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We study the convergence to equilibrium of a class of nonlinear recombination models. In analogy with
Boltzmann’s H-theorem from kinetic theory, and in contrast with previous analysis of these models, con-
vergence is measured in terms of relative entropy. The problem is formulated within a general framework
that we refer to as Reversible Quadratic Systems. Our main result is a tight quantitative estimate for the
entropy production functional. Along the way, we establish some new entropy inequalities generalizing
Shearer’s and related inequalities.
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1. Introduction

Recombination models based on random mating have a wide range of applications in the natural
sciences and play an important role in the analysis of genetic algorithms. The following nonlinear
system is a commonly studied model in population genetics [22]. Let 2 = X X --- x X}, denote
the set of sequences of length n, such that the ith element of the sequence takes values in a given
finite space X;. A sequence o € 2 is written as 0 = (0;,1 € [n]), where [n] = {1, ..., n} is the
set of loci, or sites, and o; € X; for all i € [n]. Given a subset A C [n], and a 0 € Q we write
o4 for the A-component of o, that is, the subsequence (o;,i € A). If (0,n) € Q x Q is a pair
of sequences, the recombination at A consists in exchanging the A-component of o with the
A-component of 1. This defines the map

(o,m) > (MACAc, OANAC).

If the original pair (o, n) is obtained by sampling independently from a probability measure
p on €2, then the sequence ngo4c is distributed according to psg ® pac, the product measure
obtained from the marginals of p on A and A€. By choosing the set A at random according to
some probability distribution v one obtains the quadratic dynamical system

P> Wipli=Y v(A)(pa® pac). (1.1)
A

The discrete time evolution of the initial distribution p is then defined by iteration of the map W,
namely p® =W[p*=D] ke N, p©@ = p.
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Analogously, in continuous time one has the quadratic differential equation

d
o =§jv(A><p,,A ® prac —pi), >0, (1.2)

with the initial condition pg = p. Here p; is the probability measure describing the state at time
t, and p; 4 denotes its marginal on A.

When A = {i} is a single site we write p; ; for the marginal at i. It is not difficult to see that the
map (1.1) preserves the single site marginals, so that p; ; = po,; for all # > 0 and for all i € [n].
The study of this model goes back to the pioneering work of Geiringer [16]; see also [1,24,27,28]
for more recent accounts.

As emphasized in [27,28] this model is a special case of the much larger class of so-called
“quadratic dynamical systems”, which provides a rich family of discrete analogues of Boltz-
mann’s equation from statistical physics [30]. It is a classical result that, under an obvious non-
degeneracy assumption on the distribution v, the system converges to the stationary state given
by the product of the marginals of the initial state p; that is, if p; = po; denotes the marginal of
p atsite i, then

T =Q;pi (1.3)

is the equilibrium distribution and one has convergence in distribution: p® — 7, k — oo, and
p: — m, t - 0o. We shall be interested in the speed of convergence to equilibrium in both
continuous and discrete time.

We consider the following natural examples of the distribution v:

(1) Single site recombination: v(A) = % Yo HA={i));

(2) One-point crossover: V(A) = nlﬂ Z?ZOI(A =J;),where Jo=0, J; ={1,...,i},i > 1;
(3) Uniform crossover: v(A) = 2% for all A C [n];

(4) The Bernoulli(g) model: for some g € [0, 3], v(A) = g!Al(1 — g)"~ AL

The Bernoulli(g) model is a generalization of the uniform crossover model. In principle our
method can be applied to other generalizations, such as the k-crossover model or the so-called
Poisson model. However, to keep this work at a reasonable length, in what follows we will restrict
attention to the models listed above. The first example generates a simple linear evolution, but
the other choices produce genuinely nonlinear processes.

Tight estimates on the speed of convergence in total variation norm of the associated discrete
time processes were obtained in [27]. While the first example reduces to a standard coupon col-
lecting argument, implying that the system mixes in ®(nlogn) steps, the other cases require
a finer coupling analysis. In particular, it is shown in [27] that one-point crossover mixes in
®(nlogn) steps, while uniform crossover mixes in ®(logn) steps. Further results on conver-
gence to equilibrium in total variation norm together with the analysis of the quasi-stationary
measure were recently obtained in [24].

In this paper, we focus on convergence to equilibrium in terms of entropy. Here we recall that
the relative entropy of p with respect to p, for two probability measures p, w on €2, is given by

H(plwy=)_ plo)log(p(c)/un()),

oeQ
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with H(p | u) = +oo if there exists o € Q with (o) =0 and p(o) # 0. Recall also Pinsker’s

inequality, asserting that
1
Ip =l =y 5HPI W), (1.4)

where ||p — ull = %Zoeﬂ |p(0) — u(o)| denotes the total variation distance. Now, for any
probability measure p on €2, the convergence p; — 7 implies that the relative entropy H (p; | )
satisfies H(p; | ) — 0, t — oo. It is then natural to study the rate of exponential decay of
relative entropy or, equivalently, the existence of an inequality of the form

%H(prlﬂ)S—SH(pt | 7)), (1.5)
for some & > 0 independent of ¢. The bound (1.5) is often referred to as an entropy production
estimate.

Our main motivation for the study of entropy production estimates in nonlinear recombination
models comes from the analogy with kinetic theory [8]. In recent years, the study of the validity
of a bound of the type (1.5) for the Boltzmann equation and related quadratic evolutions has
been at the heart of many spectacular developments in kinetic theory; see, for example, [11] for a
survey. For the Boltzmann equation, a famous conjecture of Cercignani asserting that a positive
rate § exists for all initial conditions has been shown to be true only for some special choices
of the collision kernels, while for the more common choices of the collision kernel one may
have a zero entropy production rate for suitable initial conditions [31]. It remains a very active
area of research to establish the exponential decay of relative entropy under suitable moment and
smoothness assumptions on the initial distribution. Similarly, for the Boltzmann—Kac equation it
is known that there cannot be exponential decay in relative entropy for all initial states, and it is
a major open problem to establish exponential decay of relative entropy for initial distributions
satisfying suitable moment conditions; see [7]. On the other hand, in our finite dimensional set-
ting one expects that any initial distribution decays exponentially fast to equilibrium in terms of
relative entropy. It is then of interest to investigate how the rate of decay depends on the initial
distribution and on the parameter n determining the dimension of the problem. Actually, we shall
see that one can find a positive rate § = §(n) such that (1.5) holds uniformly for all initial distri-
butions, and we shall determine the precise behavior of this § as a function of n up to a constant
factor.

We discuss the problem of entropy production in the framework of what we refer to as Re-
versible Quadratic Systems. These provide a generalized class of natural nonlinear dynamics
converging to an arbitrary target distribution (not necessarily of product form), such as the Ising
model on a graph or other random combinatorial structures. This may be viewed as a nonlinear
analog of the standard Markov Chain Monte Carlo paradigm; see Section 3 below.

To the best of our knowledge, this is the first work dealing systematically with decay to equilib-
rium in the sense of relative entropy for nonlinear evolution of discrete combinatorial structures,
and as such it is likely to provide a convenient stage for testing some of the results and con-
jectures formulated in the continuous setting of kinetic theory. The hope is that this alternative
setting allows one to isolate those features of entropy decay that are less model specific.
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We emphasize also that convergence to equilibrium with respect to relative entropy can in gen-
eral be quite different from convergence in total variation. For example, from (1.4) one knows
that relative entropy cannot decay faster than the square of the total variation norm, but a compar-
ison of Theorem 1.2 below with the main results in [27] shows that, in the case of recombinations
with uniform crossover, the decay can be considerably slower. See, for example, [13] for related
phenomena in the kinetic theory literature.

Finally, let us add that, following an important idea of M. Kac [20], it should be possible to
interpret the nonlinear models considered here as the single particle marginal of a linear system
of N particles interacting in a mean field fashion, in the limit as N — oo. Establishing this picture
rigorously can be a very challenging problem; see, for example, [7,18,25] for a survey of recent
interesting developments on the so-called Kac program in kinetic theory. A crucial part of this
program consists in obtaining a sharp control of the decay to equilibrium for the linear system
in terms of relative entropy. In forthcoming work, we plan to investigate a family of discrete
combinatorial versions of this program.

To describe our main results, it is convenient to reformulate the entropy production estimate
in terms of suitable functional inequalities. Let 7w be a product measure on 2 of the form (1.3).
For any nonnegative function f : Q > [0, c0), define the entropy functional

Ent(f) =n[flog f] —m[f]logz[f].

For any A C [n], let f4 denote the function

fa@) =) 7 f(@anac);

ne2

note that f4 depends only on 4. When A = {i} for some i € [n], we simply write f; for fi;.
Let S;; denote the set of all f: Q+> [0, 00) suchthat [ f] =1 and f; =1 for all i € [n]. Notice
that S, is precisely the set of all functions f of the form f = p/m, where p is any probability
measure on 2 satisfying (1.3); that is, f is the density of p with respect to = and p has the
same marginals as 7. Moreover, f4 fac is the density of p4 ® pac with respect to . Given a
distribution v over subsets of [n] we call § (7, v) the largest constant § > 0 such that the inequality

> v [(fAfAc — f)log %] > S Ent(f) (16)

A

holds for all f € S;. As we shall see, inequality (1.6) coincides with (1.5) when f = p, /7 is the
density of p, with respect to &. Define also

§(v) =infé(m, v),

where the infimum is taken over all product measures on X; x --- x X, and over all possible
underlying finite spaces X;.

Theorem 1.1. The recombination models defined above satisfy the following bounds:

(1) Single site recombination: % +0m ) =68(1) > n%];
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(2) One-point crossover: % +0(n?)=8(v) > #;

(3) Uniform crossover: % + O(n—2) >§(v) > l—nzjlt+1 :
(4) Bernoulli(g) model: M LOM2) > 5(0) > %

Inequality (1.6) can be seen as a nonlinear version of a logarithmic Sobolev inequality; see,
for example, [12] for background on logarithmic Sobolev inequalities in the usual Markov chain
setting. Remarkable works have been devoted to the study of functional inequalities of the form
(1.6) in the Boltzmann equation literature; see, for example, [5,31] and [11,30] for an overview. In
our combinatorial setting, we shall establish the entropy production inequalities of Theorem 1.1
by proving a new set of inequalities for the entropy functional of a product measure. More pre-
cisely, we shall first observe (see Lemma 4.2), that § (;r, v) > « (7, v), where « (7, v) denotes the
largest possible constant ¥ > 0 such that the inequality

3 0(A) (Ent( £4) + Ent(f40)) < (1 — ) Ent(f) (17)

A
holds for all f € S,;. Define

k() = igffc(rr, V),

where the infimum is taken over all product measures on X; x --- x X, and over all choices
of the spaces X;. Then, since 6(v) > k(v), we can obtain the lower bounds in Theorem 1.1 by
computing k. The following result, which may be of independent interest, does this for all of the
above recombination models.

Theorem 1.2. For the recombination models defined above, the constant k (v) satisfies:

(1) Single site recombination: k (v) = ﬁ;

. . T
(2) One-point crossover: k (v) = L |

(3) Uniform crossover: k (v) = 1*n2_”;+ .

(4) Bernoulli(q) model: k (v) = %.

Inequality (1.7) expresses a generalized subadditivity property of the entropy functional for a
product measure. As discussed in Section 4 below, it can be understood as a nontrivial refinement
of Shearer’s inequality for Shannon’s entropy [9]. We refer also to [2,15,23] for other interest-
ing extensions and applications of Shearer’s inequality. Our setting is somewhat non-standard
because of the restriction to f € S;. It is important to note that without it there cannot be a pos-
itive constant « in (1.7). Indeed, by taking f of the form []; f; for some nontrivial single site
marginals f;, one has Ent(f4) + Ent(f4c) = Ent(f) for any A so that (1.7) can only hold with
k=0.

As mentioned earlier, the lower bounds in Theorem 1.1 are a consequence of Theorem 1.2
and the fact that §(v) > k(v). The upper bounds on the other hand will follow by exhibiting an
explicit test function in (1.6).

Finally, we turn to the consequences of Theorem 1.1 for the convergence to equilibrium of
both the continuous time and the discrete time evolutions. The following result shows that in all
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models considered above one has exponential decay in relative entropy with rate « (v) and that,
if we insist on uniformity in the initial state p, this decay rate is optimal up to a constant factor.

Corollary 1.3. Consider the recombination model with distribution v, and let k(v) be as in
Theorem 1.2. For any initial state p, let w denote the associated product measure (1.3). Then, in
continuous time one has

H(plm)<e ™ H(p|n), t=0. (1.8)
Similarly, in discrete time
k
H(p® 7)< (1—xW) H(p|n), keN. (1.9)

Moreover, there exists an initial state p such that, if y(v) denotes the upper bound on &(v)
appearing in Theorem 1.1, then

3H(|> > —y(WH(p|m) H(pW |7)>(1-yW)H(p|n) (1.10)
dr PtJTt:m_ A plm), p T) = y(v plm). .

These bounds are tight in the sense that there exists a constant C > 0, independent of n, such
that y(v) < Ck(v) for all models (1)—(3). In the case of the Bernoulli(q) model, the bound

y (v) < Ck (v) holds provided g > n=2.

The proofs of Theorem 1.1, Theorem 1.2 and Corollary 1.3 are deferred to Section 4. In Sec-
tion 2, we formulate the problem of entropy production estimates in the much more general
setting of reversible quadratic systems. In Section 3, we present some examples of reversible
quadratic systems, including the recombination models defined above.

2. Reversible quadratic systems

Following [28], we introduce a general framework, which includes the recombination models as
special cases. We shall work in continuous time, but as we will see a translation to the discrete
time setting is immediate.'

2.1. Setup

Let X be a finite space, and call P(X) the set of probability measures on X. We refer to, for
example, [26] for background on Markov chains. A reversible quadratic system (RQS) on X is
defined by a pair (G, ) where

11281 worked in discrete time, and also restricted attention to symmetric quadratic systems, which are reversible quadratic
systems with x uniform.
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(1) G is the infinitesimal generator of a Markov chain with state space X x X, that is,
G(o,0';t,t") > 0forall (0,0") # (1,1) and

G(o,0';0,0')=— Z G(o,0'; 7. 7). 2.1)
(z,7")#(0,07)

(2) n e P(X) satisfies u(o) > 0 for all o € X and is such that u ® u is reversible for G, that
is, for all o, 0/, 7, T’ € X one has

pn©@)u(e)G(o,o';1,v") = w(m)u(r)G(r, v'; 0,0"). (2.2)
Moreover, we assume that G has the symmetry
G(o,0";7,7")=G(0",0; 7, 1), (2.3)
forallo,o’, 7,7 € X.

The quantity G(o, ¢'; 7, t’) is interpreted as the rate at which the pair (z, 7’) is produced from a
collision (or “mating”) between o and ¢’. Below, G will be mostly of the form G = Q — 1, where
Q is a Markov kernel on X x X with reversible measure © ® . It is important to note that the
Markov chain on the product space X x X defining the RQS is not assumed to be irreducible, and
therefore u can be taken to be any of the possibly many measures such that 4 ® u is reversible
for G. Indeed, in most cases to be considered below, G will not be irreducible and we shall use
that freedom in selecting .
The dynamics of the system are specified by the equation

d
GPO= > olpl(z. 7). (2.4)

t/eX
where we define, for any p € P(X),
CD[p](r, t’) = Z p(o)p(a’)G(c, o';t, r’).

o,0'eX

We consider equation (2.4) with the initial condition pyp = p for some given p € P(X). By (2.1),
for any fixed o, ¢’ one has Z(r,r/) G(o, 0'; T, t") =0, which implies the conservation law

Y =1, 2.5)

teX

for all + > 0. Thus equation (2.4) gives a well defined evolution of the state of the system. In
general, there are many other conservation laws in the system (2.4); see part 3 of Proposition 2.3
below. Existence and uniqueness of the solution of (2.4) for any p € P(X) can be established in
a standard way; see, for example, [1].

From reversibility (2.2), setting f (o) = p(o)/u (o) one finds

o[pl(r,7) = Y w@u(t)G(x 0.0 )[f@)f(o)) = f@f(T)].  (@26)

o,0'eX
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Therefore, in terms of f; (o) = p;(0)/u(o), equation (2.4) becomes

d
L= w(@)G(w 00 ) fi@) filo) = fi fi()]

o,0',77eX

Remark 2.1. RQS include linear evolutions associated to Markov chains as a special case. For
instance, if Gg is a Markov generator with state space X, with reversible measure w, then the
expression

G(o,0';7,7") =Golo, 1)1(0" =1') + Go(o”, T)1(0 = 1),
defines a RQS (G, ). In this case the evolution is linear, and coincides with the Markov chain

generated by Gy, that is, p, = pe'©o.

Remark 2.2. Given the generator G, let S(t,7’;0,0') = %(G(r, ;50,0 +G(t/,t;0,0")).
Note that this does not define a Markov generator, since off-diagonal elements need not be non-
negative. However, it is not hard to check that

Geym(t, 75 0,0")

S(t,7v';0,07) if (0,0") # (7', 1), (v. 7'),
=1{G(r,7;7,7) if (0,0") = (7, 1),
S(r, i1, ‘L'/) + S(r, /7, r) — (G(t, ' 7, ‘L') if (0, a/) = (‘L’, 1:/)

does define a Markov generator, i.e., for all 7,7" € X one has ZJ’U, Gsym(t,7';0,0") =0,
and Ggym (7, 7';0,0") > 0 if (0,0') # (7, 7’). From (2.6) and (2.3), it is not hard to see that
®[p](r, t’) is unchanged if G is replaced by Ggym. In particular, we may and will assume with-
out loss of generality, that the generator G satisfies the symmetry

G(r.70.0") =G(t. 10,0"), it (0.0") # (7. 7). (. 7). @7
By reversibility (2.2), from (2.7) one has the further symmetry

Glo.0i1.7)=G(o.0's 7. 7). if (0.0") #(¢/.7). (z. 7).
In most examples below, G has the form G = Q — 1 for some Markov kernel Q. In this case the

symmetry (2.7) is equivalent to Q(o,0’; 7, 7") = Q(0,0'; ', 1), for all (o, 0") # (7', 1), (7, T').

2.2. Entropy and stationary states

Reversible quadratic systems satisfy an analogue of Boltzmann’s H theorem from kinetic theory,
which we summarize in Proposition 2.3 below. Call p € P(X) stationary if ®[p] = 0. Note that
by (2.6) the reference measure w is stationary. Let P4 (X) denote the set of p € P(X) such that
p(o) > 0 for all o € X. For any RQS (G, ), one has the following facts.
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Proposition 2.3.

(1) For any initial state p € P(X),

d
3 2Pl ==D(fi. fo). (2.8)

where f;(0) = p;(0)/u(o) and, for any f, g : X+ [0, 00):
1
D(f.9)= Y. n@u(r)G(r v0.0)
o,0',1,77eX

g(o)g(o")
g(D)g()’

In particular, D(f;, fi) =0 forallt > 0 and D(f;, f;) =0 iff p; is stationary.
2) p € P(X) is stationary iff f (o) = p(0)/u(o) satisfies

f@) f(e)y=r@ (),

x [f0)f(o") = (@) f(z)]log

forall o,0',t,v" € X such that G(t,1'; 0,0") > 0. In particular, p ® p is reversible for
G iff p is stationary.
(3) If p € PL(X) is stationary, then for any initial condition p € P(X), one has

d
3 2 1@ log(p(0)/ (@) =0.

oceX
Proof. Differentiating and using (2.5) one has

d _ d P (T)
S H@ W= Z[Ep,(w} log =5

texX

= Z M(T)M(T/)G(T, ;0. 0/)[ft(0)fz(0'/) - ft("f)fz("f/)] log fi (7).

o,0',t,77eX

By the symmetry (2.7), one can replace log f;(t) above with log(f;(t) f;(z’)) at the cost of a
factor 1/2. Finally, by reversibility one obtains (2.8). Clearly, D(f, f) > 0 and D(f, f) =0 iff
f satisfies f (o) f (o) = f(t) f(z'), whenever G(z, T’; ,0’) > 0. From this and (2.6) it follows
that D(f, fi) = 0 iff p; is stationary. This proves part 1.

Part 2 follows in the same way since if p is stationary then p, = p for all 7.

Finally, for part 3, reasoning as above, if g(o) = p(0)/u(0), p € P4 (X), then

d
3 2 P(@log(g(1) ==D(fi. ).

teX

Since p is stationary, one has that D(f;, g) =0 by part 2. (]
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Let us remark that by Proposition 2.3, for any initial condition p € P(X), one has that H (p; |
() is monotone non-increasing, and therefore has a limit. This alone does not imply that p;
converges. In fact, at this level of generality it may be hard to give a complete characterization of
the limit points of p; as t — oo, as the initial state p varies in P(X). However, by compactness
one has that along some subsequence t, — 00, p;, — p for some p € P(X). As already observed
in [28], Theorem 2, if one knows that p is stationary and has full support, that is, p € P4 (X),
then it follows by Proposition 2.3 that p; — p, t — oo. To see this, observe that

H(p | p)=H(p: | W) — pi[log(p/1)]-

From Proposition 2.3 part 3, p;[log(p/u)] is independent of ¢ and therefore equals H(p | ). On
the other hand one must also have that H(p; | u) decreases to H(p | i), and therefore H(p; |
p) — 0, which implies p; — p by (1.4).

For all the examples of RQS to be discussed below we shall not need to appeal to the above
abstract argument. In fact, for any initial distribution p € P(X) we shall always be able to identify
an explicit limit point u € P4 (X) such that H(p; | ©) — 0, t — oo. This in turn implies the
convergence p; — [ by (1.4). To quantify the convergence of relative entropy, we proceed as
follows.

Definition 2.4. Given the RQS (G, ) on X, we define F = F(G, u) as the set of functions
f : X+ [0, 00) such that u[ f]=1, and

ul flog(p/m)] = u[log(p/w)].

for all stationary p € P (X). Moreover, we say that the RQS satisfies the entropy production
estimate with constant § > 0 if for all f € IF one has

D(f, f) = §Ent(f), 2.9

where Ent(f) = u[f log f1— plf1logu[f].

Proposition 2.5. Suppose the RQS (G, ) satisfies the entropy production bound with constant
8 > 0. Then any initial state p € P(X) such that p/u € F satisfies

Hp | W) <eH(p |,

forallt > 0.

Proof. Forany f > Osuchthat u[ f]=1onehas H(fu | u) = Ent(f). Thus, by Proposition 2.3
part 1, it suffices to show that (2.9) holds for all functions f; = p;/u, t > 0. Since by assumption
p/u € F one has p[log(p/un)] = nllog(p/wm)], and by Proposition 2.3 part 3, the same holds for
p;, for all £ > 0. In particular f; € IF, for all r > 0. O

In practical applications, our approach may be summarized as follows. Given the initial
p € P(X), the goal will be to find a stationary measure u € P4 (X) such that p[log(p/un)] =
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wllog(p/w)], for all stationary p € P4 (X) and then to prove the entropy production bound of
Definition 2.4 for the RQS with that choice of . Notice that in this framework the rate of de-
cay 8 may depend on the initial value p € P(X) but only through the selected equilibrium point
J7S] ]P)+ (X)

The functional inequality (2.9) can be interpreted as a nonlinear version of the logarithmic
Sobolev inequality for Markov chains. In our setup, one can actually write it in the form of a
classical logarithmic Sobolev inequality in the product space X x X, as follows. For any f, g :
X > [0, 00), write F(o,0’) = f(o)f(c’) and G(o,0’) = g(0)g(c’). Then, as in the proof of
Proposition 2.3 one has

1
D(f.8)=—5R[(GF)logG], (2.10)

where we use the notation 71 = u ® u, and GF denotes the usual linear action of G on F. In
particular, (2.9) now becomes

—/’I[(GF) logF] > 6 Entg (F), (2.11)
where Ent; (F) = [ Flog F] — [ F1log(it[ F1) = 2Ent(f). The inequality (2.11) is often re-
ferred to in the Markov chain literature as a “modified log-Sobolev inequality”; see, for example,
[3,10]. An important difference to keep in mind here with respect to the usual Markov chain setup
is that we do not assume irreducibility, and therefore (2.11) in general cannot hold for all F. In-

deed, in our setting we require this to hold only for F of the form F(o,0’) = f (o) f (o), where
feF.

2.3. Linearized problem and spectral gap
As in kinetic theory, see, for example, [30], to gain insight into the functional inequality (2.9) it is
natural to investigate the linearized problem for near-to-equilibrium densities, thatis, f =1+ ¢&¢

for some ¢ : X — R such that u[¢] = 0 with small ¢ > 0.

Lemma 2.6. Let f =1+ e¢ for some ¢ : X +— R such that u[¢p] = 0. Then, as ¢ — 0 one has

1
) _ b -} _
lim e Ent(f) = zu[cb ], lim e™*D(f, /) w[Te)o].
where T is the linear operator defined by

['(r,0)= Z n(t)[G(zr, t50,0") +G(r, s 0", 0)].

o't

Proof. By expanding in the parameter ¢ and retaining only terms up to order &7 it is not hard to
check that e ~2 Ent( f) — %,u[d)z], as ¢ — 0. Similarly, neglecting terms of order o(e?), D(f, f)
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is given by
—g2 Z w@p(t)G(r. ' 0,0")p(0)[p(0) + ¢(a")].
The latter expression equals —szu[(F¢)¢]. U

Thus, the linearized version of inequality (2.9) states that

8
—u[CP)g] = S p[¢7]. (2.12)

We note that if ¥ = log(p/u) for some stationary p € P4 (X), then, as in the proof of Propo-
sition 2.3, one finds I'y = 0. This is not in contradiction with (2.12). Indeed, the condition
f =1+ ¢e¢ T is equivalent to requiring that ¢ is orthogonal in L?(1) to the constant functions
and to all conserved quantities ¢ = log(p/p) for stationary p € P (X). Thus it is meaningful to
study (2.12) for all ¢ restricted to this class. This may be interpreted as a spectral gap bound, as
follows.

Suppose that G = Q — 1, where Q is a Markov kernel on X x X. Then it is not hard to see that

I'(t,0) =2K(t,0) — 8(0,7) — (o), (2.13)

where we introduce the Markov kernel

1
K(z,0):= 5 Z w()[Q(r. 7 0,0") + O(r. 750", 0)]. (2.14)

o', 1

The kernel K is reversible with respect to ©. Moreover, if ¥ = log(p/un) for a stationary p €
P, (X), then from I'y = 0 and (2.13) we obtain the eigenvalue equation

- 1 -
szil//s

where v := ¢ — u[¥]. Inequality (2.12) is then equivalent to

13
n[(Kp)p] < <5 - Z)u[qbz], (2.15)

for all ¢ orthogonal in L?(u) to the constant functions and to the conserved quantities ¥ =
log(p /1) as above. From the obvious inequality —u[(I"¢)¢] > 0, one obtains for free that, apart
from the trivial eigenvalue 1, all eigenvalues of K must be at most % Thus, (2.15) says that,
besides the eigenvalues associated to the conserved quantities, all other eigenvalues of K are at
most % — %. In some special cases, one can fully diagonalize the operator K and compute the
optimal constant § in (2.15). It should be noted that, while the entropy production bound (2.9)
always implies the spectral gap (2.15) via Lemma 2.6, the converse is of course not true.
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2.4. Continuous vs. discrete time

If G= Q — 1, where Q is a Markov kernel on X x X, then one can define the discrete time RQS
as follows. Set

Vipl(t)= Y p@)p(0’)Q(0.0". 7. 7).

o,0’,1

This defines a map V¥ : P(X) — P(X), whose kth iterate p(k) =Y[ p(k_l)] describes the state of
the system after k steps, with initial state p©) = p. The entropy production estimate (2.9) now
takes the form

H(p® 1) <1 =)H(p"* V| ), (2.16)

for all kK € N. Moreover, the same general remarks about stationary states and convergence to
equilibrium apply in the discrete time setting; see also [28].

However, we caution the reader that, in contrast with the case of linear evolution associated to
a Markov chain, here there is a more pronounced difference between the discrete time evolution
and the continuous time evolution. To briefly address this point, let us regard the operation W[ p]
as the product p © p, where we define, for all p, g € P(X) the new probability on X x X

(PO(t.7) =) pl)g(c') (0.0, 7. 7).

Using the symmetry (2.7), one sees that the product p © g is commutative. However, it is not
in general associative. This is the main source of difficulty in the explicit construction of the
continuous time evolution p;, in contrast with the simple iterations p® of the discrete time
process. The form p © g is the analogue of the Wild convolution product in the Boltzmann
equation literature. A solution of the continuous time system can be constructed using suitable
sums over so-called “McKean trees”, which encode the various ways of taking products, such as
pO(PO(pOP))or(pOp)O(pO p)and so on. This construction builds on the pioneering
work of Wild and McKean; see [6] and references therein. Our results below will not make use
of this method; they will be based only on functional inequalities of the form (2.9) or (2.16), and
will not make any significant distinction between discrete and continuous time evolution.

3. Main examples

We now turn to concrete examples of RQS.

3.1. Binary uniform crossover

We begin with the simplest possible example. Let X = {0, 1}" for some fixed integer n, and

Qo,0;1,7') = % Z 1(t =004, T =040)c). (3.1)
AC[n]
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In words, we move from (o, 0”) to (z, t/) under a uniform crossover, that is, (z, t/) is obtained
from (o, o) by picking a uniformly random A C [n] and swapping the A-components o4 and o7},
leaving the rest unchanged. Then G = Q — 1 defines the generator of the RQS. For the reference
measure i, we may choose any product of Bernoulli probability measures. Indeed, (2.2) holds
if u=@Q);_, i, with y; arbitrary Bernoulli distributions. Now, given any initial state p € P(X),
equation (2.4) can be written as

d

1
Ept = 2_,, ;(P:,A ® Dt Ac — Di)s t>0,

with the initial condition pg = p. This is the model described in (1.2) in the special case where
the single site spaces X; all coincide with {0, 1} and the distribution v is uniform. The marginals
pi of p are preserved by the evolution, that is, p; ; = p; for all i, ¢, and thus the natural candidate
for convergence of p; as t — oo is the product measure 7 = ), _; pi; see also Lemma 3.1 below.
Our results imply that the entropy production bound (2.9) holds with § > 1/n, independent of
the initial state p € P(X). In particular,

H(p,|m)<H(p|m)e /"

for any initial distribution p € P(X) and any n. As we shall see in the proof of Corollary 1.3
the 1/n behavior of the constant cannot be improved if we require uniformity of the decay rate
as a function of the initial state p. In this example, the linear operator K from (2.14) can be
fully diagonalized, and one finds that (2.15) holds with § = 1. In particular, this is an example
of a system with uniformly positive spectral gap but with a vanishing rate (as n — 00) in the
exponential decay of relative entropy.

3.2. General recombination model

The binary uniform crossover model can be readily generalized to the case where the uniform
choice of A in (3.1) is replaced by a given distribution v on subsets of [n], and the state space is
taken as X = X | x --- x X, with arbitrary finite single site spaces X;. Again G = Q — 1, where
now

Q(U, 0T, t’) = Z v(A)l(r =0)04c, T = O’AUAC-).
AC|n]
The system equation (2.4) then coincides with (1.2). As above it is not hard to check that (2.2)
is satisfied by any product measure pu = ) 14;, with w; an arbitrary probability measure on X;.
To define the RQS (G, ), we fix one such u, with u € P4 (X). Say that v is nondegenerate if
for any 7, j € [n] there is a positive probability that the random set with distribution v separates
iand j.

Lemma 3.1. If v is nondegenerate, then p € P(X) is stationary iff p has the product form p =
&7, pi for some probability measures p; on X;.



3260 P. Caputo and A. Sinclair
Proof. From Proposition 2.3, it follows that p € P(X) is stationary iff it satisfies
p@)p(0’) = p(ojoac)p(0ad)e),

for all 0,0’ € X and all A C [n] such that v(A) > 0. In particular, any product measure p =
&)7_, pi is stationary. To prove the converse, notice that summing over o’ € X in the above
equation one has that

p(0) = pa(oa)pac(0ac), (3.2)

for all 0 € X and all A C [n] such that v(A) > 0, where p4 denotes the marginal of p on A. We
prove by induction that for any set B C [n] one has pg(og) =[]; <p Pi(0;). Plainly, this is true
for all sets B C [n] with |B| = 1. Suppose that it is true for all sets B C [n] with 1 < |B| <k.
Take B’ C [n] with |B’| = k+ 1, and choose i, j € B’. By the nondegeneracy assumption, there is
aset Asuchthati € A, j € A, and v(A) > 0. Applying (3.2) with this choice of A and taking the
marginal over B’, one finds pp/(op) = pang (0ans ) pacnp (Gacnp’). Since 1 < |[A*NB'| <k
and 1 < |A N B’| <k we may apply the inductive assumption to conclude. ]

Clearly, all models discussed in the introduction satisfy the nondegeneracy assumption. Since
the marginals p; of p are preserved by the evolution, the natural candidate for convergence of p,
is the product measure 7 = ®/_, p;. As highlighted in Corollary 1.3, our analysis will show that,
for any initial state p € P(X),

H(p, |m) < H(p|m)e )"

for all ¢ > 0, where the constant « (v) is as specified in Theorem 1.2.

We remark that we may always pretend that s has full support, and take m itself as the refer-
ence measure 4. Indeed, this is equivalent to the condition that p; has full support on X; for all
i € [n], and if that is not the case then we may simply replace the X; with subspaces X; such that
pi has full support on X; and work with the RQS (G, 7r) within the space X = X| x --- x X,
instead of X this ensures that now 7 € P (X).

In the remainder of this section, we briefly consider some more general examples of RQS
that go beyond our recombination examples. In particular, these generalized models will admit
stationary measures that are not product measures. While our quantitative results on entropy
production do not so far extend to these cases, they serve as examples of natural open questions
in this area.

3.3. Nonlinear stochastic Ising model

As a canonical example of a generalization that admits nontrivial correlations in the equilibrium
state, we introduce a natural nonlinear dynamics on the Ising model on a finite graph G = (V, E),
V = [n]. The Ising model is the probability measure i = g gn on X = {—1, 1}V, given by

1
Ho) = e POt H@) ==Y a0}, (3.3)
ijeE
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Here h = {h;};cy € [—00, 00]" are the so-called “external fields”, B € R is a parameter (the
“inverse temperature”), and Z = Z¢ g p is the normalizing factor, or “partition function.” Infinite
values of external fields encode so-called “boundary conditions”: if #; = 400 (respectively, —oo)
then one has a 4 (respectively, —) boundary condition at site i. Clearly, 1 € P4 (X) iff all external
fields are finite. Below, we fix one such u as reference measure. We set G = Q — 1, with the
Markov kernel Q defined by Q =), v(A) Q4. where v is a given distribution over subsets and
for any A C [n],

Qalo.0';t, ") =au(o,0")1(t =0 )04, T = 040)c)

+(1—O[A(U,(T/))1(‘L':O’, 1:/:0/), (3.4)

ax(o,0’) = u(ooac)u(oaclye)
T wE a0 + o))

Notice that a4(o,0’) can be written as the conditional u ® wu probability of the pair
(0404c,040).) given the occurrence of either (0 o4c,040).) or (0, 0’). It satisfies

1

= ey 9a00)= )0 (oi—a)(oy—o))1Gj € B).

icA, jeAc

OlA(O’,(T/)

In particular, 4 is independent of the external fields h. It is easily checked that for each A, one
has the reversibility

n@u(t)0a(r, 7’5 0,0") = wo)u(o’) Qa(o, o' 7, '), (3.5)

for all 0,0, 7,7’ € X. Therefore (G, ) defines a RQS. Since the kernel Q is independent of
the external fields h, the RQS here is determined by the distribution v, the parameter § and
the graph G (and not by h). Moreover, any Ising measure of the form (3.3) satisfies (3.5) and
therefore it is stationary for the RQS. A particularly interesting choice is the single site update
v(A) = %l(lAl = 1), which can be interpreted as a nonlinear version of the usual Ising Gibbs
sampler, or Glauber dynamics; see, for example, [21] for an introduction. One can prove the
following characterization of the stationary distributions.

Lemma 3.2. Fix a graph G with n vertices, and € R. Assume v(A) = %1(|A| =1). Let
u € Py (X) be as in (3.3) with arbitrary external fields. A distribution p € P(X) is stationary for
the ROS (G, ) if and only if p is of the form (3.3) for some choice of h.

Proof. We have seen that any p of the form (3.3) satisfies (3.5) and it is therefore stationary. To
prove the converse, observe that by Proposition 2.3 part 2, one has that any stationary o must
satisfy
p(@)p(’) _ PO(HOINDP O[O (1)
m(@)p(@)  w(ofH oD i)

(3.6)
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for all sites i € [n], and for all o, 0’ € X. Suppose first that p € P (X). We will show that, if
f(o)=p(o)/u(o), then there exist ¢y, ..., @, with ¢; : {—1, +1} > (0, 00) such that

f@) =B [Jeien, 3.7)

j=1

where + denotes the configuration with all spins equal to +1. To prove (3.7), for any o € X,
j €[n], let o[j] € X denote the configuration equal to +1 for all sites in [j] = {1,..., j} and
equaltoo on {j + 1,...,n}. Since p, u € P (X), if 6[0] = o, one has

n .
flelj—1D
@=fH||—F
=1 ]1:[1 F@LiD
Taking i = j, 0 = o[j — 1] and ¢’ = + in (3.6), and setting pjloj) = f(jf(—::;/), where +7:%

denotes the configuration equal to o; at j and equal to +1 elsewhere, one has

JOU=1D _ o =1
felj e

This proves (3.7). Since ¢; is a positive function of a single spin, it can be written as
pjloj) = e"i%i*¢i for some real numbers h j»cj. Therefore, from (3.7) we obtain p(o) =
const x ,u(cr)eZJ'EV ik This ends the proof for p € P4 (X).

If p does not have full support, then there must exist A C [r] and a vector v4 = (v;)ica €
{—1, +1}* such that for all T € X,

p(7) =1(ta = va)p (T4c), (3.8)

for some probability p’ on {—1,41}A° with full support. (Here A is the set of vertices with
boundary conditions in p.) This can be seen as follows. It is not hard to check that if p € P(X) \
PP (X), then there exists o € X, i € [n] such that p(¢') > 0 and p(o’) = 0. Then, taking o’ equal
to —o; at i and arbitrary otherwise, from (3.6) one sees that p(7) = 0 for all 7 € X such that
7; = —0;. Now, if p(z') > 0 for all 7’ € X such that 7/ = o;, then (3.8) holds with A = {i} and
v; = o;. Otherwise, restricting attention to configurations with the ith spin equal to o;, one can
repeat the above reasoning, and the desired conclusion follows by recursion.

Once (3.8) is established, one can repeat the argument given in the case of p € P4 (X), by
restricting to the subspace of o € X such that 04 = v4. On this set the measure p has full support
and one obtains again (3.7), this time with f(4) replaced by f (&) where & equals v4 on A and +
on A, with o[j] interpolating from o to &, and with the product restricted to j € A°. It follows
that p has the form (3.3), with #; € R for i € A¢, h; = o0 for i € A such that v; = +1, and
h; = —oc for i € A such that v; = —1. O

We remark that Lemma 3.2 assumes that p € P (X), i.e. that the corresponding external fields
are all finite. However, in order to analyze the Ising model with boundary conditions one may
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wish to take some of the external fields to have positive or negative infinite values. In this case,
one can define the RQS (G, w) as above with the difference that now the state space X is replaced
by the restricted space of o € X that are aligned with the boundary conditions at those sites which
have infinite external field, so that u has full support when restricted to this set. Then it is not
hard to check that Lemma 3.2 continues to hold, with the same proof.

Since marginals are conserved by the evolution, for any p € P(X) we expect that p; — u,
where = u(p) is the equilibrium measure (3.3) with external fields h such that the marginals
;i coincide with the marginals p;. It is standard to check that such a choice always exists. Equiv-
alently, the measure y = @ (p) is characterized by the condition

ullog(p/m)] = p[logo/w)].

for all stationary p € P4 (X), since by Lemma 3.2 one has that log(p/u) = Y, a;0; for arbitrary
coefficients a;. Recall that this is the condition appearing in Definition 2.4.

In analogy with results on entropy decay for the Glauber dynamics (see, e.g., [4] and references
therein), we propose the following conjecture concerning convergence to equilibrium.

Conjecture 3.3. Assume v(A) = %1(|A| = 1). There exists a constant ¢ > 0 such that for any
graph G with n vertices and maximum degree A, for any 8 € R with |B| < c/A, and for any
choice of external fields h, the ROS (G, u) with (1 = pg, gn satisfies the entropy production
estimate of Definition 2.4 with constant § = c/n.

Note that if 8 =0, then gy = %, then we are back to the single site recombination model, for
which Conjecture 3.3 holds by Corollary 1.3. We turn now to the description of some possible
variants of the nonlinear stochastic Ising model.

3.3.1. Foldings

A further stochastic Ising model is obtained as follows. Given a pair (0,0’) € X x X, let B =
B(o, ¢’) denote the set of vertices where they agree: B={i € [n]:0; = oi/ }. Then define the
kernel

Q(a, o'i T, r’) = ;L(ogrgc)u(ogrg(;)l(téc = —ch), (3.9)

1
Z(o,0")

where Z (o, 0’) is the normalizing constant

Z(o0')= Y woptpn(op(—ts0)).

re{—1,+1}B¢

It is not hard to check that G = Q — 1 defines a RQS with the required properties for any measure
m=ug,pn € Pyr(X)asin (3.3). Again Q does not depend on the external field h and all choices
of h produce a valid stationary state. In the case 8 = 0, one has that (3.9) coincides with the
binary uniform crossover example (3.1) above. We expect that for small 8 an estimate as in
Conjecture 3.3 should hold for this model as well. The kernel Q in (3.9) is an example of a
“folding” transformation in the terminology introduced in [29].



3264 P. Caputo and A. Sinclair

3.3.2. Adding a dissipative term

The previous models are conservative in the sense that single site marginals are constant in time.
One can obtain a non-conservative evolution by adding a dissipative term as follows. The added
terms can be interpreted as mutation operators in the context of genetic algorithms; see, for
example, [17].

Fix a graph G with vertex set V = [n], 8 € R and a set of external fields h, and let u = G g.n
be the associated Ising Gibbs measure. Suppose that W(o; 7) is the usual Glauber dynamics
kernel for w, that is,

n

1 . . . .
Wosny=—> [l HolUle'NI(zr=0") + u(o | {o} Ul Nz =),

i=1
where again, for any o € X, ¢/ € X is obtained from o by reversing the spin at i. Define
@(o, o1, 1) =(W(o; 1) — 1o =1)1(c'=7") + (W(c';T') = 1(c' =1"))1(c = 1).

As in Remark 2.1, the RQS (((N}, w) defines a linear evolution, namely the Glauber dynamics. If
G is the generator of the RQS (G, u) introduced in (3.4), then one can define a new nonlinear
RQS (G, ) with generator G’ = G + G. It is not hard to check that (G', u) satisfies the required
properties. Moreover, in this case one has the following quantitative convergence results.

Theorem 3.4. Fix the graph G with n vertices, 8 € R, and a set of external fields h. Let p;
denote the evolution according to the RQS (G, ) defined above with (v = LG g n-

(1) There exists c(B, G) > 0 independent of h such that for all p € P(X), and all t > 0O:

H(pi |p) <e“PO'H(p| ).

(2) There exists a constant ¢ > 0 independent of G, B and h such that for all B € R with
|B] <c/A, where A is the maximal degree of G, and for all p € P(X), and all t > 0:

H(p: ) <e "H(p| ).

The main difference between the two estimates above is that the first is valid for any 8 and
involves a constant c(8, G) that may be exponentially small as a function of the graph G (see the
proof below for an explicit expression), while the second is a bound with decay rate of order 1/n
that is valid only at sufficiently high temperature. In any case, Theorem 3.4 shows that in contrast
with the conservative case, all initial states p € P(X) converge to the same equilibrium point .
Indeed, in this case the kernel W, which depends on the external fields, drives the system towards
the equilibrium w.

Proof of Theorem 3.4. For the first estimate, it is sufficient to prove that (2.9) holds for all

f X+ [0, 00) with § = c(B, G) > 0. Notice that we do not restrict to any particular class of
functions here. With the notation of (2.10), we have

1 ~ |~
D(f, /)=—5R[(GF +GF)log F] = —Za[(GF)log F],
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where we use the fact that —x[(GF) log F] > 0, which follows from the representation in Propo-
sition 2.3, part 1. Since the operator G corresponds to two independent Glauber dynamics on
X x X, from Proposition 1.1 and Lemma 2.2 in [4] one has the modified logarithmic Sobolev
inequality

~A[(GF)log F] = c(B, )il F log F,

where ¢(8, G) = n~le SIBIIEl and |E| is the number of edges in G. This proves part 1 since
LFlog F]=2Ent(f).

To prove part 2, we use the same argument, but now observe that for some absolute constant
¢ >0, for |B] <c/A, by Corollary 2.3 in [4] one has

~r C L
—M[(GF)logF] > ;,u[FlogF]. 0

3.4. Further examples

Many more examples of RQS can be constructed by using suitable Markov chain generators
in the product space X x X. This allows one to construct natural and possibly useful nonlinear
versions of various familiar stochastic processes such as random walks or card shuffling. We
refer to [28] for an interesting application to matchings in graphs.

Our discussion in this paper is limited to the quadratic case where two independent samples
from a given population interact to produce a new population. However, it is not difficult to gen-
eralize the setting by considering more than just two samples from the starting population. One
may then obtain higher order nonlinear equations. For instance, a cubic version of the recombi-
nation process (1.2) would take the form

d
—pi= Y VAB.C)(pa®pp®@pic—p). 120,

dr A,B,.C

where A, B, C form a partition of [n], and v is a probability over such partitions. Generalized
recombination models of this kind have been recently considered in [1]. Further generalizations
(which are not necessarily even mass-preserving) can be found in the field of “mass action kinet-
ics” introduced in [14,19], which remains a very active area today.

4. Entropy production estimate for recombinations

In this section, we prove Theorem 1.1, Theorem 1.2 and Corollary 1.3. Most of the work goes into

proving the lower bounds on the constant §(v) in Theorem 1.1. The first step consists in reducing

this problem to the more tractable problem of controlling the constant « (v) in Theorem 1.2.
Consider the RQS (G, p) defined by G = Q — 1 where

Qo,0;7,7) = Z V(A)1(t =004, T =040)c),
A
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for some distribution v on subsets of [n], and u = ®;’=1 w; an arbitrary product measure on the
product space X = X x --- x X,,, where X; are given finite spaces. Assume that u (o) > 0 for
all o € X.

For any A C [n], let X4 = l—[ieA X;, and for any f : X+ [0, 00), write f4 for the function
fa : X4 [0, 00) defined by

faton) = n(0') f(oachc). 4.1)

o’'eX

Notice that, if f is a density with respect to u (i.e., u[f] = 1) then f4 is the density of the
marginal of fu on X4. It will often be convenient to regard f4 as a function on the whole space
X simply by setting fa(o) = fa(oa). If p € P(X), we write p4 for the marginal on X4. Thus,
if f = p/u, then f4 fac denotes the density of p4 ® pac with respect to . When A = &, we
set for =1. When A = {i} is a singleton, we simply write f; = f{;) for the single site marginal.

Lemma 4.1. Fix an arbitrary distribution v on subsets of [n]. Let S, denote the set of f : X
[0, 00) such that u[fl=1and f; =1 foralli =1,...,n. Suppose that there exists § > 0 such
that

ZV(A)M[fAfAc log f] < (1 —8)Ent(f) (4.2)

A

forall f €8S,,. Then the RQS (G, u) satisfies the entropy production estimate with constant §, as
defined in Definition 2.4.

Proof. Rewrite the functional D(f, f) as

D(f. f)=— Zv(A)Z u(@ (') (f (thrae) f(tathe) — f(0) £ (7)) log f(1).

7,77eX

With the notation f4 for the marginal densities, and using the product structure of 1, the above
expression becomes

D(f, f)=Ent(f) = Y _ v(A)ulfafaclog f1. (4.3)

A

To conclude the proof it remains to show that F C S,, where I is the set of functions
from Definition 2.4. Indeed, suppose that f € IF. Then for any stationary p € P4 (X) one has
wlflog(p/m)] = ullog(p/w)]. Let us show that f; =1 for all i € [n]. Take p € P4 (X) of the
form p = @7_, p; for some probability measures p; on X;. Then p is stationary. Choosing
pj =pj forall j #1i, one has

] filog(pi/mi)] = nflog(pi/mi)]-

Since the p;’s are arbitrary, it follows that f; =1 for all i. O
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We remark that since the distribution v in Lemma 4.1 is arbitrary the inclusion IF C S, used
in the previous proof may be strict. However, by Lemma 3.1, if v is nondegenerate then one has
that F =S, since the only stationary measures are of product form.

Notice that (4.2) is equivalent to

> v(A)u[(fAfAc — f)log

A

f"f‘”] > SEnt(f). (4.4)

This follows from the fact that for any A one has

w[(fafac — f)log(fafac)]=0.

Thus, the largest constant & such that (4.2) holds for all f € S, is precisely the constant 8 (i, v)
appearing in inequality (1.6) (with 7 replaced by w).

The following observation allows us to reduce (4.4) to a more tractable expression. Suppose
f = p/u for some p € P(X). Then

ulfafaclog f1=—(pa® pAc)PO:%(%)] +(pa® pAc)[log<@>}

Rearranging and using ;t = 14 ® p4c one has the identity

ulfafaclog fl=—H(pa ® pac | p)+ H(palma)+ H(pac|pac).
In particular,
wlfafaclog f1<H(paluma)+ H(pac|pac)
= plfalog fal + plfaclog facl =Ent(fa) + Ent(fac).

Since the above holds for arbitrary product measures (., with the notation of Lemma 4.1 we have
obtained the following criterion.

Lemma 4.2. Suppose that, for all f €S,,,

> v(A)(Ent(fa) + Ent(fa0)) < (1 — k) Ent(f), (4.5)

A

with some k > 0. Then (4.2) holds with constant § = k. In particular, if §(v) and k(v) are the
constants introduced in Theorem 1.1 and Theorem 1.2, then for any distribution v,

s(v) =k (v).

We turn now to the analysis of the constant «(v). We start by recalling some preliminary
inequalities.
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4.1. Tensorization and Shearer-type inequalities

We recall that for any probability measure u, for any A C [n], one has the decomposition

Ent(f) = Ent(ulf | Al) + u[Ent(f | A)], (4.6)

where Ent(f | A) = u[flog(f/ulf | A]) | A] denotes the entropy of f with respect to the condi-
tional probability measure u[- | A], obtained by conditioning & on a given realization of the vari-
ables 04 € X4. The decomposition (4.6) is obtained by adding and subtracting [ f log u[ f | A]l
from Ent(f). We note that if x is a product measure, then u[ f | A] coincides with f4 defined in
(4.1). Let A be an arbitrary family of subsets A C [n]. Let deg; (A) denote the degree of a site k
in A, i.e., the number of subsets A € A such that A > k, and set

n_(A) = min{deg; (A), k € [n]}, n4(A) = max{deg; (A), k € [n]},
for the minimal and maximal degrees, respectively.

Proposition 4.3. Let 1 be a product measure. For any family of subsets A and any function
=0,

n_(A)Ent(f) < Y u[Ent(f | A9)]. 4.7)

AeA

Equivalently, for any A and any function f >0,

> Ent(f4) < n4(A) Ent(f). (4.8)

AeA

Proof. The equivalence of (4.7) and (4.8) follows from (4.6) by passing from A to the comple-
mentary set of subsets A = {A, A € A}. We prove (4.8) as a consequence of the classical Shearer
estimate for Shannon entropy [9]. Suppose first that A is a regular cover of [n], i.e., the union of
A € A is [n] and the degrees n(A) := deg; (A) are independent of k € [n]. By homogeneity, we
may assume u[f]=1.Call Z = (Zy,..., Z,) the random variable with probability distribution
fu,sothat faua is the law of the marginal Z4 = (Z;,i € A); see (4.1). For any A, the Shannon
entropy H(Z4) of Z,4 satisfies

H(Zp) =~ Z faoa)ma(oa)log(faloa)alon))

=—Ent(fa) — Y_ Y fa(@a)ualoa) log(pi(oi)
oA i€A

= —Ent(fa) — ) Y fio)i(oi) log (i (07))
i€A 0

=—Ent(fa)+ Y H(Z)+ Y _ ulfilog fil.

icA i€eA
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Equivalently,

Y H(Zi) — H(Zx) =Ent(fa) — Y _Ent(f)). (4.9)
icA icA
Shearer’s estimate for the Shannon entropy states that
n(AYH(Z) <Y H(Za); (4.10)
AeA
see, for example, [9] or [2] for a proof. Therefore, summing over A € A in (4.9) and using (4.10),
> Ent(fa) —n(A) Y Ent(fi) <n(A) Y H(Z) —n(A)H(Z). (4.11)
AcA i€n] i€[n]

Applying (4.9) with A = [n] to the right hand side of (4.11), one obtains (4.8).

Suppose now that A is arbitrary, so that it need not cover [n] or have uniform degrees. Then
one can add singleton sets to A until one obtains a regular cover A’ such that n (A) = n(A"). It
then follows that

Y Ent(fa) < ) Ent(fa) <n(A')Ent(f) = n4 (A) Ent(f).

AeA Aeh’/

This ends the proof of (4.8). ]

By applying Proposition 4.3 to the dyadic cover A = {A, A} one obtains that, for any A C [n]
and any nonnegative function f:

Ent(f) < pu[Ent(f | A)] + w[Ent(f | A%)]; (4.12)
Ent(f4) + Ent(fac) < Ent(f). (4.13)

The bounds (4.12) and (4.13) express respectively, the well-known tensorization and subadditiv-
ity properties of a product measure.

4.2. Proof of Theorem 1.2

Let us point out first that a simple application of Proposition 4.3 is not sufficient to prove Theo-
rem 1.2. For instance, consider the uniform crossover model where v(A) =27" for any A C [n].
Then the left-hand side of (4.5) becomes

27"+ "Ent(fa).
A

If f €S, then
Ent(f;) = u[filog fi1=0,
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n—1

and, from Proposition 4.3 applied to the k-set cover Ay ={A, |A| =k}, with n+(A) = (}_) one
has

-1
> Ent(fa) < (z B 1) Ent(f),

AEAk
forall k =2, ..., n. These observations show that
n
-1
27"+ Y Ent(f4) < 27" Ent ") = (1= 27 Ent(p).
; nt(fa) < n(f)g 1) =( ) Ent(f)

It follows that (4.5) holds with k =27"*1 a very poor estimate compared with the constant
k(W)y=1=2""H/(n—1) appearing in Theorem 1.2.

The key ingredient in our analysis is a suitable refinement of Proposition 4.3. Various improved
versions of Shearer bounds have been proved recently; see [2,23]. Our refinements below (see
Lemmas 4.5 and 4.6) appear to be new, and are inspired by the work of Balister and Bollobds [2],
who emphasized the role played by the sub-modularity property of entropy. Recall that a map
A+ h(A), A C[n]is called sub-modular if for all A, B C [n]

h(A) +h(B)>h(ANB)+h(AUB). (4.14)
We shall need the following simple lemma.
Lemma 4.4. For every nonnegative function f and any product measure (i, the map
A h(A) = —Ent(fa)
is sub-modular, and h(2) = 0.
Proof. This follows from (4.9), and the fact that
H(Zx)+ H(Zp) = H(ZanB) + H(ZauB), (4.15)

for all A, B C [n], and any random variable Z = (Zy, ..., Z,). The proof of (4.15) is standard;
see, for example, [2]. O

We now proceed with the proof of Theorem 1.2, beginning with the case of uniform crossover.

4.2.1. Uniform crossover

Our analysis hinges on the following improved Shearer bound, which sharpens inequality (4.8)
in Proposition 4.3.

Lemma 4.5. For every n > 2, for any sub-modular map h with h(2) = 0,

(n—2)2""141 =11 ¢ ,
> ha) = n—h([n]) +—— ;h({l}). (4.16)

—1
AC[n]
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Proof. For any 1 <k <n, define Ay ={A C [n]:|A| =k}, and

o= h(A).

Aehy

Let us show that, forall 2 <k <n —1,

1 n n—k
> — —_—Qk_1- 4.17
wk_k(k_1><pn+ Pr—1 4.17)
Write

onzé Yo ) kA

AleAy_| Aehg:
A'CA

Let us first prove that, for any A’ € Ay_1, one has

Z h(A) > h([n]) + (n — k)h(A). (4.18)
Aehy:
A'CA
Assume, without loss of generality, that A’ = {1, ..., k — 1}. The sum above then becomes
n

> h(A) =) h(A'U{j)).

A€l Jj=k

A'CA

From sub-modularity (4.14), one has
h(A"Uk}) +h(A"U {k+ 1)) = h(A") + h(A"U (k. k + 1).
SetUg=A"Ulk,...,k+ £}, for £ €{0,...,n — k}. Then, recursively:

k+L
D h(A'U{j}) = th(A") + h(Uy).
j=k

Setting £ = n —k proves (4.18), since U,,_; = [n]. Next, using (4.18) and noting that 2 ([n]) = ¢,,
one has (4.17).
Iterating (4.17), we arrive at

@k = c(k, ), +d(k, n)gr, (4.19)

where
(n—-2)!
Kln—k—10

. 1 n (n—k) n n(n —3)!
C(k’")_[E(k—1)+k(k—l)(k—2)+"'+k!(n—k—1)!]‘

d(k,n) =
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Note that (4.19) holds forallk =2, ...,n—1.Itcanbe extended tok = 1, ..., n as well, provided
wesetc(l,n)=0,c(n,n)=1,d(n,n) =0and d(1,n) = 1. Thus, the claim (4.16) follows once
we prove

‘ -2l
ctomy= =P FL (4.20)
P n—1
and
n -1
=1

> d(k,n) = — 4.21)
k=1

The identity (4.21) follows from

= -2 1 "‘1<n—1 @ o
k!(n—k—l)!_n—lz k )‘ n—1

k=1 k=1

To check (4.20), notice that if h(A) = 1(A # @), then (4.18) and (4.17) are both identities.
Therefore, (4.19) is an identity as well, for all k = 1, ..., n (with the above definitions of c(k, n)

and d(k,n)). Since here ¢; = (}), summing over k =1, ..., n in (4.19) one has
n
=l
2" —1= k _
D clk,n)+n P
k=1
which is equivalent to (4.20). This ends the proof of (4.16). O

From Lemmas 4.5 and 4.4,

(n—2)2""1 41 -l 1 &
> Ent(fa) < ————En()+ ——— ;Ent( 1. (4.22)

AC|n]

Since f € S, one has Ent( f;) = 0 for all i, and therefore

_ —n+1
- n—2)+2

27" " (Ent(fa) + Ent(fac)) < — Ent(f),
AC|[n]
which implies the lower bound « (v) > (1 — 2_"+1)/(n —1).

To prove the upper bound, we argue as follows. Suppose X =--- = X, = X so that X = X",
and suppose u is a product of identical probability measures po on X. Let Zg denote a random
variable with values in X with distribution pq, and call Z the random variable (Zy, ..., Zg) with
values in X, that is, Z consists of n identical copies of Zy. Clearly,

H(Zy)=H(Zo) =— Z po(x) log po(x), (4.23)

xeX
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forany A C [n], A # @. Next, let f denote the probability density of Z with respect to u, that is,
fu is the law of Z. Notice that f € S, since f; =1 for all i. By (4.9) one has, for all A C [n],

Ent(f4) = (JA| — 1)1(A # 2) H(Z). (4.24)

It follows that
> Ent(fa) =[(n — 22" + 1]H(Z).

AcC|n]

Since Ent(f) = (n — 1)H(Zp) we see that this choice of f saturates the bound (4.22). This
concludes the proof of Theorem 1.2 for uniform crossover.

4.2.2. The Bernoulli(q) model

We need the following extension of Lemma 4.5.

Lemma 4.6. For every y € (0, 00), for any sub-modular map h with h(&) =0,

n—1 _ _ n—1 _ n
Z y‘A‘h(A)z(ler) [y(n—1) 1]+1h([n])+%2h({i}). 4.25)

Acln] n—1 n—1 P

Proof. The left-hand side of (4.25) coincides with ) ;_, ¢k, where ¢ := v*or and ¢ was
defined in Lemma 4.5. From (4.19), it follows that

Gk = vk, mgn +y*d (k. n)p:.
Thus, (4.25) will follow if we can prove

n

n—1 _ _
Zykc(k,n)z(”J/) ly(n—1)—1]+1

P n—1
and
n
14yt —1
> dm ==L
k=1
It is not hard to check that these identities follow in the same way as (4.20)—(4.21). ([

Next, observe that for v(A) = ¢!41(1 — ¢)"~14l, one has

> v(A)[Ent(fa) + Ent(fac)]

AC|n]

[A] —|A]
=1-9" Y (ﬁ) Ent(f4) +4" Y (ﬁ) Ent(f4)-

Acn] Ac[n] N
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We estimate each sum above using Lemma 4.6 with #(A) = — Ent(f4), once with y = % and

once with y = (ﬁ)’l. This yields
3" v(A)[Ent(f£a) +Ent(f40)] < Alg. n) Ent(f), (4.26)
AC[n]
where
A=) "= 1D —11+1
n—1

Cl=g¢"=0=9)"
n—1 '

g ML =) — 11+ 1

n—1

+4"

Alg,n)=(1—-¢q)

=1

This implies the lower bound

l—q"—(1—gq)

)z ——

To prove the upper bound, we argue as in (4.23)—(4.24). Using the same function f defined there,
one has

>~ v(A)(Ent(fa) + Ent(fac))

AC(n]
_ Z g1 — q)n*\A\[(|A| — 1)1(A #2) + (|A°| — 1)1(A # [n])|H (Zo)
ACln]
1—¢"—(1-¢q)"
=(n—2+v([n]) +v(@))H(Zo) = (n — 1)H(Zo)[1 -1 " _(1 2 ]

Since Ent(f) = (n — 1) H(Zy), this choice of f saturates the bound (4.26). This proves Theo-
rem 1.2 for the Bernoulli(¢) model.

4.2.3. Single site recombination

When v(A) = 1 Y 1(A = {i}), using Ent(f;) =0 for all i € [n], (4.5) becomes

n

1 n
=D ulfiigelog fiyel = (1= ) Ent(f). (4.27)
i=1
We note that an application of Proposition 4.3 with the (n — 1)-cover A,,_; = {{i}°, i € [n]} gives
the inequality (4.27) with constant k = 1/n.
To prove that it can be strengthened to k = 1/(n — 1), we observe that the left hand side of
(4.27) can be written

1 & 1
- Zu[f{i}f log fiiyel = —=@u—1,
n iz n
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where @y is defined in the proof of Lemma 4.5 with #(A) = — Ent(f4). From (4.19),
1 & 1
Y ul fiiyelog fie] < ~cn— 1, m) Ent(f).
i=1

The coefficient c(n — 1, n) can be computed as in the proof of Lemma 4.5, and one finds c(n —

1,n) =n — =5 Thus, (4.27) holds with x = ﬁ which proves the lower bound « (v) > ﬁ

The upper bound follows as in (4.23)—(4.24). Indeed, with that choice of f and p one has
1 & n—2
=D ulfiigelog finel = (n =D H(Zp) = — Ent(f).
i=1

This concludes the proof of Theorem 1.2 for single site recombinations.

4.2.4. One-point crossover
Here
1 n
A)=—— 1A=1J),
V() =~ Z (A=)
i=0
where Jo = and J; ={1,...,i},i > 1. Fix f > 0 and define, fori =1, ..., n:
u@)=Ent(fy), () =Ent(fy ).
Notice that J; N J£_ | ={i}, and J; U J7_| = [n]. Thus, from Lemma 4.4 one has
u(i) + u(i) < Ent(f;) + Ent(f).

Therefore,

n

1
D V[E(fa) +Ent(fao)] = == B (wld) + i)
AC[n] i=1

(4.28)
n 1 -
< ——Ent _— Ent(f;).
“n+1 n(f)+n+1; nt(fi)
If f €S, one has Ent(f;) =0foralli € [n], and (4.28) proves the desired upper bound. To prove
that (4.28) is optimal, notice that with the argument in (4.23)—(4.24) one obtains u (i) + u(i) =

Ent(f) foreveryi =1, ..., n, and therefore (4.28) is an identity for this choice of f. This proves
Theorem 1.2 for the one-point crossover model, and thus concludes the proof of the theorem.

4.3. Proof of Theorem 1.1

From Lemma 4.2 and Theorem 1.2 we have already obtained the desired lower bounds §(v) >
k (v). The upper bounds on & (v) are based on the following estimate.
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Proposition 4.7. Let v be one of the four recombination distributions, and set X = {0, 1}". Let
w=w(n)=2"",and let u be the product of Bernoulli(w) probability measures. Define

Ay =) v(A)(27 A 42714, (4.29)
A

Then,

s = 2B 4 o(n2),

Let us first check that Proposition 4.7 implies the upper bounds on §(v) announced in Theo-
rem 1.1. Indeed, in the case of single site recombination v(A) = % Z?:l 1(A ={i}), one has

1 _
A, = 3 +0(27"), (4.30)

and therefore § (v) <d8(u,v) < % + O(n=?). In the case of one-point crossover, one finds eas-

ily that A, = O(1/n), and therefore §(v) < % + O(n=2). For uniform crossover v(A) = 27",

one has that A, is exponentially small, and thus again §(v) < 44 O(n~?). Finally, for the

n
Bernoulli(g) model, one finds

n

_ M\ koy o \n—k(r—k | n—n+k\ _ _Zni n
Av_;<k>q (1—g)" 2% +2 )_<1 2) +5 1+ 4.31)

Since g <1/2, A, = (1 —¢q/2)" 4+ O((3/4)"), which yields the claimed upper bound on §(v).

Proof of Proposition 4.7. Let B(u) € P(X) denote the product of independent Bernoulli with
parameter u € [0, 1], so that © = B(w), and define f = p/u, where

p=w?B(1)+ (1 —w)*B0) +2w(l —w)B(%). (4.32)

It is easily checked that p and u have the same marginals, that is, p; = u;, so that f; = 1 for all
i € [n]. Then p can be written as

po)=al(c=1)+bl(c =0)+ cl(c # 1 and o # 0),

where a = w? + 2w(l — w)2™", b= (1 — w)? 4+ 2w(l — w)2™", and ¢ = 2w(l — w)2~". The
relative entropy is given by

a b "1 c
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Using ¢ 3474 (7) = 2w(1 —w)(1 =27+ and ¢ Y42 ()b = nw(1 = w)(1 =274,
b
E =al bl
nt(f)=a og( )—i— og((l_ )n>
_ _ ~—n+l c
+2w(l —w)(1 -2 )10g<—(1_w)n) 4.33)

Frw(l —w)(1 — 27 10g<1_7w>.

Using w = 27", one finds

a
a log<wn>

0(27"); blog(ﬁ) =n27"+ 0(27”);

1—
nw log<—w> =n*2""log2+ 0(27").
w
Therefore,
Ent(f) =n*2""log2 — 4n2 " log2 +n2"" + O(27"). (4.34)

Next, we compute the entropy production D( f, f). Define

Pl@) =) v(A)(pa® pac).

A

As in (4.3), we write

D(f, f)=Ent(f) —27" Z il fafaclog f1=Ent(f) — p[log(p/m)]. (4.35)
A
Observe that

[log(p/,u)]—anlog< >+aolog< )—i—Zaklog( k(l—w)" k)

where o = Zo:lalzk p(0) and |o| denotes the number of 1’s in o. From the conservation of
marginals, one has that ZZ: 1 kg = nw. Therefore,

b
Pllog(p/m)] = an log< ) +ag log<(1 — w)”)

c 1—w
+(l—ao—an)log< )+(nw—na,,)log<—>.
(1 =w)y w
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From (4.33) and (4.35), we obtain
a b
D(f, f)=(a— an)IOg(—> + (b — ) 10g(7>
wn (1 —w)"
a5
Plos\ =y ) 718\ )

where the new coefficients B, y are given by

(4.36)

B=2w(l—w)(1-2""") (1 —ap—a,), y=na,—nw2 "1 -w)+w).

In order to estimate the ratio D(f, f)/Ent(f), we need to control ¢g and «,. These can be
computed as follows. For any A C [n], u, v € [0, 1], write

B(u)a @ B(v)ac = B(uavac),

where B(u4v4c) denotes the product of independent Bernoulli measures such that the sites in A
have parameter u and the sites in A have parameter v. It follows that

p=Y v {wB1)+ (1 —w)*BO) + 4w (1 —w)*B(1/2) + w(1 — w)*B(150)
A

+w?(1 = w)2B(04lac) +2w(l — w) B(04(1/2) ac) +2w(1 — w)* B((1/2)404¢)
+2w (1 = w)B(14(1/2) ac) + 2w (1 — w) B((1/2)alac)}.
From this expression, it is not hard to check that
an=0(w2), a0=1—4w+2wAv+0(w2),

where A, is given by (4.29). Moreover, 8 = —2w + 2wA,, + O(w?) and y = O(nw?). There-
fore,

b
(a—oy) 10g(%> =0Q27™"); (b —ap) log<7(1 — w)") =0Q27™");

I <;)——4(1—A)2_”1 24027 1 (1_—“’)—0(2—'1)
plog Ty )~ v)n2"" log v ylog( —— )= :

From (4.34) and (4.36), it follows that

D(f.f) _4(1—A)

)
By~ n TOUT)

8(n,v) <

This concludes the proof of Proposition 4.7 and of Theorem 1.1. ]
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4.4. Proof of Corollary 1.3

Let v be one of the four recombination distributions and fix an arbitrary initial state p € P(X).

Let 7 = ®}_, pi be the associated product measure. If 7 fails to satisfy (o) > 0 forall 0 € X

we can always redefine X so that this holds. Thus, without loss of generality, we assume that
7w € P4 (X), and we can work within the general framework developed in Section 2 with u = .

From Proposition 2.5 and the observations in Lemma 4.1 and Lemma 4.2, we know that
H(p;|m)<e ™ H(p|m)

for all # > 0, where « (v) is the constant computed in Theorem 1.2. This proves the upper bound
(1.8). We turn to the corresponding statement in discrete time. The following lemma proves the
desired upper bound (1.9). Let p® = w[p*—D] ke N, p©@ = p, where

Wipl= v(A)(pa® pac).
A

Lemma 4.8. For any initial state p € P(X),
H(p® 7)< (1—cw)H(p* " |x),
for all k € N, where k (v) is the constant in Theorem 1.2 and = = Q}_; p;.

Proof. Since the map W preserves the marginals, it suffices to show that, for any p with the same
marginals as 7, one has

H(¥[pllm)<(1—cW)H(p|m), (4.37)

Set f = p/m and fy = ¥[pl/mw. Now, fu =) 4 v(A)fa fac. Convexity of the function x >
xlogx, x > 0, shows that

[ folog ful <Y v(A)m[fafaclog fafacl=Y v(A)[Ent(fa) + Ent(fac)].
A

A
Therefore, by Theorem 1.2,
[ fwlog ful < (1 —k(W)r[flog f1.

which coincides with (4.37). O

To conclude the proof of Corollary 1.3 we need to check the bounds in (1.10). To this end,
take X = {0, 1}" and p the probability measure defined in (4.32). If f = p/m, then the proof of
Proposition 4.7 shows that

4
D(f, ) =y ) Ent(f), y(v) = (;(1 - A+ 0(71_2))- (4.38)
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By Proposition 2.3 part 1, one has

d
EH(szﬂ) =—D(f, /) z—yWH(p|m).

=07t

On the other hand, in discrete time one has

H(pV | 7) = n[ fylog ful.

From the variational principle for relative entropy,

7l folog ful = mlfulog f1=") v(A)m[fafaclog f1. (4.39)

A

From (4.5), (4.39) and (4.38) it follows that

H(p(l) |7-[) >H(p|n)—D(f, f) > (1 —)/(V))H(PUT)’

which proves (1.10). Finally, the estimate

y(v) = Ck(v)

follows easily from (4.30)—(4.31). Because of the O (n~2) correction in y (V) one needs to require
g > n~? in the case of the Bernoulli(¢) model.
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