
Bernoulli 24(4B), 2018, 3283–3317
https://doi.org/10.3150/17-BEJ961

Bounded size biased couplings, log concave
distributions and concentration of measure
for occupancy models
JAY BARTROFF1,*, LARRY GOLDSTEIN1,** and ÜMIT IŞLAK2
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Threshold-type counts based on multivariate occupancy models with log concave marginals admit bounded
size biased couplings under weak conditions, leading to new concentration of measure results for random
graphs, germ-grain models in stochastic geometry and multinomial allocation models. The results obtained
compare favorably with classical methods, including the use of McDiarmid’s inequality, negative associa-
tion, and self bounding functions.
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1. Introduction

A random graph on m vertices in which edges are independently present between every two
distinct vertices is one framework that leads to an occupancy model described by a vector

M = (Mα)α∈[m] (1)

of nonnegative integer valued random variables Mα , where [m] = {1, . . . ,m} and Mα is the
degree of vertex α. In such models, given a nonnegative integer threshold d ≥ 0, many authors
have studied the distribution of quantities such as

Yge =
∑

α∈[m]
1(Mα ≥ d) and Yeq =

∑
α∈[m]

1(Mα = d) (2)

which, in the Erdős–Rényi random graph case just described, count the number of vertices that
have degree at least and exactly d , respectively. Interest in the distributions of the random vari-
ables defined in (2) focuses on their approximation by distributional limits such as the normal,
and their finite sample concentration properties. The purpose of the current manuscript is the
latter, the study of the concentration of such random variables via the use of size biased cou-
plings derived from the Stein’s method literature. The concentration of measure phenomenon
has received a great deal of attention since the groundbreaking work of Talagrand [53], and has
found applications in areas as diverse as statistics, random matrix theory, combinatorics, infor-
mation theory, and randomized algorithms. We refer to [9] and [37] for excellent treatments of
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the subject. The results in this paper hold for more general occupancy models (1), not just ran-
dom graphs, and to refer to a generic occupancy model (1) we will call Mα a “count” and α an
“urn”.

To give the flavor of our results, continue to consider the Erdős–Rényi random graph on m ver-
tices where each disjoint pair of vertices is independently connected by an edge with probability
p ∈ (0,1) and Mα is the degree of vertex α. The work [25] derived concentration results for the
number of isolated vertices, or equivalently, for the variable Yge in (2) with d = 1. Here we allow
each vertex to have its own threshold dα to either meet, exceed, or differ from, and which are
allowed to take any value, each pair of disjoint edges {i, j} is to have its own connection proba-
bility p{i,j}, and each vertex to be weighted according to a nonnegative ‘importance factor’ wα .
In Theorem 3.1, for random graph models including the Erdős–Rényi, we provide sub-Poisson
concentration bounds for random variables of the form

Yge =
∑

α∈[m]
wα1(Mα ≥ dα) and Yne =

∑
α∈[m]

wα1(Mα �= dα), (3)

that is, for the weighted number of components of M having size at least dα , and not equal to dα ,
respectively. In addition,

1. For the germ-grain models in stochastic geometry introduced in Section 3.2, Theorems 3.2
and 3.3 provide sub-Poisson concentration results for the volume covered by multi-way
intersections, and counts of neighbors, respectively.

2. For the multinomial model introduced in Section 3.3, Theorem 3.4 provides sub-Poisson
concentration results for urn occupancy counts.

The current work springs from that of [23] and [24], which demonstrated how bounded size
bias couplings can be used to achieve concentration of measure results. Those works in turn were
built on the base of [12], which showed how tools from Stein’s method (see [51] and [52], and
[13] and [46] for overviews), and in particular exchangeable pairs, can be used to expand the
scope of application of the concentration of measure phenomenon. Through the use of bounded
size bias couplings, [24] produced concentration results for examples including the number of
relatively ordered subsequences of a random permutation, the number of local maxima of a
random function on a lattice, the number of urns containing exactly one ball in a uniform urn
allocation model, and the volume covered by the union of n balls placed uniformly over a subset
of Rp with volume n. In [25], a concentration result was obtained for the number of isolated
vertices in the Erdős–Rényi random graph.

Lemma 2.1, one main result in the present work, provides a framework for the construction
of bounded size bias couplings for threshold counts of random variables having a discrete log
concave distribution. Such constructions allow the results of [24] and [25] to be extended to
counts of multinomial urn occupancies that exceed or meet any values, to the covered volume
of multi-way intersections in germ-grain models, and to counts of the number of vertices of
the Erdős–Rényi graph having any degrees. Further, we do not require an identical distribution
assumption and consider occupancy thresholds and importance weightings that may depend on
the component α ∈ [m]. In Section 4, we show how our results improve on what can be obtained
by competing methods.
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In order to prepare for the rest of the paper, we provide some background on size biased
distributions and couplings. First, recall that for a nonnegative random variable Y with finite
positive mean μ, we say that Y s has the Y -size bias distribution if

E
[
Yf (Y )

] = μE
[
f

(
Y s

)]
(4)

for all functions f for which these expectations exist. For a survey on the diverse appearances
of size biasing in probability and statistics, see [4]. We say we have a size bias coupling when
a random variable Y s satisfying (4) is defined on the same space as Y , and the coupling is said
to be bounded when there exists c ∈ [0,∞) such that |Y s − Y | ≤ c almost surely. The work [24]
showed that for nonnegative Y with finite mean μ and bounded size bias coupling Y s satisfying
|Y s − Y | ≤ c, if Y s ≥ Y then

P(Y − μ ≤ −t) ≤ exp

(
− t2

2cμ

)
for all t > 0. (5)

And if the moment generating function m(θ) = E(eθY ) is finite at θ = 2/c, then

P(Y − μ ≥ t) ≤ exp

(
− t2

2cμ + ct

)
for all t > 0. (6)

The bound (5) holds without the monotonicity assumption and we prove this in the Appendix,
thus providing a left tail bound for any application in [24] which previously lacked one. After a
version of this manuscript was circulated, Theorem 1.1 below of [3] removed the monotonicity
assumption using different methods, and further improved the result of [24] by removing the
assumption that the moment generating function of Y be finite at 2/c, relaxing the bounded
coupling condition to Y s − Y ≤ c, and by improving the inequality to (7) which, as shown there,
implies (5) and (6).

The subsequent work [16] strictly generalizes Theorem 1.1 of [3] by, in Theorems 3.3 and 3.4,
relaxing the almost sure boundedness assumption by the condition that there exists p ∈ (0,1]
such that P [Xs ≤ X + c|Xs ≥ x] ≥ p for all x for an upper tail bound, and P [Xs ≤ X + c|X ≤
x] ≥ p for all x for the lower tail. Theorem 3.4 is in the spirit of Bennett’s inequality, with upper
bounds given in terms of a variance proxy, rather than the mean.

Theorem 1.1. Let Y be a nonnegative random variable with nonzero, finite mean μ, and suppose
there exists a coupling of Y to a variable Y s having the Y -size bias distribution that satisfies
Y s ≤ Y + c for some c > 0 with probability one. Then

max
{

sup
t≥0

P(Y − μ ≥ t), sup
−μ≤t≤0

P(Y − μ ≤ t)
}

≤
(

μ

μ + t

)(t+μ)/c

et/c. (7)

Note that the upper tail inequality given in (7) can be rewritten in the more familiar form

P(Y − μ ≥ t) ≤ exp

(
−μ

c
h

(
t

μ

))
for all t > 0,
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where h(x) = (1 + x) log(1 + x) − x, x ≥ −1. Using the inequality

h(x) ≥ x2

2 + 2x/3
, x ≥ 0

(e.g., see [9], Exercise 2.8), one immediately obtains the following Bernstein type inequality as
a corollary, which provides a slight improvement over (6).

Corollary 1.1. In the setting of Theorem 1.1,

P(Y − μ ≥ t) ≤ exp

(
− t2

2cμ + 2ct/3

)
for all t > 0. (8)

Next, we briefly review constructions of random variables having the size bias distribution of
linear combinations of indicator random variables. Throughout we will write L(·) for law, or
distribution.

We start by stating Lemma 4.1 of [27]. When A is an event satisfying 0 < P(A) < 1 and F is
a σ -algebra, a simple application of nested conditioning shows that for all bounded continuous
functions f , the random variable1 Y = P(A|F) satisfies

E
(
Yf (Y )

) = E
(
f (Y )1A

) = P(A)E
(
f (Y )|A)

and hence L(Y |A) = L
(
Y s

)
. (9)

Next, Lemma 1.1 is a special case of a result of [28] that suggests constructions of size biased
couplings for sums of nonnegative random variables with finite means.

Lemma 1.1. Let Y = ∑
α∈[m] wαXα be a sum of Bernoulli variables (Xα)α∈[m] weighted by

nonnegative constants (wα)α∈[m] and satisfying EY > 0. Suppose that for each α ∈ [m] the
variables {Xα

β,β ∈ [m]} are defined on a common probability space such that

L
(
Xα

β,β ∈ [m]) = L
(
Xβ,β ∈ [m]|Xα = 1

)
. (10)

Then for each α ∈ [m] letting

Yα =
∑

β∈[m]
wβXα

β, (11)

and I a random index with distribution

P(I = α) = wαEXα

EY
, (12)

the law L(Y I ) given by the mixture
∑

α∈[m] P(I = α)L(Y α) is the Y -size bias distribution.

1In (9) and below, for an event A we write L(Y |A) to denote the law of the random variable with distribution P(Y ∈
B|A). We abuse notation in the standard way by writing P(·|F) and P(·|R) to denote conditioning on a σ -algebra F
and the σ -algebra σ(R) generated by a random variable R.
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We note that (Xα)α∈[m] is allowed to have any joint distribution with Bernoulli marginals.
In addition, the joint distributions of {Xα

β,β ∈ [m]} are constrained only to satisfy (10), and
in particular, if all variables are defined on a common space then the dependence structure
between the collections (Xα

β)β∈[m] over α ∈ [m] can be arbitrary. In this latter case, and
when I is defined on the common space, we construct I independent of (Xα

β)β∈[m] so that

Eg(Y I ) = ∑
α∈[m] P(I = α)E(g(Yα)|I = α) = ∑

α∈[m] P(I = α)E(g(Yα)), thus achieving the
desired mixture of the lemma.

To understand the connections between (9) and Lemma 1.1, let us briefly explain how the
former implies the latter. Suppose Y is given as the weighted sum of Bernoulli variables, as in
Lemma 1.1. Then letting w = ∑

α∈[m] wα , for an index J with distribution P(J = α) = wα/w,
α ∈ [m], chosen independently of (Xα)α∈[m], and A = {XJ = 1} and F = σ {Xα,α ∈ [m]} we
obtain

wP(A|F) =
∑

α∈[m]
wαXα = Y. (13)

Taking expectation in (13) yields wP(A) = EY . Now, if L(Y ′) = L(Y |A) then, with Yα as in
(11) and I with distribution (12), the reader can easily check that E[g(Y I )] = E[g(Y ′)] for
all bounded continuous functions g so that, by (9), L(Y I ) of Lemma 1.1 is the Y -size bias
distribution.

The rest of the paper is organized as follows. Section 2 shows how to construct bounded size
bias couplings for random variables of the form (3) when the components Mα of M have a dis-
crete log concave distribution, with support bounded from below in the case of Yge, and when
for all α ∈ [m] the remaining counts conditioned on Mα = a and Mα = b for a, b ∈ Sα can be
closely coupled whenever a is ‘close’ to b. In Section 3, we provide complete descriptions of the
three models mentioned above, and apply the results of Section 2 to obtain concentration of mea-
sure inequalities. A comparison of the size bias method for concentration with other techniques
in the literature is included in Section 4. The Appendix contains the proof that (5) holds without
the monotonicity assumption Y s ≥ Y .

2. Bounded coupling constructions under log concavity

The purpose of this section is to form the theoretical background for size biased coupling con-
structions that are to be used for obtaining concentration of measure inequalities for the statistics
described in the Introduction. First, we note that Lemma 1.1 gives a recipe for the construc-
tion of a variable having the Y -size biased distribution, and in particular only suggests how a
coupling may be created. Here, we construct couplings not directly on the occupancy vectors
M = (Mα)α∈[m] themselves, but on a collection of ‘more basic’ variables U that we term config-
urations, and of which the occupancy counts are functions. The configuration U will be specified
for each application. For instance, when M is the count of vertex degrees in an Erdős–Rényi
graph on a vertex set [m] we take the configuration U to be the collection of edge indicator vari-
ables (X{α,β})α �=β,{α,β}⊂[m], and, similarly, when M counts the number of balls in each urn in a
multinomial model, the configuration U records the location of each ball. In these examples, the
variables making up the configurations U are random, but we also will refer to realizations of U
as configurations, so configurations may also contain deterministic variables.
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Definition 2.1. When the occupancy counts M are given as F(U) for some collection of (possi-
bly random) variables U and measurable function F , we say that M corresponds to the configu-
ration U through F , or that configuration U has corresponding occupancy counts M with respect
to F .

The function F will be fixed in each of our applications, and so we may omit its mention
when there is no possibility of confusion. In such cases we may write, for instance, that U has
corresponding occupancy counts M.

Specializing to the case of interest here, Lemma 1.1 suggests the following size bias coupling
construction for sums of the form (3), say Yge for concreteness. Following (10), given a configu-
ration U from the model, one constructs Uα , one for each α ∈ [m], on the same space as U , with
law given by

L
(
Uα

) = L(U |Xα = 1) = L(U |Mα ≥ dα). (14)

One then obtains the variable Yα
ge by evaluating the sum Yge of (3) on the occupancy counts

corresponding to Uα , and the size bias variable Y s
ge by selecting Yα with probability proportional

to the expectation of wαXα = wα1(Mα ≥ dα), independently of all else.
For the construction of a configuration satisfying (14), Lemma 2.1 and Corollary 2.1 be-

low show how to achieve a bounded coupling between Mα and a variable with distribution
L(Mα|Mα ≥ dα) when the distribution of Mα is log concave. Lemma 2.4 will be used to con-
struct the remainder of a configuration that has the correct conditional counts for the urns β �= α

when their marginals have the distribution of the sum of independent Bernoulli variables, that is,
when they have a Poisson Binomial distribution [29]; see (22) for a formal definition.

For any nonnegative integer m let [m]0 = {0, . . . ,m}, and for any subset S of R and any
t1, t2 ∈ R, let t1S + t2 = {t1s + t2 : s ∈ S}. For instance, [m] − 1 = [m − 1]0 when m ≥ 1.
For a discrete random variable M , let px = P(M = x) and supp(M) = {x ∈ R : px > 0} be
the probability mass function and support of M , respectively. Recall that M is called a lattice
random variable if supp(M) ⊂ h1Z + h2 for some real numbers h1 �= 0, h2. We can without
loss of generality assume our lattice random variables M have supp(M) ⊂ Z by applying the
transformation (M − h2)/h1. Such a lattice random variable M is log concave (LC) if supp(M)

is an integer interval; that is, if

supp(M) = (k1, k2) ∩Z for some k1, k2 ∈ Z∪ {±∞}, k1 < k2 − 1,

and

p2
x ≥ px−1px+1 for all x ∈ Z. (15)

Under a lattice log concave assumption on the distribution of M , Parts 1 and 2 of Lemma 2.1
provide bounded couplings of random variables with distributions L(M|M ≥ d) and L(M|M ≤
d), respectively, to variables with distributions L(M|M ≥ d + 1) and L(M|M ≤ d − 1). Part 3
shows that there is a bounded coupling of M to a variable having distribution L(M|M �= d),
provided M is not degenerate at d . These results are extensions of [27], Lemma 3.3, that showed
the d = 1 case of Part 1 when M is Bin(n,p) with p ∈ (0,1).

In the following, we let Bern(p) denote the Bernoulli distribution giving mass 1 − p and p to
0 and 1, respectively.
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Lemma 2.1. Let M be a lattice LC random variable with support S ⊂ Z.

1. For x, d ∈ Z define

π(d)
x =

⎧⎨
⎩

P(M ≥ x + 1)P (M = d)

P (M ≥ d + 1)P (M = x)
, if x, d + 1 ∈ S and x ≥ d,

0, otherwise.

Then the following hold.
(a) 0 ≤ π

(d)
x ≤ 1 for all x, d .

(b) If d + 1 ∈ S and N,Z are random variables such that L(N) = L(M|M ≥ d) and
L(Z|N) = Bern(π

(d)
N ), then L(N + Z) = L(M|M ≥ d + 1).

2. For x, d ∈ Z define

ρ(d)
x =

⎧⎨
⎩

P(M ≤ x − 1)P (M = d)

P (M ≤ d − 1)P (M = x)
, if x, d − 1 ∈ S and x ≤ d,

0, otherwise.

Then the following hold.
(a) 0 ≤ ρ

(d)
x ≤ 1 for all x, d .

(b) If d − 1 ∈ S and N,Z are random variables such that L(N) = L(M|M ≤ d) and
L(Z|N) = Bern(ρ

(d)
N ), then L(N − Z) = L(M|M ≤ d − 1).

3. Fix d ∈ Z such that P(M = d) < 1. Let Z+, Z− be conditionally independent given M

with L(Z+|M) = Bern(π
(d)
M ) and L(Z−|M) = Bern(ρ

(d)
M ). Let Z be independent of Z+,

Z−, and M with L(Z) = Bern(q), where

q = P(M ≥ d + 1)

P (M �= d)
.

Then

L(M + X) = L(M|M �= d), (16)

where X = ZZ+ − (1 − Z)Z−.

In other words, the conclusion (16) says that, given M , a random variable with distribution
L(M|M �= d) can be formed by flipping an independent q-coin Z and, if heads, adding 1 to
M with probability π

(d)
M , and otherwise subtracting 1 with probability ρ

(d)
M . We note that when

M < d (resp. M > d), the probability π
(d)
M of adding (resp. ρ

(d)
M of subtracting) 1 is 0, and when

M = d , M is changed with probability 1 by either adding or subtracting 1. We also note that
when M achieves the upper or lower limit of its support, the Bernoulli probability of adding to,
or subtracting from M , respectively, is zero.

We define the hazard function of a lattice random variable M with support S as

hx = P(M = x)

P (M ≥ x)
= px∑

y≥x py

for x ∈ S. (17)
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To prove Lemma 2.1, we require the following fact that lattice LC distributions have non-
decreasing hazard functions. This is well known for continuous LC distributions, for example,
[6,42].

Lemma 2.2. If M is lattice LC with support S , then the hazard function hx given in (17) is
nondecreasing on S .

Proof. For any x, y ∈ S with x ≤ y note that by (15), we have

px+1

px

≥ px+2

px+1
≥ · · · ≥ py+1

py

.

If x, x + 1 ∈ S , then

1/hx − 1/hx+1 =
∑

y∈S:y≥x

py/px −
∑

y∈S:y≥x+1

py/px+1 =
∑

y∈S:y≥x

(py/px − py+1/px+1)

=
∑

y∈S:y≥x

py

px+1

(
px+1

px

− py+1

py

)
≥ 0.

�

Proof of Lemma 2.1. Clearly π
(d)
x ≥ 0, and to show that π

(d)
x ≤ 1 it suffices to assume that

d, d + 1 ∈ S since π
(d)
x = 0 otherwise. Let hx be the hazard function of M defined by (17). For

any d ≤ x ∈ S , by Lemma 2.2 we have hd ≤ hx , and therefore

π(d)
x = 1/hx − 1

1/hd − 1
≤ 1,

proving Part 1a.
To prove Part 1b, letting px = P(M = x) and Gx = P(M ≥ x), for any k = 1,2, . . . we have

P(N + Z ≥ d + k) = P(N ≥ d + k) + P(N = d + k − 1,Z = 1)

= P(M ≥ d + k|M ≥ d) + π
(d)
d+k−1P(M = d + k − 1|M ≥ d)

= Gd+k

Gd

+
(

Gd+kpd

Gd+1pd+k−1

)
pd+k−1

Gd

= Gd+k

GdGd+1
(Gd+1 + pd)

= Gd+k

GdGd+1
Gd = Gd+k

Gd+1
= P(M ≥ d + k|M ≥ d + 1).

For Part 2a let M̃ = −M , which is LC. For d − 1 ∈ S and d ≥ x ∈ S ,

ρ(d)
x = P(M̃ ≥ −x + 1)P (M̃ = −d)

P (M̃ ≥ −d + 1)P (M̃ = −x)
= π̃

(−d)
−x ∈ [0,1]

by Part 1a, where π̃ is defined with respect to M̃ . The rest of the proof of Part 2 is similar to that
of Part 1.
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Moving to Part 3, letting N denote the random variable M + X on the LHS of (16), we will
show that

P(N ≤ y) = P(M ≤ y|M �= d) for all y ∈ Z, y < d, (18)

the proof that P(N ≥ y) = P(M ≥ y|M �= d) for all y > d being similar. Fix y < d and without
loss of generality assume that

y + 1 ∈ S, (19)

since otherwise (18) holds trivially as both sides are 0 or 1. With px , Gx as above and Fx =
P(M ≤ x),

P(N ≤ y) = P(M ≤ y − 1) + P(M = y,Z = 0) + P(M = y,Z = 1,Z+ = 0)

+ P(M = y + 1,Z = 0,Z− = 1)

= Fy−1 + py(1 − q) + pyq
(
1 − π(d)

y

) + py+1(1 − q)ρ
(d)
y+1

= Fy + py+1(1 − q)ρ
(d)
y+1,

(20)

this last because π
(d)
y = 0 since y < d . If d − 1 ∈ S, then (20) is

Fy + py+1

(
1 − Gd+1

1 − pd

)(
Fypd

Fd−1py+1

)
= Fy +

(
Fd−1

1 − pd

)
Fypd

Fd−1

= Fy

1 − pd

= P(M ≤ y|M �= d).

Otherwise d − 1 /∈ S so ρ
(d)
y+1 = 0, hence (20) is Fy . If y = d − 1 then minS = d by virtue of the

assumption (19), so

P(N ≤ d − 1) = Fd−1 = 0 = P(M ≤ d − 1|M �= d).

In the remaining case, d − 1 /∈ S and y ≤ d − 2, we have maxS < d − 1 again by virtue of (19),
and in particular d /∈ S . Then

P(M ≤ y|M �= d) = P(M ≤ y) = Fy = P(N ≤ y),

finishing the proof. �

Corollary 2.1. Let M be a lattice LC random variable with support S satisfying a := infS >

−∞, and let d ∈ S . Then one can construct a random variable A on the same space as M such
that L(M + A) = L(M|M ≥ d) and 0 ≤ A ≤ d − a.

Proof. It suffices to prove the a = 0 case because given M satisfying the hypotheses and d ∈ S
we have d ′ := d − a ∈ supp(M − a). Using that M − a is an LC random variable, the a = 0 case
of the corollary guarantees 0 ≤ A ≤ d ′ such that

L(M − a + A) = L
(
M − a|M − a ≥ d ′) = L(M − a|M ≥ d).
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Using this fact, we have

P(M + A ≤ x) = P(M − a + A ≤ x − a) = P(M − a ≤ x − a|M ≥ d) = P(M ≤ x|M ≥ d),

which is the desired result.
To prove the a = 0 case we successively construct random variables M0, . . . ,Md , all on the

same space as M , such that

L(Mk) = L(M|M ≥ k) for k = 0,1, . . . , d. (21)

Letting M0 = M , (21) is satisfied for k = 0. For k = 0, . . . , d − 1, given M0, . . . ,Mk satisfying
the distributional equality in (21), let Xk be a Bernoulli random variable on the same space as
M0, . . . ,Mk satisfying

L(Xk|Mk) = Bern
(
π

(k)
Mk

)
and set Mk+1 = Mk + Xk.

It is easily checked that L(M) being lattice LC implies L(Mk) is LC. Hence Part 1b of
Lemma 2.1 yields that Mk+1 satisfies (21) for k + 1. In particular, for k = d our construction
yields Md = M +A with A = X0 +· · ·+Xd−1 satisfying 0 ≤ A ≤ d , and (21) yields the desired
distributional property, concluding the proof. �

Corollary 2.1, a consequence of Part 1 of Lemma 2.1, shows the existence of a ‘uniformly
close coupling’ of an LC ‘urn count’ random variable M to one with distribution L(M|M ≥ d),
and will be applied to coupling constructions for Yge. Similarly, Part 3 of Lemma 2.1, depending
on Parts 1 and 2, will be applied to Yne.

Recall that a random variable M is said to have a Poisson Binomial distribution with parameter
p = (pj )j∈[m], denoted by M ∼PB(p), when

L(M) = L
( ∑

j∈[m]
Xj

)
, (22)

where Xj are independent Bernoulli random variables with P(Xj = 1) = pj for j ∈ [m].
When there exists p such that pj = p for all j ∈ [m], then M ∼ Bin(m,p). We note that the

distribution of a single Bernoulli random variable, with support {0,1}, trivially satisfies (15) and
hence is LC. Since [34] demonstrates that LC is preserved under convolution, the claim of the
following lemma is immediate.

Lemma 2.3. The Poisson Binomial distribution PB(p) is LC.

When M has distribution PB(p) for p = (pj )j∈[m], then for all d ∈ Z we have

P(M = d) = qeq(d,p) where qeq(d,p) =
∑

s⊂[m],|s|=d

∏
j∈s

pj

∏
j /∈s

(1 − pj )

and so

P(M ≥ d) = qge(d,p) and P(M �= d) = qne(d,p),
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where

qge(d,p) =
m∑

k=d

qeq(k,p) and qne(d,p) = 1 − qeq(d,p). (23)

With α ∈ [m], the majority of our constructions make use of the following definition for col-
lections of counts of the form {

Nα
a = (

Nα
β,a

)
β∈[m] : a ∈ Sα

}
, (24)

where Sα , α ∈ [m], are given support sets. Below, for given weight w = (wα)α∈[m] and threshold
d = (dα)α∈[m] vectors, let

|w| = max
α∈[m]wα and |d| = max

α∈[m]dα. (25)

Definition 2.2. For B ≥ 0 and α ∈ [m], we say that the collection of counts (24) has Property
(B,≥, α) if∑

β �=α

wβ1
(
Nα

β,a+1 ≥ dβ

) ≤
∑
β �=α

wβ1
(
Nα

β,a ≥ dβ

) + |w|B for all {a, a + 1} ⊂ Sα, (26)

and Property (B, �=, α) if∑
β �=α

wβ1
(
Nα

β,b �= dβ

) ≤
∑
β �=α

wβ1
(
Nα

β,a �= dβ

) + |w|B

for all {a, b} ⊂ Sα with |b − a| = 1,

(27)

for all w = (w1, . . . ,wm) ∈ (0,∞)m and all d = (d1, . . . , dm) ∈ Z
m. If the counts have Property

(B,≥, α) (resp. (B, �=, α)) for all α ∈ [m], then they are said to have Property (B,≥) (resp.
(B, �=)).

For � ∈ {≥, �=} we say that a collection of configurations has Property (B, �) when their cor-
responding occupancy counts do.

The following claims are immediate.

1. For given α ∈ [m], counts (24) have Property (B,≥, α) and (B, �=, α) if∣∣{β : β �= α,Nα
β,a �= Nα

β,a+1

}∣∣ ≤ B whenever {a, a + 1} ∈ Sα. (28)

2. For given α ∈ [m], counts (24) have Property (0,≥, α) when

Nα
β,a+1 ≤ Nα

β,a for all {a, a + 1} ⊂ Sα and β �= α. (29)

3. For given α ∈ [m], if counts (24) have Property (B,≥, α) then∑
β �=α

wβ1
(
Nα

β,b ≥ dβ

) ≤
∑
β �=α

wβ1
(
Nα

β,a ≥ dβ

) + |w|B(b − a) (30)

for all {a, b} ⊂ Sα with a ≤ b, all w ⊂ (0,∞)m and d ∈ Z
m.
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Now let U be a configuration corresponding to an occupancy model M = (Mα)α∈[m], and for
all α ∈ [m] let Sα be the support of Mα , aα = infSα , and bα = supSα . For a ∈ Sα let

L
(
Vα

a

) := L(U |Mα = a). (31)

Theorem 2.1 is our main tool for the construction of bounded size biased couplings for Yge and
Yne for all applications other than those in Section 3.2. All constants B in the following, whose
value may change between different occurrences, are universal.

Theorem 2.1. Let U be a configuration corresponding to occupancy counts M = (Mα)α∈[m],
where for all α ∈ [m] the component Mα is lattice LC. Suppose that for all α ∈ [m] there exists
configurations {Uα

a , a ∈ Sα} on a common space satisfying

L
(
Uα

a

) = L
(
Vα

a

)
for all a ∈ Sα, (32)

where Vα
a is given by (31).

1. If {Uα
a , a ∈ Sα} has Property (B,≥) and aα > −∞ for all α ∈ [m], then there exists a

coupling of variables Y and Y s on the same space such that L(Y ) = L(Yge) and L(Y s) =
L(Y s

ge) satisfying

Y s ≤ Y + |w|(B|d − a| + 1
)
, (33)

where d − a = (dα − aα)α∈[m].
2. If {Uα

a , a ∈ Sα} has Property (B, �=) for all α ∈ [m], then there exists a coupling of variables
Y and Y s on the same space such that L(Y ) = L(Yne) and L(Y s) = L(Y s

ne) satisfying

Y s ≤ Y + |w|(B + 1). (34)

Proof of Theorem 2.1. We prove (33) first. Fix α ∈ [m] and let Nα with distribution L(Mα) be
defined on the same space as, and independent of, the configurations {Uγ

a , γ ∈ [m], a ∈ Sγ }.
By Corollary 2.1 one can construct Aα on the same space as Nα such that L(Nα + Aα) =
L(Mα|Mα ≥ dα) with 0 ≤ Aα ≤ dα − aα . In particular,

L(U |Mα ≥ dα) =
∑

a≥dα,a∈Sα

L
(
Vα

a

)
P(Mα = a|Mα ≥ dα)

=
∑

a≥dα,a∈Sα

L
(
Vα

a

)
P(Nα + Aα = a) = L

(
Vα

Nα+Aα

) = L
(
Uα

Nα+Aα

)
.

(35)

Clearly L(Uα
Nα

) = L(U) by (31) and (32). Let Nα and Nα
ge be the counts corresponding to Uα

Nα

and Uα
Nα+Aα

, respectively. Since, for all α ∈ [m], the configurations {Uα
a , a ∈ Sα} have Property

(B,≥, α) and 0 ≤ Aα ≤ dα − aα , we have∑
β∈[m]

wβ1
(
Nα

β,ge ≥ dβ

) −
∑

β∈[m]
wβ1

(
Nα

β ≥ dβ

)
≤ |w|(BAα + 1) ≤ |w|(B(dα − aα) + 1

) ≤ |w|(B|d − a| + 1
)
,

(36)
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where we applied observation (30), and where the factor +1 accounts for the maximum possible
change from 0 to 1 of the indicator associated to urn α.

Let I be a random index with distribution (12) defined with respect to the weighted indicators
in (3) summing to Yge, independent of all other variables, and set N = NI and Nge = NI

ge. Now,
for nonnegative integer counts n = (nα)α∈[m], setting

Y(n) =
∑

α∈[m]
wα1(nα ≥ dα), (37)

averaging (36) over α distributed as I we obtain

Y(Nge) ≤ Y(N) + |w|(B|d − a| + 1
)
.

The counts N have distribution L(M), as the same holds for Nα for all α ∈ [m], by virtue of
L(Uα

Nα
) = L(U). In particular Y = Y(N) has distribution L(Yge). By (35) the indicators Xα

β =
1(Nα

β,ge ≥ dβ) satisfy (10) with Xβ = 1(Mβ ≥ dβ), and Lemma 1.1 yields Y s = Y(Nge) has the
Yge-size biased distribution. The proof of (33) is now complete.

To prove (34), first recall that we have reduced to the case that P(Mα �= dα) < 1 for all α ∈ [m],
allowing us to invoke Part 3 of Lemma 2.1. Construct Z−, Z+ and Z as in the lemma, on the same
space as Mα , so that with Aα = ZZ+ − (1 − Z)Z− we have L(Mα + Aα) = L(Mα|Mα �= dα),
with −1 ≤ Aα ≤ 1. The proof proceeds in the same way as for (33).

Let Nα and Nα
ne be the counts corresponding to Uα

Nα
and Uα

Nα+Aα
, respectively. Since, for all

α ∈ [m], the configurations {Uα
a , a ∈ Sα} have Property (B, �=, α) and −1 ≤ Aα ≤ 1, we have∣∣∣∣ ∑

β∈[m]
wβ

(
1
(
Nα

β,ne �= dβ

) − 1
(
Nα

β �= dβ

))∣∣∣∣ ≤ |w|(B|Aα| + 1
) ≤ |w|(B + 1). (38)

Let I be an independent index with distribution (12) defined with respect to the weighted
indicators in (3) summing to Yne and set N = NI and Nne = NI

ne. Then with Y(n) given by (37)
with ≥ replaced by �=, we have L(Y (N)) = L(Yne) and, by Lemma 1.1, that L(Y (Nne)) = L(Y s

ge).
Now averaging (38) over I yields∣∣Y(Nne) − Y(N)

∣∣ ≤ |w|(B + 1),

and the desired conclusion. �

The following lemma is helpful in verifying that the conditions of Theorem 2.1 are in force
when the configurations U corresponding to the occupancy counts M are given in terms of inde-
pendent Bernoulli variables.

Lemma 2.4. Let X = (Xα)α∈[m] be a collection of independent Bernoulli random variables with
respective success probabilities p1, . . . , pm ∈ (0,1), and let R = ∑

α∈[m] Xα . Then there exists
{Xa, a ∈ [m]0} defined on a common space such that, for a ∈ [m − 1]0,

L(Xa) = L(X |R = a) and Xa ≤Xa+1 with probability one, (39)

where for {x,y} ⊂ {0,1}m we write x ≤ y when xi ≤ yi for all i ∈ [m].
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Proof. Recall that the density p(n) of an integer valued random variable is a Pólya frequency
function of order 2 (or simply, is PF2; see [47]) when∣∣∣∣p(m1 − n1) p(m1 − n2)

p(m2 − n1) p(m2 − n2)

∣∣∣∣ ≥ 0 for all m2 ≥ m1 and n2 ≥ n1.

For φ(y1, . . . , ym) a coordinatewise non-decreasing function of (y1, . . . , ym) ∈ R
n, [19], Sec-

tion 3, shows that if Y1, . . . , Ym are independent integer valued random variables with PF2 densi-
ties then E(φ(Y1, . . . , Ym)|Y1 +· · ·+Ym = a) is a non-decreasing function of a. As the Bernoulli
density is PF2, we find in particular that

E
(
φ(X1, . . . ,Xm)|R = a

) ≤ E
(
φ(X1, . . . ,Xm)|R = a + 1

)
for all a ∈ [m − 1]0, (40)

for φ a coordinatewise non-decreasing function on {0,1}m. See [10] for a simple proof of this
fact in the Bernoulli case.

Relation (40) is expressed in Definition 2.1 of [38] as Xa ≤ Xa+1 with probability one. Hence
by Theorem 2.4 of [38] there exists a distribution Qa(·, ·) on {0,1}m × {0,1}m for (V,W) such
that

L(V) = L(Xa), L(W) = L(Xa+1) and V ≤ W with probability one. (41)

(See [10] for a specific construction of the pair (V,W).)
With some slight abuse of notation, let Qa(·|·) denote the Qa(·, ·) conditional distribution of

the second argument given the first. Let X0 be the vector in {0,1}m with all coordinates equal
to 0, and for a = 1, . . . ,m, given Xa−1 let Xa be sampled from the conditional distribution
Qa(·|Xa−1). Clearly L(Xa) = L(X |R = a) for a = 0. Assuming this identity holds for a ∈
[m − 1]0, it holds also for a + 1, as L(Xa+1) is the conditional law Qa+1(·|Xa) averaged over
the distribution L(X |R = a), which equals L(X |R = a + 1) by construction.

Hence, the first property in (39) holds; the second is a consequence of the last relation in
(41). �

3. Applications

We now present in detail the three models mentioned in the Introduction, and use the construc-
tions in Section 2 to prove concentration bounds for each case. With the exception of the volume
of multi-way intersections in germ-grain models, the variables of interest are weighted occupancy
counts of the form

Yge =
∑

α∈[m]
wα1(Mα ≥ dα) and Yne =

∑
α∈[m]

wα1(Mα �= dα), (42)

although see the next paragraph for related random variables that can also be handled. Without
loss of generality we assume that all summands in (42) are non-constant, for if a summand
were constant then it could simply be subtracted from the corresponding Y and the number of
summands m decremented by one. Some consequences of this assumption are that all wα are
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strictly positive and, with Sα denoting the support of Mα , that infSα < dα < supSα + 1 for all
α ∈ [m] when considering Yge, and 0 < P(Mα �= dα) < 1 for all α ∈ [m] when considering Yne.

The concentration bounds we provide for variables of the form (42) also yield bounds for the
‘complementary’ sums∑

α∈[m]
wα1(Mα < dα) =

∑
α∈[m]

wα − Yge and
∑

α∈[m]
wα1(Mα = dα) =

∑
α∈[m]

wα − Yne,

with the mean μ = EY replaced by
∑

α∈[m] wα − μ and the roles of the right and left tails
reversed. In fact, all our results can be extended further, with essentially only a notational burden,
to random variables of the form

Y =
∑

α∈[m]
wα1(Mα �α dα) where �α ∈ {≥, �=},

and therefore, in like manner, to the sums of complementary form.
Lastly, we note that when Mα ∼ PB(pα) for each α ∈ [m], by (23) the means μge and μne of

Yge and Yne are given respectively, by

μge =
∑

α∈[m]
wαqge(dα,pα) and μne =

∑
α∈[m]

wαqne(dα,pα), (43)

where qge and qne are given by (23).

3.1. Degree counts in Erdős–Rényi type graphs

The classical Erdős–Rényi random graph on m vertices is constructed by placing an edge be-
tween each pair of distinct vertices independently and with equal probability. The model was
originally used in conjunction with the probabilistic method for proving the existence of graphs
with certain properties (see [1]) and has been popular more recently for modeling complex net-
works (e.g., [14]).

The classical Erdős–Rényi graph with constant connectivity p has been the object of much
study. Asymptotic normality of the number of vertices of degree d was shown in [33] when
m(d+1)/d → ∞ and mp → 0, or mp → 0 and mp − logm − d log logm → −∞. Asymptotic
normality when mp → c > 0 was obtained in [7]. Optimal bounds in the Kolmogorov metric can
be found in [36] and [26]. Other univariate results on asymptotic normality of counts on random
graphs are given in [31], and references therein. Smooth function bounds were obtained in [28]
for the vector whose k components count the number of vertices of fixed degrees d1, d2, . . . , dk

when p = θ/(m − 1) ∈ (0,1) for fixed θ , implying asymptotic multivariate joint normality. This
work was later extended in [39] to the inhomogeneous random graph model which will be the
setting in the current paper.

Here we consider graph degree counts when the likelihood of an edge may depend on the
identity of the vertices it connects. Formally, let Gm be an Erdős–Rényi random graph on the
vertices [m], where the presence of an edge joining distinct vertices α and β is recorded by the
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indicator X{α,β} with success probability p{α,β}, with all such indicators independent. We set
p{α,α} = 0 for all α ∈ [m], making all Xα,α identically zero. The classical model is recovered by
setting p{α,β} = p for some p ∈ [0,1] for all α �= β .

For Yge, with similar remarks applying to Yne, by removing any edge {α,β} with p{α,β} = 1
and decrementing each of the two thresholds dα, dβ by one we may assume that p{α,β} < 1 for all
(α,β) ∈ [m]× [m]. Having also reduced to the case where all the indicators in (42) are nontrivial
allows us to assume that

∑
β:β �=α p{α,β} > 0 for all α ∈ [m].

Let the components Mα of M = (Mα)α∈[m] record the degree of vertex α, that is, Mα =∑
β∈[m] X{α,β}. By the definition (22), Mα ∼ PB(pα) with pα = (p{α,β})β:β �=α . By (23) the

means μge and μne of Yge and Yne have the form (43). With |w| and |d| as in (25), let

cge = |w|(|d| + 1
)

and cne = 2|w|. (44)

Theorem 3.1. Concentration of measure inequalities (5)–(8) hold for counts Yge and Yne given
by (42) in Gm for all m ≥ 1, with corresponding μ and c given by (43) and (44).

Theorem 3.1 is a direct consequence of the following lemma.

Lemma 3.1. In the Gm model there exists a coupling of Yge to Y s
ge, having the Yge-size biased

distribution, that satisfies Y s
ge −Yge ≤ cge, and a coupling of Yne to Y s

ne, having the Yne-size biased
distribution, satisfying Y s

ne − Yne ≤ cne.

Proof. In this model, we take the configuration

U = {
X{γ,δ}, {γ, δ} ⊂ [m]},

the collection of the independent Bernoulli edge indicator variables of the graph Gm. As the
corresponding counts M have LC marginal distributions with supports Sα satisfying infSα = 0,
in order to invoke Theorem 2.1 it is only required to show that for all α ∈ [m], configurations
{Uα

a , a ∈ [m]} exist with Properties (1,≥) and (1, �=) satisfying (32).
With a ∈ Sα and Vα

a as in (31), by independence we obtain

L
(
Vα

a

) = L(U |Mα = a) = L
(
X{γ,δ}, {γ, δ} ⊂ [m]|Mα = a

)
= L

(
X{γ,δ}, {γ, δ} ⊂ [m]

∣∣∣ ∑
δ∈[m]

X{α,δ} = a

)

= L
(

X{α,δ}, δ ∈ [m]
∣∣∣ ∑
δ∈[m]

X{α,δ} = a

)
×L

(
X{γ,δ}, {γ, δ} �
 α

)
,

where here × denotes product measure.
On the same space and independently of U and of each other over α ∈ [m], let

X α
a = {

Xα{α,δ},a, δ ∈ [m]}, a ∈ [m]
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be the collections of Bernoulli variables guaranteed by Lemma 2.4 when taking (Xα)α∈[m] in the
lemma to be (X{α,δ})δ∈[m]. In particular

L
(
Xα{α,δ},a, δ ∈ [m]) = L

(
X{α,δ}, δ ∈ [m]

∣∣∣ ∑
δ∈[m]

X{α,δ} = a

)
,

and setting Uα
a = {Xα{α,δ},a, δ ∈ [m],X{γ,δ′}, {γ, δ′} �
 α}, we obtain L(Uα

a ) = L(Vα
a ).

Again by Lemma 2.4, with a + 1 ∈ Sα , the Bernoulli variables equal to one in the collection
X α

a+1 are those equal to one in X α
a , with one additional variable. The configurations Uα

a and
Uα

a+1 therefore correspond to graphs Gα
m,a and Gα

m,a+1, where the edge set of the latter is that of
the former plus exactly one additional edge attached to vertex α. In particular, the corresponding
counts Nα

a and Nα
a+1 agree in all but coordinate α and one additional coordinate. Hence, (28) is

satisfied with B = 1, implying that the configurations {Uα
a , a ∈ [m]} have both Properties (1,≥)

and (1, �=), thus completing the proof. �

In the standard case of equal thresholds dα = d and unit weightings, the expectations (43) of
Yge and Yne simplify to

μge = mP
(
Bin(m − 1,p) ≥ d

)
and μne = mP

(
Bin(m − 1,p) �= d

)
, (45)

respectively, and the bounds (5)–(8) apply to Yge with c = d + 1, and for Yne with c = 2. In
particular, (5) and (8) yield that, for all t > 0,

P(Yge − μge ≤ −t) ≤ exp

(
− t2

2(d + 1)μge

)
and

P(Yge − μge ≥ t) ≤ exp

(
− t2

2(d + 1)(μge + t/3)

)
.

(46)

The special case of the number of isolated vertices

Yis =
∑

α∈[m]
1(Mα = 0)

for the standard Erdős–Rényi model was handled in [25], using an unbounded size bias coupling,
and with much greater effort. Techniques of the present paper can be used to obtain concentration
bounds for Yis in a much simpler way by noting that m − Yis = Yge under unit weightings and
equal thresholds dα = 1. In particular, the bounds (46) hold with Yis −μis replacing Yge −μge and
setting d = 1, reversing the roles of the left and right tail bounds, and replacing μge by m − μis.
The left tail bound obtained in this fashion is stronger than the corresponding bound

P(Yis − μis ≤ −t) ≤ exp

(
− t2

4μis

)
,

given in [25], for t ≤ 6m(1 − p)m−1 − 3m, with similar remarks applying to the right tail.
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Although the unbounded size bias coupling argument given in [25] applies only to the case of
isolated vertices, Theorem 3.1 applies equally for all degrees d . In particular, keeping p and d

fixed and letting m → ∞, the left and right tail bounds for Yge provided by (5) and (8), say, will
behave as exp(−t2/(2(d + 1)m)) and exp(−t2/(2(d + 1)(m + t/3))), respectively.

A well studied asymptotic is the case where d is fixed and mp → λ for some λ > 0 so that for
large m, the distribution Bin(m − 1,p) is close to a Poisson random variable with parameter λ.
Here focusing on the statistic Yge = ∑

α∈[m] 1(Mα ≥ 1) for simplicity, the mean satisfies μge →
m(1−e−λ), and the resulting left and right tail bounds are asymptotic to exp(−t2/(4m(1−e−λ)))

and exp(−t2/(4m(1− e−λ)+4t/3)), respectively, as m → ∞. Comparisons of these tail bounds
with other techniques from the literature will be discussed in detail in Section 4.

3.2. Germ-grain models

Germ-grain models consist of sets (grains) placed at centers (germs) determined by a random
point process in some multidimensional space. These models are used in applications including
forestry [49], material science [2] and wireless sensor networks [17]. For concreteness, here
we consider models on the space Cn = [0, n1/p)p ⊂ R

p , equipped with the Euclidean toroidal
distance D.

In the models considered in this section, a configuration V is given by a collection (vα)α∈[m]
of points in Cn, and each point vα is associated with a closed ball Bα centered at vα with positive
radius ρα . We let U consist of points U1, . . . ,Um sampled independently in Cn with strictly
positive densities f1(x), . . . , fm(x) in Cn, respectively. The positivity condition on the densities
are assumed for convenience, as along with (48) in Section 3.2.1, and (62) in Section 3.2.2,
respectively, it implies that the support is [m]0 for the number M(x,U) of intersections of U at
a point x ∈ Cn, defined below in (47), and support [m − 1]0 for the number Mα of neighbors of
Uα , α ∈ [m], defined below in (61).

3.2.1. Volume of multi-way intersections in germ-grain models

For a point x ∈ Cn and a configuration V , let

M(x,V) =
∑

α∈[m]
1(x ∈ Bα), (47)

the number of balls Bα that contain the point x in the configuration V . In this subsection, we
make the assumption that n is large enough that

√
pn1/p > 2

∑
α∈[m]

ρα. (48)

Under (48) there exist (vα)α∈[m] ⊂ Cn such that Bα ∩Bβ =∅ for all α �= β , implying the support
of M(x,U) is [m]0.
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For a fixed measurable function d : Cn → [m] and f ∈ [m] let

1x,ge(V) = 1
(
x ∈ Bge

(
d(x),V

))
where Bge(f,V) =

⋃
r⊂[m]
|r|≥f

⋂
α∈r

Bα. (49)

Hence, dropping the dependence on V unless clarity demands it, 1x,ge = 1 if and only if x is
contained in at least d(x) of the balls Bα,α ∈ [m]. Further, emphasizing dependence on the
function d by writing 1x,d = 1x,ge, the indicators

1x,eq = 1x,d − 1x,d+1 and 1x,ne = 1 − 1x,eq

take the value 1 if x is, and is not, contained in exactly d(x) of the balls Bα,α ∈ [m], respectively.
In particular, given a nonnegative, bounded function w(x) over Cn,

Yge(V) =
∫

Cn

w(x)1x,ge(V) dx and Yne(V) =
∫

Cn

w(x)1x,ne(V) dx (50)

are the volumes, weighted by w(x), of the collection of points x in Cn contained in at least d(x)

balls, and some number of balls other than d(x), respectively. When w(x) = 1 the variables in
(50) are the volumes of the sets of points x ∈ Cn that are part of d(x) way intersections, and
intersections of size other than d(x), respectively.

Letting

pα(x) = P
(
D(x,Uα) ≤ ρα

)
, α ∈ [m], (51)

the variable M(x,U) of (47) has the Poisson Binomial distribution PB(p(x)). As, for instance,
{x ∈ Bge(x,V)} = {M(x,V) ≥ d(x)}, we may write

Yge(V) =
∫

Cn

w(x)1
(
M(x,V) ≥ d(x)

)
dx and

Yne(V) =
∫

Cn

w(x)1
(
M(x,V) �= d(x)

)
dx

(52)

whose expectations when V = U are given respectively by

μge =
∫

Cn

w(x)qge
(
d(x),p(x)

)
dx and μne =

∫
Cn

w(x)qne
(
d(x),p(x)

)
dx. (53)

The size biased couplings for the germ-grain models in this subsection and the following one
are simple extensions of those in Section 4 of [27]. There are three differences between the
present case and that of [27]. First, in that previous work one considers only d(x) = 1 for all x ∈
Cn for the covered volume. Next, U1, . . . ,Um were taken in [27] to have the uniform distribution
over Cn, and lastly the radii ρα were set to some fixed ρ for all α ∈ [m]. The imposition of these
conditions result in various simplifications in [27], which the following outline generalizes in
these aspects.
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Let U0 be sampled independently of U with density f0(x) = w(x)1(x ∈ Cn)/w where w =∫
Cn

w(x)dx, and for u ∈ Cn consider the event F(u) = {M(u,U) ≥ d(u)} that the point u lies
in a d(u) way intersection. Then, in view of (52), it is easy to see that Yge(U) = wP(F(U0)|F)

where F is the σ -algebra generated by {Uα,α ∈ [m]}. Hence, by (9), E(Yge(U)|F(U0)) has the
Yge(U) size biased distribution. In particular, letting Y s

ge denote a variable with the Yge(U)-size
biased distribution, we have that

L
(
Yge

(
U0)) = L

(
Y s

ge

)
where L

(
U0) = L

(
U |F(U0)

)
, (54)

that is, the law of U0 is that of the configuration U conditioned on the event that the additional
randomly chosen point U0 lies in a d(U0) way intersection.

In the following, for α ∈ [m], u ∈ Cn and i ∈ {0,1} let fα,u,i be the distributions specified by

fα,u,0(E) = P
(
Uα ∈ E|D(Uα,u) > ρα

)
and

fα,u,1(E) = P
(
Uα ∈ E|D(Uα,u) ≤ ρα

)
.

(55)

With the given weight, threshold functions w(x), d(x) and radii (ρα)α∈[m], let

|w| = sup
x∈Cn

∣∣w(x)
∣∣, |d| = sup

x∈Cn

∣∣d(x)
∣∣ and |ρ| = max

α∈[m]ρα,

and with πp the volume of the unit ball in R
p , let

cge = πp|w||d||ρ|p and cne = πp|w||ρ|p. (56)

Theorem 3.2. Concentration of measure inequalities (5)–(8) hold for all m ≥ 1 for the volume
covered by multi-way intersections in the germ-grain model described above, with Y , μ and c

given by (50), (53) and (56).

Again, Theorem 3.2 follows from the following bounded coupling construction.

Lemma 3.2. In the germ-grain model described above there exists a coupling of Yge to Y s
ge,

having the Yge-size biased distribution, that satisfies Y s
ge ≤ Yge + cge, and a coupling of Yne to

Y s
ne, having the Yne-size biased distribution, satisfying Y s

ne ≤ Yne + cne.

Proof. As for any event E we have

P
(
E|F(U0)

) = P(E,F (U0))

P (F (U0))
=

∫
Cn

P (E,F (u))

P (F (u))

P (F (u))

P (F (U0))

w(u)

w
du,

we see L(U |F(U0)) of (54) is the mixture

L
(
U |F(U0)

) =
∫

Cn

L
(
U |F(u)

)
w̃(u) du where w̃(u) = P(F(u))

P (F (U0))

w(u)

w
. (57)
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Hence, we sample Ũ on Cn with density w̃(u), and for Ũ = u, construct a configuration U with
law L(U |F(u)) in order to achieve L(U |F(U0)); see Lemma 2.3 of [4] regarding size biasing
mixture distributions.

For u ∈ Cn let (Xα,u)α∈[m] be independent Bernoulli variables with success probabilities
(pα(u))α∈[m] as given in (51), and for a ∈ [m]0, let

P(X1,u,a = i1, . . . ,Xm,u,a = im) = P

(
X1,u = i1, . . . ,Xm,u = im

∣∣∣ ∑
α∈[m]

iα = a

)
(58)

and

Xa = {
Xα,u,a, α ∈ [m]}, a ∈ [m]0

be the collection of Bernoulli variables guaranteed by Lemma 2.4 for the vector of success prob-
abilities (pα(u))α∈[m].

For α ∈ [m] let Uα;0 and Uα;1 have distributions fα,u,0 and fα,u,1 respectively, as specified
in (55). Then for a ∈ [m]0, writing Uα,a = Uα;Xα,u,a

and letting Bα,a be the ball of radius ρα

centered at Uα,a , the configuration Ua = {Uα,a,α ∈ [m]} satisfies L(Ua) = L(U |M(u,U) = a).
Let Nu be constructed on the same space with distribution L(M(u,U)). Applying Corol-

lary 2.1 to M(u,U), we obtain Au satisfying

L(Nu + Au) = L
(
M(u,U)|F(u)

)
with 0 ≤ Au ≤ d(u).

Denoting the underlying configurations corresponding to Nu and to Nu + Au, by UNu and
UNu+Au , respectively, we have L(UNu+Au) = L(U |F(u)). Since Ũ = u was sampled according
to density w̃(u), by (57) for the second identity, letting N = N

Ũ
and A = A

Ũ
,

L(UN) = L(U) and L(UN+A) = L
(
U |F(U0)

)
.

By (54), Y s
ge = Yge(UN+A) has the Yge = Y(UN) size biased distribution.

Note that (39) of Lemma 2.4 implies that for a ∈ [m − 1]0 the indicators Xa+1 and Xa are
equal, but for one index, say βa , such that Xβa,U0,a = 0 and Xβa,U0,a+1 = 1. Hence, the config-
urations Ua and Ua+1 are the same but for the one point indexed by βa . Therefore, with Bge,a
given by (49) with Bα replaced by Bα,a ,

1x,ge(Ua+1) ≤ 1x,ge(Ua)1
(
x /∈ Ba+1

βa

) + 1
(
x ∈ Ba+1

βa

) ≤ 1x,ge(Ua) + 1
(
x ∈ Ba+1

βa

)
, (59)

implying by (50) that

Yge(Ub) =
∫

Cn

w(x)1x,ge(Ub) dx ≤ Yge(Ua) + πp|w|(b − a)|ρ|p (60)

for b = a + 1, and hence for all 0 ≤ a ≤ b ≤ m. In particular,

Y s
ge = Yge(UN+A) ≤ Yge(UN) + πp|w|A|ρ|p ≤ Yge(UN) + πp|w||d||ρ|p = Yge + πp|w||d||ρ|p,

thus verifying the claim for Yge.
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To handle Yne, with N as before satisfying L(N) = L(M(U0,U)), construct A as in Part 3 of
Lemma 2.1, so that −1 ≤ A ≤ 1 and

L(N + A) = L
(
M(U0)|M(U0,U) �= d(U0)

)
.

Arguing as before, we have that Y s
ne = Yne(UN+A) has the Yne = Y(UN)-size biased distribution.

As the configurations Ua and Ua+1 differ only at the point indexed by βa , with 
 denoting the
symmetric difference of sets, as in (59) one has

1x,ne(Ua) ≤ 1x,ne(Ub) + 1
(
x ∈ Ba

βa∧b

Bb

βa∧b

)
for |a − b| ≤ 1, {a, b} ⊂ [m].

As |A| ≤ 1,

Y s
ne = Yne(UN+A) ≤ Yne(UN) + πp|w||A||ρ|p ≤ Yne + πp|w||ρ|p,

thus verifying the claim for Yne. �

3.2.2. Number of neighbors in germ-grain models

In this section, we consider the occupancy model M(V) = (Mα(V))α∈[m], based on the configu-
ration V = (vα)α∈[m], with components

Mα(V) =
∑

β∈[m]\{α}
1(Bα ∩ Bβ �=∅), (61)

where Bα is the closed unit ball centered at vα,α ∈ [m]. That is, Mα counts the number of
neighbors of vα , where we say vα and vβ are neighbors, and write vα ∼ vβ , when α �= β and
Bα ∩ Bβ �= ∅. The variables Yge and Yne are again given as in (42) for V = U , and are the
weighted sums of the contributions from points Uα of U that have at least dα neighbors, and
a number other than dα neighbors, respectively. We drop the dependence on V unless clarity
demands it.

Suppressing the dimension p in our notation, in this section, we specialize to the unit radius
ρα = 1 case in order to allow Lemma 3.3 below to yield a bound on our coupling in simple terms
of classical geometric constants related to the ‘kissing numbers’ κ∗

1 ; see [15] and [56]. With B0
the closed unit ball of radius one centered at the origin, the constant κ∗

1 is the maximum number
of closed unit balls in R

p that can be packed so that their closures intersect B0, with all balls
having disjoint interiors. The related constant κ1 arises below, which is the maximum number of
unit balls that can be packed so that they all intersect B0, but are disjoint from each other. The
value of κ1 is a lower bound on κ∗

1 . In two dimensions κ1 = 5 and κ∗
1 = 6, though κ1 = κ∗

1 = 12 in
three dimensions and it seems likely the equality holds much more generally. In the subsection,
we assume n is large enough so that

√
pn1/p > 2m and n1/p > 6, (62)

the first inequality being (48) specialized to the unit radius case, and the second imposed so that
Lemma 3.3 may be invoked over Cn.
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For A ⊂ {1,2, . . .} and d = (dα)α∈A a bounded collection of positive integers, let κd be the
maximum value of k ≥ 0 such that there exists � ⊂ A of size k and a set of points V = (vα)α∈�

in R
p such that

Bα ∩ B0 �= ∅ and
∑

γ∈�\{α}
1(Bα ∩ Bγ �= ∅) = dα − 1 for all α ∈ �,

with v0 the origin, and Bα the unit ball centered at vα . That is, the constant κd is the maximum
size of a set � of points in R

p such that the number of neighbors of the points in the set �, among
the points indexed by � ∪ {0}, drops from dα to dα − 1 (increases from dα − 1 to dα) upon the
removal (insertion) of the unit ball at the origin. If dα = 1 for all α ∈ A, then κd = κ1. Let d(α)

be the values of dα in a non-strict decreasing order, that is,

d(1) ≥ d(2) ≥ · · · .

Lemma 3.3. In R
p for any dimension p ≥ 1,

κd ≤ σd where σd =
∑

α∈[κ1]
d(α),

and the bound is achieved when there exists a pairwise disjoint collection of indices Qα ⊂ A,
α ∈ [κ1], with |Qα| = d(α) such that dβ = d(α) for all β ∈ Qα .

Proof. To show the upper bound, let V = (vα)α∈� , � ⊂ A, be an arbitrary collection of points in
R

p such that, for all α ∈ �, the closed unit ball around vα intersects the closed unit ball around
the origin and has exactly dα − 1 neighbors in V . As the numbers (dα)α∈A are bounded, the set
V is finite. Let R be a subset of V of maximal size with the property that the closed unit balls
centered at the points of R are pairwise disjoint. By the maximality of R, each point in V \ R
must be a neighbor of at least one point in R, implying that V is the union of R and those points
of V that are a neighbor of some point of R. Hence,

V =
⋃
v∈R

(
{v} ∪

⋃
w∈V :w∼v

{w}
)

.

As the point vα ∈ V has dα − 1 neighbors in V , and as |R| can be at most κ1, we obtain

|V| ≤
κ1∑

α=1

dα ≤
κ1∑

α=1

d(α) = σd.

Taking supremum over all such collections (vα)α∈A we obtain the inequality κd ≤ σd.
We now show that the bound is achieved when d satisfies the given condition. By definition

of κ1, there exists a collection of points vα , α ∈ [κ1], in R
p such that the closed unit balls Bα ,

α ∈ [κ1] around each point intersect the closed unit ball B0 at the origin, but no other ball Bβ,β ∈
[κ1] \ {α}. Now consider the collection of σd unit balls consisting of d(α) copies of the unit ball
with center uα , for each α ∈ [κ1]. Each of the d(α) balls with center at uα has d(α) neighbors
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when the closed unit ball at the origin is included, but d(α) − 1 neighbors when it is not. Hence
for such d, we achieve κd ≥ ∑κ1

α=1 d(α) = σd. �

We prove concentration for the neighborhood counts Yge and Yne by showing that bounded
size bias couplings for these variables exist with respective bounds

cge = |w||d|(σd + 1) and cne = |w|(σd + σd+1 + 1), (63)

where |d| and |w| are as in (25) for given threshold and weight vectors, and where d + 1 denotes
the vector (dα + 1)α∈[m].

Noting that the case m = 1 is trivial, for m = 2 we have Yge ≤ 2|w|, hence Y s
ge is also so upper

bounded, and the inequality Y s
ge ≤ Yge + cge holds trivially, with similar remarks applying to Yne.

Hence, we may assume in the remainder of this section that m ≥ 3. Under (62) it is not difficult
to see that the constant κ1 computed over Cn is the same as that over Rp , and Lemma 3.3 holds
over Cn as well.

For β �= α and x ∈ Cn, letting

pβ(x) = P
(
D(x,Uβ) ≤ 2

)
, (64)

we have that the conditional law L(Mα|Uα = x) is Poisson Binomial PB(pα(u)) where pα(u) =
(pβ(u))β∈[m]\{α}, and Yge and Yne have expectations given respectively by

μge =
∑

α∈[m]
wα

∫
Cn

qge
(
dα,pα(u)

)
fα(u)du and

μne =
∑

α∈[m]
wα

∫
Cn

qne
(
dα,pα(u)

)
fα(u)du.

(65)

Theorem 3.3. Concentration of measure inequalities (5)–(8) hold for all m ≥ 1 for Yge and Yne
as in (42), computed on the neighbor count vector (61) for the germ-grain model, with corre-
sponding μ and c given respectively, by (65) and (63).

Proof. First, we show that there exists a coupling of Yge to Y s
ge, having the Yge-size biased

distribution, that satisfies Y s
ge ≤ Yge + cge. To do so, for each α ∈ [m] we apply the reasoning in

the proof of Lemma 3.2, replacing m and U0 there by m − 1 and Uα . In particular, upon that
replacement (57) becomes

L
(
U |Mα(U) ≥ dα

) =
∫

Cn

L
(
U |Mα,u(U) ≥ dα

)
f̃α(u) du

where f̃α(u) = P(Mα,u(U) ≥ dα)

P (Mα(U) ≥ dα)
fα(u),

(66)

where Mα,u(U) is given by (61) with Bα replaced by the unit ball centered at u ∈ Cn. Hence,
we sample Ũα on Cn with density f̃α(u), and for Ũα = u, construct a configuration U with law
L(U |P(Mα,u(U) ≥ dα)) in order to achieve L(U |P(Mα(U) ≥ dα)).
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Continuing to follow the proof of Lemma 3.2, for each α ∈ [m] and a ∈ [m − 1]0 we obtain
coupled configurations

Uα
a = {

Uα
β,a, β ∈ [m]} satisfying L

(
Uα

a

) = L(U |Mα = a),

where Uα
α,a = u for all α ∈ [m], and where Uα

a and Uα
a+1 differ in only one point indexed by, say,

βα , where βα �= α. We will say Uα
βa,a was removed from the configuration, into which Uα

βa,a+1
is inserted.

Let Nα,u be constructed on this same space with distribution L(Mα,u(U)). Applying Corol-
lary 2.1 to Mu,α = Mα,u(U), we obtain Aα,u satisfying

L(Nα,u + Aα,u) = L(Mα,u|Mα,u ≥ dα) with 0 ≤ Aα,u ≤ dα. (67)

Recalling that u was chosen with density f̃α(u), and letting Nα and Aα denote Nα,u and Aα,u

respectively for notational simplicity, by L(Nα) = L(Mα,u(U)) and (66), as in Lemma 3.2 we
have

L
(
Uα

Nα

) = L(U) and L
(
Uα

Nα+Aα

) = L
(
U |Mα(U) ≥ dα

)
, (68)

where Uα
Nα

and Uα
Nα+Aα

are configurations corresponding to Nα and Nα + Aα , respectively.
Let Nα

a = (Nα
β,a)β∈[m] be the occupancy counts corresponding to Uα

a and write Yge(V) for
(42) evaluated on the configuration V . By the second identity in (68), the indicators Xα

β =
1(Nα

β,Nα+Aα
≥ dβ) satisfy (10) with Xβ = 1(Nα

β,Nα
≥ dβ). Hence, by Lemma 1.1, with I in-

dependent of all other variables with distribution (12), Y s
ge = Yge(U I

NI +AI
) has the Yge = Y(U I

NI
)

size biased distribution. The first identity in (68) shows that L(U I
NI

) = L(U).
As the removal of Uα

βa,a from Uα
a can only decrease the number of its neighbors in the con-

figuration Uα
a+1, increases in occupancy counts for the configuration Uα

βa,a+1 over their values
in Uα

a can occur only for the point Uα
βa,a+1, taking the place of Uα

βa,a , and its set of neighbors.
However, with Uα

βa,a+1 playing the role of the origin in Lemma 3.3, its insertion into the point
set {Uα

β,a : β �= βa} can increase at most σd of the counts Nα
β,a , β �= βa , of former value dβ − 1

to counts Nα
β,a+1 of value dβ . Hence, also accounting for the possible change of the count at the

point indexed by βa , we have

|Na+1| ≤ σd + 1 where Na+1 = {
β ∈ [m] : 1

(
Nα

β,a ≥ dβ

) = 0,1
(
Nα

β,a+1 ≥ dβ

) = 1
}
,

and therefore∑
β∈[m]

wβ1
(
Nα

β,a+1 ≥ dβ

) =
∑

β /∈Na+1

wβ1
(
Nα

β,a+1 ≥ dβ

) +
∑

β∈Na+1

wβ1
(
Nα

β,a+1 ≥ dβ

)

≤
∑

β /∈Na+1

wβ1
(
Nα

β,a ≥ dβ

) + |w||Na+1|

≤
∑

β∈[m]
wβ1

(
Nα

β,a ≥ dβ

) + |w|(σd + 1).



3308 J. Bartroff, L. Goldstein and Ü. Işlak

Now, by (67),

Yge
(
Uα

Nα+Aα

) ≤ Y
(
Uα

Nα

) + |w|Aα(σd + 1) ≤ Y
(
Uα

Nα

) + |w||d|(σd + 1),

and mixing over α yields

Y s
ge = Yge

(
U I

NI +AI

) ≤ Y
(
U I

NI

) + |w||d|(σd + 1) = Yge + |w||d|(σd + 1),

verifying the claim for Yge.
Next, we show that there exists a coupling of Yne to Y s

ne, having the Yne-size biased distribution,
satisfying Y s

ne ≤ Yne + cne, where cge and cne are given by (63). The construction for Yne will be
similar, the only difference being that the initial removal of Uα

βa,a can cause σd counts to drop
from dα to dα − 1, while the insertion of Uα

βa,a+1 can cause σd+1 counts of value dα to rise to
dα + 1. Hence in this case we obtain, as claimed,∑

β∈[m]
wβ1

(
Nα

β,a+1 �= dβ

) ≤
∑

β∈[m]
wβ1

(
Nα

β,a �= dβ

) + |w|(σd + σd+1 + 1).
�

When all points are uniformly distributed over Cn, fβ(u) = 1/n and the probability pβ(u) in
(64) is the constant 2pπp/n for all u ∈ Cn, where πp is the volume of the unit ball in dimen-
sion p. Hence with weights wα = 1 for all α ∈ [m], we obtain

μge = mP(Mα ≥ d) = mP
(
Bin

(
m − 1,2pπp/n

) ≥ d
)
,

with similar remarks applying to μne.

3.3. Multinomial occupancy

Among the many applications of multinomial occupancy models, in which n balls are distributed
independently to m urns (see [35] for an overview), are the well-known species trapping prob-
lem (see [11,45], or [50]) and the closely-related problem of statistical linguistics (see [20] and
[54]). The study of the number of empty urns, or equivalently the d = 1 case of Yge in (2), was
initiated in [44] and [55] where it was shown that the properly standardized distribution of Yge is
asymptotically normal when balls land in urns uniformly. Bounds in the L∞ metric between the
standard normal distribution and standardized finite sample distribution of the d = 1 case of Yge
was provided by [22] in the uniform case, for Yeq by [43] in the uniform and some non-uniform
cases, and for all d ≥ 2 for Yeq by [8] in the uniform case. Concentration of measure inequalities
for the number of empty urns were obtained in [18] by exploiting negative association, discussed
in Section 4.2.

For α ∈ [m] let the component Mα of the vector M = (Mα)α∈[m] count the number of balls in
urn α when n balls are independently distributed into m urns and for j ∈ [n] the location Lj of
ball j is urn α with probability pα,j . In particular,

Mα =
n∑

j=1

1(Lj = α). (69)
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As in Section 3.1, we may assume that pα,j < 1 for all (α, j) ∈ [m]× [n], that
∑n

j=1 pα,j > 0
for all urns α ∈ [m], and that each of the summand indicators of Yge and Yne in (42) is nontrivial.
With pα = (pα,j )j∈[n] we have Mα ∼ PB(pα) and, arguing as before, the means μge and μne
again have the form (43).

We may now summarize the main result of this subsection.

Theorem 3.4. Concentration of measure inequalities (5)–(8) hold for all m ≥ 1 for multinomial
occupancy counts,

1. with Yge,μge and cge given by (42), (43), and |w|,
2. with Yne, μne and cne given by (42), (43) and 2|w|.
Theorem 3.4 will follow immediately from Theorem 1.1 from the coupling construction pro-

vided by the next lemma.

Lemma 3.4. In the multinomial occupancy model there exists a coupling of Yge to Y s
ge, having

the Yge-size biased distribution, that satisfies Y s
ge ≤ Yge + |w|, and a coupling of Yne to Y s

ne,
having the Yne-size biased distribution, satisfying Y s

ne ≤ Yne + 2|w|.
Proof. The reasoning of Lemma 3.1 applies with only minimal changes. We take configurations
in this model to be

U = {
Lj , j ∈ [n]},

the collection of locations of all n balls. As for each α ∈ [m] the corresponding count Mα has a
LC marginal distribution with support Sα satisfying infSα = 0, in order to invoke Theorem 2.1 it
is only required to show that, for all α ∈ [m], configurations {Uα

a , a ∈ [m]} exist with Properties
(0,≥) and (1, �=) satisfying (32).

As in Lemma 3.1, through the use of Lemma 2.4, for each α ∈ [m] we obtain configurations
Uα

a with corresponding counts Nα
a = (Nα

β,a)β∈[m] such that

L
(
Uα

a

) = L(U |Mα = a) for all a ∈ [n]0

and, for all a ∈ [n − 1]0, Uα
a+1 differs from Uα

a by a single element, indexed by ja , say. As
Nα

α,a = a for all a ∈ [n]0, we must have that Lα
ja,a �= α and Lα

ja,a+1 = α, where Lα
j,a denotes the

location of ball j in configuration Uα
a . In particular, Nα

β,a+1 ≤ Nα
β,a for all β �= α, and so our

observation in (29) guarantees that the occupancy counts corresponding to {Uα
a , a ∈ [m]} have

Property (0,≥).
For Yne, with {a, b} ⊂ Sα satisfying |b − a| = 1, we note that the counts corresponding to the

configurations Uα
a and Uα

b differ only at two indices, one of which is α. Hence, these counts have
Property (1, �=) by (28). �

In the asymptotic regime most studied, balls are uniformly distributed, thresholds are constant
and the weights are taken to be identically 1. That is, pα,j = 1/m, wα = 1 and dα = d for each
α ∈ [m] and j ∈ [n]. For this special case, the expectations in (43) simplify to

μge = mP
(
Bin(n,1/m) ≥ d

)
and μne = m

(
1 − P

(
Bin(n,1/m) = d

))
, (70)
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and the concentration bounds obtained via size biasing can be used for Yge with c = 1, and for
Yne with c = 2.

The expectations in (70) are of a form similar to those of (45) for the standard Erdős–Rényi
model. Thus, by arguing as in Section 3.1 we can study in the same manner the behavior of the
bounds obtained here.

Remark 3.1 (Multivariate hypergeometric sampling). The techniques used here to construct a
bounded coupling can be modified to obtain concentration inequalities for another relevant model
where we have negative association. Let n be the sum of the given positive integers (nα)α∈[m],
and consider an urn containing n colored balls, nα of which are of color α. For s ∈ [n]0 let Mα

be the number of balls of color α obtained upon sampling s distinct balls uniformly from the urn
without replacement, and set M = (Mα)α∈[m]. Let Yge and Yne be as in (42).

Then, for all α ∈ [m] the distribution of Mα is hypergeometric, and the expected values of Yge

and Yne are, respectively,

μge =
∑

α∈[m]
wα

∑
j≥dα

q(j ;nα, s, n) and μne =
∑

α∈[m]
wα

∑
j �=dα

q(j ;nα, s, n), (71)

where

q(j ; k, �, i) =
(

k

j

)(
i − k

� − j

)/(
i

�

)
(72)

for values of j , k, �, i such that the quotient (72) is defined, setting q(j ; k, �, i) = 0 otherwise.
Moreover, it is shown in [21], Theorem A, that a hypergeometric random variable can be written
as a sum of independent but non-identically-distributed Bernoulli random variables, from which
we may conclude that the hypergeometric distribution is LC. Our techniques above then can be
modified to show that there exists a coupling of Yge to Y s

ge, having the Yge-size biased distribution,
that satisfies Y s

ge ≤ Yge + |w|, and a coupling of Yne to Y s
ne, having the Yne-size biased distribu-

tion, satisfying Y s
ne ≤ Yne + 2|w|. These couplings provide concentration of measure inequalities

where the means are given by (71). We omit the details.

4. Comparisons

In this section, we compare our results to concentration bounds obtained by other means. Our
comparisons will be with the following three well-known techniques: (i) McDiarmid’s Inequal-
ity, (ii) Use of negative association and (iii) Self Bounding and Certifiable functions. Of these
three, the last technique is the most comparable. For simplicity and concreteness, in most of our
comparisons below we will consider

Yge =
∑

α∈[m]
1(Mα ≥ d) (73)

with unit weighting and constant threshold count.
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4.1. McDiarmid’s inequality

One of the most useful concentration results is the McDiarmid, or bounded difference, inequality
which is a consequence of the Azuma–Hoeffding bound; see [5,30] and [40]. The inequality
applies to quantities Y that can be expressed as a function f (X1, . . . ,Xn) of independent random
variables X1, . . . ,Xn when, for all i ∈ [n], there exists a constant ci such that

sup
xi ,x

′
i

∣∣f (x1, . . . , xi, . . . , xn) − f
(
x1, . . . , x

′
i , . . . , xn

)∣∣ ≤ ci . (74)

Under these conditions, the inequality provides the right tail bound

P(Y − EY ≥ t) ≤ exp

(
− 2t2∑n

i=1 c2
i

)
, (75)

and a corresponding left tail bound.
Although the bounded difference inequality is powerful and easy to apply, the quantity∑n
i=1 c2

i on which it depends, obtained by taking supremums in (74) to estimate the worst-case
behavior of f , may not accurately reflect the concentration properties of f .

To take the simplest example, let Y have the Binomial distribution Bin(n,p). As Y can be
written as the sum of independent Bernoullis, inequality (74) is satisfied with ci = 1 and (75)
yields

P(Y − np ≥ t) ≤ exp

(
−2t2

n

)
. (76)

However, for the Binomial it is known (see [41], for instance) that the true decay rate is
exp(−t2/2np). In particular, use of (76) may not be adequate in situations where p is small.

Applying Lemma 1.1 to Y , represented as an independent sum of indicators, we find that Y s

can be formed by replacing any of the summand indicators by 1, yielding Y s ≤ Y + 1. Hence,
the bound (8) yields

P(Y − np ≥ t) ≤ exp

(
− t2

2(np + t/3)

)
for all t > 0,

which, specializing to the case p ∈ (0,1/4), improves on the Azuma–Hoeffding bound (76) in
the range 0 < t < 3n(1/4 − p), with upper range increasing to (0,∞) as n → ∞.

We now turn to the standard Erdős–Rényi random graph Gm on m vertices with fixed edge
probabilities p, as considered in Section 3.1, and let Yge be given by (73) where Mα is the de-
gree of vertex α. Clearly Yge can be written as a function f of n = (

m
2

)
independent indicators

X1, . . . ,Xn, where Xi denotes the presence of a given edge with respect to some fixed labeling.
As a change in any Xi affects the degree of exactly two vertices, f satisfies the bounded differ-
ences condition (74) with ci = 2 for each i = 1, . . . , n. Hence, (75) and the complementary left
tail inequality yield

max
{
P(Yge − μge ≤ −t),P (Yge − μge ≥ t)

} ≤ exp

(
− t2

m(m − 1)

)
, (77)
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where μge is given by (45). Comparing the left tail bounds of (77) with (46), we see the size bias
bound is preferred when

μge ≤ m(m − 1)/(2d + 2).

As μge ≤ m due to Y being the sum of m indicators, this inequality is always satisfied for
m ≥ 2d + 3, and we see that the order of the exponent is improved from O(−t2/m2) to
O(−t2/m). Similar improvements will also hold for the Erdős–Rényi type graph models with
inhomogeneous edge probabilities, which, depending on their values, can become even more
significant.

4.2. Negative association

Negative association has been used successfully to obtain concentration of measure inequalities
for occupancy models. We recall from [32] (see also [18] and [48]) that a family of random
variables X1,X2, . . . ,Xm is said to be negatively associated if for any disjoint subsets A1,A2 ⊂
[m],

E
(
f (Xi; i ∈ A1)g(Xj ; j ∈ A2)

) ≤ E
(
f (Xi; i ∈ A1)

)
E

(
g(Xj ; j ∈ A2)

)
whenever f and g are coordinate-wise nondecreasing functions for which these expectations
exist.

For the multinomial occupancy model of Section 3.3, the results of [32] show that the indicator
summands 1(Mα ≥ dα) of Yge are negatively associated. Referring to Proposition 7 of [18], when
X1,X2, . . . ,Xm are negatively associated indicators, the random variable Y = ∑m

i=1 Xi satisfies
the right tail bound of (7), and hence bounds (5) and (8) with c = 1. Thus, for this case, the
estimates obtained for the right tail via negative association are at least as good as the ones that are
obtained by using size biasing, with the same holding for the left tail. Indeed, Chernoff’s bound
for sums of independent random variables ([9], page 24) remains true for negatively associated
sums, indicating that one may have strict improvements over the size bias method.

However, none of the other statistics discussed here can be handled using negative association.
For instance, one cannot use negative association for our applications to random graphs and
germ-grain models in Sections 3.1 and 3.2. In particular, for the standard Erdős–Rényi random
graph, a simple application of Harris’ inequality shows that the summand variables of Yge are
positively associated.

Moreover, even for the multinomial occupancy model where negative association can be used
for Yge, the indicator summands in the multinomial occupancy count

Yne =
∑

α∈[m]
1(Mα �= dα)

are not negatively associated when the thresholds dα are not all 0. Hence, the method of [18]
no longer applies, while the methods in this paper are still valid. For instance, when dα = 1 for
each α ∈ [m] and balls are distributed uniformly, Part 2 of Theorem 3.4 yields that (7) holds with
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c = 2 and

μne = m
(
1 − P(M1 = 1)

) = m

(
1 − n

m

(
1 − 1

m

)n−1)
.

4.3. Self-bounding and certifiable functions

We have seen above that bounds produced by size biasing may improve on the bound (75) ob-
tained using the bounded difference inequality as it replaces the sum

∑n
i=1 c2

i by some function
of the mean of Y . Bounds produced by the method of self bounding functions [41], of which cer-
tifiable functions are a special case, also have this advantage. We focus on the latter, as it is more
straightforward to address the applications studied here in the framework of certifiable functions.

We begin by recalling the relevant definitions and results on certifiable functions from [41];
see also [9]. Let c > 0, a ≥ 0, and b be given, and let a nonnegative measurable function f on
the product space � = �n

i=1�i satisfy the following two conditions.

(i) For each x ∈ �, changing any coordinate xj changes the value of f (x) by at most c.
(ii) If f (x) = s then there is a set of coordinates C ⊂ [n] of size at most as + b that certifies

f (x) ≥ s. That is, if the coordinates i ∈ C of y ∈ � agree with those of x, then f (y) ≥ s.

Let X1, . . . ,Xn be independent random variables with Xi taking values in �i , Y =
f (X1, . . . ,Xn) where f satisfies (i) and (ii) above, and μ = EY . Then for all t ≥ 0,

P(Y − μ ≤ −t) ≤ exp

(
− t2

2c2(aμ + b + t/3c)

)
and

P(Y − μ ≥ t) ≤ exp

(
− t2

2c2(aμ + b + at)

)
.

(78)

Before moving to a discussion of specific examples, we note that the asymptotic Poisson order
O(exp(−t log t)) as t → ∞ of the bound (7) with c = 1 and μ = 1, is superior to the order
O(exp(−t)) of the bound (78) with c = 1 and a = 1/2, say, with similar types of improvement
in order holding for other choices of constants. The order of the bounds achieved by certifiable
functions, and self bounding functions more generally, seems to be intrinsic. Regarding using the
entropy method to prove concentration inequalities for self bounding functions, via log Sobolev
inequalities in particular, the authors of [9] note after the proof of Theorem 6.21 that, ‘At least
for a > 1, there is no hope to derive Poissonian bounds. . . for the upper tail’.

To focus on a specific example, consider the random graph model of Section 3.1, and let Yge
be given by (73) where Mα is the degree of vertex α and d ≥ 2. One can now easily show that
the statistic Yge is certifiable with c = 2, a = d and b = 0, though both the lower and upper tail
bounds (5) and (8) are superior to those obtained via (78).

Finally, we note that the Poisson tail concentration of measure inequalities of Theorem 1.1
will always provide further improvements over the bounds (5) and (8) applied in the previous
paragraphs. However, the form of these latter bounds, being simpler than that of (7), allow for an
easier comparison with (78), and although they are not the strongest bounds of those produced
by the size bias method, they still suffice to demonstrate the improvements claimed.
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Appendix: Monotonicity assumption

We prove that the monotonicity assumption that Y s ≥ Y assumed in [23] and [24] for the left tail
bound can be removed, and that only Y s ≤ Y + c is required for (5). First, we may assume that
Y is not almost surely constant as inequality (5) is trivially satisfied in that case. Since Y ≥ 0
a.s., for all θ < 0 the moment generating function m(θ) = E(eθY ) of Y exists in an open interval
containing θ and is differentiable at θ . Differentiating under the expectation by dominated con-
vergence and then applying the characterization of the size bias distribution (4), followed by an
application of the inequality 1 + x ≤ ex , we obtain

m′(θ) = E
(
YeθY

) = μE
(
eθY s ) = μE

(
eθY eθ(Y s−Y)

)
≥ μE

(
eθY

(
1 + θ

(
Y s − Y

))) ≥ μE
(
eθY (1 + θc)

) = μ(1 + θc)m(θ),
(79)

where we have used Y s − Y ≤ c and θ < 0. Rearranging terms in (79) yields

0 ≤ m′(θ) − μ(1 + θc)m(θ), (80)

and multiplying each side of (80) by e−μ(θ+cθ2/2) we see that

0 ≤ (
m(θ)e−μ(θ+cθ2/2)

)′ for all θ < 0. (81)

Integrating both sides of (81), and using m(0) = 1, yields

0 ≤
∫ 0

θ

(
m(x)e−μ(x+cx2/2)

)′
dx = 1 − m(θ)e−μ(θ+cθ2/2)

and hence

m(θ) ≤ eμ(θ+cθ2/2). (82)

Next letting M(θ) = E(eθ(Y−μ)) = e−μθm(θ) and applying (82), we obtain the bound

M(θ) ≤ e−μθeμ(θ+cθ2/2) = eμcθ2/2.

Hence for fixed t > 0 and all θ < 0,

P(Y − μ ≤ −t) = P
(
eθ(Y−μ) ≥ e−θt

) ≤ eθtM(θ) ≤ eθt+μcθ2/2

by Markov’s inequality. Substituting θ = −t/cμ yields inequality (5).
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