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We consider the problem of model selection type aggregation in the context of density estimation. We first
show that empirical risk minimization is sub-optimal for this problem and it shares this property with the
exponential weights aggregate, empirical risk minimization over the convex hull of the dictionary func-
tions, and all selectors. Using a penalty inspired by recent works on the Q-aggregation procedure, we
derive a sharp oracle inequality in deviation under a simple boundedness assumption and we show that
the rate is optimal in a minimax sense. Unlike the procedures based on exponential weights, this estimator
is fully adaptive under the uniform prior. In particular, its construction does not rely on the sup-norm of
the unknown density. By providing lower bounds with exponential tails, we show that the deviation term
appearing in the sharp oracle inequalities cannot be improved.

Keywords: aggregation; concentration inequality; density estimation; minimax lower bounds; minimax
optimality; model selection; sharp oracle inequality

1. Introduction

We study the problem of estimation of an unknown density from observations. Let (X ,μ) be
a measurable space. We are interested in estimating an unknown density f with respect to the
measure μ given n independent observations X1, . . . ,Xn drawn from f . We measure the quality
of estimation of f by the L2 squared distance

‖ĝ − f ‖2 =
∫

(f − ĝ)2 dμ = ‖ĝ‖2 − 2
∫

ĝf dμ + ‖f ‖2, (1.1)

for any ĝ ∈ L2(μ) possibly dependent on the data X1, . . . ,Xn. Since the term ‖f ‖2 is constant
for all ĝ, we will consider throughout the paper the risk

R(ĝ) = ‖ĝ‖2 − 2
∫

ĝf dμ. (1.2)

An estimator ĝ minimizes R(·) if and only if it minimizes (1.1).
Given M functions f1, . . . , fM ∈ L2(μ), we would like to construct a measurable function

ĝ of the observations X1, . . . ,Xn that is almost as good as the best function among f1, . . . , fM .
The model may be misspecified, which means that f may not be one of the functions f1, . . . , fM .
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We are interested in deriving oracle inequalities, either in expectation

ER(ĝ) ≤ C min
j=1,...,M

R(fj ) + δn,M,

or with high probability, that is, for all ε > 0, with probability greater than 1 − ε

R(ĝ) ≤ C min
j=1,...,M

R(fj ) + δn,M + dn,M(ε),

where δn,M is a small quantity and dn,M(·) is a function of ε that we call the deviation term.
We are only interested in sharp oracle inequalities, that is, oracle inequalities where the leading
constant is C = 1, since it is essential to derive minimax optimality results.

We consider only deterministic functions for f1, . . . , fM . They cannot depend on the data
X1, . . . ,Xn. A standard application of this setting was introduced in Wegkamp [26]: given m+n

i.i.d. observations drawn from f , use the first m observations to build M estimators f̂1, . . . , f̂M ,
and in a second step use the remaining n observations to select the best among the preliminary
estimators f̂1, . . . , f̂M . A related problem is selecting the best estimator from a family f̂1, . . . , f̂M

where these estimators are built using the same data used for model selection or aggregation.
Such problems were recently considered in Dalalyan and Salmon [4] and Dai et al. [2] for the
regression model with fixed design.

We are also interested in deriving sharp oracle inequalities with prior weights on the model
{f1, . . . , fM}. To be more precise, for some prior probability distribution π1, . . . , πM over the
finite set {f1, . . . , fM} and any ε > 0, our estimator f̂n should satisfy with probability greater
than 1 − ε

R(f̂n) ≤ min
j=1,...,M

(
R(fj ) + β

n
log

1

πj

)
+ dn,M(ε), (1.3)

for some positive constant β and some deviation term dn,M(·). The Mirror Averaging algorithm
[6,8] is known to achieve a similar oracle inequality in expectation. The analysis of Juditsky et al.
[8] shows that the constant β scales linearly with the sup-norm of the unknown density, which is
also the case for the results presented here. Model selection techniques with prior weights were
used in order to derive sparsity oracle inequalities using sparsity pattern aggregation [6,21,23].

Another related learning problem is that of model selection when the model is finite dimen-
sional with a specific shape, for example a linear span of M functions or the convex hull of M

functions. This is the aggregation framework and it has received a lot of attention in the last
decade to construct adaptive estimators that achieve the minimax optimal rates, especially for
the regression problem [11,17,21,23,24] but also for density estimation [10,22,27].

The main contribution of the present paper is the following.

• We provide sharp oracle inequalities and the corresponding tight lower bounds for two pro-
cedures: empirical risk minimization over the discrete set {f1, . . . , fM} and the penalized
procedure (3.2) with the penalty (3.3). Here, tight means that neither the rate nor the devi-
ation term of the sharp oracle inequalities can be improved. The sharp oracle inequalities
are given in Theorem 2.2 and Corollary 3.1 and the tight lower bounds are given in The-
orems 2.1 and 3.2. These results lead to a definition of minimax optimality in deviation,
which is discussed in Section 4.



Optimal exponential bounds for aggregation of density estimators 221

While proving the above results, we extend several aggregation results that are known for the
regression model to the density estimation setting. Let us relate these results of the present paper
to the existing literature on the regression model:

• In Theorem 2.2, we derive a sharp oracle inequality in deviation for the empirical risk min-
imizer over the discrete set {f1, . . . , fM}. This is new in the context of density estimation,
and an analogous result is known for the regression model [23].

• In Theorem 3.1, we derive a sharp oracle inequality in deviation for penalized empirical
risk minimization with the penalty (3.3). With the uniform prior, this yields the correct rate
(logM)/n of model selection type aggregation. This penalty is inspired by recent works
on the Q-aggregation procedure [3,15] where similar oracle inequalities in deviation were
obtained for the regression model. The first sharp oracle inequalities that achieve the correct
rate of model selection type aggregation were obtained in expectation for the regression
model in [1,27].

• We extend several lower bounds known for the regression model to the density estimation
setting. We show that any procedure that selects a dictionary function cannot achieve a bet-
ter rate than

√
(logM)/n and that the rate of model selection type aggregation is of order

(logM)/n. We also show that the exponential weights aggregate and the empirical risk min-
imizer over the convex hull of the dictionary functions cannot be optimal in deviation, with
an unavoidable error term of order 1/

√
n. Earlier results for the regression model can be

found in [23,24] for lower bounds on model selection type aggregation and the performance
of selectors, while [3,12,14] contain earlier lower bounds on the performance of exponential
weights and empirical risk minimization over the convex hull of the dictionary.

An aspect of our results is not present in the previous works on the regression model. In the
literature on aggregation in the regression model, lower bounds are proved either in expectation
or in probability in the form

P

(
R(T̂n) > min

j=1,...,M
R(fj ) + ψn,M

)
> c, (1.4)

for any estimator T̂n, a risk function R(·), a rate ψn,M and some absolute constant c > 0, usually
c = 1/2. The tight lower bounds presented in Theorems 2.1 and 3.2 contrast with lower bounds
of the form (1.4) as they yield for any estimator T̂n,

∀x > 0, P

(
R(T̂n) > min

j=1,...,M
R(fj ) + ψn,M + x

n

)
> c exp(−x), (1.5)

that is, they provide lower bounds for any probability estimate in an interval (0,1/c) where
c > 0 is an absolute constant. Moreover, these lower bounds show that the exponential tail of
the excess risk of the estimators from Theorems 2.2 and 3.1 cannot be improved. The tools used
in the present paper to prove lower bounds of the form (1.5), in particular Lemma 5.1, can be
used to prove similar results for regression model. The tight lower bounds of the present paper
contrast with the existing literature on the regression model, since to our knowledge, there is no
lower bound of the form (1.5) available for regression.
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In the regression model with random design, given a class of functions G, a penalty pen(·),
a coefficient ν > 0 and observations (X1, Y1), . . . , (Xn,Yn), penalized empirical risk minimiza-
tion solves the optimization problem

min
g∈G

1

n

n∑
i=1

(
g(Xi) − Yi

)2 + ν pen(g). (1.6)

But if the distribution of the design is known, the statistician can compute the quantity E[g(X)2]
for all g ∈ G and solve the following minimization problem that slightly differs from (1.6):

min
g∈G

E
[
g(X)2] − 2

n

n∑
i=1

g(Xi)Yi + ν pen(g). (1.7)

In the regression model, the distribution of the design is rarely known so the penalized ERM
that solves (1.7) has not received as much attention as the procedure (1.6) when the distribution
of the design is not known. The density estimation setting studied in the present paper is closer
to the regression setting with known design (1.7) than to the regression setting with unknown
design (1.6) studied in [15]. There are differences with respect to the choice of coefficient of
the penalty (3.3), and to the form of the empirical process that appears in the analysis. These
differences are more thoroughly discussed in Section 3.4.

The paper is organized as follows. In Section 2, we show that empirical risk minimization
achieves a sharp oracle inequality with slow rate, but this rate cannot be improved among selec-
tors. Two classical estimators, the exponential weights aggregate and empirical risk minimization
over the convex hull of the dictionary functions, are shown to be suboptimal in deviation. In Sec-
tion 3, we define a penalized procedure that achieves the optimal rate logM

n
in deviation, and we

provide a lower bound that shows that neither the rate nor the deviation term can be improved.
Section 4 proposes a definition of minimax optimality in deviation and shows that it is satisfied
by the procedures given in Sections 2 and 3. Section 5 is devoted to the proofs.

2. Sub-optimality of selectors, ERM and exponential weights

2.1. Selectors

Define a selector as a function of the form f
Ĵ

where Ĵ is measurable with respect to X1, . . . ,Xn

with values in {1, . . . ,M}. It was shown in the regression framework [8,23] that selectors are

suboptimal and cannot achieve a better rate that σ

√
logM

n
where σ 2 is the variance of the regres-

sion noise. The following theorem extends this lower bound for selectors to density estimation.
The underlying measure μ is the Lebesgue measure on Rd for d ≥ 1.

Theorem 2.1 (Lower bounds for selectors). Let L > 0, and M ≥ 2, n ≥ 1, d ≥ 1 be integers.
Let F be the class of all densities f with respect to the Lebesgue measure on Rd such that
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‖f ‖∞ ≤ L. Let x ≥ 0 satisfying

log(M) + x

n
< 3.

Then there exist f1, . . . , fM ∈ L2(Rd) with ‖fj‖∞ ≤ L such that the following lower bound
holds:

inf
Ŝn

sup
f ∈F

Pf

(
‖Ŝn − f ‖2 − inf

j=1,...,M
‖fj − f ‖2 ≥ L√

3

√
x + logM

n

)
≥ 1

24
exp(−x),

where Pf denotes the probability with respect to n i.i.d. observations with density f and the
infimum is taken over all selectors Ŝn.

The proof of Theorem 2.1 is given in Section 5. It can be extended to other measures as soon
as the underlying measurable space allows the construction of an orthogonal system such as the
one described in Proposition 5.4 below.

For any g ∈ L2(μ), define the empirical risk

Rn(g) = ‖g‖2 − 2

n

M∑
j=1

g(Xi). (2.1)

The empirical risk (2.1) is an unbiased estimator of the risk (1.2). In order to explain the idea
behind the proof of our main result described in Theorem 3.1, it is useful the prove the following
oracle inequality for the empirical risk minimizer over the discrete set {f1, . . . , fM}.

Theorem 2.2. Assume that the functions f1, . . . , fM ∈ L2(μ) satisfy ‖fj‖∞ ≤ L0 for all j =
1, . . . ,M . Define

Ĵ ∈ argmin
j=1,...,M

(
‖fj‖2 − 2

n

n∑
i=1

fj (Xi)

)
.

Then for any x > 0, with probability greater than 1 − exp(−x),

R(f
Ĵ
) ≤ min

j=1,...,M
R(fj ) + L0

(
4
√

2

√
x + logM

n
+ 8(x + logM)

3n

)
.

Together with Theorem 2.1, Theorem 2.2 shows that empirical risk minimization is optimal
among selectors. Unlike the oracle inequality of Theorem 3.1 below, this result applies for any
density f , with possibly ‖f ‖∞ = ∞. Its proof relies on the concentration of Rn(g) − R(g)

around 0 for fixed functions g with ‖g‖∞ ≤ L0.
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Proof of Theorem 2.2. We will use the following notation that is common in the literature on
empirical processes. For any g ∈ L2(μ), define

Pg =
∫

gf dμ,

(2.2)

Png = 1

n

n∑
i=1

g(Xi).

With this notation, the difference between the real risk (1.2) and the empirical risk (2.1) can be
rewritten

R(g) − Rn(g) = (P − Pn)(−2g). (2.3)

Let J ∗ be such that R(fJ ∗) = minj=1,...,M R(fj ). The definition of Ĵ yields Rn(fĴ
) ≤

Rn(fJ ∗). Using (2.3), it can be rewritten

R(f
Ĵ
) − R(fJ ∗) ≤ (P − Pn)(−2f

Ĵ
+ 2fJ ∗).

We can control the right-hand side of the last display using the concentration inequality (5.2) with
a union bound over j = 1, . . . ,M . For any t > 0, with probability greater than 1 − M exp(−t),

(P − Pn)(−2f
Ĵ

+ 2fJ ∗) ≤ max
j=1,...,M

(P − Pn)(−2fj + 2fJ ∗)

≤ σ

√
2t

n
+ 8L0t

3n
,

where σ 2 = maxj=1,...,M P (−2fj + 2fJ ∗)2 ≤ 16L2
0. Setting x = t − logM yields the desired

oracle inequality. �

By inspecting the short proof above, we see that the slow rate term
√

x+logM
n

comes from the
variance term in the concentration inequality (5.2).

We can draw two conclusions from Theorems 2.1 and 2.2.

• In order to achieve faster rates than
√

logM
n

, we need to look for estimators taking values
beyond the discrete set {f1, . . . , fM}. In Section 3, we will consider estimators taking values
in the convex hull of this discrete set.

• The proof of Theorem 2.2 suggests that a possible way to derive an oracle inequality with
fast rates is to cancel the variance term in the concentration inequality (5.2). In order to
do this, we need some positive gain on the empirical risk of our estimator. Namely, for
some oracle J ∗ we would like our estimator f̂n to satisfy Rn(f̂n) ≤ Rn(fJ ∗) minus some
positive value. This value is given by the strong convexity of the empirical objective in
Proposition 3.1.
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Define the simplex in RM :

	M =
{

θ ∈ RM,

M∑
j=1

θj = 1,∀j = 1, . . . ,M, θj ≥ 0

}
. (2.4)

Given a finite set or dictionary {f1, . . . , fM}, define for any θ ∈ 	M

fθ =
M∑

j=1

θjfj . (2.5)

In particular, fj = fej
where e1, . . . , eM are the vectors of the canonical basis in RM .

Two classical estimators, the ERM over the convex hull of f1, . . . , fM and the exponential
weights aggregate, are known to be sub-optimal in the regression setting [3,12–14]. In the fol-
lowing we show that the same conclusions hold for density estimation with the L2 risk.

2.2. ERM over the convex hull

A first natural estimator valued in the convex hull of the dictionary functions is the ERM. How-
ever, as in the regression setting [12], this estimator is suboptimal with an unavoidable error term
or order 1/

√
n.

Proposition 2.1. Let X = R and μ be the Lebesgue measure on R. There exist absolute con-
stants C0,C1,C2,C3 > 0 such that the following holds. Let L > 0. For any integer n ≥ 1, there
exist a density f bounded by L and a dictionary {f1, . . . , fM} of functions bounded by 2L, with
C0

√
n ≤ M ≤ C1

√
n, such that with probability greater than 1 − 12 exp(−C2M),

‖f
θ̂ERM − f ‖2 ≥ min

j=1,...,M
‖fj − f ‖2 + C3L√

n
,

where θ̂ERM := arg minθ∈	M Rn(fθ ).

The proof of Proposition 2.1 can be found in Section 5.5.2.

2.3. Exponential weights

The exponential weights aggregate is known to achieve optimal oracle inequalities in expecta-
tion when the temperature parameter β > 0 is chosen carefully [5,8,16]. Given prior weights
(π1, . . . , πM)T ∈ 	M , it can be defined as follows:

f̂ EW
β =

M∑
j=1

θ̂
EW,β
j fj , θ̂EW,β ∈ 	M, θ̂

EW,β
j ∝ πj exp

(
− n

β
Rn(fj )

)
.
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The following proposition shows that it is suboptimal in deviation for any temperature, with a
error term of order at least 1/

√
n. This phenomenon was observed in the regression setting [3,

12], and Proposition 2.2 shows that it also holds for density estimation. As opposed to [3], the
following lower bound requires only 3 dictionary functions.

Proposition 2.2. There exist absolute constants C0,C1,N0 > 0 such that the following holds.
Let X = R and μ be the Lebesgue measure on R. For all n ≥ N0,L > 0, there exist a probability
density f with respect to μ, a dictionary {f1, f2, f3} and prior weights (π1,π2,π3) ∈ 	3 such
that with probability greater than C0,

∥∥f̂ EW
β − f

∥∥2 ≥ min
j=1,2,3

‖fj − f ‖2 + C1L√
n

.

Furthermore, ‖f ‖∞ ≤ L, and ‖fj‖∞ ≤ 3L for j = 1,2,3.

The following proposition shows that the optimality in expectation cannot hold if the temper-
ature is below a constant, extending a result from [12] to the density estimation setting.

Proposition 2.3. Let X = R and μ be the Lebesgue measure on R. There exist absolute con-
stants c0, c1, c2 > 0 such that the following holds. Let L > 0. For any odd integer n ≥ c0, there
exist a probability density f with respect to μ with ‖f ‖∞ ≤ L, and a dictionary {f1, f2} with
fj : X → R and ‖fj‖∞ ≤ L for j = 1,2 for which the following holds:

E
∥∥f̂ EW

β − f
∥∥2 ≥ min

j=1,2
‖fj − f ‖2 + c2L√

n
if β ≤ c1L.

The proofs of Propositions 2.2 and 2.3 can be found in Section 5.5.3.

3. Optimal exponential bounds for a penalized procedure

3.1. From strong convexity to a sharp oracle inequality

In this section, we derive a sharp oracle inequality for the estimator f
θ̂

where θ̂ is defined in (3.2).

Define the empirical objective Hn and the estimator θ̂ by

Hn(θ) =
(

‖fθ‖2 − 2

n

n∑
i=1

fθ (Xi)

)
+ 1

2
pen(θ) + β

n

M∑
j=1

θj log
1

πj

, (3.1)

θ̂ ∈ argmin
θ∈	M

Hn(θ), (3.2)

for some positive constant β and

∀θ ∈ 	M, pen(θ) =
M∑

j=1

θj‖fθ − fj‖2. (3.3)
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The simplex 	M and fθ are defined in (2.4) and (2.5).
The term

β

n

M∑
j=1

θj log
1

πj

is a penalty that assigns different weights to the functions fj according to some prior knowledge
given by π1, . . . , πM , in order to achieve an oracle inequality such as (1.3).

The penalty (3.3) as well as the present procedure are inspired by recent works on Q-
aggregation in regression models [3,15,20]. The choice of the coefficient 1

2 for the penalty (3.3) is
explained in Remark 3.1 below. An intuitive interpretation of the penalty (3.3) can be as follows.
A point fθ is in the convex hull of {f1, . . . , fM} if and only if it is the expectation of a random
variable taking values in {f1, . . . , fM}. The penalty (3.3) can be seen as the variance of such a
random variable whose distribution is given by θ . More precisely, let η be a random variable with
P(η = j) = θj for all j = 1, . . . ,M . Denote by Eθ the expectation with respect to the random
variable η. Then Eθ [fη] = fθ and

pen(θ) = Eθ

∥∥fη −Eθ [fη]
∥∥2

,

which is the variance of the random point fη. The penalty (3.3) vanishes at the extreme points:

∀j = 1, . . . ,M, pen(ej ) = 0,

and pen(θ) increases as θ moves away from an extreme point ej . Thus we convexify the opti-
mization problem over the discrete set {f1, . . . , fM} by considering the convex set {Eθ [fη], θ ∈
	M} which is exactly the convex hull of {f1, . . . , fM}, and we penalize by the variance of the
random point fη.

It is also possible to describe the level sets of the penalty (3.3). Assume only in this para-
graph that the Gram matrix of f1, . . . , fM is invertible and let c ∈ L2(μ) be in the linear span of
f1, . . . , fM such that for all j = 1, . . . ,M ,

∫
2cfj dμ = ‖fj‖2. Then simple algebra yields

pen(θ) = ‖c‖2 − ‖c − fθ‖2.

Thus the level sets of the penalty (3.3) are euclidean balls centered at c.
Last, note that f

θ̂
coincides with the Q-aggregation procedure from [3] since

(
‖fθ‖2 − 2

n

n∑
i=1

fθ (Xi)

)
+ 1

2
pen(θ) = Rn(θ) + 1

2
pen(θ) = 1

2

(
Rn(θ) +

M∑
j=1

θjRn(fj )

)
.

We propose an estimator f
θ̂

based on penalized empirical risk minimization over the simplex,

with θ̂ defined in (3.2). This estimator satisfies the following oracle inequality.



228 P.C. Bellec

Theorem 3.1. Assume that the functions f1, . . . , fM satisfy ‖fj‖∞ ≤ L0 for all j = 1, . . . ,M ,
and assume that the unknown density f satisfies ‖f ‖∞ ≤ L. Let θ̂ be defined in (3.2) with

β = 4L + 8L0

3
.

Then for any x > 0, with probability greater than 1 − exp(−x),

R(f
θ̂
) ≤ min

j=1,...,M

(
R(fj ) + β

n
log

1

πj

)
+ βx

n
. (3.4)

The following proposition specifies the property of strong convexity of the objective function
Hn(·) defined in (3.1), which is key to prove Theorem 3.1.

Proposition 3.1 (Strong convexity of Hn). Let Hn and θ̂ be defined by (3.1) and (3.2), respec-
tively. Then for any θ ∈ 	M ,

Hn(θ̂) ≤ Hn(θ) − 1
2‖fθ − f

θ̂
‖2. (3.5)

For any θ ∈ 	M , empirical risk minimization only grants the simple inequality

Rn(θ̂) ≤ Rn(θ),

but with Proposition 3.1 we gain the extra term 1
2‖fθ − f

θ̂
‖2. To prove Theorem 3.1, we will

use this extra term to compensate the variance term of the concentration inequality (5.3). Strong
convexity plays an important role in our proofs, and we believe that our arguments would not
work for loss functions that are not strongly convex such as the Hellinger distance, the Total
Variation distance or the Kullback–Leibler divergence.

The proof of Proposition 3.1 is given in Section 5.3. We now give the proof of our main result,
which is close to the proof of Theorem 2.2 except that we leverage the strong convexity of the
empirical objective Hn.

Proof of Theorem 3.1. Note that pen(ej ) = 0 for j = 1, . . . ,M and let

J ∗ ∈ argmin
j=1,...,M

(
‖fj‖2 − 2

∫
fjf dμ + β

n
log

1

πj

)
= argmin

j=1,...,M

E
[
Hn(ej )

]
.

Using (3.5) of Proposition 3.1

Hn(θ̂) − Hn(eJ ∗) ≤ −1

2
‖fJ ∗ − f

θ̂
‖2,

Rn(θ̂) + β

n

M∑
j=1

θ̂j log
1

πj

− Rn(eJ ∗) − β

n
log

1

πJ ∗
≤ −1

2
‖fJ ∗ − f

θ̂
‖2 − 1

2
pen(θ̂)

= −1

2

M∑
j=1

θ̂j‖fj − fJ ∗‖2,
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where we used Proposition 5.1 with g = fJ ∗ for the last display. Using (2.3), we get

R(f
θ̂
) − R(fJ ∗) − β

n
log

1

πJ ∗
≤ Zn,

where

Zn = (P − Pn)(−2f
θ̂
+ 2fJ ∗) − β

n

M∑
j=1

θ̂j log
1

πj

− 1

2

M∑
j=1

θ̂j‖fj − fJ ∗‖2

and the notation P and Pn is defined in (2.2) and (2.3). The quantity Zn is affine in θ and an
affine function over the simplex is maximized at a vertex, so almost surely,

Zn ≤ max
θ∈	M

(
−2(P − Pn)(fθ − fJ ∗) − 1

2

M∑
j=1

θj‖fJ ∗ − fj‖2 − β

n

M∑
j=1

θj log
1

πj

)

(3.6)

= max
k=1,...,M

(
−2(P − Pn)(fk − fJ ∗) − 1

2
‖fk − fJ ∗‖2 − β

n
log

1

πk

)
.

Let k = 1, . . . ,M fixed. Applying Proposition 5.3 with g = −2(fk − fJ ∗) and π = πk yields

P

(
−2(P − Pn)(fk − fJ ∗) − 1

2
‖fk − fJ ∗‖2 − β

n
log

1

πk

>
βx

n

)
≤ πk exp(−x).

To complete the proof, we use a union bound on k = 1, . . . ,M together with
∑M

j=1 πj = 1
and (3.6):

P

(
Zn >

βx

n

)
≤

M∑
k=1

πk exp(−x) = exp(−x).
�

Remark 3.1 (Choice of the coefficient of the penalty (3.3)). Let ν ∈ (0,1). With minor modi-
fications to the proof of Theorem 3.1, it can be shown that the oracle inequality (3.4) still holds
with

β = 2L

min(ν,1 − ν)
+ 8L0

3
,

Hn(θ) =
(

‖fθ‖2 − 2

n

n∑
i=1

fθ (Xi)

)
+ ν pen(θ) + β

n

M∑
j=1

θj log
1

πj

,

θ̂ ∈ argmin
θ∈	M

Hn(θ).

The oracle inequality (3.4) is best when β is small. Thus, the choice ν = 1
2 is natural since it

minimizes the value of β .
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The optimization problem (3.2) is a quadratic program, for which efficient algorithms exist.
We refer to [3], Section 4, for an analysis of the statistical performance of an algorithm that
approximately solves a optimization problem similar to (3.2) in the regression setting.

The estimator θ̂ of Theorem 3.1 is not adaptive since its construction relies on L, an upper
bound of the sup-norm of the unknown density. However, in the case of the uniform prior πj =
1/M for all j = 1, . . . ,M , Corollary 3.1 below provides an estimator which is fully adaptive:
its construction depends only on the functions f1, . . . , fM and the data X1, . . . ,Xn. A similar
adaptivity property was observed in [15] in the regression setting.

Corollary 3.1 (Adaptive estimator). Assume that the functions f1, . . . , fM satisfy ‖fj‖∞ ≤ L0
for all j = 1, . . . ,M , and assume that the unknown density f satisfies ‖f ‖∞ ≤ L. Let

θ̂ ∈ argmin
θ∈	M

(
‖fθ‖2 − 2

n

n∑
i=1

fθ (Xi)

)
+ 1

2
pen(θ). (3.7)

Then for any x > 0, with probability greater than 1 − exp(−x),

R(f
θ̂
) ≤ min

j=1,...,M
R(fj ) +

(
4L + 8L0

3

)
log(M) + x

n
.

Proof. With the uniform prior, πj = 1/M for all j = 1, . . . ,M , the quantity

β

n

M∑
j=1

θj log
1

πj

= β

n
logM

is independent of θ ∈ 	M . The minimizer (3.7) is also a minimizer of the empirical objec-
tive (3.1) used in Theorem 3.1. Thus, the estimator f

θ̂
satisfies (3.4) which completes the

proof. �

Corollary 3.1 is in contrast to methods related to exponential weights such as the mirror av-
eraging algorithm from [8] as these methods rely on the knowledge of the sup-norm of the un-
known density. The method presented here is an improvement in two aspects. First, the estimator
of Corollary 3.1 is fully data-driven. Second, the sharp oracle inequality is satisfied not only in
expectation, but also in deviation.

However, the method of Theorem 3.1 loses this adaptivity property when a non-uniform prior
is used, and we do not know if it is possible to build an optimal and fully adaptive estimator for
non-uniform priors.

3.2. A lower bound with exponential tails

The following lower bound shows that the sharp oracle inequality of Corollary 3.1 cannot be
improved both in the rate and in the tail of the deviation.
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Theorem 3.2 (Lower bounds with optimal deviation term). Let M ≥ 2, n ≥ 1 be two integers
and let a real number x ≥ 0 satisfy

log(M) + x

n
< 3.

Let L > 0 and d ≥ 1. Let F be the class of densities f with respect to the Lebesgue measure on
Rd such that ‖f ‖∞ ≤ L.

Then there exist M functions f1, . . . , fM in L2(Rd) with ‖fj‖∞ ≤ L satisfying

inf
T̂n

sup
f ∈F

Pf

(
‖T̂n − f ‖2 − min

j=1,...,M
‖fj − f ‖2 >

L

24

(
log(M) + x

n

))
≥ 1

24
exp(−x),

where the infimum is taken over all estimators T̂n and Pf denotes the probability with respect to
n i.i.d. observations with density f .

Notice that the restriction log(M)+x
n

< 3 is natural since the estimator T̂ ∗
n ≡ 0 achieves a constant

error term and is optimal in the region log(M)+x
n

> c for some absolute constant c. Indeed, as the
unknown density satisfies ‖f ‖∞ ≤ L, we have with probability 1:

∥∥T̂ ∗
n − f

∥∥2 = ‖f ‖2 ≤ L ≤ inf
j=1,...,M

‖f − fj‖2 + L,

(3.8)
R

(
T̂ ∗

n

) ≤ inf
j=1,...,M

R(fj ) + L.

Thus it is impossible to get the lower bound of Theorem 3.2 for arbitrarily large x+logM
n

.

3.3. Weighted loss and unboundedness

The previous strategy based on penalized risk minimization over the simplex can be applied to
handle unbounded densities or unbounded dictionary functions, if we use a weighted loss.

Let w : X → R+ be a measurable function with respect to μ. Define the norm (or semi-norm
if w is zero on a set of positive measure)

‖g‖2
w =

∫
g2w dμ, ∀g ∈ L2(μ).

Then we can define the estimator f
θ̂

where

θ̂ = argmin
θ∈	M

Vn(θ), Vn(θ) = Pn

(
‖fθ‖2

w − 2

n

n∑
i=1

fθ (Xi)w(Xi) + 1

2

M∑
j=1

θj‖fj − fθ‖2
w

)
.
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The function Vn is strongly convex with respect to the new norm ‖ · ‖2
w . As in the proof of

Theorem 3.1, this leads to

‖f
θ̂
− f ‖2

w ≤ ‖fJ ∗ − f ‖2
w + max

k=1,...,M
δk,

δk := (P − Pn)
(−2(fJ ∗ − fk)w

) − 1

2
‖fJ ∗ − fk‖2

w.

If for some L,L0 > 0, ‖wf ‖∞ ≤ L and maxj=1,...,M ‖wfj‖∞ ≤ L0, then

δk ≤ −2(P − Pn)
(
(fk − fJ ∗)w

) − 1

2L
E

[(
fk(X) − fJ ∗(X)

)2
w(X)2].

We apply (5.3) to the random variables (fk − fJ ∗)(Xi)w(Xi), which are almost surely bounded
by L0. Using the union bound on k = 1, . . . ,M , we obtain maxk=1,...,M δk ≤ β(x + logM)/n

with probability greater than 1 − exp(−x). and thus

‖f
θ̂
− f ‖2

w ≤ ‖fJ ∗ − f ‖2
w + β

(
x + logM

n

)
,

where β = c(L + L0) for some numerical constant c > 0.

3.4. Differences and similarities with regression problems

Here, we discuss differences and similarities between aggregation of density and regression esti-
mators. Some notation is needed in order to compare these settings.

We first define some notation related to the Density Estimation (DE) framework studied in the
present paper. Let X be a random variable with density f absolutely continuous with respect to
the measure μ, let DDE = {f1, . . . , fM} be a subset of L2(μ) and define for all g ∈ L2(μ) and
x ∈X ,

‖g‖2 =
∫

g2 dμ, lDE
g (x) = ‖g‖2 − 2g(x),

g∗ = argmin
g∈DDE

‖g − f ‖2 = argmin
g∈DDE

E
[
lDE
g (X)

]
.

Given n i.i.d. observations X1, . . . ,Xn and some fixed function g, one can use the empirical risk
Pn(l

DE
g ) = ∑n

i=1(1/n)lDE
g (Xi).

We now define similar notation for the regression problem with the L2 loss. Let (X,Y ) be a
random couple valued in X × R, let PX be the probability measure of X, let f be the true re-
gression function defined by f (x) = E[Y |X = x], let DR = {f1, . . . , fM} be a subset of L2(PX)

and define for all g ∈ L2(PX),

‖g‖2
PX

= E
[
g(X)2], g∗ = argmin

g∈DR
‖g − f ‖2

PX
.
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For Regression with Unknown Design (RUD) that is, when the distribution of the design X is
not known to the statistician, a natural choice for the loss function lg is

lRUD
g (x, y) = (

g(x) − y
)2

, ∀x, y ∈ X × R,

and the oracle g∗ defined above satisfies g∗ = arg ming∈DR E[lRUD
g (X,Y )]. For Regression with

Known Design (RKD), the quantity ‖g‖2
PX

is accessible for all g. Thus, we can define the loss

lRKD
g (x, y) = ‖g‖2

PX
− 2g(x)y, ∀x, y ∈ X × R,

and the oracle g∗ satisfies g∗ = argming∈DR E[lRKD
g (X,Y )]. Thus, two natural functions lg arise

in the regression context, depending on whether the distribution of the design is known or un-
known. Given n i.i.d. observations (Xi, Yi) with the same distribution as (X,Y ), the empirical
quantities Pn(l

RUD
g ) and Pn(l

RKD
g ) can be used to infer the true regression function f . An esti-

mator constructed using the quantity Pn(l
RKD
g ) is used, for example, in [24] for the problem of

linear and convex aggregation.

Linear or quadratic empirical process

The empirical process (Pn − P)(lg − lg∗) indexed by g plays an important role in the proofs of
Theorems 2.2 and 3.1. This empirical process also appears in the analysis [15] for regression with
unknown design with the loss lRUD

g . For density estimation and regression with known design,
this empirical process is linear in g:

(Pn − P)
(
lDE
g − lDE

g∗
) = −2(Pn − P)

(
g − g∗),

(Pn − P)
(
lRKD
g − lRKD

g∗
) = −2(Pn − P)

[(
g − g∗)ẏ]

,

where the function ẏ(·) above is defined by ∀x, y ∈ X × R, ẏ(x, y) = y. For regression when
the design is unknown, the empirical process is quadratic in the class member g. To control the
behavior of this quadratic empirical process, the contraction principle is used in [15], whereas
this principle is not needed for density estimation or regression when the distribution of the
design is known.

The penalty (3.3) and its coefficient

In the regression problem when the distribution is known, given a dictionary of potential regres-
sion functions {f1, . . . , fM}, the quantity

M∑
j=1

θj‖fj − fθ‖2
PX

, (3.9)

is accessible and a procedure similar to the one proposed in Theorem 3.1 and Corollary 3.1
can be constructed, with the penalty coefficient 1/2 which is a natural choice as explained in
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Remark 3.1. For regression with unknown design, the above penalty cannot be computed: the
procedure [15] for the L2 loss is the estimator f

θ̂
where

θ̂ = argmin
θ∈	M

(
Pn

(
lRUD
fθ

) + νPn(fj − fθ )
2)

= argmin
θ∈	M

(
1

n

n∑
i=1

(
Yi − fθ (Xi)

)2 + ν

n

n∑
i=1

(fj − fθ )
2(Xi)

)
,

for some coefficient ν ∈ (0,1) and where we chose the uniform prior for clarity. Thus, the proce-
dure [15] can be formulated as a penalized procedure where the penalty is the empirical counter-
part of (3.9) with the coefficient ν. Although 1/2 is a natural choice for regression with known
design and density estimation, for regression with unknown design the expression of the optimal
coefficient is more intricate [15], minimize β in (1.4).

Sketch of proof for the regression model with known design

In order to show the similarities between density estimation and regression problems when the
design is known, we now give the main ideas to derive an oracle inequality similar to Corol-
lary 3.1 for regression with known design. Note that the framework studied in [15] does not
cover the estimator defined below, since the function lRKD

g depends on the quantity ‖g‖2
PX

. Given
n i.i.d. observations (X1, Y1), . . . , (Xn,Yn), define

θ̂ = argmin
θ∈	M

Vn(θ), Vn(θ) = Pn

(
lRKD
fθ

) + 1

2

M∑
j=1

θj‖fj − fθ‖2
PX

.

Analogously to the argument of Proposition 3.1, we note that the function Vn is strongly convex
and Vn(θ̂) ≤ Vn(eJ ∗) − 1

2‖fJ ∗ − f
θ̂
‖2
PX

for any J ∗ = 1, . . . ,M . As in the proof of Theorem 3.1,
this leads to

‖f
θ̂
− f ‖2

PX
≤ ‖fJ ∗ − f ‖2

PX
+ max

k=1,...,M
δk,

δk := (P − Pn)
(
lRKD
fk

− lRKD
fJ∗

) − 1

2
‖fJ ∗ − fk‖2

PX
.

As explained above, when the distribution of the design is known, the empirical process is linear
in fk − fJ ∗ :

δk = −2(P − Pn)
(
(fk − fJ ∗)ẏ

) − 1
2‖fk − fJ ∗‖2

PX
.

If for some b > 0, |Y | ≤ b and maxj=1,...,M |fj (X)| ≤ b almost surely, then

δk ≤ −2(P − Pn)
(
(fk − fJ ∗)ẏ

) − 1

2b2
E

[
Y 2(fk(X) − fJ ∗(X)

)]
.
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Using (5.3) and the union bound on k = 1, . . . ,M , we obtain maxk=1,...,M δk ≤ β(x + logM)/n

with probability greater than 1 − exp(−x) and thus

‖f
θ̂
− f ‖2

PX
≤ ‖fJ ∗ − f ‖2

PX
+ β

(
x + logM

n

)
,

where β = cb2 for some numerical constant c > 0.
In conclusion, the density estimation framework studied in the present paper is close to the

regression problem when the distribution of the design is known, while it presents several differ-
ences with the regression problem when the design is not known.

4. Minimax optimality in deviation

The goal of this section is to state a minimax optimality result based on the lower bound of
Theorem 3.2 and the sharp oracle inequality of Corollary 3.1. In this section, the underlying
measure μ is the Lebesgue measure on R

d for some integer d ≥ 1.
Minimax optimality in model selection type aggregation is usually defined in expectation [24],

by studying the quantity

sup
fj ∈F

j=1,...,M

inf
T̂n

sup
f ∈Fd

(
ER(T̂n) − inf

j=1,...,M
R(fj )

)
,

where the infimum is taken over all estimators T̂n, F is a class of possible functions for the
dictionary and Fd is the class of all densities satisfying some general constraints.

Let μ be the Lebesgue measure on Rd and for some L > 0, let F = {g ∈ L2(μ),‖g‖∞ ≤
L} and Fd be the set of all densities f with respect to μ satisfying ‖f ‖∞ ≤ L. Then, by an
integration argument, Corollary 3.1 and Theorem 3.2 provide the following bounds for some
absolute constant c,C > 0 and any M ≥ 2, n ≥ 1:

c
L logM

n
≤ sup

fj ∈F
j=1,...,M

inf
T̂n

sup
f ∈Fd

(
ER(T̂n) − inf

j=1,...,M
R(fj )

)
≤ C

L logM

n
.

This shows that L logM
n

is the optimal rate of convergence in expectation for model selection type
aggregation under the boundedness assumption.

But our results are stronger that the above optimality in expectation since the deviation term in
the sharp oracle inequality of Corollary 3.1 and in the lower bound of Theorem 3.2 are the same
up to a numerical constant.

The central quantity when dealing with optimality in deviation is, for t > 0,

sup
fj ∈F

j=1,...,M

inf
T̂n

sup
f ∈Fd

P

(
R(T̂n) − inf

j=1,...,M
R(fj ) > t

)
.

The results of Section 3 provide upper and lower bounds for this quantity.
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We propose the following definition of minimax optimality in deviation.

Definition 4.1 (Minimax optimality in deviation). Let F be a subset of L2(μ) and Fd be a set
of densities with respect to the measure μ. Let En be a set of estimators. Denote by Pn,M

En,F ,Fd
(t)

the quantity

Pn,M
En,F ,Fd

(t) = sup
fj ∈F

j=1,...,M

inf
T̂n∈En

sup
f ∈Fd

P

(
R(T̂n) − inf

j=1,...,M
R(fj ) > t

)
.

A function pn,M(·) is called optimal tail distribution over (En,F,Fd) if for any n ≥ 1,M ≥ 2
and any t > 0,

cpn,M

(
c′t

) ≤ Pn,M
En,F ,Fd

(t) ≤ pn,M(t),

where c, c′ > 0 are constants independent of n,M and t .

The following proposition is a direct consequence of Corollary 3.1 and Theorem 3.2.

Proposition 4.1. Let M ≥ 2, n ≥ 1 and L > 0. Let F = {g ∈ L2(Rd),‖g‖∞ ≤ L} and Fd be the
set of all densities f with respect to the Lebesgue measure on Rd with ‖f ‖∞ ≤ L. Let En be the
set of all estimators. Define

pn,M(t) = M exp

(
− 3tn

20L

)
1[0,L](t),

where 1A denotes the indicator function of the set A. Then for all t > 0,

1
24pn,M(160t) ≤ Pn,M

En,F ,Fd
(t) ≤ pn,M(t).

Thus, pn,M(·) is an optimal tail distribution over (En,F,Fd) according to Definition 4.1.

Proof. The regime t > L corresponds to the trivial case where (3.8) holds and T̂ ∗
n = 0 is an

optimal estimator. In this regime pn,M(t) = 0.

For t ≤ L, by setting t = β
log(M)+x

n
= 20L

3
log(M)+x

n
in Corollary 3.1, we get

Pn,M
En,F ,Fd

≤ pn,M(t)

while Theorem 3.2 implies that

1

24
pn,M

(
24 · 20

3
t

)
≤ Pn,M

En,F ,Fd
(t). �

Similarly, the results of Section 2 imply the following proposition.



Optimal exponential bounds for aggregation of density estimators 237

Proposition 4.2. Let M ≥ 2, n ≥ 1 and L > 0. Let F = {g ∈ L2(Rd),‖g‖∞ ≤ L} and Fd be the
set of all densities f with respect to the Lebesgue measure on Rd with ‖f ‖∞ ≤ L. Let Sn be
the set of all selectors, that is, the measurable functions valued in the discrete set {f1, . . . , fM}.
Define

qn,M(t) = M exp

(
− t2n

L2(4
√

2 + 8/3)2

)
1[0,L](t),

where 1A denotes the indicator function of the set A. Then for all t > 0,

1
24qn,M

(√
3(4

√
2 + 8/3)t

) ≤ Pn,M
Sn,F ,Fd

(t) ≤ qn,M(t).

Thus, qn,M(·) is an optimal tail distribution over (Sn,F,Fd) according to Definition 4.1.

Proof. The regime t > L can be treated similarly as in the proof of Proposition 4.1.

For t ≤ L, let t = L(4
√

2 + 8/3)

√
x+logM

n
in Theorem 2.2. For this definition of t and x,

1 ≥
√

x+logM
n

≥ x+logM
n

. Then

Pn,M
Sn,F ,Fd

(t) ≤ qn,M(t)

and Theorem 2.1 implies

1
24qn,M

(√
3(4

√
2 + 8/3)t

) ≤ Pn,M
Sn,F ,Fd

(t). �

5. Proofs

5.1. Bias-variance decomposition

As discussed in Section 3, the penalty can be viewed as the variance of a random element of the
discrete set {f1, . . . , fM} and it satisfies the following bias-variance decomposition.

Proposition 5.1. For any g ∈ L2(μ) and θ ∈ 	M ,

M∑
j=1

θj‖fj − g‖2 = ‖fθ − g‖2 + pen(θ), (5.1)

where pen(·) is the penalty defined in (3.3).

Proof. Let η be a random variable with P(η = j) = θj for all j = 1, . . . ,M . Denote by Eθ

the expectation with respect to the random variable η. Then Eθ [fη] = fθ and the bias-variance
decomposition yields

Eθ‖fθ − g‖2 = ∥∥g −Eθ [fη]
∥∥2 +Eθ

∥∥fη −Eθ [fη]
∥∥2

,

which is exactly the desired result. �



238 P.C. Bellec

5.2. Concentration inequalities

Proposition 5.2. Let Y1, . . . , Yn be independent random variables, such that almost surely, for
all i, |Yi −EYi | ≤ b. Then for all x > 0,

P

(
n∑

i=1

Yi −EYi >
√

2xv + bx

3

)
≤ exp(−x), (5.2)

where v = ∑n
i=1 V(Yi).

Proposition 5.2 is close to Bennett and Bernstein inequalities. A proof can be found in [18],
Section 2.2.3, (2.20) with c = b/3.

The following one-sided concentration inequality is a direct consequence of Proposition 5.2
and the inequality 2

√
uv ≤ u

a
+ av for all a,u, v > 0. Under the same assumptions as Proposi-

tion 5.2 above, for all x > 0 and any a > 0,

P

(
1

n

n∑
i=1

Yi −EYi − aV(Yi) >

(
1

2a
+ b

3

)
x

n

)
≤ exp(−x). (5.3)

Proposition 5.3. Let X1, . . . ,Xn be i.i.d. observations drawn from the density f with ‖f ‖∞ ≤
L. Let g ∈ L2(μ) with ‖g‖∞ ≤ 4L0. Let β = 4L + 8L0

3 . Define

ζn = (P − Pn)g − 1

8
‖g‖2 − β

n
log

1

π
,

where the notation P and Pn is defined in (2.2). Then for all x > 0,

P

(
ζn >

βx

n

)
≤ π exp(−x).

Proof. As the unknown density f is bounded by L,

V
(
g(X1)

) ≤ P
(
g2) =

∫
g2f dμ ≤ L‖g‖2,

−1

8
‖g‖2 ≤ − 1

8L
V

(
g(X1)

)
.

Thus, almost surely

ζn ≤ (P − Pn)g − 1

8L
V

(
g(X1)

) − β

n
log

1

π
.

Define n i.i.d. random variables Y1, . . . , Yn by

Yi = g(Xi).
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Almost surely, |Yi | ≤ 4L0 and |Yi − EYi | ≤ 8L0. By applying (5.3) to Y1, . . . , Yn with b = 8L0

and a = 1
8L

, we get that for any t > 0 with x = t + log 1
π

,

P

(
(P − Pn)g − 1

8L
V

(
g(X1)

)
>

βx

n

)
≤ exp(−x)

P

(
ζn >

βx

n

)
≤ P

(
(P − Pn)g − 1

8L
V

(
g(X1)

) − β

n
log

1

π
>

βt

n

)
≤ π exp(−t). �

5.3. Strong convexity

Proof of Proposition 3.1. We will first prove that for any θ, θ ′,

Hn(θ) − Hn

(
θ ′) = 〈∇Hn

(
θ ′), θ − θ ′〉 + 1

2‖fθ − fθ ′ ‖2. (5.4)

Using the bias-variance decomposition of (5.1) with g = 0, we get

pen(θ) =
M∑

j=1

θj‖fθ − fj‖2 = −‖fθ‖2 +
M∑

j=1

θj‖fj‖2.

Thus, Hn can be rewritten as Hn(θ) = 1
2‖fθ‖2 + L(θ) where L is affine in θ . If we can prove

N(θ) − N(θ ′) = 〈∇N(θ ′), θ − θ ′〉 + ‖fθ − fθ ′ ‖2 where N(θ) = ‖fθ‖2, then (5.4) holds. By
simple properties of the norm,

‖fθ‖2 − ‖fθ ′‖2 = 2
∫

fθ ′(fθ − fθ ′) dμ + ‖fθ − fθ ′ ‖2

= 2θ ′T G
(
θ − θ ′) + ‖fθ − fθ ′ ‖2,

where G is the Gram matrix with elements Gj,k = ∫
fjfk dμ for all j, k = 1, . . . ,M . The gradi-

ent at θ ′ of the function θ → ‖fθ‖2 is exactly 2Gθ ′ so (5.4) holds.
The function Hn is convex and differentiable. If θ̂ minimizes Hn over the simplex, then for

any θ ∈ 	M , 〈∇Hn(θ̂), θ − θ̂〉 ≥ 0 which proves (3.5). �

5.4. Tools for lower bounds

Proposition 5.4. There exists a countable set of functions ε1, ε2, . . . defined on [0,1] such that
for all j, k > 0 with k �= j ,

∀u ∈ [0,1), εj (u) ∈ {−1,1},∫
[0,1]

εj (x)εk(x) dx = 0,

∫
[0,1]

ε2
j (x) dx = 1.



240 P.C. Bellec

Furthermore, if U is uniformly distributed on [0,1], then ε1(U), ε2(U), . . . are i.i.d. Rademacher
random variables.

See [7], Definition 3.22, for an explicit construction of these functions and a proof a their
properties.

If P � Q are two probability measures defined on some measurable space, define their
Kullback–Leibler divergence and their χ2 divergence by

K(P,Q) =
∫

log

(
dP

dQ

)
dP, χ2(P,Q) =

∫ (
dP

dQ
− 1

)2

dQ.

The following comparison holds

K(P,Q) ≤ χ2(P,Q). (5.5)

Furthermore, if n ≥ 1 and P ⊗n denotes the n-product of measures P ,

K
(
P ⊗n,Q⊗n

) = nK(P,Q). (5.6)

The proofs of (5.5) and (5.6) are given in [25], Lemma 2.7 and page 85.

Lemma 5.1. Let (�,A) be a measurable space and m ≥ 1. Let m ≥ 1 and A0, . . . ,Am ∈ A be
disjoint events: Aj ∩ Ak = ∅ for any j �= k. Assume that Q0, . . . ,Qm are probability measures
on (�,A) such that

1

m

m∑
j=1

K(Qj ,Q0) ≤ χ < ∞.

Then,

max
j=0,...,m

Qj (� \ Aj) ≥ 1

12
min

(
1,m exp(−3χ)

)
.

Lemma 5.1 can be found in [9], Lemma 3. It is a direct consequence of [25], Proposition 2.3,
with τ ∗ = min(m−1, exp(−3χ)).

Corollary 5.1 (Minimax lower bounds). Let n ≥ 1 be an integer and s > 0 be a positive num-
ber. Let m ≥ 1 and q0, . . . , qm be a family of densities with respect to the same measure μ.
Assume that for any j �= k,

‖qj − qk‖2 ≥ 4s > 0. (5.7)

If P ⊗n
k denotes the product measure associated with n i.i.d. observations drawn from the density

qk , assume that

1

m

m∑
j=1

K
(
P ⊗n

j ,P ⊗n
0

) ≤ χ
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for some finite χ > 0. Then, for any estimator T̂n,

max
k=0,...,m

P
⊗n
k

(‖T̂n − qk‖2 ≥ s
) ≥ 1

12
min

(
1,m exp(−3χ)

)
.

Proof. For any estimator T̂n, for any j = 0, . . . ,m define the events

Aj = {‖T̂n − qj‖2 < s
}
.

These events are disjoint because of the triangle inequality and (5.7). Applying Lemma 5.1 com-
pletes the proof. �

5.5. Lower bound theorems

5.5.1. Lower bounds with exponential tails

Proof of Theorem 3.2. Let ε2, . . . , εM be M − 1 functions from Proposition 5.4. Consider the
dictionary {f1, . . . , fM} such that for all (u1, . . . , ud) ∈ Rd

f1(u1, . . . , ud) = L

2
1[0,1]

(
L

2
u1

) d∏
q=2

1[0,1](uq),

and for j ≥ 2

fj (u1, . . . , ud) = L

2

(
1 +

√
log(M) + x

3n
εj

(
L

2
u1

))
1[0,1]

(
L

2
u1

) d∏
q=2

1[0,1](uq).

Since logM+x
n

< 3, these functions are densities and satisfy ‖fj‖∞ < L.
For any j �= k,

‖fj − fk‖2 ≥ L
log(M) + x

6n
(5.8)

and (5.8) is true with equality when j = 1. If P ⊗n
k denotes the probability with respect to n i.i.d.

random variables with density fj , the properties (5.5) and (5.6) give that for any k ≥ 2,

K
(
P ⊗n

k ,P ⊗n
1

) = nK
(
P ⊗1

k ,P ⊗1
1

)
≤ nχ2

(
P ⊗1

k ,P ⊗1
1

)
= n

2

L
‖fk − f1‖2

= log(M) + x

3
.
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Applying Corollary 5.1 with m = M − 1 yields that for any estimator T̂n,

sup
j=1,...,M

P ⊗n
j

(
‖T̂n − fj‖2 ≥ L

log(M) + x

24n

)
≥ 1

12
min

(
1,

M − 1

M
exp(−x)

)

≥ 1

24
exp(−x). �

Proof of Theorem 2.1. Let ε1, . . . , εM be M functions from Proposition 5.4.
For (u1, . . . , ud) ∈ Rd , we define a dictionary {f1, . . . , fM} by

fj (u1, . . . , ud) = L

2

(
1 + εj

(
L

2
u1

))
1[0,1]

(
L

2
u1

) d∏
q=2

1[0,1](uq),

and we define M densities {d1, . . . , dM}:

dj (u1, . . . , ud) = L

2

(
1 + γ εj

(
L

2
u1

))
1[0,1]

(
L

2
u1

) d∏
q=2

1[0,1](uq),

for some γ ∈ (0, 1
2 ) that will be specified later. Due to the properties of the (εj ), the following

holds for any j �= k

‖fk − dj‖2 = L

2

(
1 + γ 2),

‖fj − dj‖2 = L

2
(1 − γ )2,

‖dj − dk‖2 = Lγ 2.

Thus if Ŝn is any selector taking values in the discrete set {f1, . . . , fM}:
‖Ŝn − dj‖2 − inf

l=1,...,M
‖fl − dj‖2 = ‖Ŝn − dj‖2 − ‖fj − dj‖2 = 2Lγ 1

Ŝn �=fj
. (5.9)

Let P ⊗n
k be the product measure associated with n i.i.d. random variables drawn from the den-

sity dk . Equation (5.9) ensures that with probability P
⊗n
j (Ŝn �= fj ), the excess risk is 2Lγ .

For any k �= 1, using (5.5) and (5.6), we obtain

K
(
P ⊗n

k ,P ⊗n
1

) = nK
(
P ⊗1

k ,P ⊗1
1

)
≤ nχ2

(
P ⊗1

k ,P ⊗1
1

)
≤ 4

L
n‖dk − d1‖2

= 4nγ 2,

where we used that d1(u1, . . . , ud) ≥ L/4 almost surely on the common support of dk and d1.
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Now we choose γ = 1
2
√

3

√
x+logM

n
such that ∀k �= 1,K(P ⊗n

k ,P ⊗n
1 ) ≤ x+logM

3 . Let Ŝn be any
estimator with values in the discrete set {f1, . . . , fM}. For any j = 1, . . . ,M , define the event
Aj = {Ŝn = fj }. The events are disjoint if fj �= fk for all j �= k (if this is not satisfied, we can
always remove the duplicates). By applying Lemma 5.1 with m = M − 1 and χ = 1

3 (x + logM),
we get

max
j=1,...,M

P
⊗n
j (Ŝn �= fj ) ≥ M − 1

12M
exp(−x).

Since (M − 1)/M ≥ 1/2,

max
j=1,...,M

P
⊗n
j

(
‖Ŝn − dj‖2 − inf

l=1,...,M
‖fl − dj‖2 > 2Lγ

)
≥ M − 1

12M
exp(−x)

≥ 1

24
exp(−x). �

5.5.2. ERM over the convex hull

Proof of Proposition 2.1. By homogeneity, it is enough to prove the case L = 2. Let
φ1, . . . , φM,φM+1 be M +1 functions given by Proposition 5.4. Consider the probability density
f = 1[0,1] and the dictionary of 2M + 1 functions

D = {1[0,1]} ∪ {
(1 ± φjφM+1)1[0,1], j = 1, . . . ,M

}
.

The true density is in the dictionary thus ming∈D ‖f − g‖2 = 0. Also, all the elements of the
dictionary are uniformly bounded by L = 2.

The convex hull of the dictionary is the set{
gλ = (1 + fλφM+1)1[0,1], λ ∈ RM, |λ|1 ≤ 1

}
,

where fλ = ∑M
j=1 λjφj and | · |1 is the �1 norm in RM .

For all λ ∈ RM with |λ|1 ≤ 1, ‖f − gλ‖2 = |λ|22 where | · |2 is the �2 norm in RM .
Let Lλ := ‖gλ‖2 − 2gλ + 2f − ‖f ‖2 = |λ|22 − 2fλφM+1. Since the empirical process is linear

in λ, the proof from [12] can be adapted as follows. Given n i.i.d. observations X1, . . . ,Xn

generated by the density f , [12], Lemma 5.4, states that for every r > 0, with probability greater
than 1 − 6 exp(−C2M),

c0

√
r

M
≤ c1

√
rM

n
≤ sup

λ∈RM,|λ|2≤√
r

Pn(fλφM+1) ≤ c2

√
rM

n
≤ c3

√
r

M
,

where c0, c1, c2, c3 > 0 are absolute constants.
Let r ≤ 1/M that will be specified later (such that if |λ|2 ≤ √

r then |λ|1 ≤ 1). On the one
hand,

inf
λ∈RM,|λ|2≤√

r
PnLλ ≤ r − 2 sup

λ∈RM,|λ|2≤√
r

Pn(fλφM+1).
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Given that n ∼ M2, using the above high probability estimate, there exists a positive absolute
constant c4 such that for all r ≤ c2

3/(4M), with probability greater than 1 − 6 exp(−C2M),
infλ∈RM,|λ|2≤√

r PnLλ ≤ √
r(

√
r − c3/

√
M) ≤ −c4

√
r/M , where c4 = c3/2.

On the other hand, if ρ ≤ 1/M , with probability greater than 1 − 6 exp(−C2M),

sup
λ∈RM,|λ|2≤√

ρ

∣∣(Pn − P)Lλ

∣∣ = 2 sup
λ∈RM,|λ|2≤√

ρ

∣∣(Pn − P)fλφM+1
∣∣ ≤ 2c3

√
ρ

M
.

Finally, choose r, ρ such that 2c3
√

ρ/M < c4
√

r/M and ρ > c5/
√

n for some absolute constant
c5 > 0, then with probability greater than 1 − 12 exp(−C2M),

inf
λ,|λ|2≤√

ρ
PnLλ ≥ − sup

λ,|λ|2≤√
ρ

∣∣(Pn − P)Lλ

∣∣ ≥ −2c3

√
ρ

M
> −c4

√
r

M
≥ inf

λ,|λ|2≤√
r
PnLλ.

Thus with high probability, infλ,|λ|2≤√
ρ PnLλ > infλ,|λ|1≤1 PnLλ. The inequality is strict so the

empirical risk minimizer has a risk greater than ρ. As ρ satisfies ρ > C3/
√

n, the proof is com-
plete. �

5.5.3. Exponential weights

If Y1, . . . , Ym are i.i.d. with P(Y1 = ±1) = 1/2, then for all u ∈ [0,
√

m/4],
1

15 exp
(−4u2) ≤ P(Y1 + · · · + Ym ≥ u

√
m) ≤ exp

(−u2/2
)
. (5.10)

A proof of the lower bound can be found in [19], Proposition 7.3.2, and a standard Chernoff
bound provides the upper bound. The following proof uses arguments similar to [3].

Proof of Proposition 2.2. By homogeneity, it is enough to prove the case L = 1. Let ε1, ε2, ε3
be 3 functions from Proposition 5.4. Let f = 1[0,1] be the unknown density and let

f1 = f + ε1, f2 = f +
(

1 + 1√
n

)
ε2, f3 = f2 + α√

n
ε3,

π1 = 1/(8
√

n), π2 = 1/(8
√

n), π3 = 1 − 1/(4
√

n),

where 0 ≤ α ≤ n1/4 will be specified later. The best function in the dictionary is f1: ‖f1 −f ‖2 =
minj=1,...,M ‖fj − f ‖2.

Let E be the event {Rn(f2) + 2/
√

n ≤ Rn(f1)}. By simple algebra,

E = {
1 + 4

√
n − 2

√
nPn(ε2) ≤ 2nPn(ε2 − ε1)

} ⊇ {
7
√

n ≤ 2nPn(ε2 − ε1)
}
,

where for the inclusion we used 1 ≤ √
n and |Pn(ε2)| ≤ 1. The 2n random variables

(εj (Xi))j=1,2;i=1,...,n are i.i.d. Rademacher random variables, so applying the lower bound
of (5.10) with m = 2n and u = 7

√
2/4 yields P(E) ≥ C2 > 0 for some absolute constant C2.

Now set α2 = 8 log(2n/C2), and choose N0 such that for all n ≥ N0, 8 log(2n/C2) > 0 and
α2 ≤ √

n.
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Let F := {Rn(f3) ≤ Rn(f1)} and define

G = {
2(α/

√
n)Pn(ε3) ≤ α2/n − 2/

√
n
}
.

Since Rn(f3) = Rn(f2) + α2/n − 2(α/
√

n)Pn(ε3), we have E ∩ Gc ⊆ F . As α2 ≤ √
n holds,

we have α2 − 2
√

n ≤ −α2 and

G ⊆ {
(2α/n)Pn(ε3) ≤ −α2/n

} = {−nPn(ε3) ≥ √
nα/2

}
.

The random variable −nPn(εj ) is the sum of n independent Rademacher random variables.
Applying the upper bound of (5.10) to u = α/2, we have P(G) ≤ exp(−α2/8) = C2/(2n) since
α = 8 log(2n/C2). Now as Fc ⊂ Ec ∪ G,

P
(
Ec ∪ Fc

) ≤ P
(
Ec ∪ G

) ≤ (1 − C2) + C2

2n
≤ 1 − C2/2 < 1.

The probability of the event E ∩ F is greater than C0 := C2/2. On this event, Rn(f2) ≤ Rn(f1)

and Rn(f3) ≤ Rn(f1) thus

θ̂
EW,β

1 = π1 exp(−Rn(f1)/β)

π1 exp(−Rn(f1)/β) + π2 exp(−Rn(f2)/β) + π3 exp(−Rn(f3)/β)

≤ π1 exp(−Rn(f1)/β)

(π1 + π2 + π3) exp(−Rn(f1)/β)
= π1 = 1

8
√

n
.

Let θ1 = θ̂
EW,β

1 for simplicity. As (ε1, ε2, ε3) is an orthonormal system,

‖f
θ̂EW,β − f ‖2 − ‖f1 − f ‖2 ≥ ∥∥θ1f1 + (1 − θ1)f2 − f

∥∥2 − ‖f1 − f ‖2

= (1 − θ1)
2‖f2 − f ‖2 − (

1 − θ2
1

)‖f1 − f ‖2

≥ 2(1 − θ1)
2/

√
n + [

(1 − θ1)
2 − (

1 − θ2
1

)]
≥ 1/(2

√
n) − 2θ1

≥ 1/(2
√

n) − 2/(8
√

n) ≥ 1/(4
√

n). �

The proof of Proposition 2.3 is based on estimates from [14] and highlights the similarities
between regression with random design and density estimation with the L2 risk.

Proof of Proposition 2.3. By homogeneity, it is enough to prove the case L = 1. The strategy
is to construct an example for density estimation such that the calculations from [14], Proof of
Theorem A, can be leveraged. Let fY be the probability density

fY (x) =
{

1/4 + 1/(2
√

n), if x ∈ [−2,0),

1/4 − 1/(2
√

n), if x ∈ (0,2],
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and 0 elsewhere. Let {f1 = 1
2 1[−2,0), f2 = 1

2 1[0,2)} be the dictionary. Let

L2(y) := ‖f2‖2 − 2f2(y) + 2f1(y) − ‖f1‖2, ∀y ∈ R,

and observe that L2(Y ) = −X where X = 1[0,2)(Y ) − 1[−2,0)(Y ) so that X satisfies

X =
{

1, with probability 1/2 − 1/
√

n,

−1, with probability 1/2 + 1/
√

n.

By definition of L2,

PL2 = EL2(Y ) = ‖f2 − fY ‖2 − ‖f1 − fY ‖2.

As PL2 = E[−X] = 2/
√

n > 0, f1 is the best function in the dictionary and PL2 is the excess
risk of f2. Finally, let

α = ‖f1 − f2‖2

PL2
=

√
n

2
.

For any θ ∈ [0,1], let fθ = θf1 + (1 − θ)f2. An explicit calculation of the excess risk of fθ

yields

‖fθ − fY ‖2 − ‖f1 − fY ‖2 = θ2‖f1‖2 + (1 − θ)2‖f2‖2 − 2E
[
fθ (Y )

] + 2E
[
f1(Y )

] − ‖f1‖2

= −θ(1 − θ)‖f1 − f2‖2 + (1 − θ)E[−X]
= (

1 − θ − θ(1 − θ)α
)
PL2.

Given n independent observations Y1, . . . , Yn with common density f , define Xi = 1[0,2)(Yi) −
1[−2,0)(Yi) as above. The exponential weights estimator with temperature β can be written as

f̂ EW
β = θ̂1f1 + (1 − θ̂1)f2, θ̂1 := 1

1 + exp(−(n/β)(1/n)
∑n

i=1[−Xi]) ,

and its excess risk is ‖f̂ EW
β − fY ‖2 − ‖f1 − fY ‖2 = (1 − θ̂1 − θ̂1(1 − θ̂1)α)PL2.

The constants α and PL2, the law of X1, . . . ,Xn, θ̂1 are the same as in [14], Proof of Theo-
rem A, thus the lower bounds in expectation and probability of the quantity (1− θ̂1 − θ̂1(1− θ̂1)α)

in Lecué and Mendelson [14] also hold here and yield the lower bound of Proposition 2.3. �
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