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Given a class of centered Gaussian random fields {Xh(s), s ∈ R
n,h ∈ (0,1]}, define the rescaled fields

{Zh(t) = Xh(h−1t), t ∈ M}, where M is a compact Riemannian manifold. Under the assumption that the
fields Zh(t) satisfy a local stationary condition, we study the limit behavior of the extreme values of these
rescaled Gaussian random fields, as h tends to zero. Our main result can be considered as a generalization
of a classical result of Bickel and Rosenblatt (Ann. Statist. 1 (1973) 1071–1095), and also of results by
Mikhaleva and Piterbarg (Theory Probab. Appl. 41 (1997) 367–379).
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1. Introduction

In this work, we are studying the following problem. Let {Xh(s), s ∈ R
n} be a class of Gaussian

random fields indexed by h ∈ (0,1] ⊂ R. Define a rescaled random field via

Zh(t) = Xh

(
t

h

)
, t ∈ E ⊂R

n.

In the case of E being a manifold, we are studying the extreme value behavior of Zh(t) by
seeking quantities ah, bh ∈R such that for fixed u ∈R,

lim
h→0

P

(
ah

(
sup
t∈E

Zh(t) − bh

)
≤ u

)
is non-degenerate.

To our knowledge, existing literature on extreme value behavior and excursion probabilities
considers rescaled Gaussian fields only with E ⊂ R

n being a compact interval or a hyper-cube,
but not a manifold – see Pickands [37], Berman [6,7], Leadbetter et al. [34], Seleznjev [44–46],
Hüsler [29,30], Hüsler et al. [31], Tan [49] and Tan et al. [50]. In cases where the index set is a
compact manifold, the random field is not rescaled – see Piterbarg [40], Mikhaleva and Piterbarg
[36], Piterbarg and Stamatovich [39], and Cheng [16]. In contrast to that, we consider the case
of rescaled fields with E being a manifold. We will impose a local stationarity condition on the
class of fields. This condition generalizes the notion of local stationarity used by Mikhaleva and
Piterbarg [36]. The consideration of local stationarity in the context of excursion probabilities
goes back to Berman [5], who considered one-dimensional processes.
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Extreme value distributions of rescaled processes and fields also play an important role in the
statistics literature. For instance, Bickel and Rosenblatt [10] consider a kernel density estimator
f̂n based on a sample of n independent observations from f . They derive the asymptotic distribu-

tion of the quantity supt∈[0,1] |f̂n(t)−f (t)|. The approach underlying their theoretical derivations
is to first use strong approximations of {f̂n(t)− f (t), t ∈ [0,1]} by Gaussian processes, and then
to derive a result of asymptotic excursion probability for the approximating Gaussian processes,
where E = [0,1]. Here, h turns out to be the bandwidth used in the definition of the kernel density
estimator. The case of a multivariate kernel density estimator was treated later in Rosenblatt [43]
by using a similar approach. See Konakov and Piterbarg [33] for similar work in the regression
case. One should perhaps note that the set-up in this work is framed slightly differently by con-
sidering processes and fields of the form {Xh(s), s ∈ Sh}, where Sh = {s : s = h−1t, t ∈ [0,1]d}.
Clearly, this set-up can easily be recast by using a rescaled process or field over a fixed domain.
A similar comment applies to the probabilistic literature on rescaled Gaussian fields on intervals
or hyper-cubes mentioned above. In contrast to the existing literature, we chose to rescale the
fields itself, rather than the index sets. This seems to be more natural in the case of the index set
being a manifold, and corresponding technical conditions tend to be easier to interpret.

Rescaled Gaussian processes have also been considered in the non-parametric Bayes literature.
For instance, van der Vaart and van Zanten [52] explore the behavior of small ball probabilities
for rescaled Gaussian processes of the form {Z(h−1t), t ∈ [0,1]} for a given Gaussian process
Z(t), t ≥ 0. Here h either tends to zero or to infinity, corresponding to a roughening or a smooth-
ing effect on the sample paths, respectively. The importance of extrema of Gaussian processes
and fields in the field of statistics is further underlined by recent work of Chernozhukov et al.
[17]. See Sharpnack and Arias-Castro [47] for yet another application of extreme value distri-
butions of Gaussian random fields in statistics. For some more general relevant references to
Gaussian fields and extremes, we refer to the books by Adler and Taylor [1], and Azaïs and
Wschebor [2].

Our studies are in part motivated by recent interest in statistical inference for manifolds. For
instance, considering ridge lines of densities in R2 (a manifold), Qiao and Polonik [41] derive
a distributional result for the deviation (measured in supremum distance) of an estimator of the
ridge line from the truth. Because of the pointwise asymptotic normality of the estimators under
consideration and the use of the supremum distance, extreme value results for rescaled Gaussian
fields on manifolds come into play there. In fact, the probabilistic result underlying the deriva-
tions in Qiao and Polonik [41] follows from the main result proven here.

There exists other statistical work dealing with ridges and related manifold type objects, and
even though this work is not directly related to extreme value theory, we provide some references
for the convenience of the interested reader. Ridges are considered in Hall et al. [27], Genovese
et al. [23,25], and Chen et al. [12–14]. Further manifold-type objects studied in the statistical
literature include level curves (Lindgren et al. [35], Cuevas et al. [19], Chen et al. [15], Qiao and
Polonik [42]), boundaries of the support of a probability density function (Cuevas et al. [20], Biau
et al. [8]), and integral curves (Koltchinskii et al. [32], Qiao and Polonik [41]). In corresponding
real world problems, these objects correspond to various types of geometric objects, such as
fault lines (geoscience), the cosmic web (astronomy), fiber tracts (neuroscience), or blood vessels
(medical imaging).
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The outline of the paper is as follows. Section 2 first introduces and discusses the notion
of local stationarity used here, and then formalizes and discusses the main result. Its proof is
presented in Section 3, and in Section 4 we collect some miscellaneous results and definitions
that are used in the paper.

2. Main result

First, we define the notion of local stationarity used in the main result below. Let ‖ · ‖ denote
Euclidean norm, and for a square integrable field Zh(t), we let rh(t1, t2) denote the covariance
function of Zh(t).

Definition 2.1 (Local equi-(α,Dh
t )-stationarity). Let {Zh(t), t ∈ S ⊂ R

n,h ∈ H} be a class of
non-homogeneous random fields, where H is an index set. We say that this class is locally equi-
(α,Dh

t )-stationary, if the following two conditions hold. For any s ∈ S and h ∈ H, there exists a
non-degenerate matrix Dh

s such that

(i)
hα[1 − rh(t1, t2)]
‖Dh

s (t1 − t2)‖α
→ 1 as

max{‖t1 − s‖,‖t2 − s‖}
h

→ 0, (2.1)

uniformly in h ∈H and s ∈ S , and

(ii) 0 < inf
h∈H,s∈S
t∈Rn\{0}

‖Dh
s t‖

‖t‖ ≤ sup
h∈H,s∈S
t∈Rn\{0}

‖Dh
s t‖

‖t‖ < ∞. (2.2)

Remarks. (i) If this definition is applied for one fixed h0 > 0, i.e., if H = {h0}, then this gives
the definition of local (α,D

h0
t )-stationarity as being used in Mikhaleva and Piterbarg [36], for

instance. In other words, the above definition requires the class of fields to be locally (α,Dh
t )-

stationary uniformly in h ∈ H.
(ii) Observe that Definition 2.1 implies that Var(Zh(t)) = 1.
Examples of local equi-(α,Dh

t )-stationary fields: (i) Let ∇2f be the Hessian matrix of a twice
differentiable function f , and let vech denote the half-vectorization operator. Qiao and Polonik
[41] consider Gaussian random fields indexed by a 1-dimensional manifold M of the form

Zh(t) = b(t)T
∫
R2

vech∇2K

(
t

h
− s

)
dW(s), t ∈M, h ∈ (0,1], (2.3)

and show that this class of random fields is locally equi-(α,Dh
t )-stationary with n = α = 2. Here

W is a 2-dimensional Wiener process, b : M → R
3 is a smooth vector field, and K : R2 
→ R

+
is a smooth kernel function with the unit ball in R

2 as its support. Note that the appearance of the
ratio h−1t in the above random fields provides a motivation to write Zh(t) = Xh(h

−1t), where
Xh(u) is a Gaussian random field defined on the rescaled manifold h−1M. This is the point of
view taken in Qiao and Polonik [41].
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(ii) Let Sn−1 = {x ∈ R
n : ‖x‖ = 1} be the (n − 1)-dimensional unit sphere. For any t1, t2 ∈

S
n−1 let d(t1, t2) = arccos〈t1, t2〉 be the spherical distance between t1 and t2. Let {Zh(t),

t ∈ Sn−1, h ∈ (0,1]} be a class of Gaussian fields with covariance functions

rh(t1, t2) = exp

[
−

∣∣∣∣gh

(
t1 + t2

‖t1 + t2‖
)

d(t1, t2)

∣∣∣∣α]
, (2.4)

where 0 < α ≤ 1, (t1 + t2)‖t1 + t2‖−1 is the midpoint between t1 and t2 on S
n−1, and

gh(t), t ∈ S
n−1, is a class of equi-continuous functions such that 0 < inf0<h≤1,t∈Sn−1 hgh(t) ≤

sup0<h≤1,t∈Sn−1 hgh(t) < ∞. In this setting, the field Zh(t) is locally equi-(α,Dh
t )-stationary

with Dh
t = hgh(t)In, where In denotes the n × n identity matrix. The verification of this fact is

provided in Section 4. This example can be viewed as a non-stationary generalization of powered
exponential covariance functions (also called stable covariance functions in Chilès and Delfiner
[18]), obtained by introducing an additional index parameter. In principle, the generalization by
including gh as above, can be applied to similar isotropic stationary random fields on S

n−1 with
covariance function only depending on d(t1, t2). Examples of such covariance functions can be
found in Huang et al. [28] and Gneiting [26], for instance.

Further notation. For an n × r matrix G with r ≤ n, we denote by ‖G‖2
r the sum of squares

of all minor determinants of order r . Let further H
(r)
α denote generalized Pickands constant of

a Gaussian field (see Section 4 for a definition). At each u ∈ M, let TuM denote the tangent
space at u to M. For an r-dimensional smooth manifold M embedded in R

n, let �(M) denote
the reach of M (Federer [22]). �(M) is the largest λ ≥ 0 such that each point in M⊕ λ has a
unique projection onto M, where M⊕ λ denotes the λ-enlarged set of M, that is, the union of
all open balls of radius λ with midpoints in M. A compact smooth (C2) manifold embedded in
an Euclidean space has a positive reach, for example, see Thäle [51]. A positive �(M) indicates
a ‘bounded curvature’ of M. As indicated in Lemma 3 of Genovese et al. [24], on a manifold
with a positive reach, a small Euclidean distance implies a small geodesic distance.

Now we state our main theorem, which generalizes Theorem 2 in Piterbarg and Stamatovich
[39] and Theorem A1 in Bickel and Rosenblatt [10].

Theorem 2.1. Let H ⊂ R
n be a compact set. Let {Zh(t), t ∈ H,0 < h ≤ 1} be a class of Gaus-

sian centered locally equi-(α,Dh
t )-stationary fields with 0 < α ≤ 2, and all components of Dh

t

continuous in both h and t . Let M ⊂H be an r-dimensional compact Riemannian manifold with
�(M) > 0. Suppose that Dh

t , t ∈ H, uniformly converges, as h ↓ 0, to a matrix field Dt, t ∈ H,
with continuous components. For u > 0, let

Q(u) = sup
0<h≤1

{∣∣rh(t + s, s)
∣∣ : t + s ∈ M, s ∈ M,‖t‖ > hu

}
, (2.5)

where rh denotes the covariance function of Zh(t). Suppose that, for any u > 0, there exists η > 0
such that

Q(u) < η < 1. (2.6)



1838 W. Qiao and W. Polonik

Furthermore, let u0 > 0 be such that for a function v(·) and for u > u0, we have

Q(u)
∣∣(logu)2r/α

∣∣ ≤ v(u), (2.7)

where v is a monotonically decreasing, such that, for some p > 0, v(up) = O(v(u)) = o(1) and
v(u)up → ∞ as u → ∞. Let

βh =
(

2r log
1

h

) 1
2

+
(

2r log
1

h

)− 1
2
[(

r

α
− 1

2

)
log log

1

h
+ log

{
(2r)

r
α
− 1

2√
2π

H(r)
α I (M)

}]
,

(2.8)

where I (M) = ∫
M ‖DsMs‖r ds with Ms an n × r matrix with orthonormal columns spanning

TsM. Then

lim
h→0

P

{√
2r log

1

h

(
sup
t∈M

∣∣Zh(t)
∣∣ − βh

)
≤ z

}
= exp

{−2 exp{−z}}. (2.9)

Remarks.

1. Since our result is asymptotic for h → 0, the quantity Q(u) in the theorem can be replaced
with

Qh0(u) = sup
0<h≤h0

{∣∣rh(t + s, s)
∣∣ : t + s ∈ M, s ∈ M,‖t‖ > hu

}
, (2.10)

for some (small) h0 > 0.
2. The function v(u) = (logu)−β , for β > 0, provides an example of a function satisfying the

properties required in the theorem.
3. Qiao and Polonik [41] apply a special case of the above theorem to the random fields Zh(t)

given in (2.3). There, r = 1, n = 2, α = 2, and Q(u) = 0 for u > u0. This property of Q(u)

in particular implies that the function v(u) = (logu)−β,β > 0, works in this case. The fact
that Q(u) has this particular property follows from the assumption that the support of K

(and of its second order partial derivatives) is bounded. This implies that the covariances of
Zh(x1) and Zh(x2) become zero once the distance ‖x1 − x2‖ exceeds a certain threshold.

4. Suppose that in the above example with covariance function (2.4), we further assume that
limh→0 hgh(t) = g(t), with g(t) a continuous and bounded function on S

n−1. Then condi-
tions (2.2), (2.6) and (2.7) all hold (see Section 4), and thus we have (2.9) with

βh =
(

2(n − 1) log
1

h

) 1
2 +

(
2(n − 1) log

1

h

)− 1
2

×
[(

n − 1

α
− 1

2

)
log log

1

h
+ log

{
n(2n − 2)(n−1)/α−1/2

√
2π

H(r)
α

∫
Sn−1

∣∣g(s)
∣∣ds

}]
.
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3. Proof of Theorem 2.1

We need some more notation. Given a set U and a metric dU on U , a set S ⊂ U is an ε-net,
if, (i) for any u ∈ U , we have infs∈S dU (s, u) ≤ ε, and (ii) dU(s, t) ≥ ε for any s, t ∈ S. Let
φ and 
 denote the standard normal density and cumulative distribution function, respectively,
and let 
̄(u) = 1 − 
(u) and �(u) = u−1φ(u). We also let Vr denote r-dimensional Hausdorff
measure. With βh in (2.8) let

θ = βh + 1√
2r log(1/h)

z. (3.1)

Note that θ depends on h and z, but for simplicity we omit this dependence in our notation. With
this notation, we can rewrite (2.9) as

lim
h→0

P

{
sup
t∈M

∣∣Zh(t)
∣∣ ≤ θ

}
= exp

{−2 exp{−z}}.
The proof of the theorem is constructing various approximations to supt∈M |Zh(t)| that will
facilitate the control of the probabilities on the left-hand side. Essentially, the field Zh(t) that
lives on the manifold M is linearized by first approximating the manifold locally via tangent
planes, and then defining an approximating field on these tangent planes. This approach is typical
for deriving extreme value results for such fields (e.g., see Hüsler et al. [31]). We begin with some
preparations, thereby outlining the main ideas of the proof. The geometric picture underlying the
idea of the proof is indicated in Figure 3.1.

(i) Partitioning M: We partition the manifold M as follows. Suppose that Vr(M) = 
. For a
fixed 
∗ < 
 and any 0 < h ≤ 1, there exists an (h
∗)-net on M with respect to geodesic distance
with cardinality of O((h
∗)−r ). A Delaunay triangulation using the (h
∗)-net results in a parti-
tion of M into mh = O((h
∗)−r ) disjoint pieces {Jk,mh

: k = 1,2, . . . ,mh}. The construction is
such that maxk=1,...,mh

Vr(Jk,mh
), the norm of this partition, is hrO(
∗r ), where the O-term is

uniform in h. It is known that for compact Riemannian manifolds such (h
∗)-nets and Delau-
nay triangulations exist for any r ∈ Z

+ with r < n, and for 
∗ small enough (see, e.g., de Laat
[21]). (In the case of r = 1, the construction just described simply amounts to choosing all the
O((h
∗)−1) many sets Jk,mh

as pieces on the curve M, which has length at most h
∗.) One
should point out that while 
∗ has to be chosen sufficiently small, it is a constant not depending
on h. In particular, this means that it does not tend to zero in this work.

(ii) ‘Small blocks–large blocks’ approach: For sufficiently small δ > 0, let B−hδ ⊂ M be the
(hδ)-enlarged neighborhood (using geodesic distance) of the union of the boundaries of all Jk,mh

.
The minus sign in the superscript indicates that this set will be ‘cut out’ in the below construction.
We obtain J δ

k,mh
= Jk,mh

\ B−hδ (‘large blocks’) and J−δ
k,mh

= Jk,mh
\ J δ

k,mh
(‘small blocks’) for

1 ≤ k ≤ mh. Geometrically, we envision J−δ
k,mh

as a small tube along the boundaries of Jk,mh

(lying inside Jk,mh
), and J δ

k,mh
is the set that remains when J−δ

k,mh
is cut out of Jk,mh

. We have

maxk=1,...,mh
Vr(J

−δ
k,mh

) = hrO(δ), where the O-term is uniform in h. The construction of the

partition is such that the boundaries of the projections of all the sets Jk,mh
, J δ

k,mh
and J−δ

k,mh
onto

the local tangent planes are null sets, and thus Jordan measurable. This will be used below.
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Figure 3.1. This figure visualizes some of the definitions introduced here in the case r = 1 and n = 2.

Let Bh(A) = {supt∈A |Zh(t)| ≥ θ}, and denote ph(A) = P(Bh(A)). Also denote J δ
mh

=⋃
k≤mh

J δ
k,mh

. Approximating M by J δ
mh

leads to the approximation of ph(M) by ph(J δ
mh

).

The volume of
⋃

k≤mh
J−δ

k,mh
, that is, the difference between the volumes of M and J δ

mh
, is of

the order O(δ) uniformly in h. The order of the difference ph(M) − ph(J δ
mh

) turns out to be of
the same. Thus we have to choose δ small enough.

(iii) Refinement of the partition: Let J denote one of the sets Jk,mh
, J δ

k,mh
and J−δ

k,mh
. We

can construct a cover {Sh
i (J ) ⊂ J, i = 1, . . . ,Nh(J )} of this set by using the same Delaunay

triangulation technique as above, but of course based on a smaller mesh. As above, by controlling
the mesh size, we can control the norm of the partition uniformly over h, because of the positive
reach of M.

The probabilities ph(J
δ
k,mh

) are approximated by
∑Nh

i=1 ph(S
h
i ), with Sh

i (= Sh
i (J δ

k,mh
)) the

cover of J δ
k,mh

introduced above. It will turn out that, using Bonferroni’s inequality, the approx-
imation error can be bounded by a double sum (see (3.12)). To show this bound to be negligible
as compared to the approximating sum

∑Nh

i=1 ph(S
h
i ), we have to make sure that the volume of

h−1Sh
i is sufficiently small. It will turn out that each ph(J

δ
k,mh

) essentially behaves like the tail
probability of a normal distribution.

(iv) Projection onto tangent space of refined partition: We approximate the small pieces Sh
i

by their projections S̃h
i onto a tangent space, and correspondingly approximate the probabilities

ph(S
h
i ) by the probabilities of a transformed field over S̃h

i . More precisely, we choose some
point sh

i on Sh
i , and project Sh

i orthogonally onto the tangent space of M at the point sh
i . We

denote this projection map by Psh
i
(·) and we let S̃h

i = Psh
i
(Sh

i ), which, as indicated above, is
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Jordan measurable by the construction. The error generated by this approximation is controlled
by choosing the norm of the partition {Sh

i } to be sufficiently small.
In the following, we continue to often drop J δ

k,mh
in the notation and simply write Sh

i in-

stead of Sh
i (J δ

k,mh
), unless otherwise indicated. For further simplicity and generic discussion, we

sometimes also omit the index i of sh
i , Sh

i and S̃h
i .

(v) Discretization: The probabilities ph(S̃
h
i ) are approximated by replacing the supremum in

ph(S̃
h
i ) by a maximum over a finite set, i.e., a set of ‘dense grid points’ on S̃h

i . The accuracy
of the approximation is controlled by choosing both h and the grid size (represented by γ as
introduced below) to be sufficiently small. The construction of the dense grid is as follows:

Let {Mj

sh : j = 1, . . . , r} be linearly independent, orthonormal vectors spanning the tangent

space of M at the point sh, and let Msh denote the n × r matrix with M
j

sh as columns. For a

given γ > 0, consider the (discrete) set �̃hγ θ−2/α (S̃h) = {u : u = sh +∑r
j=1 ij hγ θ−2/αM

j

sh ∈ S̃h,

ij ∈ Z} and let �hγ θ−2/α (Sh) = (Psh)−1(�̃hγ θ−2/α (S̃h)), which is a subset of Sh. Note that
the geodesic distance between any two adjacent points in �hγ θ−2/α (Sh) is still of the order
O(hγ θ−2/α), again due to the assumed positive reach of the manifold M.

The union T
δ
h of all the sets �hγ θ−2/α (Sh) gives a set of dense points in J δ

mh
. It will turn out

that the probability 1 − ph(T
δ
h) = P(

⋂
k(Bh(T

δ
h ∩ J δ

k,mh
))c) can be approximated by assuming

the events (Bh(T
δ
h ∩J δ

k,mh
))c, k = 1, . . . ,mh, to be independent. To make sure this approximation

is valid, δ may be not too small, and γ may be not too small compared to h.
Putting everything together will then complete the proof.

Details of the proof. We now present the details by using the notation introduced above. Fur-
thermore, for any set A being one of the J ’s or their unions, let Ih(A) = ∫

A ‖Dh
s Ms‖r ds. We

split the proof into different parts in order to provide more structure. Note that the parts do not
follow the same order of the steps outlined above.

Part 1. Recall the definition of the refined partition {Sh
i , i = 1, . . . ,Nh} of Jk,mh

given in (iii).
Here (and also in Part 2 of this proof) we require θ to be large enough, but θ is considered to be
independent of h. We show that the corresponding derivations hold uniformly in h (as long as
θ is chosen to be large enough). This then will allow us to let θ depend on h in the later parts
of this proof. Specifically, we show that

∑
i ph(S

h
i ) ≈ h−r θ2r/α�(θ)H

(r)
α Ih(J

δ
k,mh

) uniformly in

h for θ large enough, and that a similar approximation holds for J δ
k,mh

replaced by Jk,mh
. To

this end, we will utilize the projections S̃h
i of Sh

i onto the tangent space (see (iv)) as well as the
approximation of S̃h

i by a set of dense points introduced in (v).
The various asymptotic approximations in this step are similar to those in the proof of Theo-

rem 1 in Mikhaleva and Piterbarg [36], but here we consider them in the uniform sense. Recall
that the assumption of a positive reach of M means that M has a bounded curvature. Thus for
any ε1 > 0, there exists a constant δ1 > 0 (not depending on h) such that if the volumes of all
Sh = Sh

i = Sh
i (J δ

k,mh
) are less than δ1, then we have

1 − ε1 ≤ Vr(S̃
h)

Vr(Sh)
≤ 1 + ε1, (3.2)
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where Vr(·) is the r-dimensional Hausdorff measure. On S̃h we consider the Gaussian field
defined as Z̃h(t̃) = Zh(t), with t ∈ Sh such that t̃ = Psh(t) ∈ S̃h. We will further omit the su-
perscript h of sh below. Due to local equi-(α,Dh

t )-stationarity of Zh(t), for any ε2 > 0, the
covariance function r̃h(t̃1, t̃2) of the field Z̃h(t̃) satisfies

1 − (1 + ε2/4)
∥∥h−1Dh

s (t1 − t2)
∥∥α ≤ r̃h(t̃1, t̃2) ≤ 1 − (1 − ε2/4)

∥∥h−1Dh
s (t1 − t2)

∥∥α

for all t1, t2 ∈ S̃h, provided that Vr(S
h)h−r is less than a certain threshold δ2 depending only on

ε2. By possibly decreasing δ2 further, we also have

1 − (1 + ε2/2)
∥∥h−1Dh

s (t̃1 − t̃2)
∥∥α ≤ r̃h(t̃1, t̃2) ≤ 1 − (1 − ε2/2)

∥∥h−1Dh
s (t̃1 − t̃2)

∥∥α

for all t̃1, t̃2 ∈ S̃h. Note that, due to the curvature of M being bounded, these inequalities hold
uniformly over all S̃h under consideration.

On S̃h, we introduce two homogeneous Gaussian fields Z+
h (t̃) and Z−

h (t̃) such that their co-
variance functions satisfy

r+
h (t̃1, t̃2) = 1 − (1 + ε2)

∥∥h−1Dh
s (t̃1 − t̃2)

∥∥α + o
(∥∥h−1Dh

s (t̃1 − t̃2)
∥∥α)

and

r−
h (t̃1, t̃2) = 1 − (1 − ε2)

∥∥h−1Dh
s (t̃1 − t̃2)

∥∥α + o
(∥∥h−1Dh

s (t̃1 − t̃2)
∥∥α)

,

as ‖h−1(t̃1 − t̃2)‖ = o(1). Thus, if the volumes of all sets Sh under consideration are sufficiently
small, then

r+
h (t̃1, t̃2) ≤ r̃h(t̃1, t̃2) ≤ r−

h (t̃1, t̃2)

holds for all t̃1, t̃2 ∈ S̃h. This can be achieved by possibly adjusting δ2 from above. Slepian’s
comparison lemma (Slepian [48]) implies that

P

(
sup
t̃∈S̃h

Z−
h (t̃) > θ

)
≤ P

(
sup
t̃∈S̃h

Z̃h(t̃) > θ
)

= P

(
sup
t∈Sh

Zh(t) > θ
)

≤ P

(
sup
t̃∈S̃h

Z+(t̃) > θ
)
,

and that

P

(
max

t̃∈�̃
hγ θ−2/α (S̃h)

Z−
h (t̃) > θ

)
≤ P

(
max

t̃∈�̃
hγ θ−2/α (S̃h)

Z̃h(t̃) > θ
)

= P

(
max

t∈�
hγ θ−2/α (Sh)

Zh(t) > θ
)

≤ P

(
max

t̃∈�̃
hγ θ−2/α (S̃h)

Z+
h (t̃) > θ

)
.

(3.3)
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For τ ∈ R
n such that h(1+ε2)

−1/α(Dh
s )

−1
τ ∈ S̃h, denote Y+

h (τ ) = Z+
h (h(1+ε2)

−1/α(Dh
s )

−1
τ).

The covariance function rY+
h

(τ1, τ2) of Y+
h (τ ) satisfies

rY+
h

(τ1, τ2) = r+
h

(
h(1 + ε2)

−1/α
(
Dh

s

)−1
τ1, h(1 + ε2)

−1/α
(
Dh

s

)−1
τ2

)
= 1 − (1 + ε2)

∥∥h−1Dh
s

(
h(1 + ε2)

−1/α
(
Dh

s

)−1
τ1 − h(1 + ε2)

−1/α
(
Dh

s

)−1
τ2

)∥∥α

+ o
(‖τ1 − τ2‖α

)
= 1 − ‖τ1 − τ2‖α + o

(‖τ1 − τ2‖α
)

as ‖τ1 − τ2‖ → 0.

An application of Lemma 4.2 gives that, for any ε3 > 0 and θ large enough, we have uniformly
in h ∈ (0,1], with H̃α,r (γ ) = γ −rH

(r)
α (γ ) that

P(max
t̃∈�̃

hγ θ−2/α (S̃h)
Z+

h (t̃) > θ)

θ2r/α�(θ)

=
P(max

τ∈h−1(1+ε2)
1/αDh

s �̃
hγ θ−2/α (S̃h)

Z+
h (h(1 + ε2)

−1/α(Dh
s )

−1
τ) > θ)

θ2r/α�(θ)

=
P(max

τ∈(1+ε2)
1/αDh

s �̃
γ θ−2/α (h−1S̃h)

Y+
h (τ ) > θ)

θ2r/α�(θ)

≤ H̃α,r (γ )
(1 + ε3)(1 + ε2)

r/α

hr
Vr

(
Dh

s S̃h
)

= (1 + ε2)
r/α(1 + ε3)H̃α,r (γ )

∥∥Dh
s Ms

∥∥
r
Vr

(
S̃h

)
.

(3.4)

Similarly, by defining Y−
h (τ ) = Z−

h ((1 − ε2)
−1/α(Dh

s )
−1

τ), we get

P(max
t̃∈�̃

hγ θ−2/α (S̃h)
Z−

h (t̃) > θ)

θ2r/α�(θ)
≥ (1 − ε2)

r/α(1 − ε3)H̃α,r (γ )
∥∥Dh

s Ms

∥∥
r
Vr

(
S̃h

)
. (3.5)

Combining (3.2), (3.3), (3.4) and (3.5), we obtain, for Vr(h
−1Sh) small enough and θ large

enough, that for any ε > 0,(
1 − ε

4

)
h−r H̃α,r (γ )

∥∥Dh
s Ms

∥∥
r
Vr

(
Sh

)
≤

P(maxt∈�
hγ θ−2/α (Sh) Zh(t) > θ)

θ2r/α�(θ)

≤
(

1 − ε

4

)
h−r H̃α,r (γ )

∥∥Dh
s Ms

∥∥
r
Vr

(
Sh

)
.
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Since Lemma 4.1 says that H̃α,r (γ )(H
(r)
α )−1 → 1 as γ → 0, we further have for γ sufficiently

small that

h−r

(
1 − ε

2

)
H(r)

α

∥∥Dh
s Ms

∥∥
r
Vr

(
Sh

)
≤

P(maxt∈�
hγ θ−2r/α (Sh) Zh(t) > θ)

θ2r/α�(θ)

≤ h−r

(
1 − ε

2

)
H(r)

α

∥∥Dh
s Ms

∥∥
r
Vr

(
Sh

)
.

(3.6)

This, in fact, holds for any Sh = Sh
i . We now want to sum over i. Recall that the collection

{Sh
i , i = 1, . . . ,Nh} defines a decomposition of J δ

k,mh
into small sets, and observe that thus∑Nh

i=1(‖Dh

sh
i

Msh
i
‖rVr(S

h
i )) can be interpreted as a Riemann sum. Namely, for any ε > 0, there

exists δ3 > 0 such that, for maxi=1,...,Nh
Vr(S

h
i ) < δ3, we have

(1 − ε)Ih

(
J δ

k,mh

) ≤
Nh∑
i=1

∥∥Dh

sh
i

Msh
i

∥∥
r
Vr

(
Sh

i

) ≤ (1 + ε)Ih

(
J δ

k,mh

)
. (3.7)

Here recall that Ih(J
δ
k,mh

) = ∫
J δ
k,mh

‖Dh
s Ms‖r ds. The selection of δ3 only depends on ε, and the

uniformity in h comes from the fact that for any t1, t2 ∈H, ‖Dh
t1

−Dh
t2
‖n = ‖Dt1 −Dt2‖n + o(1)

as h → 0, and that Dt is continuous in t ∈H.
It follows from (3.6) and (3.7) that for both γ > 0 and sup0<h≤1 maxi=1,...,Nh

Vr(h
−1Sh

i ) suf-
ficiently small, and θ sufficiently large, we have that for any ε > 0,

(1 − ε)h−rH (r)
α Ih

(
J δ

k,mh

) ≤
∑Nh

i=1P(maxt∈�
hγ θ−2/α (Sh

i ) Zh(t) > θ)

θ2r/α�(θ)

≤ (1 + ε)h−rH (r)
α Ih

(
J δ

k,mh

)
.

(3.8)

Since the distribution of Zh is symmetric, we also have

(1 − ε)h−rH (r)
α Ih

(
J δ

k,mh

) ≤
∑Nh

i=1P(mint∈�
hγ θ−2/α (Sh

i ) Zh(t) < −θ)

θ2r/α�(θ)

≤ (1 + ε)h−rH (r)
α Ih

(
J δ

k,mh

)
.

(3.9)

We emphasize that these inequalities hold when the norm of the partition falls below a certain
threshold that is independent of the choice of h. Following a similar procedure as above, we
see that (3.8) and (3.9) continue to hold (for maxi=1,...,Nh

Vr(h
−1Sh

i ) sufficiently small, and θ

large enough), if maxt∈�
hγ θ−2/α (Sh

i ) Zh(t) in (3.8) is replaced by supt∈Sh
i
Zh(t), and similarly,

mint∈�
hγ θ−2/α (Sh

i ) Zh(t) in (3.9) is replaced by inft∈Sh
i
Zh(t). Moreover, if we consider Sh

i (Jk,mh
)
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and Sh
i (J−δ

k,mh
) instead of Sh

i (= Sh
i (J δ

k,mh
)), these inequalities continue to hold. In particular, for

Jk,mh
we obtain that as θ → ∞,∑Nh(Jk,mh

)

i=1 P(supt∈Sh
i (Jk,mh

) Zh(t) > θ)

θ2r/α�(θ)
= (

1 + o(1)
)
h−rH (r)

α Ih(Jk,mh
), (3.10)

where the o(1)-term is uniform in both k ∈ {1, . . . ,mh} and h ∈ (0,1].
Part 2. Here we show that uniformly in h, as θ → ∞,∑

k≤mh

P

(
sup

t∈Jk,mh

Zh(t) > θ
)

= (
1 + o(1)

)
h−r θ2r/α�(θ)H(r)

α Ih(M). (3.11)

Again we will use the various approximations introduced at the beginning of the proof. Let
{Sh

i : i = 1, . . . ,Nh} denote the partition of Jk,mh
constructed in (iii). This partition consists

of closed, non-overlapping subsets, i.e., their interiors are disjoint. Furthermore, letting Bi =
{supt∈Sh

i
Zh(t) > θ}, we trivially have

P

(
sup

t∈Jk,mh

Zh(t) > θ
)

= P

(
Nh⋃
i=1

Bi

)
.

We now use that

Nh∑
i=1

P(Bi) −
∑

1≤i<j≤Nh

P(Bi ∩ Bj ) ≤ P

(
Nh⋃
i=1

Bi

)
≤

Nh∑
i=1

P(Bi), (3.12)

and show that the double sum on the left-hand side is negligible as compared to the (simple) sum,
so that we essentially have upper and lower bounds for P(

⋃Nh

i=1 Bi) in terms of
∑Nh

i=1 P(Bi). To
see this, first observe that by using (3.10), we obtain for maxi=1,...,Nh

Vr(h
−1Sh

i ) small enough
that, as θ → ∞,

Nh∑
i=1

P(Bi) = O
(
θ2r/α�(θ)

)
, (3.13)

where the order of the right-hand side is exact by (3.10). We thus only need to show that∑
1≤i<j≤Nh

P(Bi ∩ Bj ) = o(θ2r/α�(θ)) as θ → ∞. Our proof generalizes the result in Mikhal-
eva and Piterbarg [36] by considering uniformity in h in a rescaled case. It will turn out that we
obtain the desired result if the norm of the partition given by Sh

i can be chosen sufficiently small,
uniformly in h, which is feasible, as discussed at the beginning of the proof.

Let U = {(i, j) : Bi and Bj are adjacent} and V = {(i, j) : Bi and Bj are not adjacent}, where
‘not adjacent’ means that their boundaries do not touch. Note that∑

1≤i<j≤Nh

P(Bi ∩ Bj ) =
∑

1≤i<j≤Nh,
(i,j)∈U

P(Bi ∩ Bj ) +
∑

1≤i<j≤Nh,
(i,j)∈V

P(Bi ∩ Bj ). (3.14)
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In what follows we discuss the two sums on the right-hand side. First we consider the case of
Sh

i , Sh
j being adjacent, that is, (i, j) ∈ U . The developments from Part 1 are here applied to Sh

i ,

Sh
j and Sh

i ∪ Sh
j , respectively. We choose the points where the tangent spaces are placed to be

the same for Sh
i , Sh

j and Sh
i ∪ Sh

j , that is, we choose this point to lie on the boundary of both

Sh
i and Sh

j . Simply denote this point as s. Then, by using the results from Part 1, for any ε > 0,

when h−r max(i,j)∈U Vr(S
h
i ∪ Sh

j ) is small enough and θ is large enough, the bounds obtained as
in Part 1 result in

P(Bi ∩ Bj )

θ2r/α�(θ)
= P(Bi) + P(Bj ) − P(Bi ∪ Bj )

θ2r/α�(θ)

≤ (1 + ε)h−rH (r)
α

∥∥Dh
s Ms

∥∥
r
Vr

(
Sh

i

) + (1 + ε)h−rH (r)
α

∥∥Dh
s Ms

∥∥
r
Vr

(
Sh

j

)
− (1 − ε)h−rH (r)

α

∥∥Dh
s Ms

∥∥
r
Vr

(
Sh

i ∪ Sh
j

)
= 2εh−rH (r)

α

∥∥Dh
s Ms

∥∥
r

[
Vr

(
Sh

i

) + Vr

(
Sh

j

)]
.

Summing the right-hand side of this inequality over (i, j) ∈ U , results in a Riemann sum that
approximates an integral over Jk,mh

. Since, by assumption, limh→0 Dh
t = Dt uniformly in t ∈H,

and since the components of Dt are continuous and bounded in t ∈ H, there exists c ∈ R+ such
that

sup
s∈M,0<h≤1

∥∥Dh
s Ms

∥∥
r
≤ c. (3.15)

Hence, noting that ε > 0 is arbitrary, we have that as max1≤i≤Nh
Vr(h

−1Sh
i ) → 0 and θ → ∞,∑

1≤i<j≤Nh,
(i,j)∈U

P(Bi ∩ Bj ) = o
(
θ2r/α�(θ)

)
. (3.16)

Next, we proceed to consider the case that (i, j) ∈ V , i.e., Sh
i , Sh

j are not adjacent on Jk,mh
. To

find an upper bound for P(Bi ∩ Bj ), we first note that

P(Bi ∩ Bj ) = P

(
sup
t∈Sh

i

Zh(t) > θ, sup
t∈Sh

j

Zh(t) > θ
)

≤ P

(
sup

t∈Sh
i ,s∈Sh

j

(
Zh(t) + Zh(s)

)
> 2θ

)
. (3.17)

In order to further estimate this probability, we will use the following theorem from Borell [11].

Theorem 3.1. Let {X(t), t ∈ T } be a real separable Gaussian process indexed by an arbitrary
parameter set T , let

σ 2 = sup
t∈T

VarX(t) < ∞, m = sup
t∈T

EX(t) < ∞,
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and let the real number b be such that

P

(
sup
t∈T

X(t) −EX(t) ≥ b
)

≤ 1

2
.

Then, for all x

P

(
sup
t∈T

X(t) > x
)

≤ 2
̄

(
x − m − b

σ

)
.

We want to apply the above theorem to Zh(t) + Zh(s) with t ∈ Sh
i , s ∈ Sh

j and (i, j) ∈ V

(see (3.17)), which requires some further preparations. First, observe that there exists a constant
ζ1 > 0 such that

inf
(i,j)∈V,t∈Sh

i ,s∈Sh
j ,0<h≤1

∥∥h−1(t − s)
∥∥ > ζ1,

that is, the distance between any two nonadjacent elements of the partition (after rescaling) ex-
ceeds ζ1 uniformly in h ∈ (0,1]. This is due to the fact that the curvature of the manifold M is
bounded, and that Vr(h

−1Sh
j ) is bounded away from zero uniformly in j and h. (See Lemma 3

of Genovese et al. [24] for more details underlying this argument.) The latter also implies that
we can find a number N0 > 0 such that Nh, the number of sets Si , satisfies Nh < N0 for all h.
Assumption (2.6) implies that for ρ = sup‖h−1(t−s)‖≥ζ1,0<h≤1 rh(t, s), we have ρ < 1, and thus
we obtain

sup
0<h≤1

sup
t∈Sh

i ,s∈Sh
j

Var
(
Zh(t) + Zh(s)

) ≤ 2 + 2ρ

and

sup
0<h≤1

sup
t∈Sh

i ,s∈Sh
j

E
(
Zh(t) + Zh(s)

) = 0.

To see that the above theorem is applicable to Zh(t) + Zh(s) with t ∈ Sh
i and s ∈ Sh

j , it thus

remains to show that there is a constant b with P(supt∈Sh
i ,s∈Sh

j
(Zh(t) + Zh(s)) > b) ≤ 1

2 , and we

do this now. First, note that

P

(
sup

t∈Sh
i ,s∈Sh

j

(
Zh(t) + Zh(s)

)
> b

)
≤ P

(
sup

t∈Jk,mh
,s∈Jk,mh

(
Zh(t) + Zh(s)

)
> b

)
≤ P

(
sup

t∈Jk,mh

Zh(t) > b/2
)
.

To bound the probability on the right-hand side further, observe that all the arguments in Part 1
hold uniformly in h as long as θ is large enough. In other words, the conclusions there can
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be restated by replacing θ with x where x → ∞. In particular, for any ε > 0, we can choose
max1≤i≤Nh

Vr(h
−1Sh

i ) small enough, such that

P

(
sup

t∈Jk,mh

Zh(t) > x
)

≤
Nh∑
i=1

P

(
sup
t∈Sh

i

Zh(t) > x
)

≤ (1 + ε)h−rx2r/α�(x)H(r)
α Ih(Jk,mh

),

for all 1 ≤ k ≤ mh. Hence, since x2r/α�(x) → 0 as x → ∞, we can find b such that
P(supt∈Jk,mh

Zh(t) > b/2) < 1/2 for all 1 ≤ k ≤ mh, provided max1≤i≤Nh
Vr(h

−1Sh
i ) is suffi-

ciently small. Theorem 3.1 now gives (for θ large enough) that

P

(
sup

t∈Sh
i ,s∈Sh

j

(
Zh(t) + Zh(s)

)
> 2θ

)
≤ 2
̄

(
θ − b/2√
(1 + ρ)/2

)
. (3.18)

Since the total number of elements in the sum in (3.14) is bounded by N2
h , it follows from (3.17)

and (3.18) that uniformly in k (recall that the events Bi depend on k), as θ → ∞∑
1≤i<j≤Nh,

j−i>1

P(Bi ∩ Bj ) ≤ 2N2
h
̄

(
θ − b/2√
(1 + ρ)/2

)
≤ 2N2

0 
̄

(
θ − b/2√
(1 + ρ)/2

)

= o
(
θ2r/α�(θ)

)
,

(3.19)

where we use the well-known fact that limu→∞ 
̄(u)
�(u)

= 1.
Considering (3.13), (3.14), (3.16) and (3.19) and their corresponding conditions, we have

P

(
sup

t∈Jk,mh

Zh(t) > θ
)

= (
1 + o(1)

) Nh∑
i=1

P

(
sup
t∈Sh

i

Zh(t) > θ
)

as θ → ∞, (3.20)

where the o(1)-term is uniform in k. Combining (3.10) and (3.20), we have the asserted result
(3.11) for suph∈(0,1] max1≤i≤Nh

Vr(h
−1Sh

i ) sufficiently small.
Part 3. Recall the definition of I (M) given right after (2.8). Using the expression of θ in (3.1),

we have, for any fixed z and as h → 0, that

h−r θ2r/α�(θ) = h−r θ2r/α−1

√
2π

exp

{
−θ2

2

}
= exp{−z}

H
(r)
α I (M)

(
1 + o(1)

) = O(1). (3.21)

Observing that max1≤k≤mh
Vr(h

−1J−δ
k,mh

) = O(δ) (uniformly in h), and using (3.21), we obtain
for h small enough that

0 ≤ P

(
sup
t∈M

Zh(t) > θ
)

− P

(
sup

t∈⋃
k≤mh

J δ
k,mh

Zh(t) > θ
)

≤ P

(
sup

t∈M\⋃k≤mh
J δ
k,mh

Zh(t) > θ
)
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≤
mh∑
k=1

P

(
sup

t∈J−δ
k,mh

Zh(t) > θ
)

≤ (1 + ε)h−r θ2r/α�(θ)H(r)
α

mh∑
k=1

Ih

(
J−δ

k,mh

)
≤ O

(
δhr

)
(1 + ε)h−rH (r)

α cmhθ
2r/α�(θ)

≤ O
(
δhr

)
(1 + ε)H(r)

α cO
(
h−r

) exp{−z}
H

(r)
α I (M)

= O(δ),

where c is from (3.15). Similarly, we have

0 ≤ P

(
inf

t∈M
Zh(t) < −θ

)
− P

(
inf

t∈⋃
k≤mh

J δ
k,mh

Zh(t) < −θ
)

= O(δ),

uniformly in 0 < h ≤ h1 for some h1 > 0. Collecting what we have, we obtain that uniformly in
0 < h ≤ h1,

P

(
sup
t∈M

∣∣Zh(t)
∣∣ ≤ θ

)
= P

(
sup

t∈⋃
k≤mh

J δ
k,mh

∣∣Zh(t)
∣∣ ≤ θ

)
+ O(δ) (3.22)

and

mh∑
k=1

P

(
sup

t∈Jk,mh

∣∣Zh(t)
∣∣ > θ

)
=

mh∑
k=1

P

(
sup

t∈J δ
k,mh

∣∣Zh(t)
∣∣ > θ

)
+ O(δ). (3.23)

Part 4. Here we show that replacing
⋃

k≤mh
J δ

k,mh
by the dense ‘grid’ Tδ

h (see (v)) leads to a
negligible error in the corresponding extreme value probabilities.

We write T
δ
h = ⋃

1≤k≤mh
�hγ θ−2/α (J δ

k,m) as {tj , j = 1, . . . ,N∗
h }. Our assumptions ensure that

N∗
h = O(θ2r/αh−rγ −r ). This behavior follows from the bounded curvature of the manifold M,

the construction of the triangulation, and the fact that Vr(M) < ∞.
With (3.8), (3.15) and (3.21), we have

P

(
max

tj ∈J δ
k,mh

∣∣Zh(tj )
∣∣ > θ

)
= O(h), (3.24)

uniformly in k as h → 0. In what follows, the maxima (or minima, respectively) taken over tj
run over j = 1, . . . ,N∗

n (i.e., over all tj ∈ T
δ
h). This is not explicitly indicated in order to shorten

the notation. We obtain that as h → 0,

mh∑
k=1

log
(

1 − P

(
max

tj ∈J δ
k,mh

∣∣Zh(tj )
∣∣ > θ

))
= (

1 + o(1)
) mh∑

k=1

P

(
max

tj ∈J δ
k,mh

∣∣Zh(tj )
∣∣ > θ

)
. (3.25)
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It follows from (3.8) and its analogous version with the maximum over the discrete set replaced
by the supremum over t ∈ Sh

i (see discussion given below (3.9)), that for any ε > 0, and h, γ and
the norm of partitions sufficiently small,

0 ≤ P

(
sup

t∈J δ
k,mh

Zh(t) > θ
)

− P

(
max

tj ∈J δ
k,mh

Zh(tj ) > θ
)

≤
Nh∑
i=1

[
P

(
sup
t∈Sh

i

Zh(t) > θ
)

− P

(
max
tj ∈Sh

i

Zh(ti) > θ
)]

≤ εh−r θ2r/α�(θ)H(r)
α Ih

(
J δ

k,mh

)
.

Similarly, (3.9) and its corresponding ‘continuous’ version imply that, for h, γ and the norm of
partitions sufficiently small, we have

0 ≤ P

(
inf

t∈J δ
k,mh

Zh(t) < −θ
)

− P

(
min

ti∈J δ
k,mh

Zh(ti) < −θ
)

≤ εh−r θ2r/α�(θ)H(r)
α Ih

(
J δ

k,mh

)
.

Consequently, if h, γ , and max1≤k≤mh
Vr(h

−1J δ
k,mh

) are all small enough, we have

0 ≤ P

(
sup

t∈⋃
k≤mh

J δ
k,mh

∣∣Zh(t)
∣∣ > θ

)
− P

(
max

tj ∈⋃
k≤mh

J δ
k,mh

∣∣Zh(tj )
∣∣ > θ

)

≤
mh∑
k=1

[
P

(
sup

t∈J δ
k,mh

∣∣Zh(t)
∣∣ > θ

)
− P

(
max

tj ∈J δ
k,mh

∣∣Zh(tj )
∣∣ > θ

)]

≤
mh∑
k=1

[
P

(
sup

t∈J δ
k,mh

Zh(t) > θ
)

+ P

(
inf

t∈J δ
k,mh

Zh(t) < −θ
)

− P

(
max

tj ∈J δ
k,mh

Zh(tj ) > θ
)

− P

(
min

tj ∈J δ
k,mh

Zh(tj ) < −θ
)]

≤ 2εh−r θ2r/α�(θ)H(r)
α Ih

( ⋃
k≤mh

J δ
k,mh

)
≤ 2εh−r θ2r/α�(θ)H(r)

α Ih(M).

(3.26)

Observe that by using (2.2) and the dominated convergence theorem, we have

Ih(M)

I (M)
→ 1 as h → 0. (3.27)
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As a result of (3.21) and (3.27), we can write for max1≤k≤mh
Vr(h

−1J δ
k,mh

) small enough that

P

(
sup

t∈⋃
k≤mh

J δ
k,mh

∣∣Zh(t)
∣∣ ≤ θ

)
= P

(
max

tj ∈⋃
k≤mh

J δ
k,mh

∣∣Zh(tj )
∣∣ ≤ θ

)
+ o(1) (3.28)

and
mh∑
k=1

P

(
sup

t∈J δ
k,mh

∣∣Zh(t)
∣∣ > θ

)
=

mh∑
k=1

P

(
max

tj ∈J δ
k,mh

∣∣Zh(tj )
∣∣ > θ

)
+ o(1), (3.29)

as γ,h → 0.
Part 5. Here we find an upper bound for the difference∣∣∣∣P(

max
tj ∈⋃

k≤mh
J δ
k,mh

∣∣Zh(tj )
∣∣ ≤ θ

)
−

∏
k≤mh

P

(
max

tj ∈J δ
k,mh

∣∣Zh(tj )
∣∣ ≤ θ

)∣∣∣∣. (3.30)

This step uses similar ideas as in the proof of Lemma 5.1 in Berman [4]. Define a probability
measure P̃ such that, for any xtj ∈R with tj ∈ ⋃

k≤mh
J δ

k,mh
,

P̃

(
Zh(tj ) ≤ xtj , tj ∈

⋃
k≤mh

J δ
k,mh

)
=

∏
k≤mh

P
(
Zh(tj ) ≤ xtj , tj ∈ J δ

k,mh

)
,

that is, under P̃ the vectors (Zh(ti) : ti ∈ J δ
k,m ∩T

δ
h) and (Zh(tj ) : tj ∈ J δ

k′,m ∩T
δ
h) are independent

for k �= k′. By Lemma 4.3, the difference in (3.30) can be bounded by

8
∑

k≤mh,k′≤mh,
k �=k′

∑
ti∈J δ

k,mh

∑
tj ∈J δ

k′,mh

∫ |rh(ti ,tj )|

0
φ(θ, θ, λ) dλ

= 8
∑

k≤mh,k′≤mh,
k �=k′

∑
ti∈J δ

k,mh

∑
tj ∈J δ

k′,mh

∫ |rh(ti ,tj )|

0

1

2π(1 − λ2)1/2
exp

(
− θ2

1 + λ

)
dλ

≤ 8
∑

k≤mh,k′≤mh,
k �=k′

∑
ti∈J δ

k,mh

∑
tj ∈J δ

k′,mh

|rh(ti , tj )|
2π(1 − (rh(ti , tj ))2)1/2

exp

(
− θ2

1 + |rh(ti , tj )|
)

.

(3.31)

(Note that here the notation {ti ∈ J δ
k,mh

} is a shortcut for {ti ∈ J δ
k,mh

∩ T
δ
h}, and similarly for tj .)

For ti ∈ J δ
k,mh

and tj ∈ J δ
k′,mh

, with k �= k′, it follows from the boundedness of the curvature of

the manifold M that there exists ς > 0 such that ‖h−1(ti − tj )‖ ≥ ς , uniformly for all 0 < h ≤ 1.
(Similar arguments have been used above already.) Thus, we obtain from assumption (2.6) that
there exists η > 0, dependent on ς , with∣∣rh(ti , tj )∣∣ < η < 1, (3.32)

uniformly in ti ∈ J δ
k,mh

and tj ∈ J δ
k′,mh

, with k �= k′ and 0 < h ≤ 1.
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Let ω be such that

0 < ω <
2

(1 + η)
− 1.

In what follows, we take γ = v(h−1)1/3r . We divide the triple sum in (3.31) into two parts
by splitting up the pairs of indices i, j into two sets, according to whether ‖ti − tj‖ <

h(N∗
h )ω/rγ θ−2/α or not. For pairs satisfying this conditions, the number of summands in the

triple sum is of the order O((N∗
h )ω+1), because there are a total of O(N∗

h ) points and for each of
them we have to consider at most O((N∗

h )ω) pairs. Taking into account (3.32), it follows that the
sum in the first part of (3.31) is of the order

O

((
N∗

h

)ω+1 exp

{
− θ2

1 + η

})
= O

((
θ2r/α

hrγ r

)1+ω

exp

{
− θ2

1 + η

})

= O

((
(log 1

h
)r/α

hrγ r

)1+ω

exp

{
−2r log 1

h

1 + η

})

= O

(
h

2r
1+η

−r(1+ω)

(
log

1

h

) (1+ω)r
α

(
v

(
1

h

))− (1+ω)γ
3r

)
,

which tends to zero as h → 0.
Now we consider the second part of (3.31), with pairs satisfying ‖ti − tj‖ ≥ h(N∗

h )ω/rγ θ−2/α .
Noticing (1 + |rh(ti , tj )|)−1 ≥ 1 − |rh(ti , tj )| and (3.32), we obtain the following bound:

8 exp
(−θ2) ∑

k≤mh,k′≤mh,
k �=k′

∑
ti∈J δ

k,mh
,tj ∈J δ

k′,mh
,

‖ti−tj ‖≥h(N∗
h )ω/r γ θ−2/α

|rh(ti , tj )|
2π(1 − η2)1/2

exp
(
θ2

∣∣rh(ti , tj )
∣∣). (3.33)

By (2.7), and the fact that θ2 = O(logh−1), we have that

sup
‖ti−tj ‖≥h(N∗

h )ω/rγ θ−2/α

θ2
∣∣rh(ti , tj )

∣∣ → 0 as h → 0.

Hence, (3.33) is of the order of

h2r
∑

k≤mh,k′≤mh,
k �=k′

∑
ti∈J δ

k,mh
,tj ∈J δ

k′,mh
,

‖ti−tj ‖≥h(N∗
h )ω/r γ θ−2/α

∣∣rh(ti , tj )
∣∣. (3.34)

When h is sufficiently small, we have

sup
‖ti−tj ‖≥h(N∗

h )ω/rγ θ−2/α

∣∣rh(ti , tj )
∣∣ ≤ v((N∗

h )ω/rγ θ−2/α)

[log((N∗
h )ω/rγ θ−2/α)]2r/α

. (3.35)
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Therefore, due to (2.7), (3.34) is of the order

O

(
h2r

(
N∗

h

)2 v((N∗
h )ω/rγ θ−2/α)

[log((N∗
h )ω/rγ θ−2/α)]2/α

)

= O

(
(log 1

h
)2r/αv((N∗

h )ω/rγ θ−2/α)

[log(h−ω((log 1
h
)1/αv( 1

h
)−1/3r )ω−1)]2r/α(v( 1

h
))2/3

)
= o(1) as h → 0.

We have proved that the triple sum in (3.31) tends to zero as h goes to zero. Consequently, with
this choice of γ , and as h → 0,

P

(
max

tj ∈⋃
k≤mh

J δ
k,mh

∣∣Zh(tj )
∣∣ ≤ θ

)
=

∏
k≤mh

P

(
max

tj ∈J δ
k,mh

∣∣Zh(tj )
∣∣ ≤ θ

)
+ o(1), (3.36)

where δ > 0 is fixed and small enough.
Final part. Collecting the above approximations we obtain the following. For δ > 0,

suph∈(0,1] max1≤i≤Nh
Vr(h

−1Sh
i ) fixed and chosen small enough, and γ = v(h−1)1/3r , we have

that as h → 0,

P

(
sup
t∈M

∣∣Zh(t)
∣∣ ≤ θ

)
(3.22)= P

(
sup

t∈⋃
k≤mh

J δ
k,mh

∣∣Zh(t)
∣∣ ≤ θ

)
+ o(1)

(3.28)= P

(
max

tj ∈⋃
k≤mh

J δ
k,mh

∣∣Zh(tj )
∣∣ ≤ θ

)
+ o(1)

= P

( ⋂
k≤mh

(
max

tj ∈J δ
k,mh

∣∣Zh(tj )
∣∣ ≤ θ

))
+ o(1)

(3.36)=
∏

k≤mh

P

(
max

tj ∈J δ
k,mh

∣∣Zh(tj )
∣∣ ≤ θ

)
+ o(1)

= exp

{ ∑
k≤mh

log
(

1 − P

(
max

tj ∈J δ
k,mh

∣∣Zh(tj )
∣∣ > θ

))}
+ o(1)

(3.25)= exp

{
−(

1 + o(1)
) ∑

k≤mh

P

(
max

tj ∈J δ
k,mh

∣∣Zh(tj )
∣∣ > θ

)}
+ o(1)

(3.29)= exp

{
−(

1 + o(1)
)[ ∑

k≤mh

P

(
sup

t∈J δ
k,mh

∣∣Zh(t)
∣∣ > θ

)
− o(1)

]}
+ o(1)
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(3.23)= exp

{
−2

(
1 + o(1)

) ∑
k≤mh

P

(
sup

t∈Jk,mh

Zh(t) > θ
)}

+ o(1)

(3.11)= exp
{−2

(
1 + o(1)

)
h−r θ2r/α�(θ)H(r)

α Ih(M)
} + o(1).

This completes our proof by using (3.21) and (3.27). �

4. Miscellaneous

In this section, we collect some miscellaneous results and definitions that are needed above. We
present them in a separate section in order to not interrupt the flow of the above proof.

Definition of generalized Pickands constant (following Piterbarg and Stamatovich [39]).
For 0 < α ≤ 2, let χα(t) be a continuous Gaussian field with Eχα(t) = −‖t‖α and
Cov(χα(t),χα(s)) = ‖t‖α + ‖s‖α − ‖t − s‖α where s, t ∈ R

n. The existence of such a field
χα(t) follows from Mikhaleva and Piterbarg [36].

For any compact set T ⊂R
n define

Hα(T ) = E exp
(

sup
t∈T

χα(t)
)
.

Let D be a non-degenerated n×n matrix. For a set A ⊂R
n, let DA = {Dx,x ∈ A} denote the

image of A under D. For any q > 0, we let

[0, q]r = {
t : ti ∈ [0, q], i = 1, . . . , r; ti = 0, i = r + 1, . . . , n

}
denote a cube of dimension r generated by the first r coordinates in R

n. Let

HDR
r

α = lim
q→∞

Hα(D[0, q]r )
λr(D[0, q]r ) ,

where λr denotes Lebesgue measure in Rr . It is known that HDR
r

α exists, and 0 < HDR
r

α < ∞
(see Beljaev and Piterbarg [3]). For D = I , the identity matrix, we write H

(r)
α = HIRr

α . Since by

definition the random field χα(·) is isotropic, HDR
r

α = H
(r)
α for any orthogonal matrix D. The

constant H
(n)
α is the (generalized) Pickands constant.

Furthermore, for positive integers l and γ > 0, let

Cr(l, γ ) = {
tγ : ti ∈ [0, l] ∩N0, i = 1, . . . , r; ti = 0, i = r + 1, . . . , n

}
= γ

([0, l]r ∩N
n
0

)
,

and H
D,(r)
α (l, γ ) = Hα(DCr(l, γ )). Again, for orthogonal D, due to isotropy of χα(·), we write

H
(r)
α (l, γ ) = H

D,(r)
α (l, γ ). We let

H(r)
α (γ ) = lim

l→∞
H

(r)
α (l, γ )

lr
,



Extrema of locally stationary Gaussian fields 1855

assuming this limit exists, and for r = n, we simply write Hα(l, γ ) and Hα(γ ) instead of
H

(n)
α (l, γ ) and H

(n)
α (γ ), respectively. We have the following lemma from Bickel and Rosenblatt

[9].

Lemma 4.1. H
(r)
α = limγ→0

H
(r)
α (γ )
γ r .

In the following, we present further results for Gaussian fields that are used in the proof.
Lemma 4.2 is an extension of Lemma A3 in Bickel and Rosenblatt [10], Lemma 3 and Lemma 5
of Bickel and Rosenblatt [9], and also of Lemma 2.5 in Pickands [38].

Lemma 4.2. Let X(t) be a centered homogeneous Gaussian field on R
n with covariance func-

tion

r(t) = E
(
X(t + s)X(s)

) = 1 − ‖t‖α + o
(‖t‖α

)
.

Let T be a Jordan measurable set embedded in a r-dimensional linear space. For γ, x > 0, let
G(T , γ, x) be a collection of points defining a mesh contained in T with mesh size γ x−2/α .
Assume that for ‖t‖ small enough,

ξ
(‖t‖) := inf

0<‖s‖≤‖t‖ ‖s‖−α
(
1 − r(s)

)
/2 > 0. (4.1)

Then

lim
x→∞

P(max{X(t) : t ∈ G(T , γ, x)} > x)

x2r/α�(x)
= Vr(T )

H
(r)
α (γ )

γ r
(4.2)

and

lim
x→∞

P(sup{X(t) : t ∈ T } > x)

x2r/α�(x)
= Vr(T )H (r)

α , (4.3)

uniformly in T ∈ Ec, where Ec is the collection of all r-dimensional Jordan measurable sets with
diameter bounded by c < ∞. Similarly,

lim
x→∞

P(inf{X(t) : t ∈ T } < −x)

x2r/α�(x)
= Vr(T )H (r)

α , (4.4)

uniformly in T ∈ Ec.

Proof. The results in Lemma 3 and and Lemma 5 of Bickel and Rosenblatt [9] are similar but
they are only given for two-dimensional squares. It is straightforward to generalize them to hy-
perrectangles and further to Jordan measurable sets. �
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Lemma 4.3 (Lemma 4.1 of Berman [4] as given in Lemma A4 of Bickel and Rosenblatt
[10]). Let

φ(x, y,ρ) = 1

2π(1 − ρ2)1/2
exp

{
−x2 − 2ρxy + y2

2(1 − ρ2)

}
.

Let �1 = {rij },�2 = {sij } be N × N nonnegative semi-definite matrices with rii = sii = 1 for
all i. Let X = (X1, . . . ,XN) be a mean 0 Gaussian vector with covariance matrices �1 or �2,
corresponding to probability measures P�1 and P�2 , respectively. Let u1, . . . , uN be nonnegative
numbers and u = minj uj . Then

∣∣P�1[Xj ≤ uj ,1 ≤ j ≤ N ] − P�2[Xj ≤ uj ,1 ≤ j ≤ N ]∣∣ ≤ 4
∑
i,j

∣∣∣∣∫ rij

sij

φ(u,u,λ)dλ

∣∣∣∣.
Further discussion of Example (ii) (given below Definition 2.1). Here we show the asserted

local equi-(α,Dh
t )-stationarity of the fields given in Example (ii) above, and we also show that

for this example the conditions of the main theorem can be verified.
Local equi-(α,Dh

t )-stationarity. We show that the random fields {Zh(t), t ∈ S
n−1}, h ∈ (0,1],

with covariance function (2.4), are locally equi-(α,Dh
t )-stationary with

Dh
s = hgh(s)In.

First, note that d(t1, t2) = arccos〈t1, t2〉 = arccos(1 − 1
2‖t1 − t2‖2) for t1, t2 ∈ S

n−1. Using a
Taylor series expansion, we have d(t1, t2) = ‖t1 − t2‖(1 + o(1)) as ‖t1 − t2‖ → 0. For any h ∈
(0,1] and s, t1, t2 ∈ S

n−1, we have

hα[1 − rh(t1, t2)]
‖Dh

s (t1 − t2)‖α
= 1 − exp[−|gh(

t1+t2‖t1+t2‖ ) arccos〈t1, t2〉|α]
|gh(s)‖t1 − t2‖|α .

Therefore, as h−1 max{‖t1 − s‖,‖t2 − s‖} → 0,

hα[1 − rh(t1, t2)]
‖Dh

s (t1 − t2)‖α
≈ |gh(

t1+t2‖t1+t2‖ ) arccos〈t1, t2〉|α
|gh(s)‖t1 − t2‖|α ≈ |gh(

t1+t2‖t1+t2‖ )|α
|gh(s)|α ≈ 1,

uniformly in h and s. This is (2.1).
Verification of conditions of Theorem 2.1. For any h ∈ (0,1], and t1, t2 ∈ S

n−1 with ‖t1 − t2‖ >

hδ, we have

∣∣rh(t1, t2)∣∣ = exp

[
−

∣∣∣∣gh

(
t1 + t2

‖t1 + t2‖
)

arccos

(
1 − ‖t1 − t2‖2

2

)∣∣∣∣α]
≤ exp

[
−

∣∣∣∣gh

(
t1 + t2

‖t1 + t2‖
)

arccos

(
1 − h2δ2

2

)∣∣∣∣α]
.
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There exists h0 > 0 such that, for 0 < h < h0, arccos(1 − 1
2h2u2) = hu(1 +o(1)) uniformly in δ.

Consequently, we have for Qh0(u) as in (2.10) that

Qh0(u) ≤ exp
{
−

∣∣∣[ inf
0<h<h0,s∈Sn−1

hgh(s)
]
u
(
1 + o(1)

)∣∣∣α}
.

By using the assumed upper and lower bounds for hgh(s), it follows that conditions (2.2), (2.6)
and (2.7) are satisfied (where Q(u) is replaced with Qh0(u) – see Remark 1 below Theorem 2.1).
It is now straightforward to apply Theorem 2.1 to {Zh(t), t ∈ Sn−1}.
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