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We consider quantile regression incorporating polynomial spline approximation for single-index coefficient
models. Compared to mean regression, quantile regression for this class of models is more technically
challenging and has not been considered before. We use a check loss minimization approach and employed
a projection/orthogonalization technique to deal with the theoretical challenges. Compared to previously
used kernel estimation approach, which was developed for mean regression only, spline estimation is more
computationally expedient and directly produces a smooth estimated curve. Simulations and a real data set
is used to illustrate the finite sample properties of the proposed estimator.
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1. Introduction

The varying coefficient model (VCM) has gained much attention in the literature since its intro-
duction by Hastie and Tibshirani [9] and Chen and Tsay [4], for cross-sectional data and time
series data, respectively. The model is given by

Yi =
p∑

j=1

gj (Xi)Zij + εi,

given observations Yi,Xi,Zi = (Zi1, . . . ,Zip)T , i = 1, . . . , n, where X is usually called an in-
dex variable in this context. Fan and Zhang [8] proposed a two-step local linear estimator in
the VCM which achieves univariate optimal convergence rate. The VCM also has wide appli-
cations in longitudinal studies, see Hoover et al. [13], Fan and Zhang [7] and Huang, Wu and
Zhou [15].

In practice, varying-coefficient models are almost exclusively applied for the case X is a scalar
random variable. Although it can be directly generalized to the case with multivariate index
vector X, it will cause the “curse of dimensionality.” Xia and Li [30] proposed an elegant so-
lution for multivariate X by introducing a single-index structure for the index vector, resulting
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in

Yi =
p∑

j=1

gj

(
XT

i β
)
Zij + εi,

which was termed the single-index coefficient model (SICM). A more general framework was
proposed recently by Ma and Song [22] in which β can be different for different function gj .
Another closely related model, termed the adaptive varying-coefficient linear models (Fan, Yao
and Cai [6]), has the same form as SICM with X = Z. Further studies of SICM include Xue and
Wang [32], Huang and Zhang [16].

As far as we know, researchers have only considered mean regression for SICM so far, which
may be somewhat limiting. The parametric quantile regression introduced by Koenker and Bas-
sett [18] has been well developed in the econometrics and statistics literature. When the dis-
tribution of the errors in the model is heavy tailed or the data contain some outliers, it is well
known that median regression, a special case of quantile regression, is more robust than mean
regression. More importantly, it can be used to obtain a large collection of conditional quan-
tiles to characterize the entire conditional distribution. To construct a richer class of regression
models capturing flexibly the relationships between the covariates and the response distribu-
tion, nonparametric quantile estimation has been studied in Hendricks and Koenker [12], Yu and
Jones [33]. For varying coefficient models, Kim [17] studied quantile regression for independent
data using splines, and Cai and Xu [2] used local polynomial estimation method for time series
data. Further extensions to partially linear varying-coefficient models are considered by Wang,
Zhu and Zhou [25], Cai and Xiao [1].

In this paper, we will develop theory and methodology for the quantile SICM using polyno-
mial spline estimation. Polynomial spline estimation provides an alternative to local polynomial
estimation method. The comparative advantages of spline methods were carefully documented
in Li [19], among which the most notable is the computational convenience, although it is not
our main intention here to promote splines. The disadvantage is that the exact bias term for the
nonparametric function is harder to obtain, making demonstration of asymptotic normality for
the nonparametric functions difficult.

Spline estimation for models with a single-index structure was considered in Wang and
Yang [27], Ma, Liang and Tsai [21]. Theoretically, our study is complicated by two aspects:
consideration of single-index structure and consideration of quantile regression which has a non-
smooth objective function. In particular, appropriate definition and analysis of the projection
of the parametric part on the nonparametric part, which is usually necessary in semiparametric
models to demonstrate asymptotic normality of the parametric part, is more complicated than in
partially linear models such as that studied in Wang, Zhu and Zhou [25].

The rest of the paper is organized as follows. In the next section, we present the estimation
method using polynomial splines, and asymptotic properties of the estimators are considered.
Section 3 contains our numerical results including simulation studies and an application to an
environmental data set. Finally, we conclude in Section 4 with some mentioning of possible
extensions. The technical proofs are relegated to the Appendix.



quantile SICM 1999

2. Quantile single-index coefficient models

2.1. Estimation

Consider the quantile SICM

Yi = gT
(
XT

i β
)
Zi + ei,

where (Xi ,Zi , Yi, ei) are independent and identically distributed (i.i.d.), g(·) = (g1(·), . . . , gq(·))
are the q coefficient functions whose argument is the index XT

i β , P(ei ≤ 0|Xi ,Zi ) = τ , and Xi

and Zi are q-dimensional and p-dimensional covariates, respectively. Such a structure in mean
regression was first considered in Xia and Li [30]. For identifiability, we assume ‖β‖ = 1 and its
first component is positive.

To take into account the unit norm constraint, we use the popular “delete-one-component”
method (Yu and Ruppert [34], Cui, Härdle and Zhu [5]). We can write β = ((1 − ‖β(−1)‖2)1/2,

β2, . . . , βq)T where β(−1) = (β2, . . . , βq)T is β without the first component. Thus, β is a function
of β(−1). The q × (q − 1) Jacobian matrix is

J = ∂β

∂β(−1)
=
⎛⎝− β(−1)

(1 − ‖β(−1)‖2)1/2

I(q−1)×(q−1)

⎞⎠ ,

where I(q−1)×(q−1) is the (q − 1) × (q − 1) identity matrix.
We use polynomial splines to approximate the components. Let τ0 = a < τ1 < · · · < τK ′ <

b = τK ′+1 be a partition of [a, b] into subintervals [τk, τk+1), k = 0, . . . ,K ′ with K ′ internal
knots. We only restrict our attention to equally spaced knots although data-driven choice can be
considered such as putting knots at certain sample quantiles of the observed covariate values.
A polynomial spline of order s is a function whose restriction to each subinterval is a polynomial
of degree s − 1 and globally s − 2 times continuously differentiable on [a, b]. The collection
of splines with a fixed sequence of knots has a normalized B-spline basis {B1(x), . . . ,BK(x)}
with K = K ′ + s. Note that it is possible to specify different K for each component but we
assume they are the same for simplicity (using the same K’s is reasonable when all components
have the same smoothness parameter). In the empirical implementations, we use the minimal and
maximal values of XT

i β as a and b to generate B-spline basis functions for a given β .

We assume B-spline basis is normalized to have
∑K

k=1 Bk(x) = √
K . Such normalization is

not essential and is just imposed to simplify some expressions in theoretical derivations later. Let
B(·) = (B1(·), . . . ,BK(·))T . Using spline estimator, writing gj (·) ≈ BT (·)θ j , we minimize

n∑
i=1

ρτ

(
Yi −

p∑
j=1

Zij BT
(
XT

i β
)
θ j

)
, (1)

with the constraint ‖β‖ = 1 and β1 > 0, or equivalently regarding β = β(β(−1)) as a function of
β(−1) and optimize over (β(−1), θ).

Let � = (θ1, . . . , θp) and θ = vec(�), where vec(·) denotes the straightening operation of
the matrix by stacking its columns. We note that

∑p

j=1 Zij BT (XT
i β)θ j can also be written more
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succinctly as BT (XT
i β)�Zi = (Zi ⊗ B(XT

i β))T θ , where ⊗ denotes the Kronecker product of
two matrices.

2.2. Large sample properties

For proof of convergence rate and asymptotic normality, we need to “orthogonalize” the para-
metric part with respect to the nonparametric part using the following projection. Let M = {m :
m(x, z) = fT (xT β0)z,Em2(X,Z) < ∞} be the space of varying index functions. In this paper,
the projection of any random variable W onto M, denoted by EM[W ], is defined as the mini-
mizer of

E
[
f (0|X,Z)

(
W − m(X,Z)

)2]
,

with m ∈ M. This definition can be extended trivially to the case where W = (W1, . . . ,Wq)T is
a random vector by EM(W) = (EM(W1), . . . ,EM(Wq))T .

We impose the following assumptions.

(A1) The covariates Z, X are bounded.
(A2) Let f (·|Xi ,Zi ) be the conditional density of ei . We assume f (·|Xi ,Zi ) is bounded and

bounded away from zero in a neighborhood of zero, uniformly over the support of Xi ,Zi . The
derivative of f (·|Xi ,Zi ) is uniformly bounded in a neighborhood of zero over the support of
Xi ,Zi .

(A3) The functions gj are in the Hölder space of order d ≥ 2. That is |g(m)
j (x) − g

(m)
j (y)| ≤

C|x − y|r for d = m + r and m is the largest integer strictly smaller than d , where g
(m)
j is the

mth derivative of gj .
(A4) Suppose EM[Xj g(1)T (XT β0)Z] = ∑p

l=1 fjl(XT β0)Zl , 1 ≤ j ≤ q . The functions
fjl are in the Hölder space of order d ′ ≥ 1. The order of the B-spline used satisfies
s ≥ max{d, d ′} + 1.

(A5) E[f (0|X,Z)(Xg(1)T (XT β0)Z − EM[Xg(1)T (XT β0)Z])⊗2] is positive definite, where
for any matrix A, A⊗2 = AAT .

Boundedness of Z is assumed mainly for convenience of proof, which can possibly be replaced
by moment conditions with lengthier arguments. Boundedness of X is tied to our estimation
approach, typically assumed when using regression splines. Assumption (A2) on conditional
density is commonly used in quantile regression (He and Shi [11], Wang, Zhu and Zhou [25]).
Smoothness of gj is required for proof of convergence rate. Smoothness of functions in the

representation of EM[Xj g(1)T (XT β0)Z] is usually used in semiparametric models to show the
asymptotic normality of the parametric part. Finally, (A5) can be regarded as an identifiability
assumption for semiparametric models (Li [19], Wei and He [29], Wang et al. [26]).

Theorem 1. Under conditions (A1)–(A5) and that K → ∞, Kd+3/2 logn/n → 0, there is a
local minimizer with

‖β̂ − β0‖ + ‖θ̂ − θ0‖ = Op

(√
K/n + K−d

)
.
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In particular, the rate for ‖θ̂ − θ0‖ = Op(
√

K/n+K−d) implies that ‖ĝj −gj‖ = Op(
√

K/n+
K−d), with ĝj (·) = BT (·)θ̂ j .

The convergence rate above takes a familiar form as in nonparametric regression with the two
terms corresponding to bias and variance, respectively. The optimal choice of K is obviously
K ∼ n1/(2d+1). Under stronger assumptions on the choice of K and smoothness of nonparametric
functions, we have the asymptotic normality of the index parameter β . Note that when d ′ is
large enough (for example d ′ = d), K ∼ n1/(2d+1) is still contained in the permissible range.
The technical condition Kmax{4,d+3/2} logn/n → 0 comes from an application of Bernstein’s
inequality in our proof.

Theorem 2. Under conditions (A1)–(A5) and that K → ∞, Kmax{4,d+3/2} logn/n → 0,√
nK−2d+3/2 → 0,

√
nK−d−d ′ → 0,

√
n(β̂ − β0)

d→ N
(
0,J

(
JT �J

)−1JT �J
(
JT �J

)−1)JT ,

where � = E[f (0|X,Z)(g(1)T (XT β0)ZX − EM[g(1)T (XT β0)ZX])⊗2], � = τ(1 − τ) ×
E[(g(1)T (XT β0)ZX − EM[g(1)T (XT β0)ZX])⊗2], and the Jacobian matrix J is evaluated at
the truth β0.

Remark 1. We assume Z is bounded for convenience of proof. This assumption is only used
in applying Bernstein’s inequality in Lemmas 1 and 5 in the Appendix. More generally, we
can assume E‖Z‖κ < ∞ for some κ ≥ 2. Then, for example in the proof of Lemma 1, for some
M > 0 that diverges with n, we can bound |Mni(β, θ)| by MA and E|Mni(β, θ)|2 by M2D2 (see
the proof of Lemma 1 for the definition of Mni(β, θ), A, D), when ‖Zi‖ ≤ M for all i = 1, . . . , n.
Then we will have

P
(

sup
(β,θ)∈N

∣∣Mn(β, θ) − EMn(β, θ)
∣∣> a

)
≤ C exp

{
− a2

aMA + nM2D2
+ CK logn

}
+ P

(∃i,‖Zi‖ > M
)
.

Using Markov’s inequality, we have P(∃i,‖Zi‖ > M) ≤ nE‖Zi‖κ/Mκ and thus we can choose
M to be larger than n1/κ so that P(∃i,‖Zi‖ > M) converges to zero. Then it is easy to
see that with this choice of M , to make the right-hand side of the displayed equation above
converge to zero, we only need to replace the condition Kd+3/2 logn/n → 0 in the state-
ment of Theorem 1 by Kd+3/2 logn/n1−1/κ → 0. Similarly, when assuming E‖Z‖κ < ∞, the
condition Kmax{4,d+3/2} logn/n → 0 in the statement of Theorem 2 need to be replaced by
Kmax{4,d+3/2} logn/n1−1/κ → 0.

To obtain the standard error estimate of β̂ based on the asymptotic normality result above, we
need to estimate the conditional density f (0|X,Z) and EM[g(1)T (XT β0)ZX]. For the estimate
f̂ (0|Xi ,Zi ), we adopt the difference quotient method of [12],

f̂ (0|Xi ,Zi ) = 2hn

{
ĝT
τ+hn

(
XT

i β̂τ+hn

)
Zi − ĝT

τ−hn

(
XT

i β̂τ−hn

)
Zi

}−1
,
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where the estimators β̂τ and ĝτ (·) are obtained by (1) at quantile level τ and hn is a band-
width parameter tending to zero as n → ∞. In our numerical studies, we choose hn =
1.57n−1/3(1.5φ2{	−1(τ )}/(2{	−1(τ )}2 + 1))2/3 following [12], where φ(·) and 	(·) are
the p.d.f. and c.d.f. of the standard normal distribution, respectively. For the estimate of
EM[g(1)T (XT

i β0)ZiXi], it can be obtained by the weighted least square method on the B-spline

space by regarding ĝ(1)T (XT
i β̂)ZiXi as the response variable.

Denote the estimate of EM[g(1)T (XT
i β0)ZiXi] as �̂i , i = 1, . . . , n. Define

�̂ = 1

n

n∑
i=1

f̂ (0|Xi ,Zi )
(
ĝ(1)T

(
XT

i β̂
)
ZiXi − �̂i

)⊗2

and

�̂ = τ(1 − τ)
1

n

n∑
i=1

(
ĝ(1)T

(
XT

i β̂
)
ZiXi − �̂i

)⊗2
.

Then we have following proposition. Consistent estimate of the conditional density can in theory
be obtained by kernel methods. However, this would suffer from curse of dimensionality, which
is the reason the above more practical procedure is adopted. The proof is a simple corollary of
Lemma 7 in the Appendix and thus its proof is omitted.

Proposition 1. Under the conditions of Theorem 2, assuming f (0|X,Z) is consistently estimated
by f̂ (0|X,Z), we have

�̂ −→ � and �̂ −→ � as n → ∞

in probability.

Based on Proposition 1, covariance of β̂ can be consistently estimated by

Ĉov(β̂) = n−1J
(
JT �̂J

)−1JT �̂J
(
JT �̂J

)−1JT .

3. Numerical illustrations

In this section, we first carry out some simulations to demonstrate the finite sample performance
of the proposed quantile SICM estimator, and then apply SICM to an environmental data set.

In all our numerical examples, the nonparametric functions are approximated by cubic spline
(s = 4), and the number of basis functions K is chosen by minimizing the following Schwarz
Information Criterion (SIC, Schwartz [23], He and Shi [10], Horowitz and Lee [14])

K̂ = arg min
K

SIC(K),
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where

SIC(K) = log

(
n∑

i=1

ρτ

(
Yi −

p∑
j=1

Zij BT
(
XT

i β̂
)
θ̂ j

))
+ log(n) × (pK)/(2n),

where β̂, θ̂ j denotes the estimated parameters for a given K .
We use a profile approach to fit the model. More specifically, for a given β , θ can be easily

obtained since the minimization problem is the same as that for standard quantile regression.
Regarding θ = θ(β) as a function of β , we optimize over β using the constrOptim.nl() function
in R. The initial value of β is obtained simply by fitting a simple linear quantile regression to the
data (Xi , Yi), i = 1, . . . , n. A better method for initialization is probably the average derivative
method similar to that proposed by Chaudhuri et al. [3]. However, we did not implement the
average derivative method since the simpler method already seems to work well in our numerical
studies.

3.1. Simulation studies

Example 1. Consider the following single index coefficient model

Yi = g0
(
XT

i β0
)+ g1

(
XT

i β0
)
Zi1 + g2

(
XT

i β0
)
Zi2 + (

1 + κ|Zi1|
)
ei, i = 1, . . . , n, (2)

where the three nonparametric functions are g0(u) = 3 sin(πu), g1(u) = 2 cos(πu) and g2(u) =
4u3, and the true value of index parameters β0 = (β01, β02, β03)

T = (1/
√

3,1/
√

3,1/
√

3)T .
Xi = (Xi1,Xi2,Xi3)

T are independent random vectors uniformly distributed on [−1,1]2. Zi =
(Zi1,Zi2)

T has a bivariate normal distribution with marginal variance 1 and correlation 0.5.
The random error ei follows standard normal distribution or Student-t distribution (degree of
freedom 3) with location parameter −qτ , where qτ is the τ th quantile of the standard normal
distribution or Student-t distribution with degree of freedom 3, which implies the corresponding
τ th quantile of ei is zero. Xi , Zi and ei are mutually independent. In addition, the quantity κ

equals 0 or 1 corresponding to homoscedastic model (HM) and heteroscedastic model (HT),
respectively. We focus on the quantile levels at τ = 0.1,0.25 and 0.5.

To evaluate the performance of the estimated index parameters β̂j , j = 1,2,3, we report the
average of their bias (Bias), root mean square error (RMSE) and standard deviation estimate
with three different methods, that is, empirical standard deviation estimate based on repeated
simulations which serves as the gold standard (ESD), asymptotic standard deviation estimate
based on asymptotic normality formula (ASD), and Bootstrap standard deviation estimate (BSD),
over 1000 replications. We also consider the estimates of the coefficient functions g0(u), g1(u)

and g2(u). The estimators ĝj (·) are assessed via the mean integrated squared errors (MISE), that
is, MISE = 1

3

∑2
j=0 ISEj , where

ISEj = 1

ngrid

ngrid∑
k=1

(
ĝj (uk) − gj (uk)

)2
,
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and {uk : k = 1, . . . , ngrid} are regular grid points with ngrid = 100. The average values of these
quantities over the 1000 replications are reported in Table 1 with different sample sizes. Fig-
ure 1(a) shows using boxplots the estimated values of index parameters with κ = 1, n = 600, τ =
0.5. From Table 1, all biases of the estimated index parameters are close to 0 for different cases,
which can also be seen from the boxplot of the index parameters in Figure 1(a). For the estimated
standard deviation of the index parameters, the performance of three different methods are very
similar for the homoscedastic model. BSD performs better than ASD, especially for heteroge-
neous models with small sample size for which ASD is quite different from ESD in some cases.
Thus we prefer to use BSD, also for its straightforward implementation. Moreover, both the RM-
SEs of the index parameters and MISEs of the nonparametric functions become smaller as n

increases. Figure 1(b)–(d) present the polynomial spline estimates of g0(·), g1(·) and g2(·) for a
“typical” sample, together with their 95% pointwise confidence intervals, which are obtained by
pairs bootstrap. The typical sample is selected in such a way that its MISE is equal to the median
in the 1000 replications. Such intervals actually ignore the bias in nonparametric estimation and
should be interpreted with care but are nevertheless often used in exploring data due to its con-
venience. From the estimated curves together with their 95% pointwise confidence intervals in
Figure 1(b)–(d), the estimated curves are visually close to the truth.

To further illustrate the importance of using a correctly specified model, we report the estima-
tion result when fitting the generated data using the single-index model (SIM) and the partially
linear single-index model (PLSIM), given by

SIM : Yi = g0
(
XT

i β
)+ (

1 + κ|Zi1|
)
ei, i = 1, . . . , n, (3)

PLSIM : Yi = g0
(
XT

i β
)+ α1Zi1 + α2Zi2 + (

1 + κ|Zi1|
)
ei, i = 1, . . . , n. (4)

For illustration purpose, we only consider comparison for the case of heteroscedastic model
with normal error at τ = 0.5. Table 2 shows the root mean square errors (RMSE) for the entire
index parameter vector β and the ISE for the nonparametric function g0(·). Figure 2 shows
the estimated g0 in the three different models (30 estimates are randomly chosen from 1000
replicates) with n = 600. As we can see from Table 2 and Figure 2, both misspecified models
have much larger errors than SICM. We also compare the prediction performance of the SICM
with SIM and PLSIM. We perform the leave-one-out cross-validation for models (2)–(4) with
the prediction error given by CVPE = 1

n

∑n
i=1(Yi − Ŷ

−(i)
i )2, where Ŷ

−(i)
i is the predicted value

for the ith response using the remaining (n − 1) observations. Table 3 lists the cross-validation
prediction errors (CVPE) for heteroscedastic model with normal error at τ = 0.5. From Table 3,
it is clear that the value of CVPE for SICM is the smallest for each case, which means that using
a correctly specified model would help to improve the prediction.

Example 2. In this example, the response observations are generated from the following model

Yi = g0
(
XT

i β0
)+ g1

(
XT

i β0
)
Zi1 + g2

(
XT

i β0
)
Zi2 + exp(κZi2) · ei, i = 1, . . . , n,

where g0(u) = 5 exp(u), g1(u) = 10 sin(2πu) and g2(u) = 2u2. The covariates Xi = (Xi1,Xi2,

Xi3)
T and Zi = (Zi1,Zi2)

T are generated as follows. We first generate the variables Wi =
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Table 1. Simulation results for Example 1, where ESD, ASD and BSD denote the empirical standard deviation estimate, the asymptotic standard
deviation estimate and the Bootstrap standard deviation estimate with 200 resample at each simulation, respectively

β̂1 β̂2 β̂3

Model τ n Bias RMSE ESD ASD BSD Bias RMSE ESD ASD BSD Bias RMSE ESD ASD BSD MISE

HM-N(0,1) 0.1 100−0.0015 0.0272 0.0377 0.0326 0.0338 0.0011 0.0283 0.0386 0.0330 0.0408 −0.0032 0.0260 0.0337 0.0326 0.0364 1.9983
200 0.0006 0.0172 0.0215 0.0229 0.0223 −0.0010 0.0169 0.0212 0.0230 0.0209 −0.0013 0.0175 0.0220 0.0227 0.0209 0.3606
400 0.0002 0.0123 0.0154 0.0162 0.0152 0.0009 0.0120 0.0149 0.0162 0.0146 −0.0008 0.0118 0.0149 0.0161 0.0146 0.2390
600−0.0002 0.0091 0.0116 0.0133 0.0126 0.0002 0.0095 0.0119 0.0133 0.0122 0.0004 0.0096 0.0120 0.0132 0.0119 0.2008

0.25 100 0.0002 0.0207 0.0260 0.0257 0.0265 −0.0004 0.0200 0.0255 0.0258 0.0299 −0.0016 0.0212 0.0266 0.0258 0.0291 1.1121
200 0.0009 0.0134 0.0170 0.0180 0.0193 −0.0002 0.0133 0.0167 0.0180 0.0184 −0.0015 0.0132 0.0169 0.0180 0.0182 0.2898
400−0.0004 0.0093 0.0117 0.0129 0.0128 0.0009 0.0092 0.0115 0.0129 0.0126 −0.0007 0.0090 0.0113 0.0129 0.0128 0.1961
600−0.0003 0.0073 0.0093 0.0107 0.0102 0.0001 0.0074 0.0093 0.0106 0.0100 0.0000 0.0077 0.0096 0.0106 0.0101 0.1679

0.5 100−0.0015 0.0197 0.0247 0.0232 0.0297 0.0006 0.0183 0.0231 0.0233 0.0275 −0.0006 0.0189 0.0240 0.0234 0.0286 0.9146
200 0.0013 0.0125 0.0158 0.0166 0.0178 0.0003 0.0124 0.0155 0.0167 0.0172 −0.0003 0.0125 0.0158 0.0166 0.0174 0.2650
400 0.0009 0.0087 0.0110 0.0118 0.0117 0.0328 0.0089 0.0111 0.0117 0.0116 −0.0006 0.0083 0.0105 0.0118 0.0117 0.1848
600−0.0002 0.0066 0.0085 0.0099 0.0094 0.0004 0.0066 0.0083 0.0100 0.0093 −0.0004 0.0071 0.0089 0.0100 0.0094 0.1588

HT-N(0,1) 0.1 100−0.0007 0.0468 0.0603 0.0393 0.0560 −0.0009 0.0456 0.0613 0.0395 0.0517 −0.0075 0.0435 0.0548 0.0396 0.0493 3.4804
200 0.0019 0.0288 0.0360 0.0277 0.0362 −0.0023 0.0266 0.0341 0.0280 0.0341 −0.0027 0.0264 0.0337 0.0278 0.0342 0.5301
400 0.0010 0.0196 0.0245 0.0199 0.0245 0.0007 0.0179 0.0225 0.0200 0.0225 −0.0013 0.0178 0.0225 0.0198 0.0233 0.3380
600−0.0015 0.0150 0.0189 0.0165 0.0197 −0.0003 0.0143 0.0182 0.0167 0.0191 0.0010 0.0143 0.0178 0.0166 0.0191 0.2748

0.25 100 0.0019 0.0339 0.0435 0.0307 0.0415 −0.0037 0.0337 0.0430 0.0310 0.0449 −0.0030 0.0315 0.0405 0.0308 0.0457 2.5141
200 0.0016 0.0222 0.0282 0.0215 0.0313 −0.0006 0.0207 0.0260 0.0213 0.0265 −0.0008 0.0203 0.0259 0.0214 0.0281 0.4221
400−0.0006 0.0151 0.0189 0.0156 0.0204 0.0008 0.0139 0.0173 0.0154 0.0191 −0.0010 0.0135 0.0169 0.0155 0.0171 0.2714
600−0.0014 0.0119 0.0149 0.0127 0.0164 0.0003 0.0110 0.0139 0.0128 0.0156 0.0006 0.0113 0.0141 0.0127 0.0155 0.2242

0.5 100 0.0019 0.0309 0.0392 0.0272 0.0383 −0.0027 0.0301 0.0382 0.0272 0.0371 −0.0030 0.0285 0.0360 0.0273 0.0376 1.5925
200 0.0019 0.0201 0.0252 0.0194 0.0303 0.0014 0.0189 0.0237 0.0194 0.0243 −0.0009 0.0185 0.0235 0.0194 0.0265 0.3865
400 0.0005 0.0140 0.0176 0.0141 0.0185 0.0009 0.0134 0.0168 0.0140 0.0171 −0.0008 0.0126 0.0159 0.0141 0.0170 0.2554
600−0.0009 0.0106 0.0136 0.0116 0.0152 0.0008 0.0098 0.0124 0.0117 0.0141 −0.0004 0.0106 0.0133 0.0117 0.0144 0.2107
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Table 1. (Continued)

β̂1 β̂2 β̂3

Model τ n Bias RMSE ESD ASD BSD Bias RMSE ESD ASD BSD Bias RMSE ESD ASD BSD MISE

HM-t (3) 0.1 100 −0.0085 0.0460 0.0650 0.0448 0.0588 0.0037 0.0513 0.0839 0.0440 0.0542 −0.0088 0.0450 0.0658 0.0442 0.0534 2.1164
200 −0.0025 0.0294 0.0383 0.0315 0.0376 0.0009 0.0292 0.0379 0.0313 0.0370 −0.0013 0.0292 0.0380 0.0314 0.0354 0.5979
400 0.0011 0.0197 0.0249 0.0215 0.0253 0.0004 0.0187 0.0242 0.0214 0.0249 −0.0016 0.0189 0.0239 0.0218 0.0256 0.3877
600 −0.0001 0.0160 0.0198 0.0176 0.0206 −0.0003 0.0160 0.0200 0.0175 0.0198 −0.0007 0.0157 0.0201 0.0175 0.0200 0.3107

0.25 100 0.0033 0.0302 0.0384 0.0303 0.0349 −0.0024 0.0271 0.0355 0.0304 0.0330 −0.0047 0.0299 0.0388 0.0301 0.0350 1.5998
200 −0.0010 0.0174 0.0219 0.0201 0.0213 0.0006 0.0169 0.0215 0.0202 0.0248 −0.0008 0.0170 0.0218 0.0201 0.0218 0.3719
400 −0.0004 0.0115 0.0142 0.0143 0.0141 0.0002 0.0116 0.0146 0.0144 0.0169 −0.0004 0.0117 0.0147 0.0146 0.0146 0.2418
600 −0.0005 0.0092 0.0116 0.0119 0.0116 −0.0005 0.0094 0.0117 0.0119 0.0127 0.0002 0.0096 0.0121 0.0119 0.0125 0.2000

0.5 100 −0.0016 0.0241 0.0304 0.0252 0.0301 0.0012 0.0229 0.0293 0.0253 0.0375 −0.0019 0.0231 0.0300 0.0250 0.0317 1.1590
200 0.0008 0.0148 0.0187 0.0176 0.0210 −0.0005 0.0139 0.0175 0.0176 0.0208 −0.0007 0.0143 0.0182 0.0175 0.0205 0.3094
400 −0.0002 0.0093 0.0116 0.0125 0.0135 0.0003 0.0093 0.0116 0.0124 0.0132 −0.0004 0.0092 0.0116 0.0124 0.0120 0.2063
600 −0.0004 0.0078 0.0098 0.0103 0.0105 −0.0004 0.0077 0.0097 0.0103 0.0105 0.0003 0.0078 0.0097 0.0103 0.0105 0.1731

HT-t (3) 0.1 100 −0.0126 0.0896 0.1210 0.0462 0.1146 0.0002 0.0899 0.1316 0.0469 0.1165 −0.0257 0.0769 0.1063 0.0471 0.1350 5.4440
200 −0.0029 0.0525 0.0688 0.0380 0.0649 −0.0014 0.0496 0.0655 0.0378 0.0641 −0.0041 0.0478 0.0639 0.0380 0.0630 0.9217
400 −0.0011 0.0328 0.0415 0.0255 0.0423 −0.0007 0.0294 0.0382 0.0256 0.0431 −0.0032 0.0298 0.0376 0.0256 0.0428 0.5687
600 −0.0002 0.0267 0.0335 0.0214 0.0331 −0.0012 0.0248 0.0314 0.0214 0.0322 −0.0014 0.0251 0.0318 0.0213 0.0328 0.4453

0.25 100 0.0000 0.0448 0.0593 0.0340 0.0616 −0.0019 0.0438 0.0580 0.0343 0.0706 −0.0065 0.0417 0.0526 0.0344 0.0737 3.1701
200 0.0012 0.0283 0.0358 0.0242 0.0423 −0.0004 0.0263 0.0335 0.0242 0.0391 −0.0029 0.0265 0.0342 0.0246 0.0410 0.5538
400 −0.0011 0.0184 0.0229 0.0173 0.0268 −0.0003 0.0172 0.0217 0.0174 0.0250 −0.0009 0.0179 0.0225 0.0173 0.0245 0.3443
600 −0.0004 0.0150 0.0187 0.0143 0.0199 −0.0005 0.0142 0.0178 0.0142 0.0183 0.0002 0.0147 0.0185 0.0142 0.0189 0.2751

0.5 100 −0.0016 0.0409 0.0530 0.0293 0.0621 −0.0011 0.0359 0.0479 0.0290 0.0600 −0.0035 0.0348 0.0450 0.0292 0.0510 2.7569
200 0.0003 0.0241 0.0305 0.0205 0.0344 −0.0004 0.0218 0.0273 0.0206 0.0318 −0.0002 0.0220 0.0278 0.0207 0.0315 0.4571
400 −0.0006 0.0150 0.0187 0.0148 0.0216 0.0003 0.0141 0.0175 0.0148 0.0197 −0.0005 0.0137 0.0175 0.0148 0.0200 0.2886
600 −0.0004 0.0123 0.0155 0.0123 0.0169 −0.0005 0.0115 0.0145 0.0123 0.0161 0.0004 0.0119 0.0147 0.0123 0.0158 0.2326
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Figure 1. Boxplot of the index parameters and estimated curves of the nonparametric functions for het-
eroscedastic normal model with sample size n = 600 at τ = 0.5. (a) Boxplot for index parameters; (b)–(d)
Estimated curves together with their 95% pointwise confidence intervals for g0(·), g1(·) and g2(·), respec-
tively. Red curves and blue curves represent the truth and the estimates, respectively.

(Wi1, . . . ,Wi5)
T from the multivariate normal distribution with mean 0 and correlation coef-

ficients ρ(Wij ,Wik) = 0.8|j−k|,1 ≤ j, k ≤ 5, and then let Xij = 	(Wij ) − 0.5, j = 1,2,3 and
Zi1 = Wi4 and Zi2 = Wi5, where 	(·) is the accumulate distribution function of the standard
normal variable. The true value of the index parameter is β0 = (2/

√
14,3/

√
14,1/

√
14)T . Set-

tings for the random errors ei and κ are the same as in Example 1, and ei is independent of Xi and
Zi . The main goal of this simulation is to examine whether our proposed method still performs
well when the correlation between Xi and Zi is high. In addition, we compare our procedure

Table 2. Simulation results for Example 1 for three different models with heteroscedastic normal error
model at τ = 0.5. The values in parentheses are the standard errors computed based on the 1000 replications

n = 200 n = 400 n = 600

Model RMSE MISE RMSE MISE RMSE MISE

SICM 0.0243 (0.0132) 0.3424 (0.7030) 0.0169 (0.0084) 0.1296 (0.2303) 0.0136 (0.0071) 0.0847 (0.0865)
SIM 0.0368 (0.0207) 1.5418 (1.8454) 0.0245 (0.0130) 1.2450 (1.8478) 0.0199 (0.0106) 1.0159 (1.1385)
PLSIM 0.0367 (0.0207) 1.6362 (1.9642) 0.0244 (0.0130) 1.2787 (1.8228) 0.0198 (0.0106) 1.0516 (1.1950)
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Figure 2. The median regression estimates of g0(·) for three different models on generated data with
heteroscedastic normal error and n = 600: (a) SICM; (b) SIM; (c) PLSIM. The red curve is the true function
and the black curves are the estimates for 30 randomly chosen replicates. (d) Shows the boxplots of the
RMSE of the index parameter.

(τ = 0.5) with least squares SICM (LSSICM), for which we again used polynomial splines. We
also implemented a quantile version of the varying-index model of Ma and Song [22] (QRVICM)
which represents a correct specification and is more flexible in allowing the index parameters for
different coefficients to be different from each other. The simulation results of RMSE for β and
MISE for nonparametric functions are shown in Table 4.

As we can see from Table 4, our proposed method still works well when the correlations be-
tween covariates are high, and both RMSE and MISE of QRSICM are smaller than least squares
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Table 3. CVPE comparisons for three different models

Model SICM SIM PLSIM

n = 200 3.9658 12.6645 12.6407
n = 400 2.9198 11.1792 11.1432
n = 600 2.7459 11.1514 11.1267

based method for the heavy-tailed t (3) distribution. For the heteroscedastic model, median re-
gression also outperforms mean regression even when the random error follows the normal dis-
tribution, which can also be seen from the boxplot of index parameters in Figure 3. In addition,
since the data is generated from single-index coefficient model, the performance of QRVICM in
terms of RMSE on the index parameters is inferior, although its performance in the estimation
of coefficient functions is similar to QRSICM. Nevertheless, we note that QRVICM is definitely
useful when the index parameters are different.

3.2. Real data analysis

In this subsection, we apply our model to an environmental data set. This data set was obtained
from a respiratory study in Hong Kong, which was collected between January 1, 2000 and De-
cember 31, 2000.

In this data set, there are five daily measurements of pollutants, sulphur dioxide (in g/m3),
respirable suspended particulate (in g/m3), nitrogen oxide (in g/m3), nitrogen dioxide (in g/m3)
and ozone (in g/m3), and two environmental factors, temperature (in Celsius) and relative humid-
ity (%). The goal of the study is to examine the relationship between the levels of air pollutants
and environmental factors and the daily total hospital admissions for respiratory diseases. Given
measurements for multiple pollutants, it is of great interest to construct a single pollutant index
to be used in predicting hospital admissions and thus a single-index structure is appropriate. For
this study, we need to answer two important questions: (1) How (linear or nonlinear) the mixture
of the five pollutants (pollutant index) influence of the daily total hospital admissions for res-
piratory diseases at different quantile levels? (2) Does the two environmental factors also have
important effect on respiratory diseases at different quantile levels?

To explore whether the environmental factors have some effect on the response, in addition to
the effects of the pollutants, we split the data into two subsets according to whether temperature
is less than or greater than 23.8 (median temperature in the data). We then fit the single-index
model with five pollutants as the predictors for the two subsets separately. The nonparametric
link functions are shown in Figure 4. The difference in estimates as shown in the figure suggests
that the temperature interacts with pollutants levels in a possibly complicated way.

Based on the previous discussions, we propose to use the following quantile SICM to analyze
this data set:

SICM : Yi = g0
(
XT

i β
)+ g1

(
XT

i β
)
Zi1 + g2

(
XT

i β
)
Zi2 + g3

(
XT

i β
)
Zi3 + ei,

(5)
i = 1, . . . , n,
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Table 4. Simulation results for Example 2. QRSICM denotes our method at τ = 0.5, LSSICM denotes the least squares method and QRVICM
denotes the quantile estimate of varying-index coefficient model (Ma and Song [22]) at τ = 0.5. The values in parentheses are the standard errors
computed based on the 1000 replications

n = 200 n = 400 n = 600

Model Method RMSE MISE RMSE MISE RMSE MISE

HM-N(0,1) QRSICM 0.0140 (0.0088) 0.2891 (0.0715) 0.0092 (0.0051) 0.2002 (0.0425) 0.0073 (0.0043) 0.1645 (0.0340)
LSSICM 0.0118 (0.0069) 0.2857 (0.0678) 0.0078 (0.0045) 0.1989 (0.0416) 0.0063 (0.0037) 0.1629 (0.0334)
QRVICM 0.0381 (0.0202) 0.3097 (0.0783) 0.0218 (0.0226) 0.2067 (0.0507) 0.0169 (0.0171) 0.1832 (0.0444)

HT-N(0,1) QRSICM 0.0112 (0.0074) 0.7396 (0.3185) 0.0064 (0.0041) 0.5393 (0.2095) 0.0049 (0.0030) 0.4520 (0.1601)
LSSICM 0.0347 (0.0260) 0.7727 (0.3196) 0.0252 (0.0187) 0.5636 (0.2209) 0.0201 (0.0132) 0.4714 (0.1661)
QRVICM 0.0588 (0.0557) 0.7637 (0.3330) 0.0510 (0.0463) 0.5602 (0.2280) 0.0423 (0.0397) 0.4670 (0.1673)

HM-t (3) QRSICM 0.0154 (0.0094) 0.4635 (0.1652) 0.0106 (0.0060) 0.3146 (0.0924) 0.0082 (0.0047) 0.2593 (0.0858)
LSSICM 0.0198 (0.0141) 0.4711 (0.1721) 0.0137 (0.0080) 0.3192 (0.0941) 0.0110 (0.0070) 0.2638 (0.0897)
QRVICM 0.0547 (0.0500) 0.4685 (0.1740) 0.0518 (0.0479) 0.3178 (0.0889) 0.0575 (0.0476) 0.2615 (0.0833)

HT-t (3) QRSICM 0.0130 (0.0087) 1.1963 (0.6769) 0.0075 (0.0046) 0.8713 (0.5222) 0.0054 (0.0033) 0.7022 (0.3088)
LSSICM 0.0590 (0.0571) 1.2683 (0.7622) 0.0420 (0.0366) 0.9179 (0.5505) 0.0334 (0.0264) 0.7388 (0.3251)
QRVICM 0.0640 (0.0523) 1.2183 (0.6779) 0.0545 (0.0554) 0.8783 (0.5141) 0.0468 (0.0472) 0.7272 (0.3203)
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Figure 3. Boxplot of the index parameters with sample size n = 600 for the heteroscedastic normal error
model: (a) QRSICM; (b) LSSICM.

where Xi = (Xi1, . . . ,Xi5)
T denotes the five pollutants, and Zi1 and Zi2 denote the two envi-

ronmental factors, that is, temperature and humidity. In addition, Zi3 = Zi1 × Zi2 denotes the
interaction of the two environmental factors. The environment factors are standardized to have
mean 0 and variance 1.

Table 5 lists the estimated index parameters at three different quantile levels, together with
their lower bound (LB) and upper bound (UB) of 95% confidence intervals (CI), which are

Figure 4. Estimated nonparametric link function together with their 95% pointwise confidence bands using
the single-index model for the environmental data at τ = 0.5: (a) Low temperature; (b) High temperature.
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Table 5. The estimates (EST), lower bound (LB) and upper bound (UB) of 95% confidence interval at
different quantile levels

τ β̂1 β̂2 β̂3 β̂4 β̂5

0.25 EST 0.7018 0.1300 0.2088 0.0958 0.6616
LB 0.6649 0.0927 0.1612 0.0284 0.6213
UB 0.7388 0.1673 0.2564 0.1632 0.7019

0.5 EST 0.5511 0.2850 0.1481 0.3054 0.7069
LB 0.4781 0.2240 0.0778 0.1886 0.6454
UB 0.6242 0.3461 0.2184 0.4223 0.7684

0.75 EST 0.8056 0.3493 0.0417 0.2088 0.4286
LB 0.7791 0.2922 -0.0213 0.0870 0.4031
UB 0.8320 0.4064 0.1046 0.3306 0.4541

obtained by the asymptotic result in Theorem 2. From Table 5, all the five pollutant variables are
important at the significant level 0.05 except the variable X3 at τ = 0.75.

Furthermore, the estimated nonparametric curves together with their 95% pointwise confi-
dence interval τ = 0.25,0.5 and 0.75 are given in Figures 5–7. Simultaneous confidence bands
are also shown. The simultaneous bands are obtained by enlarging the pointwise confidence in-
tervals until the band contains 95% of the bootstrap samples.

From Figures 5 and 6, the 95% confidence bands cannot completely contain the zero lines,
which indicates that interactions between environmental factors and pollutants have important
effects on the number of hospital admissions. However, for higher quantile τ = 0.75 this effect
seems to be weak.

We next compare the prediction performance of the SICM (5) with the single-index model
(SIM) and the partially linear single-index model (PLSIM) at quantile τ = 0.5.

SIM : Yi = g0
(
XT

i β
)+ ei, i = 1, . . . , n, (6)

PLSIM : Yi = g0
(
XT

i β
)+ α1Zi1 + α2Zi2 + α3Zi3 + ei, i = 1, . . . , n. (7)

We perform the leave-one-out cross-validation for models (5)–(7) with the prediction error given
by CVPE. Table 6 lists the CVPE for different models, where we also list the result of least
squares based SICM method. From Table 6, it is clear that the value of CVPE for SICM is the
smallest, which means that incorporating the interactions between the environmental factors and
pollutants improves prediction.

4. Conclusion and discussion

In this paper, we have considered quantile regression version of single-index coefficient mod-
els. We established asymptotic properties of polynomial spline estimation method, in particular
demonstrating asymptotic normality of the index parameter. Our numerical results suggest that
the quantile version is useful in data modelling.
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Figure 5. Estimated curves together with their 95% pointwise confidence interval (red dotted line) and
95% simultaneously confidence bands (blue dashed line) for g0(·), g1(·), g2(·) and g3(·) at τ = 0.25 for
the environmental data.

Figure 6. Estimated curves together with their 95% pointwise confidence interval (red dotted line) and
95% simultaneously confidence bands (blue dashed line) for g0(·), g1(·), g2(·) and g3(·) at τ = 0.5 for the
environmental data.
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Figure 7. Estimated curves together with their 95% pointwise confidence interval (red dotted line) and
95% simultaneously confidence bands (blue dashed line) for g0(·), g1(·), g2(·) and g3(·) at τ = 0.75 for
the environmental data.

Various extensions can be considered in the future. We expect the theoretical results can be
adapted to adaptive varying-coefficient linear model where X and Z are the same or the varying
index coefficient model (Fan, Yao and Cai [6], Ma and Song [22]). We can consider the case of
longitudinal data, for example using the approach of generalized estimating equations. Variable
selection (to identify nonzero coefficient functions) can be incorporated easily by using a sparsity
penalty. Furthermore, in recent years, the varying-coefficient models has been applied to high-
dimensional data settings with large p (Wei, Huang and Li [28], Xue and Qu [31], Lian [20]),
which is also a direction we can pursue for SICM. Finally, our environment data set is a time
series data while our theory is developed under the i.i.d. setting, thus it is interesting to see if the
theory can be extended to dependent observations under mixing conditions.

Appendix: Technical proofs

Let θ0j be spline coefficients in the best spline approximation of gj with supt |gj (t) −
BT (t)θ0j | ≤ CK−d , which is possible by (A3). Let F(·|X,Z) be the conditional c.d.f. of e given

Table 6. CVPE of the four models for the environmental data at τ = 0.5

Model SIM PLSIM SICM(QR) SICM(LS)

CVPE 50.9254 47.2058 39.8210 41.8040
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the covariates. We also write the true conditional quantile gT (XT
i β0)Zi as mi . In the proofs C

denotes a generic positive constant which may assume different values even on the same line.

Lemma 1. Let rn = √
K/n + K−d .

sup
‖β−β0‖+‖θ−θ0‖≤Crn

n∑
i=1

ρτ

(
Yi −

p∑
j=1

Zij BT
(
XT

i β
)
θ j

)
−

n∑
i=1

ρτ

(
Yi −

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j

)

+
n∑

i=1

p∑
j=1

(
Zij BT

(
XT

i β
)
θ j − Zij BT

(
XT

i β0
)
θ0j

)(
τ − I {ei ≤ 0})

− E

n∑
i=1

ρτ

(
Yi −

p∑
j=1

Zij BT
(
XT

i β
)
θ j

)
+ E

n∑
i=1

ρτ

(
Yi −

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j

)

= op

(
nr2

n

)
,

where the expectations are over Yi conditional on Xi ,Zi (all expectations below are also such
conditional expectations).

Proof. As in He and Shi [11], in the proof we consider median regression with τ = 1/2, ρτ (u) =
|u|/2 and the general case can be shown in the same way. Let N = {(β(1), θ (1)), . . . , (β(N), θ (N))}
be a δn covering of {(β, θ) : ‖β−β0‖+‖θ −θ0‖ ≤ Crn}, with size bounded by N ≤ (Crn/δn)

CK

and thus logN ≤ CK logn if we choose δn ∼ n−a for some a > 0 (we will choose a to be large
enough).

Let Mni(β, θ) = 1
2 |Yi − ∑p

j=1 Zij BT (XT
i β)θ j | − |Yi − 1

2

∑p

j=1 Zij BT (XT
i β0)θ0j | +∑p

j=1(Zij BT (XT
i β)θ j ) − Zij BT (XT

i β0)θ0j )(1/2 − I {ei ≤ 0}), and Mn(β, θ) =∑n
i=1 Mni(β, θ). Using the Lipschitz property of |u|, and that for any (β, θ) there exists

(β(l), θ (l)) such that ‖β − β(l)‖2 + ‖θ − θ (l)‖2 ≤ δ2
n, we have

Mn(β, θ) − EMn(β, θ) − Mn

(
β(l), θ (l)

)+ EMn

(
β(l), θ (l)

)
≤ C

n∑
i=1

p∑
j=1

∣∣BT
(
XT

i β
)
θ j − BT

(
XT

i β(l)
)
θ

(l)
j

∣∣,
which can obviously be made smaller than nr2

n by the Lipschitz property of the spline functions,
by setting δn ∼ n−a for a large enough.

Furthermore, by simple algebra

∣∣Mni(β, θ)
∣∣ =

∣∣∣∣∣12
∣∣∣∣∣Yi −

p∑
j=1

Zij BT
(
XT

i β
)
θ j

∣∣∣∣∣− 1

2

∣∣∣∣∣Yi −
p∑

j=1

Zij BT
(
XT

i β0
)
θ0j

∣∣∣∣∣
+

p∑
j=1

(
Zij BT

(
XT

i β
)
θ j − Zij BT

(
XT

i β0
)
θ0j

)(
1/2 − I {ei ≤ 0})∣∣∣∣∣
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=
∣∣∣∣∣12
∣∣∣∣∣ei + mi −

p∑
j=1

Zij BT
(
XT

i β
)
θ j

∣∣∣∣∣− 1

2

∣∣∣∣∣ei + mi −
p∑

j=1

Zij BT
(
XT

i β0
)
θ0j

∣∣∣∣∣
+

p∑
j=1

(
Zij BT

(
XT

i β
)
θ j − Zij BT

(
XT

i β0
)
θ0j

)(
1/2 − I {ei ≤ 0})∣∣∣∣∣

≤
∣∣∣∣∣

p∑
j=1

Zij BT
(
XT

i β
)
θ j − Zij BT

(
XT

i β0
)
θ0j

∣∣∣∣∣
× I

{
|ei | ≤

∣∣∣∣∣
p∑

j=1

Zij BT
(
XT

i β
)
θ j − Zij BT

(
XT

i β0
)
θ0j

∣∣∣∣∣
+
∣∣∣∣∣mi −

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j

∣∣∣∣∣
}

.

Thus

∣∣Mni(β, θ)
∣∣ ≤

∣∣∣∣∣
p∑

j=1

Zij BT
(
XT

i β
)
θ j − Zij BT

(
XT

i β0
)
θ0j

∣∣∣∣∣
≤ C

∑
j

∣∣B(1)T
(
XT

i β∗)θ j XT
i (β − β0)

∣∣+ ∣∣BT
(
XT

i β0
)
(θ j − θ0j )

∣∣
≤ C

∑
j

∣∣B(1)T
(
XT

i β∗)θ0j XT
i (β − β0)

∣∣+ ∣∣BT
(
XT

i β0
)
(θ j − θ0j )

∣∣
+ ∣∣B(1)T

(
XT

i β∗)(θ j − θ0j )XT
i (β − β0)

∣∣
≤ C

(
rn + √

Krn + K3/2r2
n

)
≤ C

√
Krn

=: A,

where we used that ‖B(x)‖ ≤ C
√

K and ‖B(1)(x)‖ ≤ CK3/2 at any fixed point x ∈ [a, b].
Furthermore, we have

E
∣∣Mni(β, θ)

∣∣2 ≤ C(
√

Krn)
∑
j

E
∣∣BT

(
XT

i β
)
θ j − BT

(
XT

i β0
)
θ0j

∣∣2
(8)

≤ C(
√

Krn)
(
r2
n

)=: D2.
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Using Bernstein’s inequality, together with union bound, we have

P
(

sup
(β,θ)∈N

∣∣Mn(β, θ) − EMn(β, θ)
∣∣> a

)
≤ C exp

{
− a2

aA + nD2
− CK logn

}
.

The right-hand side converges to zero with a = O(max{K3/2rn logn,
√

nK3/2r2
n logn}) =

o(nr2
n) (here we use the assumption that Kd+3/2 logn/n → 0). �

Now to show the convergence rate of the estimator, suppose ‖β − β0‖ + ‖θ − θ0‖ = Lrn
for sufficiently large L > 0. In the following, for simplicity of notation, mi denotes the true
conditional quantile gT (XT

i β0)Zi .

Lemma 2.

inf
‖β−β0‖+‖θ−θ0‖=Lrn

∑
i

Eρτ

(
ei + mi −

p∑
j=1

Zij BT
(
XT

i β
)
θ j

)

−
∑

i

Eρτ

(
ei + mi −

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j

)

≥ L2Cnr2
n.

Proof. Using the Knight’s identity ρτ (x − y) − ρτ (x) = −y(τ − I {x ≤ 0}) + ∫ y

0 (I {x ≤ t} −
I {x ≤ 0}) dt , we have that

E

n∑
i=1

ρτ

(
ei + mi −

p∑
j=1

Zij BT
(
XT

i β
)
θ j

)
− E

n∑
i=1

ρτ

(
ei + mi −

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j

)

=
∑

i

∫ ∑p
j=1 Zij BT (XT

i β)θj −mi∑p
j=1 Zij BT (XT

i β0)θ0j −mi

F (t |Xi ,Zi ) − F(0|Xi ,Zi ) dt

≥ C
∑

i

f (0|Xi ,Zi )

[(
p∑

j=1

Zij BT
(
XT

i β
)
θ j −

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j

)2

+ 2

(
p∑

j=1

Zij BT
(
XT

i β
)
θ j −

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j

)

×
(

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j − mi

)]
.
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We have, by Taylor’s expansion,

∑
i

(
p∑

j=1

Zij BT
(
XT

i β
)
θ j −

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j

)2

≥ C
∑

i

(
p∑

j=1

Zij B(1)T
(
XT

i β0
)
θ0j XT

i (β − β0) +
p∑

j=1

Zij BT
(
XT

i β0
)
(θ − θ0j )

)2

+ op

(
nr2

n

)
≥ CL2nr2

n.

In the above we need the eigenvalue property as in Lemma 3 below. On the other hand, as in (8)
we have similar upper bound

∑
i

(
p∑

j=1

Zij BT
(
XT

i β
)
θ j −

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j

)2

≤ CL2nr2
n,

and by the approximation property of splines,

∑
i

(
p∑

j=1

Zij BT
(
XT

i β0
)
θ0j − mi

)2

≤ CnK−2d . (9)

Combining various bounds above, we get

E

n∑
i=1

ρτ

(
ei + mi −

p∑
j=1

Zij BT
(
XT

i β
)
θ j

)

− Eρτ

(
ei + mi −

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j

)

≥ CL2nr2
n,

if L is large enough. �

Lemma 3. The eigenvalues of

1

n

n∑
i=1

((
Zi ⊗ B(1)

(
XT

i β0
))T

θ0Xi

Zi ⊗ B
(
XT

i β0
) )((

Zi ⊗ B(1)
(
XT

i β0
))T

θ0XT
i ,ZT

i ⊗ BT
(
XT

i β0
))

are bounded and bounded away from zero with probability approaching one.



quantile SICM 2019

Proof. By law of large numbers, we only need to show that the matrix

E

[((
Z ⊗ B(1)

(
XT β0

))T
θ0X

Z ⊗ B
(
XT β0

) )((
Z ⊗ B(1)

(
XT β0

))T
θ0XT ,ZT ⊗ BT

(
XT β0

))]
(10)

has eigenvalues bounded away from zero and infinity.
In turn, since |(Z⊗B(1)(XT β0))

T θ0 −g(1)T (XT β0)Z| ≤ CK−d+1, we only need to show that
the eigenvalues of

E

[(
g(1)T

(
XT β0

)
ZX

Z ⊗ B
(
XT β0

) )(
g(1)T

(
XT β0

)
ZXT ,ZT ⊗ BT

(
XT β0

))]
(11)

are bounded and bounded away from zero.
Under condition (A4), let γ 0 be the pK × q matrix of spline coefficients with ‖EM[g(1)T ×

(XT β0)ZX] − γ T
0 (Z ⊗ B(XT β0))‖ ≤ CK−d ′

.
Pre-multiplying (11) by (

I −γ T
0

0 I

)
(12)

and post-multiplying (11) by its transpose we get the matrix

E

[(
g(1)T

(
XT β0

)
ZX − γ T

0

(
Z ⊗ B

(
XT β0

))
Z ⊗ B

(
XT β0

) )⊗2]
. (13)

It is easy to see that singular values of (12) are bounded and bounded away from zero, and thus
we only need to show that the eigenvalues of (13) are bounded and bounded away from zero.
Since ‖EM[g(1)T (XT β0)ZX] − γ T

0 (Z ⊗ B(XT β0))‖ ≤ CK−d ′
, replacing γ T

0 (Z ⊗ B(XT β0))

with EM[g(1)T (XT β0)ZX] in (13) only makes a difference of order o(1). Also noting that
f (0|X,Z) is bounded the bounded away from zero, we only need to consider

E

[
f (0|X,Z)

(
g(1)T

(
XT β0

)
ZX − EM

[
g(1)T

(
XT β0

)
ZX

]
Z ⊗ B

(
XT β0

) )⊗2]
. (14)

By the definition of the projection, E[f (0|X,Z)(g(1)T (XT β0)ZX − EM[g(1)T (XT β0)ZX]) ×
(ZT ⊗ BT (XT β0))] = 0 and (14) is block-diagonal and the eigenvalues of both blocks are
bounded and bounded away from zero, by the property of splines and condition (A5). �

The following lemma deals with one of the terms in the statement of Lemma 1.

Lemma 4.

sup
‖β−β0‖+‖θ−θ0‖=Lrn

∑
i

(
p∑

j=1

Zij BT
(
XT

i β
)
θ j −

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j

)

× (
τ − I {ei ≤ 0})= L · Op

(
nr2

n

)
.
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Proof. For simplicity of notation, let εi = τ − I {ei ≤ 0}. We have

∑
i

(
p∑

j=1

Zij BT
(
XT

i β
)
θ j −

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j

)
εi

=
∑

i

∑
j

Zij B(1)T
(
XT

i β0
)
θ0j XT

i (β − β0)εi (15)

+
∑

i

∑
j

Zij B(1)T
(
XT

i β0
)
(θ j − θ0j )XT

i (β − β0)εi (16)

+
∑

i

∑
j

Zij

(
B(1)T

(
XT

i β∗)− B(1)T
(
XT

i β0
))

θ0j XT
i (β − β0)εi (17)

+
∑

i

∑
j

Zij

(
B(1)T

(
XT

i β∗)− B(1)T
(
XT

i β0
))

(θ j − θ0j )XT
i (β − β0)εi (18)

+
∑

i

∑
j

Zij BT
(
XT

i β0
)
(θ j − θ0j )εi . (19)

The term (15) obviously has order L · Op(
√

nrn). For (19), we have that ‖B(XT
i β0)εi‖2 =

Op(
∑

i ‖B(XT
i β0)‖2) = Op(nK) and thus (19) is Op(

√
nK‖θ − θ0‖) = L · Op(

√
nKrn).

For the term (16), since ‖∑i B(1)(X(1)T
i β0)εi‖2 = Op(

∑
i ‖B(1)(XT

i β0)‖2) = Op(nK3) we
have ∑

i

∑
j

Zij B(1)T
(
XT

i β0
)
(θ j − θ0j )XT

i (β − β0)εi = Op

(√
nK3/2r2

n

)= op

(
nr2

n

)
.

With further Taylor expansion B(1)(XT
i β∗)−B(1)(XT

i β0) = B(2)(XT
i β∗∗)XT

i (β∗ −β0), (17) and
(18) are also of order op(nr2

n) and the proof is complete. �

Proof of Theorem 1. Combining Lemmas 1,2,4, we get for sufficiently large L > 0,

P

(
inf

‖β−β0‖+‖θ−θ0‖=Lrn

n∑
i=1

ρτ

(
Yi −

p∑
j=1

Zij BT
(
XT

i β
)
θ j

)

>

n∑
i=1

ρτ

(
Yi −

p∑
j=1

Zij BT
(
XT

i β0
)
θ0j

))
→ 1,

and thus there is a local minimizer of (β̂, θ̂) with ‖β̂ − β0‖ + ‖θ̂ − θ0‖ = Op(rn). �

Now we consider asymptotic normality. The challenge here is the need to perform orthogo-
nalization appropriately. Since the parametric part is nested within the spline basis, orthogonal-
ization is more complicated than partially linear models as studied in Wang, Zhu and Zhou [25],
Wang et al. [26].
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The appropriate projection EM[W ] is as defined previously. It would be clear from the proof
of Lemma 6 below why it is important to use the density f (0|X,Z) when defining the projection.
Let 	i = Zi ⊗ B(XT

i β0) and 	 be the n × (pK) matrix with rows 	T
i . The empirical version

of the minimization problem corresponding to the projection is

min
θ

∑
i

f (0|Xi ,Zi )
(
Wi − 	T

i θ
)2

,

with the minimizer (	T 
	)−1	T 
W where 
 is the diagonal matrix with diagonal elements
f (0|Xi ,Zi ) and W = (W1, . . . ,Wn)

T . Define P = 	(	T 
	)−1	T 
.
We write

ρτ

(
ei + mi −

∑
j

Zij B
(
XT

i β
)
θ j

)

= ρτ

(
ei −

∑
j

Zij BT
(
XT

i β0
)
(θ j − θ0j )

−
∑
j

Zij B(1)T
(
XT

i β0
)
θ0j XT

i (β − β0) − Ri(β, θ)

)
= ρτ

(
ei − 	T

i (θ − θ0) − UT
i (β − β0) − Ri(β, θ)

)
,

where we defined Ui =∑
j Zij B(1)T (XT

i β0)θ0j Xi and

Ri(β, θ)

=
∑
j

Zij

(
B
(
XT

i β
)− B

(
XT

i β0
))T

θ j −
∑
j

Zij B(1)T
(
XT

i β0
)
θ0j XT

i (β − β0)

+
(∑

j

Zij BT
(
XT

i β0
)
θ0j − mi

)
=: Ri1(β, θ) + Ri2(β, θ).

Let V = U − PU with the ith row of V denoted by VT
i = UT

i − PT
i U. To carry out orthogonal-

ization we further write

ρτ

(
ei − 	T

i (θ − θ0) − UT
i (β − β0) − Ri(β, θ)

)
= ρτ

(
ei − 	T

i

(
(θ − θ0) + (

	T 
	
)−1

	T 
U(β − β0)
)− VT

i (β − β0) − Ri(β, θ)
)

= ρτ

(
ei − 	T

i η − VT
i (β − β0) − Ri(β, θ)

)
,

with η = θ − θ0 + (	T 
	)−1	T 
U(β − β0). The proof of the following lemma is similar to
Lemma 1, but requires finer analysis of Ri(β, θ).
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Lemma 5.

sup
‖β−β0‖≤C/

√
n,‖η‖≤Crn

∣∣∣∣∑
i

ρτ

(
ei − 	T

i η − VT
i (β − β0) − Ri(β, θ)

)
−
∑

i

ρτ

(
ei − 	T

i η − Ri(β0, θ)
)+

∑
i

VT
i (β − β0)εi

− E
∑

i

ρτ

(
ei − 	T

i η − VT
i (β − β0) − Ri(β, θ)

)+ E
∑

i

ρτ

(
ei − 	T

i η − Ri(β0, θ)
)∣∣∣∣

= op(1).

Proof. First, we note Ri2(β, θ) is the same as Ri(β0, θ). As before, we assume τ = 1/2 for
this proof. Note that the mathematical expressions in the statement of the lemma involves both
Ri(β, θ) and Ri(β0, θ) which makes the proof more messy compared to varying coefficient
partially linear models where Ri(β, θ) = Ri2(β, θ). We have

Ri1(β, θ) =
∑
j

Zij

(
B
(
XT

i β
)− B

(
XT

i β0
))T

(θ j − θ0j )

−
∑
j

Zij

(
BT

(
XT

i β
)
θ0j − BT

(
XT

i β0
)
θ0j − B(1)T

(
XT

i β0
)
θ0j XT

i (β − β0)
)

=
∑
j

Zij B(1)T
(
XT

i β∗)(θ j − θ0j )
(
XT

i (β − β0)
)

−
∑
j

Zij B(2)T
(
XT

i β∗)θ0j

(
XT

i (β − β0)
)2

=
∑
j

Zij B(1)T
(
XT

i β0
)
(θ j − θ0j )

(
XT

i (β − β0)
)

+
∑
j

Zij B(2)T
(
XT

i β∗∗)(θ j − θ0j )
(
XT

i (β − β0)
)2

−
∑
j

Zij B(2)T
(
XT

i β∗)θ0j

(
XT

i (β − β0)
)2

.

It is easy to see that |Ri1| ≤ C
√

K3/nrn and
∑

i R
2
i1 = Op(r2

nK2 + r2
nK4/n + 1/n) =

Op(r2
nK2).

For fixed η,β , let Mni(β,η) = 1
2 |ei − 	T

i η − VT
i (β − β0) − Ri(β, θ)| − 1

2 |ei − 	T
i η −

Ri(β0, θ)| + (VT
i (β − β0 + Ri1(β, θ)))(1/2 − I {ei ≤ 0}), we have∣∣Mni(β,η)

∣∣
≤ ∣∣VT

i (β − β0) + Ri1(β, θ)
∣∣
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× I
{|ei | ≤

∣∣VT
i (β − β0) + Ri1(β, θ)

∣∣+ ∣∣	T
i η + Ri(β0, θ)

∣∣}
≤ C

(
1/

√
n +

√
K3/nrn

)
and

E
∣∣Mni(β,η)

∣∣2 ≤ (
1/n + K2r2

n/n
)
(
√

Krn).

Similar to the proof of Lemma 1, by constructing a δn-covering and using Bernstein’s inequality
with union bound, we can show that

sup
‖β−β0‖≤C/

√
n,‖η‖≤Crn

∣∣∣∣∑
i

ρτ

(
ei − 	T

i η − VT
i (β − β0) − Ri(β, θ)

)
−
∑

i

ρτ

(
ei − 	T

i η − Ri(β0, θ)
)+

∑
i

(
VT

i (β − β0) + Ri1(β, θ)
)
εi

− E
∑

i

ρτ

(
ei − 	T

i η − VT
i (β − β0) − Ri(β, θ)

)+ E
∑

i

ρτ

(
ei − 	T

i η − Ri(β0, θ)
)∣∣∣∣

is of order Op(max{K logn(1/
√

n +√
K3/nrn)},

√
(1 + K3r2

n)(
√

KrnK logn)) = op(1) (here

we use that K4 logn/n → 0).
Finally, using the above bounds for Ri1 and similar arguments, we have

∑
i Ri1(β, θ)(1/2 −

I {ei ≤ 0}) = op(1) which completes the proof. �

Lemma 6.

sup
‖η‖≤Crn,‖β−β0‖≤C/

√
n

∣∣∣∣∑
i

Eρτ

(
ei − 	iη − Vi (β − β0) − Ri(β, θ)

)
−
∑

i

Eρτ

(
ei − 	iη − Ri(β0, θ)

)−
∑

i

f (0|Xi ,Zi )

2
(β − β0)ViVT

i (β − β0)

∣∣∣∣
= op(1).

Proof. The appearance of both Ri(β, θ) and Ri(β0, θ) also causes some difficulties in proof
here. By Knight’s identity,∑

i

Eρτ

(
ei − 	iη − Vi (β − β0) − Ri(β, θ)

)−
∑

i

Eρτ

(
ei − 	iη − Ri(β0, θ)

)
=
∫ 	iη+Ri(β,θ)+Vi (β−β0)

	iη+Ri(β0,θ)

F (t |Xi ,Zi ) − F(0|Xi ,Zi ) dt

=
∑

i

f (0|Xi ,Zi )

2

{
(β − β0)ViVT

i (β − β0) + R2
i1 + 2Ri1VT

i (β − β0)
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+ 2Ri1
(
	iη + Ri(β0, θ)

)
+ 2

(
	iη + Ri(β0, θ)

)
VT

i (β − β0)
}(

1 + op(1)
)
.

We have
∑

i R
2
i1 = O(r2

nK2) = op(1), (
∑

i Ri1VT
i (β − β0))

2 = Op(r2
nK2) = op(1) (using

Cauchy–Schwarz inequality), and (
∑

i Ri1(	iη + Ri(β0, θ)))2 = (r2
nK2)(nr2

n) = op(1) (using
Cauchy–Schwarz inequality). By the orthogonalization procedure, we used,

∑
i f (0|Xi ,Zi ) ×

	iVT
i =∑

i f (0|Xi ,Zi )	i (Ui −	T
i (	T 
	)−1	T U) = 	T 
U −	T 
U = 0. Thus, we only

need to show ∑
i

f (0|Xi ,Zi )Ri(β0, θ)VT
i (β − β0) = op(1),

with Ri(β0, θ) =∑
j Zij BT (XT

i β0)θ0j − mi .

Note that directly using |Ri(β0, θ)| ≤ CK−d shows that the above displayed equation is of
order Op(

√
nK−d) �= op(1) unless oversmoothing is used. Our assumptions on K allows the

optimal choice K ∼ n1/(2d+1) and thus more complicated arguments based on projection is re-
quired.

Write VT
i = (UT

i − g(1)T (XT
i β0)ZXT

i ) + (g(1)T (XT
i β0)ZXT

i − EM[g(1)T (XT
i β0)ZXT

i ]) +
(EM[g(1)T (XT

i β0)ZXT
i ] − PT

i U), a sum of three terms and we deal with each one separately.
First, by the approximation property of splines,∑

i

f (0|Xi ,Zi )Ri(β0, θ)
(
UT

i − g(1)
(
XT

i β0
)
ZXT

i

)
(β − β0)

= Op

(√
nK−2d

)
= op(1).

Then, using that E[f (0|Xi ,Zi )Ri(β0, θ)(g(1)T (XT
i β0)ZXT

i − EM[g(1)T (XT
i β0)ZXT

i ])] = 0
which follows from our definition of projection, by direct variance calculation,∑

i

f (0|Xi ,Zi )Ri(β0, θ)
(
g(1)T

(
XT

i β0
)
ZXT

i − EM
[
g(1)T

(
XT

i β0
)
ZXT

i

])
(β − β0)

= Op

(
K−d

)= op(1).

Finally, by condition (A4), ‖EM[g(1)T (XT
i β0)ZXT

i ] − PT
i U‖ = Op(K−d ′ + K−d+3/2) and thus∑

i

f (0|Xi ,Zi )Ri(β0, θ)
(
EM

[
g(1)T

(
XT

i β0
)
ZXT

i

]− PT
i U

)
VT

i (β − β0)

= Op

(√
nK−d−d ′ + √

nK−2d+3/2)= op(1).

Thus,
∑

i f (0|Xi ,Zi )Ri(β0, θ)VT
i (β − β0) = op(1) and the proof is complete. �
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Lemma 7.

1

n

∑
i

f (0|Xi ,Zi )ViVT
i → E

[
f (0|X,Z)

(
g(1)T

(
XT β0

)
ZX − EM

[
g(1)T

(
XT β0

)
ZX

])⊗2]
in probability,

1

n

∑
i

ViVT
i → E

[(
g(1)T

(
XT β0

)
ZX − EM

[
g(1)T

(
XT β0

)
ZX

])⊗2]
in probability.

Proof. The left-hand side is VT 
V/n = UT (I−PT )
(I−P)U/n where the rows of U are UT
i =∑

j Zij B(1)T
k (XT

i β0)θ0j XT
i . Let U∗ be defined similarly as U with B(1)T

k (XT
i β0)θ0j replaced

by g
(1)
j (XT

i β0). By the approximation property of splines ‖(1/n)U∗T (I − PT )
(I − P)U∗ −
(1/n)UT (I − PT )
(I − P)U‖F = op(1) and then using the same arguments as in Lemma 1 of
Wang, Zhu and Zhou [25]. The second expression is proved in the same way. �

Proof of Theorem 2. Let η̂ = θ̂ − θ0 + (	T 
	)−1	T 
U(β̂ − β0). By Lemmas 5, 6, and 7,

sup
‖β−β0‖≤C/

√
n

∣∣∣∣∑
i

ρτ

(
ei − 	T

i η̂ − VT
i (β − β0) − Ri(β, θ̂)

)
−
∑

i

ρτ

(
ei − 	T

i η̂ − Ri(β0, θ̂)
)+

∑
i

VT
i (β − β0)εi (20)

− n

2
(β − β0)

T �(β − β0)

∣∣∣∣= op(1).

Let Q(β) = n
2 (β−β0)

T �(β−β0)−
∑

i VT
i (β−β0)εi and define β̃ = β0 +(1/n)�−1 ∑

i VT
i εi .

We have by central limit theorem

√
n(β̃ − β0)

d→ N
(
0,�−1��−1).

Note β̃ is the minimizer of Q(β) and Q(β) is equal to (β − β̃)T �(β − β̃) plus a term that does
not involve β . Define

˜̃
β := arg min

‖β‖=1,β1>0
(β − β̃)T �(β − β̃).

By Proposition 4.1 of Shapiro [24] which works for overparametrized models (considering β as
a function of β(−1) and the parametrization using β is an overparametrization), we get that

√
n(

˜̃
β − β0)

d→ N
(
0,J

(
JT �J

)−1JT �J
(
JT �J

)−1)JT .
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For any β with ‖β‖ = 1 and ‖β − ˜̃
β‖ = δ/

√
n with some small δ > 0. By the quadratic form of

Q, we have

Q(β) − Q(
˜̃
β) ≥ Cδ2

and thus by (20),

P

(∑
i

ρτ

(
ei − 	T

i η̂ − VT
i (β − β0) − Ri(β, θ̂)

)
>
∑

i

ρτ

(
ei − 	T

i η̂ − VT
i (

˜̃
β − β0) − Ri(

˜̃
β, θ̂)

))
→ 1.

Since δ is arbitrarily small, we get ‖β̂ − ˜̃
β‖ = op(1/

√
n) and the proof is complete. �
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