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We provide a new general theorem for multivariate normal approximation on convex sets. The theorem is
formulated in terms of a multivariate extension of Stein couplings. We apply the results to a homogeneity
test in dense random graphs and to prove multivariate asymptotic normality for certain doubly indexed
permutation statistics.
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1. Introduction

Let W and Z be d-dimensional random vectors, d ≥ 1, where Z has standard d-dimensional
Gaussian distribution. We are concerned with bounding the quantity

dc

(
L(W),L(Z)

)= sup
A∈A

∣∣P(W ∈ A) − P(Z ∈ A)
∣∣, (1.1)

where A denotes the collection of all the convex sets in R
d .

Our main tool is Stein’s method for the multivariate normal distribution, which has already
been used to obtain bounds on (1.1), the two main contributions coming from Götze [18] for sums
of independent random vectors (see also Bhattacharya and Holmes [6]), and Rinott and Rotar′
[25] for sums of dependent random vectors that allow for a certain decomposition. Most other
contributions on multivariate normal approximation via Stein’s method have focused on smooth
functions; see, for example, Barbour [3], Goldstein and Rinott [17], Raič [23] and Reinert and
Röllin [24].

The main aim of this article is to improve the results of Rinott and Rotar′ [25] in two impor-
tant ways. First, we remove a logarithmic factor in the error bound of Rinott and Rotar′ [25].
The techniques that allow us to do this are taken from Fang [15] and will yield optimal rates of
convergence in some applications. Second, the assumptions made on the dependence by Rinott
and Rotar′ [25] do not cover the applications we will discuss here. Instead, we will use a mul-
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tivariate generalisation of Stein couplings to achieve the necessary generality. Stein couplings,
introduced by Chen and Röllin [11], capture the minimal structural assumption necessary to use
Stein’s method for normal approximation.

We will also keep the dependence of the constants on the dimensionality explicit and as small
as possible without blowing up the proofs, but we do not pursue optimality in that respect.

The remainder of this article is organised as follows. In Section 2, we will state our main
abstract theorem, but we will postpone the (rather technical) proof to Section 4. In Section 3,
we will discuss two main applications, one involving permutation statistics and the other a new
test for heterogeneity for dense graphs. In Section 5, we will present some standard multivariate
Stein couplings for reference.

2. Main results

Stein couplings were introduced by Chen and Röllin [11] in order to unify many of the ap-
proaches developed around Stein’s method for normal approximation, such as local approach,
size biasing and exchangeable pairs, to name but a few. In the spirit of Chen and Röllin [11], we
give a multivariate definition of Stein couplings.

Definition 2.1. A triple of square integrable d-dimensional random vectors (W,W ′,G) is called
a d-dimensional Stein coupling if

E
{
GtF

(
W ′)− GtF(W)

}= E
{
WtF(W)

}
(2.1)

for all F :Rd → R
d for which the expectations exist.

Remark 2.2. By choosing F(w) = ei , where ei is the ith unit vector, it follows from (2.1) that
EWi = 0. Therefore, EW = 0 is a necessary condition for a Stein coupling. Choosing F(w) =
wjei , it follows that

E
{
G
(
W ′ − W

)t}= Cov(W). (2.2)

Throughout this article, |x| denotes the Euclidean norm of x ∈ R
d , and Id denotes the

d-dimensional identity matrix. To shorten the formulas somewhat, we will write E
W(·) to de-

note conditional expectation E(·|W).
With this, we can formulate our main result.

Theorem 2.1. Let (W,W ′,G) be a d-dimensional Stein coupling. Assume that Cov(W) = Id .
With D = W ′ − W , suppose that there are positive constants α and β such that

|G| ≤ α, |D| ≤ β. (2.3)

Then there is a universal constant C such that

dc

(
L(W),L(Z)

)
(2.4)

≤ C
(
d7/4αE|D|2 + d1/4β + d7/8α1/2B

1/2
1 + d3/8B2 + d1/8B

1/2
3

)
,
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where Z is a d-dimensional standard Gaussian random vector and

B1 =
√

VarEW |D|2, B2 =

√√√√√ d∑
i,j=1

VarEW(GiDj ),

B3 =

√√√√√ d∑
i,j,k=1

VarEW(GiDjDk).

As usual, we can upper bound VarEW(·) by VarEF (·) for any σ -algebra F ⊃ σ(W). This
is a standard trick in Stein’s method and will be used in the applications without further men-
tion.

Note that, if (W,W ′,G) is a d-dimensional Stein coupling and A is a m × d matrix, m ≥ 1,
then (AW,AW ′,AG) is an m-dimensional Stein coupling. In this light, assuming that Cov(W) =
Id is a matter of convenience rather than a real restriction. If A is a d ×d matrix, denote by ‖A‖2

its operator norm with respect to the Euclidean norm. Noticing that dc is invariant under linear
transformations, we have the following consequence of Theorem 2.1.

Corollary 2.2. Under the conditions of Theorem 2.1, but now allowing Cov(W) = � for any
positive definite �, there is a universal constant C such that

dc

(
L
(
�−1/2W

)
,L(Z)

)
= dc

(
L(W),L

(
�1/2Z

))
(2.5)

≤ C
(
d7/4αs3

2E|D|2 + d1/4s2β + d7/8s
3/2
2 α1/2B

1/2
1 + d3/8s2

2B2 + d1/8s
3/2
2 B

1/2
3

)
,

where s2 = ‖�−1/2‖2.

Note that the corollary cannot be expected to be informative if � is singular or close to sin-
gular. In particular, the Wi need to be standardized so that VarWi , 1 ≤ i ≤ d , are all of the same
order. The proof of Corollary 2.2 is given in Section 4.

Remark 2.3. If (W,W ′) is an exchangeable pair of d-dimensional vectors and

E
W
(
W ′ − W

)= −�W (2.6)

for some invertible d × d-matrix �, then (W,W ′, 1
2�−1(W ′ − W)) is a Stein coupling and

Theorem 2.1 can be applied. In the special case where � = λId , or in other words, if we have

E
W
(
W ′ − W

)= −λW (2.7)
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for some 0 < λ < 1, then one can prove a special case of Theorem 2.1 without using exchange-
ability, but only assuming that L(W) = L(W ′). A sketch of the proof will be given in Section 4.
This is analogous to Reinert and Röllin [24], where a result similar to our Theorem 2.1 was ob-
tained for the special case of (2.6), but for a smooth metric, and where also exchangeabiliy was
relaxed to equal marginals in the special case of (2.7).

3. Applications

3.1. A confidence interval for dense homogeneous random graphs

One of the basic problems in the statistical analysis of graphs is to test whether the connec-
tions between vertices in a graph have arisen ‘completely at random’, or whether there is more
structure in the graph. Among several possible null hypotheses, one of the best-studied is the
Erdős–Rényi random graph G(n,p), where two vertices are connected with probability p and
remain disconnected with probability 1 − p, independently of all else.

Many test statistics have been analysed in the literature, such as diameter, maximal degree,
number of triangles, etc.; see, for example, Pao, Coppersmith and Priebe [22] for a recent
overview and simulation studies of the performance of these and other test statistics. Despite
the fact that much is known about the behaviour of these test statistics under the null model
G(n,p), it seems that little is known, at least theoretically, about how these statistics behave
under alternative models, such as heterogeneous models, where the edge probabilities may vary.
Here, as a first step, we propose and justify a test that is based on the theory of dense graph limits,
and we will show that our test is consistent, that is, any deviation from the homogeneous model
will eventually be detected (in a sense made precise below).

Theory of dense graph limits

Before we start with the statistical aspect of the problem, we first give a brief introduction to the
theory of dense graph limits. We will only discuss those parts of the theory that are necessary
for the purpose of our application; we refer to Borgs, Chayes, Lovász, Sós and Vesztergombi
[8,9] and Bollobás and Riordan [7] for in-depth discussions. Also, dense graph limit theory is
intimately related to the theory of partially exchangeable arrays as studied by Aldous [1]; see
Diaconis and Janson [14].

In what follows, all graphs are assumed to be simple, that is, graphs that contain no loops and
no multiple edges, and, moreover, we assume that all graphs are undirected. To begin with, we
consider non-random graphs. Let F and G be graphs with k, respectively, n vertices. Denote by
inj(F,G) the set of injective graph homomorphisms from F into G, and define

t (F,G) = | inj(F,G)|
(n)k

,

where (n)k := n(n− 1) · · · (n− k + 1) (note that we follow the notation of Bollobás and Riordan
[7]; our t is what Borgs, Chayes, Lovász, Sós and Vesztergombi [8] denote by tinj). The number
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| inj(F,G)| is just the number of copies of F in G multiplied by the number of graph automor-
phisms of F . Since | inj(F,G)| ≤ (n)k , it is clear that 0 ≤ t (F,G) ≤ 1, and we can think of this
value as the “density of F in G”.

Let (Gn) be a sequence of graphs (where n ≥ n0 for some unspecified n0) and for convenience
assume that Gn has n vertices. We call this sequence a dense graph sequence if the number of
edges is of order n2. In other words, if Km denotes the complete graph on m vertices, a graph
sequence (Gn) is called dense if lim infn→∞ t (K2,Gn) > 0, and we will in fact mostly consider
sequences for which limn→∞ t (K2,Gn) exists. Although it would not pose any difficulties to
allow the case limn→∞ t (K2,Gn) = 0 (the “sparse” case), this only leads to degenerate results
in the context of dense graph theory, and is therefore excluded for the sake of clarity.

We say that a dense graph sequence (Gn) is convergent if limn→∞ t (F,Gn) exists for every
finite graph F . We can construct a metric d on the set of isomorphism classes of finite graphs,
denoted by F , that quantifies this convergence. Let F1,F2, . . . be an arbitrary enumeration of the
set of finite graphs. For two graphs G1 and G2, let

d(G1,G2) =
∑
i≥1

2−i
∣∣t (Fi,G1) − t (Fi,G2)

∣∣.
It turns out that the metric space (F , d) is not complete. The usual way of constructing the
completion of a metric space is to form equivalence classes of sequences that are Cauchy
with respect to the metric. However, it turns out that there is a much more natural representa-
tion.

Let κ : [0,1]2 → [0,1] be a measurable and symmetric function; we will call any such function
a standard kernel (called graphon by Borgs, Chayes, Lovász, Sós and Vesztergombi [8]). For any
finite graph F with k vertices, let

t (F, κ) =
∫ 1

0
· · ·
∫ 1

0

∏
{i,j}⊂E(F)

κ(xi, xj )dx1 · · · dxk,

where E(F) denotes the edge set of graph F . The quantity t (F, κ) can be interpreted the “density
of F in κ”, and we will give a more intuitive representation of t (F, κ) involving random graphs
later.

One of the key results of dense graph theory (see, for example, Borgs, Chayes, Lovász, Sós
and Vesztergombi [8], Theorem 3.1) is the following. If t (F,Gn) converges for every F , that
is, if (Gn) is a Cauchy sequence with respect to d , then there is a standard kernel κ such that
lim t (F,Gn) = t (F, κ) for every F . We can therefore say that κ is a limit of the graph sequence
(Gn). Analogous to the fact that there are graphs that are isomorphic to each other, there can (and
typically will) be several standard kernels representing the same limit. Therefore, an additional
step of forming equivalence classes of standard kernels is necessary to obtain the actual com-
pletion of the metric space (F , d). Since we do not need this we refer again to Borgs, Chayes,
Lovász, Sós and Vesztergombi [8,9] on how to characterise these equivalence classes.

So far, all graphs have been non-random. If now (Gn) is a sequence of random graphs de-
fined on a common probability space 	, we will be interested in statements of the form “(Gn)
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converges to κ almost surely”, meaning that with probability 1, the realisation of a sequence
G1(ω),G2(ω), . . . converges to κ in the sense introduced above. Although it is possible to allow
for κ to be random as well, we will only consider fixed κ in what follows.

For a given standard kernel κ , there is an elegant sampling procedure to create random graphs
that converge to κ almost surely. Let U1,U2, . . . be a sequence of independent random variables
that are uniformly distributed on the interval [0,1]. To construct Gn, connect vertices i and j

with probability κ(Ui,Uj ), independently of all other edges. We denote the distribution of the
graph Gn obtained in this way by G(n,κ) and it is clear that G(n,p) for 0 ≤ p ≤ 1 can be
identified with G(n,κ) for κ ≡ p, the constant standard kernel. Note that the edges of G(n,κ)

are conditionally independent given U1, . . . ,Un, but in general not unconditionally independent.
It is now easy to verify that, if Gn ∼ G(n,κ), then

Et (F,Gn) = t (F, κ).

Furthermore, we have the following concentration result, which, by Borell–Cantelli, immediately
implies that (Gn) converges to κ almost surely.

Lemma 3.1 (Borgs, Chayes, Lovász, Sós and Vesztergombi [8], Lemma 4.4). If Gn ∼ G(n,κ)

for some standard kernel κ , and if F is a graph on k vertices, then

P
[∣∣t (F,Gn) − t (F, κ)

∣∣> ε
]≤ exp

(
−ε2n

4k2

)

for every ε > 0.

Remark 3.1. A remark about models that are more general than G(n,κ) is in place. It is impor-
tant to note that dense graph theory is a first order approximation of dense graphs, analogous to
the law of large number for random variables. It can be shown that the completion of (F, d) is
compact and therefore, for any dense graph sequence, there must be accumulation points which
can be represented by a set K of standard kernels. So, if one considers graph models that produce
dense graphs that allow for more complex dependence between edges, any realisation of a large
enough graph from such a model will be close to at least one of the standard kernels from its
accumulation points K. Thus, from this first order point of view, any dependence between the
edges becomes irrelevant in the limit, since every κ ∈ K is also the limit of the model G(n,κ).
As of yet, there seems to be no established theory of second order fluctuations of dense graphs
around their limits that would capture more subtle aspects of such graphs.

Characterisation of homogenous Erdős–Rényi graphs

Recall that Km denotes the complete graph of size m, and let Cm be the cycle graph of size m.
Chung, Graham and Wilson [12] proved the following surprising result, which we shall present
reformulated in the language of dense graph limit theory (see Lovász and Szegedy [21] for gen-
eralisations of these findings).
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Theorem 3.2 (Chung, Graham and Wilson [12], Theorem 1). If (Gn) is a (non-random) dense
graph sequence such that

t (K2,Gn) → p and t (C4,Gn) → p4

for some 0 < p ≤ 1, then (Gn) converges and the limit is the constant standard kernel κ ≡ p.

In other words, κ ≡ p is the only standard kernel with t (K2, κ) = p and t (C4, κ) = p4, and it
is not difficult to show that, if κ is not constant and t (K2, κ) = p, then t (C4, κ) > p4. This result
suggests that we can use the number of edges and 4-cycles in order to test whether κ is constant
or not. Indeed, for Gn ∼ G(n,κ) with non-constant κ , we should be able to detect a discrepancy
between the edge density to the fourth power and 4-cycle density if n is large enough.

However, some care is needed. If Gn is a given graph of size n, define the two statistics

T1(Gn) = | inj(K2,Gn)|
2

, T2(Gn) = | inj(C4,Gn)|
8

.

The factors 2 and 8, respectively, are the sizes of the automorphism groups of K2 and C4, re-
spectively. Therefore, T1 is the number of edges in Gn and T2 is the number of 4-cycles in Gn.
By straightforward calculations we have that, if Gn ∼ G(n,p),

Var
(
T1(Gn)

)= (n

2

)
p(1 − p), Cov

(
T1(Gn), T2(Gn)

)= 12

(
n

4

)
p4(1 − p)

and

Var
(
T2(Gn)

)= 3

(
n

4

)
p4(1 − p)

(
1 + p − 13p2 + 4np2 + 35p3 − 24np3 + 4n2p3).

It is clear from this that Cor(T1(Gn), T2(Gn)) → 1 as n → ∞, hence, in the limit, the fluctuation
of the number of 4-cycles is determined by that of the number of edges in the graph; see Janson
and Nowicki [20] for such and more general results. Thus, we cannot use these values directly to
construct our test.

Following Janson and Nowicki [20], we can instead consider the density of 4-cycles corrected
by the edge density (this is essentially the first non-leading term in a Hoeffding-type decomposi-
tion for the 4-cycle count). To this end, define the normalised edge count

W1(p,Gn) = T1(Gn) − (n2)p
σ1

, with σ 2
1 =

(
n

2

)
p(1 − p),

and the corrected and normalised 4-cycle count

W2(p,Gn) = T2(Gn) − 2
(
n−2

2

)
p3T1(Gn) + 9

(
n
4

)
p4

σ2

with

σ 2
2 = 3

(
n

4

)
p4(1 − p)2(1 + 2p + (4n − 11)p2);
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it is easy to see that Cov(W1,W2) = 0. In order to motivate the choice of W1 and W2, note that,
from Lemma 3.1 and for general κ and Gn ∼ G(n,κ),

W1(p,Gn)

n
→ 1√

2p(1 − p)

(
t (K2, κ) − p

)
,

W2(p,Gn)

n3/2
→ 1

4
√

2p3(1 − p)

(
t (C4, κ) − 4p3t (K2, κ) + 3p2)

almost surely as n → ∞, so that W1(p,Gn) and W2(p,Gn) can only expected to be near zero if
κ ≡ p.

Barbour, Karoński and Ruciński [4] use Stein’s method to prove univariate normal approxi-
mations of subgraph counts and related statistics, but for quantities such as W2 they resort to the
method of moments. Corresponding multivariate results where obtained by Janson and Nowicki
[20] in great generality for incomplete U -statistics using Hoeffding-type decompositions and the
methods of moments. For degenerate statistics like W2 they state that “Stein’s method does not
seem to work in that case”.

The reason that W2 is more difficult to handle is that, if represented as an incomplete U -
statistic, many of the summands are uncorrelated (see (3.5) below), which requires more delicate
estimates. We note that the arguments of Barbour, Karoński and Ruciński [4] could be, in fact,
improved to cover such cases as well.

Theorem 3.3. Let Gn ∼ G(n,p) be a realisation of an Erdős–Rényi random graph on n vertices
with edge probability p. Let W = (W1(p,Gn),W2(p,Gn)) and let Z be a standard bi-variate
normal random variable. There is a universal constant C independent of p and n such that

dc

(
L(W),L(Z)

)≤ C

p9(1 − p)3
√

n
.

Theorem 3.3 justifies the following procedure to construct a confidence set for the family of
Erdős–Rényi random graphs. Let Gn be a simple graph of size n. Fix 0 < α < 1 and define the
1 − α confidence set as

CS1−α(Gn) = {0 < p < 1 :W 2
1 (p,Gn) + W 2

2 (p,Gn) ≤ q1−α

}
,

where q1−α is the 1 − α quantile of the χ2-distribution with 2 degrees of freedom. In words,
CS1−α(Gn) is the set of those p for which Gn is “compatible” with the model G(n,p) at the
significance level α. If CS1−α(Gn) is empty, then Gn is not compatible with any homogeneous
Erdős–Rényi random graph model.

For what follows, denote by Pκ the distribution of Gn under the law G(n,κ) and let Pp = Pκ

for κ ≡ p.

Corollary 3.4. For any given 0 < pl < pu < 1,

Pp

[
p /∈ CS1−α(Gn)

]= α + O
(
n−1/2)
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uniformly in p ∈ [pl,pu] as n → ∞. Furthermore, if κ is a non-constant standard kernel, and if
n ≥ max{19,54q

1/2
1−α/rκ }, we have

Pκ

[
CS1−α(Gn) �= ∅]≤ 2 exp

(
−nr2

κ

144

)
, (3.1)

where

r2
κ = inf

0<p<1

{(
t (K2, κ) − t (K2,p)

)2 + (t (C4, κ) − t (C4,p)
)2}

(note that rκ > 0 from Theorem 3.2 and the discussion thereafter).

Proof. The first part is immediate from Theorem 3.3. For the second part assume that κ is not
constant. Consider the points b(κ) = (t (K2, κ), t (C4, κ)) and b(p) = (p,p4), and, by slight
abuse of notation, b(n) = (t (K2,Gn), t (C4,Gn)). Using Lemma 3.1, we have

Pκ

[∣∣b(n) − b(κ)
∣∣> ε

]
≤ Pκ

[∣∣b1(n) − b1(κ)
∣∣> ε/

√
2
]+ Pκ

[∣∣b2(n) − b2(κ)
∣∣> ε/

√
2
]

(3.2)

≤ 2 exp
(−ε2n/128

)
for any ε > 0. Now, note that we can write

W1(p,Gn) =
(
n
2

)
σ1

(
b1(n) − b1(p)

)
, W2(p,Gn) = 3

(
n
4

)
σ2

w(n,p),

where

w(n,p) = (b2(n) − b2(p)
)− 4p3(b1(n) − b1(p)

)
.

Let

δ =
√

67 − 4

306
rκ

and define the events

A1(p) = {∣∣b(n) − b(κ)
∣∣≤ 8rκ/9,

∣∣b1(n) − b1(p)
∣∣> δ

}
,

A2(p) = {∣∣b(n) − b(κ)
∣∣≤ 8rκ/9,

∣∣b1(n) − b1(p)
∣∣≤ δ

}
.

On one hand, we have

W1(p,Gn)
2 ≥ I

[
A1(p)

]((n2)δ
σ1

)2

. (3.3)

On the other hand, since |b(n) − b(κ)| ≤ 8rκ/9 implies |b(n) − b(p)| ≥ rκ/9, we have

w(n,p) >

√
(rκ/9)2 − δ2 − 4δ = rκ

18
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on A2(p), and hence

W2(p,Gn)
2 ≥ I

[
A2(p)

](3
(
n
4

)
rκ

18σ2

)2

. (3.4)

Setting A(p) = A1(p) ∪ A2(p) and putting (3.3) and (3.4) together, we obtain

W1(p,Gn)
2 + W2(p,Gn)

2

≥ I
[
A(p)

]
r2
κ min

{( (n
4

)
6σ2

)2

,

(
(
√

67 − 4)
(
n
2

)
306σ1

)2}

≥ I
[
A(p)

]
r2
κ min

{
4.3 · 10−3(n − 1)3,3.7 · 10−4(n)2

}
.

If n ≥ 19, we have

min
{
4.3 · 10−3(n − 1)3,3.7 · 10−4(n)2

}≥ 3.5 · 10−4n2.

Hence, if n ≥ max{19, (q1−α/(3.5 · 10−4r2
κ ))1/2}, and using (3.2),

Pκ [CS1−α = ∅] ≥ Pκ

[∣∣b(n) − b(k)
∣∣≤ 8rκ/9

]≥ 1 − 2 exp
(−nr2

κ /144
)
,

which implies (3.1). �

Remark 3.2. Note that (3.1) essentially says that, if the true standard kernel κ is non-constant,
the test will eventually detect this for n large enough. It is not clear if this is still true if 4-cycles
were to be replaced by triangles. Chung, Graham and Wilson [12], page 361, give an example of
non-constant standard kernel κ for which

t (K2, κ) = 1
2 , t (C3, κ) = 1

8 ,

which also holds for the constant standard kernel κ ≡ 1/2.

Remark 3.3. To go back to the question posed at the beginning of the section, namely to decide
whether a given graph Gn is compatible with any homogenous model G(n,p), 0 < p < 1, we
can formulate this now more precisely as the testing problem

H0 :Gn ∼ G(n,p) for some 0 < p < 1

against

H1 :Gn ∼ G(n,κ) with κ �≡ p for all 0 < p < 1.

As we have already pointed out in Remark 3.1, from the point of view of first order approximation
of dense graph limit theory, the alternative hypothesis is already in its most general form, since
the models G(n,κ) cover all possible dense graph limits.

We can now define a test ψ(Gn) that rejects the null hypothesis if C1−α(Gn) is empty, that is,

ψ(Gn) = I
[
W 2

1 (p,Gn) + W 2
2 (p,Gn) > q1−α for all 0 < p < 1

]
.
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Since

Pp

[
ψ(Gn) = 1

]≤ Pp

[
W 2

1 (p,Gn) + W 2
2 (p,Gn) > q1−α

]= α + O
(
n−1/2),

this test has an asymptotic significance level of α or less. Whether the asymptotic significance
level is strictly less than or equal to α depends on the asymptotic behaviour of the quantity

inf
0<p<1

{
W 2

1 (p,Gn) + W 2
2 (p,Gn)

}
,

which cannot be expected to have a χ2-distribution. Numerical simulations indicate that the
asymptotic significance level of ψ is strictly less than α, but a mathematical proof of this obser-
vation eludes us.

Before we prove Theorem 3.3, we need some notation and technical lemmas. For the remain-
der of this subsection, that is until the end of the proof of Theorem 3.3, we will follow the
convention that the elements in an ordered m-tuple (i1, . . . , im) of integers are pairwise differ-
ent and range from 1 to n, and we will assume the same for sets written as {i1, . . . , im}, so that
|{i1, . . . , im}| = m always. For every (i, j, k, l) let

ηijkl = Iij IjkIklIil − p3(Iij + Ijk + Ikl + Iil) + 3p4,

where Iij = Iji is the indicator of the event that there is an edge connecting i and j . Note that
between every set of four vertices {i, j, k, l}, only three essentially different 4-cycles can be
spanned, so that, for example, the set of eight 4-tuples{

(i, j, k, l), (j, k, l, i), (k, l, i, j), (l, i, j, k),

(i, l, k, j), (l, k, j, i), (k, j, i, l), (j, i, l, k)
}

represent the same 4-cycle, and hence

ηijkl = ηjkli = ηklij = ηlijk

= ηilkj = ηlkji = ηkjil = ηjilk.

It is also straightforward to verify that, if V ⊂ {1, . . . , n} is of arbitrary size, then

E
{
ηijkl |(Iuv)u,v∈V

}= 0 (3.5)

for any (i, j, k, l) with |{i, j, k, l} ∩ V| ≤ 2. From (3.5), we can easily deduce statements about
mixed moments. For example, for any (i, j, k, l) and any (u, v), we have

E{ηijklIuv} = 0,

or, if |{i, j, k, l} ∩ {u,v,w,m}| ≤ 2, we have

E{ηijklηuvwm} = 0.
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Whenever we will be using such identities (or similar identities with more factors) in the proof,
we will only refer to (3.5), since obtaining these covariance formulas from (3.5) is straightfor-
ward.

For each ν = {i, j, k, l}, let

X1,ν = 1(
n−2

2

)
σ1

(Iij + Iik + Iil + Ijk + Ijl + Ikl − 6p),

X2,ν = 1

σ2
(ηijkl + ηijlk + ηikjl),

and Xν = (X1,ν ,X2,ν)
t . Now we can represent W as a sum of locally dependent random vectors,

namely

W =
∑
ν

Xν, (3.6)

where the sum ranges over all subsets ν = {i, j, k, l}. To see that (3.6) is the same as in Theo-
rem 3.3, recall that between each set of four vertices {i, j, k, l}, there can be at most three different
4-cycles, and that, in the definition of X2,ν , one representative of each of them is picked. Fur-

thermore, each edge Iij is over-counted
(
n−2

2

)
times, hence the additional factor

(
n−2

2

)−1
in the

definition of X1,ν . It is straightforward to check that

EW = 0, E
{
WWt

}= I2,

where Im is the m-dimensional unit matrix. Note that Xν and Xξ are independent whenever
|ν ∩ ξ | ≤ 1, that is, share at most one vertex. Hence, for each ν, we define the set Aν := {ξ : |ν ∩
ξ | ≥ 2}, the ‘neighbourhood’ of Xν . For given ν, we then have that the collection (Xξ )ξ /∈Aν is
independent of Xν . Therefore, if I is uniformly distributed over all ν,

(
W,W ′,G

) := (W,W −
∑
ν∈AI

Xν,−
(

n

4

)
XI

)
(3.7)

is a Stein coupling (cf. Section 5).
Since the sequence (Gn) starts at some unspecified integer n0, we can assume without loss

of generality that n0 ≥ 3, and, hence, use G1 and G2 to denote the first, respectively, second
component of the vector G, rather than elements from the random graph sequence (Gn).

Proof of Theorem 3.3. We apply Theorem 2.1 for the Stein coupling given in (3.7). Let as usual
D = W ′ − W . In what follows, C denotes a positive constant independent of p and n, possibly
different from line to line. Note first that

σ 2
1 ≥ Cn2p(1 − p), σ 2

2 ≥ Cn5p6(1 − p)2.

Hence,

|Xν | ≤ C

(
1

n2σ1
+ 1

σ2

)
≤ C

n5/2p3(1 − p)
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and |Aν | ≤ Cn2, which yields the upper bounds

|G| ≤ Cn3/2

p3(1 − p)
=: α, |D| ≤ C

p3(1 − p)n1/2
=: β. (3.8)

The second moment of |D| can be calculated as follows. Noting that |ξ ∩ ξ ′| ≤ 1 implies
E(X1,ξX1,ξ ′) = 0, and |ξ ∩ ξ ′| ≤ 2 implies E(X2,ξX2,ξ ′) = 0, which follows from (3.5), we
have

E|D|2 = ED2
1 +ED2

2

= 1(
n
4

)∑
ν

∑
ξ,ξ ′∈Aν

E(X1,ξX1,ξ ′) + 1(
n
4

)∑
ν

∑
ξ,ξ ′∈Aν

E(X2,ξX2,ξ ′)

(3.9)

≤ C

n4
× n4 × n2 × n2 × 1

n4σ 2
1

+ C

n4
× n4 × n2 × n × 1

σ 2
2

≤ C

n2p6(1 − p)2
.

Define the σ -field F = σ(Gn). Clearly, F ⊃ σ(W). In the following, we calculate the variances
of the conditional expectations in the bound (2.4). First,

Var
(
E
FG1D1

) ≤ Var

(∑
ν

X1,ν

∑
ξ∈Aν

X1,ν

)
(3.10)

=
∑
ν,ν′

∑
ξ∈Aν,ξ ′∈Aν′

Cov(X1,νX1,ξ ,X1,ν′X1,ξ ′) ≤ Cn10

n8σ 4
1

,

where the last inequality follows from the fact that Cov(X1,νX1,ξ ,X1,ν′X1,ξ ′) �= 0 can occur only
if |(ν ∪ ξ) ∩ (ν′ ∪ ξ ′)| ≥ 2. By the same argument,

Var
(
E
FG1D2

)≤∑
ν,ν′

∑
ξ∈Aν,ξ ′∈Aν′

Cov(X1,νX2,ξ ,X1,ν′X2,ξ ′) ≤ Cn10

n4σ 2
1 σ 2

2

(3.11)

and

Var
(
E
FG2D1

)≤ Cn10

n4σ 2
1 σ 2

2

. (3.12)

In order to bound Var(EFG2D2), we argue that

Cov(X2,νX2,ξ ,X2,ν′X2,ξ ′) �= 0 implies
∣∣ν ∪ ξ ∪ ν′ ∪ ξ ′∣∣≤ 9, (3.13)

from which we can deduce that

Var
(
E
FG2D2

)≤ Cn9

σ 4
2

. (3.14)
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To show (3.13), note that the left-hand side implies that

(i) any intersection of ν, ξ , ν′ or ξ ′ with the union of the other three sets has at least three
elements (otherwise we would obtain a contradiction with (3.5)), and

(ii) at least one of the intersections ν ∩ ν′, ν ∩ ξ ′, ξ ∩ ν′ and ξ ∩ ξ ′ has at least two elements
(otherwise X1,ν′X1,ξ ′ and X1,ν′X1,ξ ′ would be independent).

Assume now that the left-hand side of (3.13) is true. Since ξ ∈ Aν , we have |ν ∩ξ | ≥ 2, and hence
|ν ∪ ξ | ≤ 6, and similarly |ν′ ∪ ξ ′| ≤ 6. Using (ii), we deduce that one of the three inequalities
|(ν ∪ ξ) ∩ ν′| ≥ 2, |(ν ∪ ξ) ∩ ξ ′| ≥ 2, or |(ν′ ∪ ξ ′) ∩ ν| ≥ 2 must hold. If the first inequality holds,
we obtain |ν ∪ ξ ∪ ν′| ≤ 8, and, using (i), that |ν ∪ ξ ∪ ν′ ∪ ξ ′| ≤ 9; the other two inequalities are
analogous. This concludes the proof of (3.13).

Collecting the bounds (3.10), (3.11), (3.12) and (3.14), we obtain

B2 ≤ C

n1/2p6(1 − p)2
.

By similar arguments,

VarEF (D2
1

)≤ C

n2σ 4
1

, VarEF (D2
2

)≤ Cn5

σ 4
2

,

and, hence,

B1 ≤ C

n5/2p6(1 − p)2
.

The following bounds can be obtained in a similar fashion, again using (3.5), but we omit the
tedious details. We have

VarEF (G1D
2
1

) ≤ Cn14

n12σ 6
1

, VarEF (G1D1D2) ≤ Cn14

n8σ 4
1 σ 2

2

,

VarEF (G1D
2
2

) ≤ Cn13

n4σ 2
1 σ 4

2

, VarEF (G2D
2
1

)≤ Cn14

n8σ 4
1 σ 2

2

,

VarEF (G2D1D2) ≤ Cn13

n4σ 2
1 σ 4

2

, VarEF (G2D
2
2

)≤ Cn13

σ 6
2

,

and therefore

B3 ≤ C

np9(1 − p)3
.

Collecting the bounds on B1, B2 and B3, in combination with (3.8) and (3.9), yields the final
estimate via (2.4). �
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3.2. Joint normality of certain permutation statistics

Let M be a real n × n matrix and assume that M is anti-symmetric, that is, for each u,v ∈
{1, . . . , n}, we have

Muv = −Mvu.

Note that Muu = 0. Let π be a permutation of size n, chosen uniformly at random, and consider
the statistic

W =
∑
i<j

Mπ(i)π(j). (3.15)

Here, sums of the form
∑

i<j have to be interpreted as double sums
∑n−1

i=1
∑n

j=i+1. If it is to
be interpreted as a single sum, we will explicitly state the summation index using the notation∑

j :i<j .

Permutation statistics of the form (3.15) were considered by Fulman [16] and they are a special
case of doubly-indexed permutation statistics∑

i,j

a
(
i, j,π(i),π(j)

)
(3.16)

with

a(i, j, u, v) = I[i < j ]Muv.

The reason to study (3.15) is that two important properties of permutations, the number of
descents and inversions, can be readily represented in this form. Choosing Mu,u+1 = −1 and
Muv = 0 for all other v > u (for v < u, Muv is defined via anti-symmetry), (3.15) becomes
2 Des(π−1) − (n − 1), where Des(π) is the number of descents of π ; with Muv = −1 for all
u < v, (3.15) becomes 2 Inv(π−1) − (n2), where Inv(π) is the number of inversions of π .

Using Stein’s method, Zhao, Bai, Chao and Liang [26] prove a general Berry–Esseen type
theorem for sums of the form (3.16), but their results do not apply to the number of descents
Des(π), which seems to be “too sparse”. In contrast, using a special exchangeable pair, Fulman
[16] was able to obtain a rate of convergence of n−1/2 for the Kolmogorov metric for both, the
number of descents and inversions.

We shall extend Fulman’s results to the multivariate setting. Furthermore, we are able to re-
move a certain condition on M (present in Fulman’s work), arising from the requirement of
exchangeability; cf. Remark 2.3. In addition to extending the exchangeable pair approach by
Fulman [16], we also provide a result using the local approach.

Let M(1), . . . ,M(d) be a sequence of real n × n matrices and assume that each matrix is anti-
symmetric. For each r , define Wr =∑i<j M

(r)
π(i)π(j). As in Fulman [16], define

A(r)
u =

∑
v:v>u

M(r)
uv , B(r)

u =
∑

v:v<u

M(r)
vu .

The mean and covariances of W = (W1, . . . ,Wd) are given in the following lemma.
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Lemma 3.5. We have EW = 0 and

Cov(Wr,Ws) = 1

3

(∑
u<v

M(r)
uv M(s)

uv +
∑
u

(
A(r)

u − B(r)
u

)(
A(s)

u − B(s)
u

))
. (3.17)

Proof. Both the covariance and the right-hand side of (3.17) are symmetric bilinear forms on
the vector space of all anti-symmetric matrices. Moreover, by Lemma 4.3.1 of Fulman [16], both
expressions match for M(r) = M(s). Since a symmetric bilinear form is uniquely determined by
the corresponding quadratic form, the results follows. �

With W = (W1, . . . ,Wd)t , we have the following result.

Theorem 3.6. Let W be as above and let

β = sup
r,u

∑
v

∣∣M(r)
uv

∣∣, β2 = sup
r,u

∑
v

(
M(r)

uv

)2
. (3.18)

Assume Var(Wr) = 1 for each 1 ≤ r ≤ d . Then, with � = Cov(W), there is a positive constant
Cd depending only on d , such that

dc

(
L(W),L

(
�1/2Z

))≤ Cd

∥∥�−1/2
∥∥2

2

(
nβ3 + n1/2ββ

1/4
2

)
. (3.19)

Although Theorem 3.6 is widely applicable, it does not yield optimal bounds for the appli-
cations discussed below. To this end, we also give a theorem that gives better bounds under the
more specific situation where the non-zero entries of M(r) are all near the diagonal and W1 is the
normalised number of inversions.

Theorem 3.7. Assume the situation of Theorem 3.6. In addition, assume that W1 is of the specific
form

W1 = Inv(π) − (1/2)
(
n
2

)
√

(n(n − 1)(2n + 5))/72
,

where Inv(π) is the number of inversions of π . Assume further that there is a positive integer m

such that

M(r)
uv = 0, if |u − v| > m and 2 ≤ r ≤ d .

Then

dc

(
L(W),L

(
�1/2Z

))≤ Cd,m

∥∥�−1/2
∥∥2

2nβ
3, (3.20)

where Cd,m is a positive constant depending only on d and m, and where

β := max

{
1√
n
, sup

r,u

∑
v

∣∣M(r)
uv

∣∣}.
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Remark 3.4. We will use Corollary 2.2 to prove (3.19) and (3.20). The bounds in (3.19) and
(3.20) have fewer terms than the bound in (2.5) because we will make use of the inequality d ≤
αβ for α and β defined in (2.3), which follows from (2.2) and the assumption that Var(Wr) = 1
for each r .

As a corollary of Theorem 3.7, we prove the joint asymptotic normality of the number of
descents and inversions of π ; the rate obtained is best possible.

Corollary 3.8. Let Des(π) and Inv(π) be the number of descents and inversions of π , and let

W = (W1,W2)
t =
(

Inv(π) − (1/2)
(
n
2

)
√

(n(n − 1)(2n + 5))/72
,

Des(π) − (n − 1)/2√
(n + 1)/12

)t

.

Then

dc

(
L(W),L(Z)

)≤ C√
n

for some absolute constant C, where Z is a 2-dimensional standard Gaussian vector.

Proof. Set

M(1)
uv =

√
18

n(n − 1)(2n + 5)
×
{−1 if v > u,

+1 if v < u,
0 otherwise,

and set

M(2)
uv =

√
3

n + 1
×
{−1 if v = u + 1,

+1 if v = u − 1,
0 otherwise.

Hence, we can take m = 1 in Theorem 3.7. Let τ = π−1, which is again a uniform random per-
mutation of size n. It can be easily verified that W1 =∑i<j M

(1)
τ (i)τ (j) and W2 =∑i<j M

(2)
τ (i)τ (j).

From Lemma 3.5, Var(W1) = Var(W2) = 1 and |Cov(W1,W2)| ≤ C/n. Moreover, β as defined
in (3.18) is smaller than C/

√
n. Therefore, the corollary is proved by applying Theorem 3.7. �

To prove Theorem 3.6, we need the following lemma, the proof of which is straightforward
and therefore omitted.

Lemma 3.9. For 1 ≤ r, s, t ≤ d and β defined in (3.18), we have∑
u1,...,u6

∣∣M(r)
u1u2

M(s)
u1u3

M(r)
u4u5

M(s)
u4u6

∣∣ ≤ n2β4, (3.21)

∑
|{u1,u2,u3}|=3,|{u4,u5,u6}|=3,

|{u1,...,u6}|≤5

∣∣M(r)
u1u2

M(s)
u1u3

M(r)
u4u5

M(s)
u4u6

∣∣ ≤ 9nβ4, (3.22)



2174 X. Fang and A. Röllin∑
u1,...,u8

∣∣M(r)
u1u2

M(s)
u1u3

M(t)
u1u4

M(r)
u5u6

M(s)
u5u7

M(t)
u5u8

∣∣ ≤ n2β6, (3.23)

∑
|{u1,...,u8}|≤7

∣∣M(r)
u1u2

M(s)
u1u3

M(t)
u1u4

M(r)
u5u6

M(s)
u5u7

M(t)
u5u8

∣∣ ≤ 22n2β4β2, (3.24)

where
∑

|{u1,...,uk}|≤k−1 stands for summation over all tuples (u1, . . . , uk) for which at least two
components are equal.

Proof of Theorem 3.6. We adopt the construction of W ′ from Fulman [16]. Let I be uniformly
chosen from {1, . . . , n} and independently of π . Given I , we define π ′ as π ◦ (I, I + 1, . . . , n)

where (I, I + 1, . . . , n) denotes the mapping I �→ I + 1 �→ · · · �→ n �→ I , while keeping
the rest identical. As π and π ′ both are uniformly distributed, W and W ′ have the same
marginal distribution (but are not necessarily exchangeable). Fulman [16] showed that with
λ = 2/n

E
π
(
W ′ − W

)= −λW.

Following Remark 2.3, the bound (2.5) holds with D = W ′ − W and G = 1
2λ−1D =

nD/4 (cf. Section 5). From the construction of W ′, we have (cf. Lemma 4.2.1 of Fulman
[16])

Dr = −2
∑

j :j>I

M
(r)
π(I)π(j)

for r ∈ {1, . . . , d}. By the definition of β in (3.18),

|G| ≤ Cdnβ, |D| ≤ Cdβ. (3.25)

We first prove that

VarEπ (DrDs) ≤ Cdβ4

n
. (3.26)

From the construction of W ′,

VarEπ (DrDs)

= Var

(
4

n

n∑
i=1

∑
j1,j2:

j1,j2>i

M
(r)
π(i)π(j1)

M
(s)
π(i)π(j2)

)

= 16

n2
Var

(
n∑

i=1

∑
j :j>i

M
(r)
π(i)π(j)M

(s)
π(i)π(j) +

n∑
i=1

∑
j1,j2:

j1,j2>i,j1 �=j2

M
(r)
π(i)π(j1)

M
(s)
π(i)π(j2)

)
.
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Using antisymmetry, it is not difficult to see that the first double sum in the last line is constant.
Hence, we only need to show that∑

|{i,j1,j2}|=3,|{k,l1,l2}|=3

∣∣K(r,s)
ij1j2kl1l2

∣∣
:=

∑
|{i,j1,j2}|=3,|{k,l1,l2}|=3

∣∣Cov
(
M

(r)
π(i)π(j1)

M
(s)
π(i)π(j2)

,M
(r)
π(k)π(l1)

M
(s)
π(k)π(l2)

)∣∣ (3.27)

≤ Cdnβ4.

We consider the cases |{i, j1, j2, k, l1, l2}| = 6 and |{i, j1, j2, k, l1, l2}| ≤ 5 separately. For the
first case, we have

K
(r,s)
ij1j2kl1l2

= 1

(n)6

∑
|{u,v1,v2,w,z1,z2}|=6

M(r,s)
uv1v2wz1z2

− 1

((n)3)2

∑
|{u,v1,v2}|=3
|{w,z1,z2}|=3

M(r,s)
uv1v2wz1z2

=
(

1

(n)6
− 1

((n)3)2

) ∑
|{u,v1,v2,w,z1,z2}|=6

M(r,s)
uv1v2wz1z2

− 1

((n)3)2

∑
|{u,v1,v2}|=3,|{w,z1,z2}|=3

|{u,v1,v2,w,z1,z2}|≤5

M(r,s)
uv1v2wz1z2

,

where M
(r,s)
uv1v2wz1z2 := M

(r)
uv1M

(s)
uv2M

(r)
wz1M

(s)
wz2 . By (3.21) and (3.22),

∣∣K(r,s)
ij1j2kl1l2

∣∣≤ Cd

β4

n5
.

Next, we consider the case |{i, j1, j2, k, l1, l2}| ≤ 5. Let π̃ be an independent copy of π . Again
by (3.21) and (3.22),∑

|{i,j1,j2}|=3,|{k,l1,l2}|=3
|{i,j1,j2,k,l1,l2}|≤5

∣∣K(r,s)
ij1j2kl1l2

∣∣

≤ E

[ ∑
|{i,j1,j2}|=3,|{k,l1,l2}|=3

|{i,j1,j2,k,l1,l2}|≤5

(∣∣M(r,s)
π(i)π(j1)π(j2)π(k)π(l1)π(l2)

∣∣+ ∣∣M(r,s)

π(i)π(j1)π(j2)π̃(k)π̃(l1)π̃(l2)

∣∣)]

= E

[ ∑
|{u,v1,v2}|=3,|{w,z1,z2}|=3

∣∣M(r,s)
uv1v2wz1z2

∣∣(I(∣∣{u,v1, v2,w, z1, z2}
∣∣≤ 5

)

+ I
(∣∣π−1({u,v1, v2}

)∩ π̃−1({w,z1, z2}
)∣∣≤ 5

))]

≤ Cdnβ4.
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Therefore, we have proved (3.27), and thus (3.26). Again from the construction of W ′, we can
write

VarEπ (DrDsDt) = 64

n2

∑
j1>i,j2>i,j3>i

l1>k,l2>k,l3>k

K
(r,s,t)
ij1j2j3kl1l2l3

,

where

K
(r,s,t)
ij1j2j3kl1l2l3

:= Cov
(
M

(r)
π(i)π(j1)

M
(s)
π(i)π(j2)

M
(t)
π(i)π(j3)

,M
(r)
π(k)π(l1)

M
(s)
π(k)π(l2)

Mt
π(k)π(l3)

)
.

By the same argument as for K
(r,s)
ij1j2kl1l2

, and using the bounds (3.23) and (3.24) instead of (3.21)
and (3.22), we can prove

VarEπ (DrDsDt) ≤ Cdβ4β2. (3.28)

Applying the bounds (3.25), (3.26) and (3.28) in (2.5) and using 1 ≤ Cdnβ2 by Remark 3.4 prove
the theorem. �

Next, we prove Theorem 3.7.

Proof of Theorem 3.7. Let τ = π−1. From Diaconis [13], W1 can be expressed as

W1 =
n∑

u=1

1√
(n(n − 1)(2n + 5))/72

(
ξu − n − u

2

)
=:

n∑
u=1

X(1)
u ,

where ξ1 is the minimum number of pairwise adjacent transpositions taking τ(1) to the first
position, ξ2 is the minimum number of pairwise adjacent transpositions taking τ(2) to the second
position after the first step is done, etc. Because τ is a uniform permutation, {ξ1, . . . , ξn} are
independent random variables with ξu ∼ Uniform{0, . . . , n−u} for 1 ≤ u ≤ n. For 2 ≤ r ≤ d , by
the assumption that M

(r)
uv = 0 if |u − v| > m,

Wr =
∑
i<j

M
(r)
π(i)π(j) =

∑
u,v:|u−v|≤m

π−1(u)<π−1(v)

M(r)
uv

=
n∑

u=1

( ∑
v:|u−v|≤m

M(r)
uv I
[
τ(u) < τ(v)

])=:
n∑

u=1

X(r)
u .

Let Xu = (X
(1)
u , . . . ,X

(d)
u )t . Then W =∑n

u=1 Xu. In the above pairwise transposition process,
if we know {ξv : 1 ≤ v ≤ u + m}, then we can reconstruct the positions of {τ(v) : |v − u| ≤ m}.
Observe that the relative order of {τ(v) : |v − u| ≤ m} does not depend on {ξv : 1 ≤ v < u − m}.
Therefore, Xu is measurable with respect to {ξv : |v − u| ≤ m} and W can be viewed as a sum of
locally dependent random vectors (cf. Section 5.3) with neighbourhood Au = {u − 2m,u + 2m}
for each 1 ≤ u ≤ n. For the Stein coupling (5.2), we have

|G| ≤ Cd,mnβ, |D| ≤ Cd,mβ.
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Moreover, by the local dependence structure,

VarEW(GrDs) ≤ Var

(
n∑

u=1

∑
v∈Au

X(r)
u X(s)

v

)

=
n∑

u=1

∑
w:|w−u|≤6m

Cov

(∑
v∈Au

X(r)
u X(s)

v ,
∑
z∈Aw

X(r)
w X(s)

z

)

≤ Cd,mnβ4,

where we used the inequality Cov(X,Y ) ≤ (EX2 +EY 2)/2. Similarly,

VarEW(GrDsDt) ≤ Cd,mnβ6.

The bound (3.20) is proved by applying the above bounds to (2.5) and using 1 ≤ Cd,mnβ2 by
Remark 3.4. �

4. Proof of main theorem

For given test function h, we consider the Stein equation

�f (w) − wt∇f (w) = h(w) −Eh(Z), w ∈ R
d, (4.1)

where � denotes the Laplacian operator and ∇ the gradient operator. If h is not continuous (like
the indicator function of a convex set), then f is not smooth enough to apply Taylor expansion
to the necessary degree, so more refined techniques are necessary.

We follow the smoothing technique of Bentkus [5]. Recall that A is the collection of all convex
sets in R

d . For A ∈ A, let hA(x) = IA(x), and define the smoothed function

hA,ε(w) = ψ

(
dist(w,A)

ε

)
, (4.2)

where dist(w,A) = infv∈A |w − v| and

ψ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x < 0,
1 − 2x2, 0 ≤ x < 1

2 ,
2(1 − x)2, 1

2 ≤ x < 1,

0, 1 ≤ x.

(4.3)

Define also

Aε = {x ∈ R
d : dist(x,A) ≤ ε

}
, A−ε = {x ∈ A : dist

(
x,Rd \ A

)
> ε
}

(note that in general (A−ε)ε �= A).
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Lemma 4.1 (Lemma 2.3 of Bentkus [5]). The function hA,ε as defined above has the following
properties:

(i) hA,ε(w) = 1 for all w ∈ A, (4.4)

(ii) hA,ε(w) = 0 for all w ∈R
d \ Aε, (4.5)

(iii) 0 ≤ hA,ε(w) ≤ 1 for all w ∈ Aε \ A, (4.6)

(iv)
∣∣∇hA,ε(w)

∣∣≤ 2ε−1 for all w ∈R
d , (4.7)

(v)
∣∣∇hA,ε(v) − ∇hA,ε(w)

∣∣≤ 8|v − w|ε−2 for all v,w ∈R
d . (4.8)

Lemma 4.2. For any d-dimensional random vector W ,

dc

(
L(W),L(Z)

)≤ 4d1/4ε + sup
A∈A

∣∣EhA,ε(W) −EhA,ε(Z)
∣∣. (4.9)

Proof. By (2.2) of Bentkus [5], for any ε > 0,

dc

(
L(W),L(Z)

) ≤ sup
A∈A

∣∣EhA,ε(W) −EhA,ε(Z)
∣∣

+ sup
A∈A

max
{
P
(
Z ∈ Aε \ A

)
,P
(
Z ∈ A \ A−ε

)}
.

From Ball [2] and Bentkus [5], we have

sup
A∈A

max
{
P
(
Z ∈ Aε \ A

)
,P
(
Z ∈ A \ A−ε

)}≤ 4d1/4ε (4.10)

(the dependence on d in (4.9) is optimal; see Bentkus [5]). �

Fix now ε and a convex A ⊂R
d . It can be verified directly that with

gA,ε(w, s) = − 1

2(1 − s)

∫
Rd

[
hA,ε(

√
1 − sw + √

sz) −EhA,ε(Z)
]
ϕ(z)dz,

a solution to (4.1) is (cf. Götze [18])

fA,ε(w) =
∫ 1

0
gA,ε(w, s)ds, (4.11)

where ϕ is the density function of the d-dimensional standard normal distribution. In what fol-
lows, we keep the dependence on A and ε implicit and write g = gA,ε, f = fA,ε and h = hA,ε .
For real-valued functions on R

d we will write fi(x) for ∂f (x)/∂xi , fij (x) for ∂2f (x)/(∂xi ∂xj )

and so forth. Also we write gi(w, s) = ∂g(w, s)/∂wi and so on.
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Using this notation and the integration by parts formula, we have for 1 ≤ i, j, k ≤ d that

gij (w, s) = − 1

2s

∫
Rd

h(
√

1 − sw + √
sz)ϕij (z)dz

(4.12)

= 1

2
√

s

∫
Rd

hj (
√

1 − sw + √
sz)ϕi(z)dz

and

gijk(w, s) =
√

1 − s

2s3/2

∫
Rd

h(
√

1 − sw + √
sz)ϕijk(z)dz

(4.13)

=
√

1 − s

2
√

s

∫
Rd

hjk(
√

1 − sw + √
sz)ϕi(z)dz.

Lemma 4.3. For each map a : {1, . . . , d}k → R, we have

∫
Rd

(
d∑

i1,...,ik=1

a(i1, . . . , ik)
ϕi1...ik (z)

ϕ(z)

)2

ϕ(z)dz ≤ k!
d∑

i1,...,ik=1

(
a(i1, . . . , ik)

)2
. (4.14)

Proof. We will prove that∫
Rd

ϕi1···ik (z)
ϕ(z)

ϕj1···jk
(z)

ϕ(z)
ϕ(z)dz =

∑
π

δiπ(1)j1 · · · δiπ(k)jk
, (4.15)

where the summation is over all permutations of the set {1, . . . , k} and δ is the Kronecker delta.
By (4.15),

∫
Rd

(
d∑

i1,...,ik=1

a(i1, . . . , ik)
ϕi1...ik (z)

ϕ(z)

)2

ϕ(z)dz =
∑
π

d∑
i1,...,ik=1

a(i1, . . . , ik)a(iπ(1), . . . , iπ(k))

≤ k!
d∑

i1,...,ik=1

(
a(i1, . . . , ik)

)2
.

To prove (4.15), we observe that∫
Rd

ϕi1···ik (z)
ϕ(z)

ϕj1···jk
(z)

ϕ(z)
ϕ(z)dz

= ∂2k

∂xi1 · · ·∂xik ∂yj1 · · ·∂yjk

∣∣∣
x=y=0

∫
Rd

ϕ(z + x)

ϕ(z)

ϕ(z + y)

ϕ(z)
ϕ(z)dz

= ∂2k

∂w1 · · ·∂w2k

∣∣∣
x=y=0

e〈x,y〉
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where ws = xis and ws+k = yjs for s = 1,2, . . . , k. By Faà di Bruno’s formula (see Hardy [19]),
the latter expression equals

∑
P1,...,Pm

∂ |P1|〈x, y〉
�s∈P1∂ws

. . .
∂ |Pm|〈x, y〉
�s∈Pm∂ws

∣∣∣
x=y=0

,

where the summation is over all unordered partitions of the set {1,2, . . . ,2k} and | · | denotes the
cardinality. However, the summand is non-zero if and only if each Pr is of the form {s, t + k}
where is = jt . This proves (4.15). �

Proof of Theorem 2.1. Fix A ∈A and ε > 0 (to be chosen later) and let f = fA,ε be the solution
to the Stein equation (4.1) with respect to h = hA,ε as defined by (4.2). Let

κ := dc

(
L(W),L(Z)

)
.

Adding and subtracting the corresponding terms, we have for g(w, s) = gA,ε(w, s) in (4.11),

E
{
�g(W, s) − Wt∇g(W, s)

}
= E

{
Gt∇g

(
W ′, s

)− Gt∇g(W, s) − Wt∇g(W, s)
}

+
d∑

i,j=1

E
{
(δij − GiDj )gij (W, s)

}

−E

{
d∑

i=1

Gigi

(
W ′, s

)− d∑
i=1

Gigi(W, s) −
d∑

i,j=1

GiDjgij (W, s)

}

=: R0(s) + R1(s) − R2(s).

As (W,W ′,G) is a Stein coupling, clearly R0(s) ≡ 0. Therefore, by (4.1),

Eh(W) −Eh(Z) =
∫ 1

0

(
R1(s) − R2(s)

)
ds.

To estimate
∫ 1

0 R1(s)ds, we consider the cases ε2 < s ≤ 1 and 0 < s ≤ ε2 separately. For the first
case, we use the first expression of gij (w, s) in (4.12) and obtain

∫ 1

ε2
R1(s)ds =

d∑
i,j=1

E

∫ 1

ε2

(
− 1

2s

)∫
Rd

[
E

W(δij − GiDj )
]

× [h(
√

1 − sW + √
sz) − h(

√
1 − sW)

]
ϕij (z)dz ds,
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where we used the fact that
∫
Rd ϕij (z)dz = 0. By the Cauchy–Schwarz inequality, (4.14) and

(2.2),

d∑
i,j=1

E

∫
Rd

[
E

W(δij − GiDj )
][

h(
√

1 − sW + √
sz) − h(

√
1 − sW)

]
ϕij (z)dz

≤
{
E

∫
Rd

(
d∑

i,j=1

[
E

W(δij − GiDj )
]ϕij (z)

ϕ(z)

)2

ϕ(z)dz

}1/2

×
{∫

Rd

E
[
h(

√
1 − sW + √

sz) − h(
√

1 − sW)
]2

ϕ(z)dz

}1/2

≤ √
2B2

{∫
Rd

E
[
h(

√
1 − sW + √

sz) − h(
√

1 − sW)
]2

ϕ(z)dz

}1/2

.

From the definition of κ and the concentration inequality of the standard d-dimensional Gaussian
distribution (cf. (4.10)), we have

E
{
h(

√
1 − sW + √

sz) − h(
√

1 − sW)
}2

≤ E
{
I
[
dist
(√

1 − sW,Aε \ A
)≤ √

s|z|]}
(4.16)

≤ P
{
I
[
dist
(√

1 − sZ,Aε \ A
)≤ √

s|z|]}+ 2dc

(
L(W),L(Z)

)
≤ 4d1/4

(
ε√

1 − s
+ 2

√
s

1 − s
|z|
)

+ 2κ.

Using the Cauchy–Schwarz inequality, the bound (4.7), the simple inequality
√

a1 + a2 + a3 ≤√
a1 + √

a2 + √
a3 for a1, a2, a3 ≥ 0, and

∫
Rd |z|1/2ϕ(z)dz ≤ d1/4, we have

∣∣∣∣
∫ 1

ε2
R1(s)ds

∣∣∣∣ ≤ CB2

∫ 1

ε2

1

s

∫
Rd

(
d1/4 ε√

1 − s
+ d1/4

√
s

1 − s
|z| + κ

)1/2

ϕ(z)dz ds

≤ CB2
(
d1/8ε1/2| log ε| + d3/8 + κ1/2| log ε|),

where we used
∫ 1
ε2

1
s(1−s)1/4 ds ≤ C| log ε| and

∫ 1
ε2

1
s3/4(1−s)1/4 ds ≤ C.

For the case 0 < s ≤ ε2, we use the second expression of gij (w, s) in (4.12), the Cauchy–
Schwarz inequality, the bound (4.7) and (4.14), and obtain

∣∣∣∣
∫ ε2

0
R1(s)ds

∣∣∣∣
=
∣∣∣∣∣

d∑
i,j=1

E

∫ ε2

0

1

2
√

s

∫
Rd

[
E

W(δij − GiDj )
]
hj (

√
1 − sW + √

sz)ϕi(z)dz ds

∣∣∣∣∣
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≤ ε

∣∣∣∣∣E
∫
Rd

2

ε

d∑
i=1

{
d∑

j=1

[
E

W(δij − GiDj )
]2}1/2

ϕi(z)

ϕ(z)
ϕ(z)dz

∣∣∣∣∣
≤ 2E

{∫
Rd

{
d∑

i=1

{
d∑

j=1

[
E

W(δij − GiDj )
]2}1/2

ϕi(z)

ϕ(z)

}2

ϕ(z)dz

}1/2

≤ 2B2,

where the factor ε in the first inequality comes from
∫ ε2

0
1

2
√

s
ds ≤ ε. Therefore,

∣∣∣∣
∫ 1

0
R1(s)ds

∣∣∣∣≤ CB2
(
d1/8ε1/2| log ε| + d3/8 + κ1/2| log ε|).

In order to estimate
∫ 1

0 R2(s)ds, let U and V be independent random variables distributed
uniformly on [0,1]. Then

R2(s) = E

d∑
i,j,k=1

UGiDjDkgijk(W + UV D, s).

We again consider the cases ε2 < s ≤ 1 and 0 < s ≤ ε2 separately.
For the first case, we use the first expression of gijk(w, s) in (4.13) and obtain

∫ 1

ε2
R2(s)ds =

d∑
i,j,k=1

E

∫ 1

ε2

√
1 − s

2s3/2

∫
Rd

[
h(

√
1 − sW + √

sz + √
1 − sUV D)

− h(
√

1 − sW + √
sz)
]
UGiDjDkϕijk(z)dz ds

+
d∑

i,j,k=1

E

∫ 1

ε2

√
1 − s

2s3/2

∫
Rd

h(
√

1 − sW + √
sz)

× U
[
E

W(GiDjDk) −E(GiDjDk)
]
ϕijk(z)dz ds

+
d∑

i,j,k=1

E

∫ 1

ε2

√
1 − s

2s3/2

∫
Rd

[
h(

√
1 − sW + √

sz)

− h(
√

1 − sZ + √
sz)
]
UE(GiDjDk)ϕijk(z)dz ds

+
d∑

i,j,k=1

E

∫ 1

ε

UE(GiDjDk)gijk(Z, s)dz ds

=: R2,1,1 + R2,1,2 + R2,1,3 + R2,1,4,
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where Z is an independent d-dimensional standard Gaussian random vector. Now, it is straight-
forward to verify that for any u,v,w, z ∈R

d

d∑
i,j,k=1

uivjwkϕijk(z) = −utzvt zwtzϕ(z) + (utvwtz + utwvtz + vtwutz
)
ϕ(z). (4.17)

In bounding
∫ 1
ε2 R2(s)ds, the integration with respect to s is bounded by

∫ 1
ε2

1
s3/2 ds ≤ Cε−1.

From (4.17) and the boundedness condition (2.3),

|R2,1,1| ≤ E

∫ 1

ε2

√
1 − s

2s3/2

∫
Rd

I
[
dist
(√

1 − sW + √
sz,Aε \ A

)≤ √
1 − sβ

]

× U

∣∣∣∣∣
d∑

i,j,k=1

GiDjDkϕijk(z)

∣∣∣∣∣dz ds

≤ α

∫ 1

ε2

√
1 − s

4s3/2

∫
Rd

E
{
I
[
dist
(√

1 − sW + √
sz,Aε \ A

)≤ √
1 − sβ

]
× [E|D|2 + (EW |D|2 −E|D|2)]}(3|z| + |z|3)ϕ(z)dz ds

≤ Cd3/2αE|D|2ε−1(κ + d1/4(β + ε)
)+ Cd3/2ε−1αB1,

where in the last inequality we used a similar recursive inequality as (4.16) as well as∫
Rd |z|3ϕ(z)dz ≤ d3/2.

From the Cauchy–Schwarz inequality and (4.14),

|R2,1,2| ≤ Cε−1B3.

From (4.17) and a recursive inequality as (4.16),

|R2,1,3| ≤ C
(
κε−1 + d1/4)

E
(|G||D|2).

For R2,1,4, observe that

Eg(Z + w, s) = − 1

2(1 − s)

∫
Rd

[
Eh
(√

1 − s(Z + w) + √
sz
)−Eh(Z)

]
ϕ(z)dz

= − 1

2(1 − s)

∫
Rd

h(
√

1 − sw + z)ϕ(z)dz + 1

2(1 − s)
Eh(Z)

= − 1

2(1 − s)

∫
Rd

h(x)ϕ(x − √
1 − sw)dx + 1

2(1 − s)
Eh(Z).

Differentiating and evaluating at w = 0, we obtain

Egijk(Z, s) =
√

1 − s

2

∫
Rd

h(x)ϕijk(x)dx.
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Now with (4.17),

|R2,1,4| ≤ CE
(|G||D|2).

For the case 0 < s ≤ ε2, we use the second expression of gijk in (4.13). From (4.8) and
|∑d

i=1 Giϕi(z)| ≤ α|z|ϕ(z),

∣∣∣∣
∫ ε2

0
R2(s)ds

∣∣∣∣
=
∣∣∣∣∣

d∑
i,j,k=1

E

∫ ε2

0

√
1 − s

2s1/2

∫
Rd

hjk(
√

1 − sW + √
sz + √

1 − sUV D)UGiDjDkϕi(z)dz ds

∣∣∣∣∣
≤ 8α

ε2
E

∫ ε2

0

√
1 − s

2s1/2

∫
Rd

I
[
dist
(√

1 − sW + √
sz,Aε \ A

)≤ √
1 − sβ

]
× [|D|2 + (EW |D|2 −E|D|2)]|z|ϕ(z)dz ds

≤ Cd1/2α
(
E|D|2(κε−1 + d1/4βε−1 + d1/4)+ ε−1

√
VarEW |D|2),

where in the last inequality we used a similar recursive inequality as (4.16) as well as∫
Rd |z|ϕ(z)dz ≤ d1/2 and

∫ ε2

0
1

2s1/2 ds ≤ ε.
Therefore,∣∣∣∣

∫ 1

0
R2(s)ds

∣∣∣∣≤ C
(
d3/2αE|D|2ε−1(κ + d1/4(β + ε)

)+ d3/2ε−1αB1 + ε−1B3
)
.

Collecting the bounds and using the smoothing inequality (4.9), we obtain the following recursive
inequality

κ ≤ C
{
d3/2αE|D|2ε−1(κ + d1/4(β + ε)

)+ d3/2ε−1αB1
(4.18)

+ ε−1B3 + B2
(
d3/8 + d1/8ε1/2| log ε| + √

κ| log ε|)}+ 4d1/4ε.

Let

ε = 2Cd3/2αE|D|2 + β + d5/8α1/2B
1/2
1 + d1/8B2 + d−1/8B

1/2
3

with the same constant C as in (4.18). The theorem is proved by solving the recursive inequal-
ity for κ and observing that as long as ε is smaller than an absolute constant, ε1/2| log ε| ≤ C

and κ1/2| log ε| ≤ Cd1/8, the latter follows by solving the recursive inequality for κ by upper
bounding

√
κ in (4.18) by 1. �

Proof of Corollary 2.2. We apply Theorem 2.1 to the Stein coupling(
�−1/2W,�−1/2W ′,�−1/2G

)
.
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The first two terms in the bound (2.5) are obtained by |�−1/2G| ≤ s2|G| and |�−1/2D| ≤
s2|D|. For the last three terms, we first observe that for a fixed d × d orthogonal matrix
U = (U1·, . . . ,Ud·)t , a d-dimensional random vector V and a random variable X,

d∑
i=1

VarEW
{
(UV )iX

} =
d∑

i=1

VarEW
{
Ut

i·V X
}=

d∑
i=1

Var
{
Ut

i·EW {V X}}

=
d∑

i=1

Ut
i· Cov

(
E

W {V X})Ui· = Tr
(
U Cov

(
E

W {V X})Ut
)

= Tr
(
Cov

(
E

W {V X}))= d∑
i=1

Var
{
E

W {ViX}}.
Therefore, B1,B2 and B3 remain unchanged if we replace G and D by UG and UD. Next,
we write �−1/2 = U�Ut where U is an orthogonal matrix and � is a diagonal matrix whose
components are bounded by s2 by definition. Finally, the last three terms in the bound (2.5) are
obtained by

d∑
i=1

VarEW
{(

�−1/2V
)
i
X
} =

d∑
i=1

VarEW
{(

U�UtV
)
i
X
}

=
d∑

i=1

VarEW
{(

�UtV
)
i
X
}≤ s2

2

d∑
i=1

VarEW
{(

UtV
)
i
X
}

= s2
2

d∑
i=1

VarEW {ViX}.
�

Sketch of the proof for Remark 2.3. Let U and V be uniform on [0,1], independent of each
other and all else. Under the conditions of Remark 2.3, we have from Taylor expansion that

0 = λ−1
E
{
f
(
W ′)− f (W)

}
= λ−1

E

d∑
i=1

(
W ′

i − Wi

)
fi(W) + λ−1

E

d∑
i,j=1

UDiDjfij (W + UV D)

= −E

d∑
i=1

Wifi(W) +E

d∑
i,j=1

GiDjfij (W)

− 2E
d∑

i,j=1

UGiDj

(
fij (W) − fij (W + UV D)

)
.
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Therefore,

E
{
�f (W) − Wt∇f (W)

} =
d∑

i,j=1

E
{
(δij − GiDj )fij (W)

}

+ 2E
d∑

i,j=1

UGiDj

(
fij (W) − fij (W + UV D)

)

=: R′
1 − R′

2.

The quantity R′
1 is the same as

∫ 1
0 R1(s)ds in the proof of Theorem 2.1. The quantity R′

2 contains

an additional integration step as compared to
∫ 1

0 R2(s)ds of Theorem 2.1, but can be bounded in
very much the same way (up to different constants). �

5. Some Stein couplings

In this section, we describe some known coupling constructions as multivariate Stein couplings
for reference.

5.1. Multivariate exchangeable pairs

Chatterjee and Meckes [10] and Reinert and Röllin [24] introduced the exchangeable pairs
method for random vectors, which are instances of Stein couplings. Assume that (W,W ′) is
an exchangeable pair of d-dimensional random vectors such that

E
W
(
W ′ − W

)= −�W (5.1)

for some invertible (d × d)-matrix �. It is straightforward to check that(
W,W ′,G

) := (W,W ′, 1
2�−1(W ′ − W

))
is a Stein coupling.

Assume Var(W) = � is positive definite. Let �1/2 be the unique positive-definite root of �,
and let �−1/2 be its corresponding unique inverse. It was shown by Reinert and Röllin [24]
that exchangeability of (W,W ′) implies symmetry of �̂ = �−1/2��1/2. Let therefore O be
an orthonormal matrix and let L be a positive diagonal matrix such that �̂ = OLOt . Define
Ŵ = Ot�−1/2W , Ŵ ′ = Ot�−1/2W ′. It follows from (5.1) that

E
Ŵ
(
Ŵ ′ − Ŵ

)= −LŴ.

We could therefore – in principle – restrict ourselves to (W,W ′) that are uncorrelated with (5.1)
being true for diagonal �. However, it is often much easier to work with the unstandardized W ,
as �−1/2 and O are typically difficult to calculate in practice.
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5.2. Multivariate size bias couplings

This coupling was considered by Goldstein and Rinott [17]. Let Y be a non-negative d-
dimensional random vector with mean μ and covariance matrix �. For each i = {1, . . . , d}, let
Y i be defined on the same probability space as Y and have Y -size biased distribution in direction
i, that is,

E
{
Yif (Y )

}= μiEf
(
Y i
)

for all functions f such that the expectations exist. Let K be uniformly distributed over
{1,2, . . . , d}, independent of all else, and let eK be the d-dimensional unit vector in direction K .
Then (

W,W ′,G
) := (Y − μ,YK − μ,dμKeK

)
is a Stein coupling.

5.3. Local dependence

A refined version of this dependence was considered by Rinott and Rotar′ [25]. Let (Xi)i∈I
be a collection of centered d-dimensional random vectors for some finite index set I . For each
i ∈ I , assume there is a set Ai ⊂ I such that Xi is independent of (Xj )j∈Ac

i
. Let I be uniformly

distributed on I , independent of all else. Then

(
W,W ′,G

) := (∑
i∈I

Xi,
∑

i∈I\AI

Xi,−nXI

)
(5.2)

is a Stein coupling.
We have the following corollary of Theorem 2.1 for the Stein coupling (5.2). The proof is

straightforward and therefore omitted here.

Corollary 5.1. Let (Xi)i∈I be a collection of centered d-dimensional random vectors for some
finite index set I with cardinality n. For each i ∈ I , assume there are sets Ai ⊂ Bi ⊂ I such that
Xi is independent of (Xj )j∈Ac

i
and (Xj )j∈Ai

is independent of (Xj )i∈Bc
i
. Assume further that

|Xi | ≤ β,
∣∣{j ∈ I : (Aj ∩ Bi) ∪ (Ai ∩ Bj ) �= ∅}∣∣≤ cd,

where cd is a constant only depending on d and | · | denotes cardinality. Then we have

dc

(
L(W),L(Z)

)≤ Cdβ3 n

for some constant Cd only depending on d .

Under the condition of the above corollary, the result in Rinott and Rotar′ [25] yields the bound

dc

(
L(W),L(Z)

)≤ Cdβ3 n logn,

which has an additional logarithmic factor.
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Note that if the summands are locally dependent, but highly uncorrelated, that is, if E(XiX
t
j ) =

0 “for many” j ∈ Ai , it seems difficult to obtain informative bounds from Rinott and Rotar′ [25].
For example, if one tries to apply their Theorem 2.1 to dense random graphs in Section 3.1, in
order for χ1 in their (2.2) to be small, Uj in their Theorem 2.1 has to be of order n2 (recall n is
the number of vertices in Theorem 3.3), this makes A1 in their Theorem 2.1 too large for their
bound (2.3) to converge to 0. In contrast, our Theorem 2.1 can yield informative bounds in such
cases.
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