

λ∗ =
√

c

1 + Nc

N∑
i=1

λ̃i + 1√
c(1 + Nc)

λ̃∗.
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Notice that the Jacobian of such change of variables is
√

(1 + Nc)/c. Therefore, (A.2) becomes

1√
2π2N/2

√
c
∏N

i=1 �( i
2 )

∫
RN+1

(
N∏

i=1

|λ̃i − λ̃∗ − a|
)

exp

{
−1

2

N∑
i=1

λ̃2
i − 1

2c
λ̃2∗

}

×
∏

1≤i<j≤N

|λ̃i − λ̃j |1{λ̃0≤λ̃1≤···≤λ̃i0 <λ̃∗+a<λ̃i0+1≤···≤λ̃N≤λ̃N+1} dλ̃1 · · · dλ̃N dλ̃∗,

where λ̃0 = −∞ and λ̃N+1 = ∞. Make the following change of variables:

λi = λ̃i , ∀i = 1, . . . , i0,

λi0+1 = λ̃∗ + a,

λi+1 = λ̃i , ∀i = i0 + 1, . . . ,N.

Then (A.2) becomes

1√
2π2N/2

√
c
∏N

i=1 �( i
2 )

∫
RN+1

exp

{
1

2
λ2

i0+1 − 1

2c
(λi0+1 − a)2

}

× exp

{
−1

2

N+1∑
i=1

λ2
i

} ∏
1≤i<j≤N+1

|λi − λj |1{λ1≤···≤λN≤λN+1} dλ1 · · · dλN dλN+1

= �(N+1
2 )√
πc

E
N+1
GOE

{
exp

[
1

2
λ2

i0+1 − 1

2c
(λi0+1 − a)2

]}
. �
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