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Consider the problem of estimating a multivariate normal mean with a known variance matrix, which is not
necessarily proportional to the identity matrix. The coordinates are shrunk directly in proportion to their
variances in Efron and Morris’ (J. Amer. Statist. Assoc. 68 (1973) 117–130) empirical Bayes approach,
whereas inversely in proportion to their variances in Berger’s (Ann. Statist. 4 (1976) 223–226) minimax
estimators. We propose a new minimax estimator, by approximately minimizing the Bayes risk with a
normal prior among a class of minimax estimators where the shrinkage direction is open to specification
and the shrinkage magnitude is determined to achieve minimaxity. The proposed estimator has an interesting
simple form such that one group of coordinates are shrunk in the direction of Berger’s estimator and the
remaining coordinates are shrunk in the direction of the Bayes rule. Moreover, the proposed estimator is
scale adaptive: it can achieve close to the minimum Bayes risk simultaneously over a scale class of normal
priors (including the specified prior) and achieve close to the minimax linear risk over a corresponding
scale class of hyper-rectangles. For various scenarios in our numerical study, the proposed estimators with
extreme priors yield more substantial risk reduction than existing minimax estimators.

Keywords: Bayes risk; empirical Bayes; minimax estimation; multivariate normal mean; shrinkage
estimation; unequal variances

1. Introduction

A fundamental statistical problem is shrinkage estimation of a multivariate normal mean. See,
for example, the February 2012 issue of Statistical Science for a broad range of theory, methods,
and applications. Let X = (X1, . . . ,Xp)T be multivariate normal with unknown mean vector
θ = (θ1, . . . , θp)T and known variance matrix �. Consider the problem of estimating θ by an
estimator δ = δ(X) under the loss L(δ, θ) = (δ − θ)TQ(δ − θ), where Q is a known positive
definite, symmetric matrix. The risk of δ is R(δ, θ) = Eθ {L(δ, θ)}. The general problem can be
transformed into a canonical form such that � is diagonal and Q = I , the identity matrix (e.g.,
Lehmann and Casella [21], Problem 5.5.11). For simplicity, assume except in Section 3.2 that �

is D = diag(d1, . . . , dp) and L(δ, θ) = ‖δ − θ‖2, where ‖x‖2 = xTx for a column vector x. The
letter D is substituted for � to emphasize that it is diagonal.

For this problem, we aim to develop shrinkage estimators that are both minimax and ca-
pable of effective risk reduction over the usual estimator δ0 = X even in the heteroscedastic
case (i.e., d1, . . . , dp are not equal). An estimator of θ is minimax if and only if, regardless of
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θ ∈R
p , its risk is always no greater than

∑p

j=1 dj , the risk of δ0. For p ≥ 3, minimax estimators
different from and hence dominating δ0 are first discovered in the homoscedastic case where
D = σ 2I (i.e., d1 = · · · = dp = σ 2). James and Stein [19] showed that δJS

c = (1 − cσ 2/‖X‖2)X

is minimax provided 0 ≤ c ≤ 2(p − 2). Stein [26] suggested the positive-part estimator δJS+
c =

(1 − cσ 2/‖X‖2)+X, which dominates δJS
c . Throughout, a+ = max(0, a). Shrinkage estimation

has since been developed into a general methodology with various approaches, including em-
pirical Bayes (Efron and Morris [17]; Morris [22]) and hierarchical Bayes (Strawderman [28];
Berger and Robert [7]). While these approaches are prescriptive for constructing shrinkage esti-
mators, minimaxity is not automatically achieved but needs to be checked separately.

For the heteroscedastic case, there remain challenging issues on how much observations with
different variances should be shrunk relatively to each other (e.g., Casella [15], Morris [22]). For
the empirical Bayes approach (Efron and Morris [17]), the coordinates of X are shrunk directly
in proportion to their variances. But the existing estimators are, in general, non-minimax (i.e.,
may have a greater risk than the usual estimator δ0). On the other hand, Berger [3] proposed
minimax estimators, including admissible minimax estimators, such that the coordinates of X

are shrunk inversely in proportion to their variances. But the risk reduction achieved over δ0 is
insubstantial unless all the observations have similar variances.

To address the foregoing issues, we develop novel minimax estimators for multivariate nor-
mal means under heteroscedasticity. There are two central ideas in our approach. The first is
to develop a class of minimax estimators by generalizing a geometric argument essentially in
Stein [25] (see also Brandwein and Strawderman [11]). For the homoscedastic case, the ar-
gument shows that δJS

c can be derived as an approximation to the best linear estimator of the
form (1 − λ)X, where λ is a scalar. In fact, the optimal choice of λ in minimizing the risk is
pσ 2/Eθ(‖X‖2). Replacing Eθ(‖X‖2) by ‖X‖2 leads to δJS

c with c = p. This derivation is highly
informative, even though it does not yield the optimal value c = p − 2.

Our class of minimax estimators are of the linear form (I − λA)X, where A is a nonnega-
tive definite, diagonal matrix indicating the direction of shrinkage and λ is a scalar indicating
the magnitude of shrinkage. The matrix A is open to specification, depending on the variance
matrix D but not on the data X. For a fixed A, the scalar λ is determined to achieve minimaxity,
depending on both D and X. Berger’s [3] minimax estimator corresponds to the special choice
A = D−1, thereby leading to the unusual pattern of shrinkage discussed above.

The second idea of our approach is to choose A by approximately minimizing the Bayes risk
with a normal prior in our class of minimax estimators. The Bayes risk is used to measure av-
erage risk reduction for θ in an elliptical region as in Berger [4,5]. It turns out that the solution
of A obtained by our approximation strategy has an interesting simple form. In fact, the coor-
dinates of X are automatically segmented into two groups, based on their Bayes “importance”
(Berger [5]), which is of the same order as the coordinate variances when the specified prior is
homoscedastic. The coordinates of high Bayes “importance” are shrunk inversely in proportion
to their variances, whereas the remaining coordinates are shrunk in the direction of the Bayes
rule. This shrinkage pattern may appear paradoxical: it may be expected that the coordinates of
high Bayes “importance” are to be shrunk in the direction of the Bayes rule. But that scheme
is inherently aimed at reducing the Bayes risk under the specified prior and, in general, fails to
achieve minimaxity (i.e., it may lead to even a greater risk than the usual estimator δ0).
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In addition to simplicity and minimaxity, we further show that the proposed estimator is scale
adaptive in reducing the Bayes risk: it achieves close to the minimum Bayes risk, with the differ-
ence no greater than the sum of the 4 highest Bayes “importance” of the coordinates of X, simul-
taneously over a scale class of normal priors (including the specified prior). To our knowledge,
the proposed estimator seems to be the first one with such a property in the general heteroscedas-
tic case. Previously, in the homoscedastic case, δJS

p−2 is known to achieve the minimum Bayes
risk up to the sum of 2 (equal-valued) Bayes “importance” of the coordinates over the scale class
of homoscedastic normal priors (Efron and Morris [17]).

The rest of this article is organized as follows. Section 2 gives a review of existing estima-
tors. Section 3 develops the new approach and studies risk properties of the proposed estimator.
Section 4 presents a simulation study. Section 5 provides concluding remarks. All proofs are
collected in the Appendix.

2. Existing estimators

We describe a number of existing shrinkage estimators. See Lehmann and Casella [21] for a text-
book account and Strawderman [29] and Morris and Lysy [23] for recent reviews. Throughout,
tr(·) denotes the trace and λmax(·) denotes the largest eigenvalue. Then tr(D) = ∑p

j=1 dj and
λmax(D) = max(d1, . . . , dp).

For a Bayes approach, assume the prior distribution: θ ∼ N(0, γ I ), where γ is the prior vari-
ance. The Bayes rule is given componentwise by δ

Bayes
j = {1−dj/(dj +γ )}Xj . Then the greater

dj is, the more Xj is shrunk whether γ is fixed or estimated from the data. For the empirical
Bayes approach of Efron and Morris [17], γ is estimated by the maximum likelihood estimator
γ̂ such that

γ̂ =
p∑

j=1

X2
j − dj

(dj + γ̂ )2

/ p∑
j=1

1

(dj + γ̂ )2
. (1)

Morris [22] suggested the modified estimator

δEB
j =

(
1 − p − 2

p

dj

dj + γ̂+

)
Xj . (2)

In our implementation, the right-hand side of (1) is computed to update γ̂ from the initial guess,
p−1{∑p

j=1(X
2
j − dj )}+, for up to 100 iterations until the successive absolute difference in γ̂ is

≤10−4, or γ̂ is set to ∞ so that δEB = X otherwise.
Alternatively, Xie et al. [31] proposed empirical Bayes-type estimators based on minimizing

Stein’s [27] unbiased risk estimate (SURE) under heteroscedasticity. Their basic estimator is
defined componentwise by

δXKB
j =

(
1 − dj

dj + γ̃

)
Xj , (3)
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where γ̃ is obtained by minimizing the SURE of δBayes, that is, SURE(γ ) = XTD{D +
γ I }−1X+2γ tr{D(D+γ I)−1}− tr(D). In general, the two types of empirical Bayes estimators,
δEB and δXKB, are non-minimax, as shown in Section 4.

For a direct extension of δJS
c , consider the estimator δS

c = (1 − c/‖X‖2)X and, more generally,
δS
r = {1−r(‖X‖2)/‖X‖2}X, where c is a scalar constant and r(·) a scalar function. See Lehmann

and Casella [21], Theorem 5.7, although there are some typos. Both δS
c and δS

r are spherically
symmetric. The estimator δS

c is minimax provided

0 ≤ c ≤ 2
{
tr(D) − 2λmax(D)

}
, (4)

and δS
r is minimax provided 0 ≤ r(·) ≤ 2{tr(D) − 2λmax(D)} and r(·) is nondecreasing. No such

c �= 0 exists unless tr(D) > 2λmax(D), which restricts how much (d1, . . . , dp) can differ from
each other. For example, condition (4) fails when p = 10 and

d1 = 40, d2 = 20, d3 = 10, d4 = · · · = d10 = 1, (5)

because tr(D) = 77 and λmax(D) = 40.
Berger [3] proposed estimators of the form δB

c = {I − cD−1/(XTD−2X)}X and δB
r =

{I − r(XTD−2X)/(XTD−2X)D−1}X, where c is a scalar constant and r(·) a scalar func-
tion. Then δB

c is minimax provided 0 ≤ c ≤ 2(p − 2), and δB
r is minimax provided 0 ≤ r(·) ≤

2(p − 2) and r(·) is nondecreasing, regardless of differences between (d1, . . . , dp). However, a
striking feature of δB

c and δB
r , compared with δEB and δXKB, is that the smaller dj is, the more

Xj is shrunk. For example (5), under δB
c , the coordinates (X1,X2,X3) are shrunk only slightly,

whereas (X4, . . . ,X10) are shrunk as if they were shrunk as a 7-dimensional vector under δJS
c .

The associated risk reduction is insubstantial, because the risk of estimating (θ4, . . . , θ10) is a
small fraction of the overall risk of estimating θ .

Define the positive-part version of δB
c componentwise as

(
δB+
c

)
j

=
(

1 − cd−1
j

XTD−2X

)
+
Xj . (6)

The estimator δB+
c dominates δB

c by Baranchik [1], Section 2.5. Berger [6], Equation (5.32),
stated a different positive-part estimator, δB

r with r(t) = min(p − 2, t), but the j th component
may not be of the same sign as Xj .

Given a prior θ ∼ N(0,�), Berger [5] suggested an approximation of Berger’s [4] robust gen-
eralized Bayes estimator as

δRB =
[
I − min

{
1,

p − 2

XT(D + �)−1X

}
D(D + �)−1

]
X. (7)

The estimator is expected to provide significant risk reduction over δ0 = X if the prior is correct
and be robust to misspecification of the prior, but it is, in general, non-minimax. In the case
of � = 0, δRB becomes {1 − (p − 2)/(XTD−1X)}+X, in the form of spherically symmetric
estimators δSS

r = {1 − r(XTD−1X)/(XT D−1X)}X, where r(·) is a scalar function (Bock [10],



578 Z. Tan

Brown [12]). The estimator δSS
r is minimax provided 0 ≤ r(·) ≤ 2{tr(D)/λmax(D) − 2} and r(·)

is nondecreasing. Moreover, if tr(D) ≤ 2λmax(D), then δSS
r is non-minimax unless r(·) = 0.

To overcome the non-minimaxity of δRB, Berger [5] developed a minimax estimator δMB

by combining δB
r , δRB, and a minimax estimator of Bhattacharya [9]. Suppose that � =

diag(γ1, . . . , γp) and the indices are sorted such that d∗
1 ≥ · · · ≥ d∗

p , where d∗
j = d2

j /(dj + γj ).

Define δMB componentwise as

δMB
j = Xj −

[
1

d∗
j

p∑
k=j

(
d∗
k − d∗

k+1

)
min

{
1,

(k − 2)+∑k
	=1 X2

	/(d	 + γ	)

}]
dj

dj + γj

Xj , (8)

where d∗
p+1 = 0. In the case of � = 0, δMB reduces to the original estimator of Bhattacharya

[9]. The factor (k − 2)+ is replaced by 2(k − 2)+ in Berger’s [5] original definition of δMB,
corresponding to replacing p − 2 by 2(p − 2) in δRB. In our simulations, the two versions of
δMB somehow yield rather different risk curves, and so do the corresponding versions of other
estimators. But there has been limited theory supporting one version over the other. Therefore,
we focus on comparisons of only the corresponding versions of δMB and other estimators.

3. Proposed approach

We develop a useful approach for shrinkage estimation under heteroscedasticity, by making ex-
plicit how different coordinates are shrunk differently. The approach not only sheds new light on
existing results, but also lead to new minimax estimators.

3.1. A sketch

Assume that � = D (diagonal) and Q = I . Consider estimators of the linear form

δ = (I − λA)X = X − λAX, (9)

where A is a nonnegative definite, diagonal matrix indicating the direction of shrinkage and λ is
a scalar indicating the magnitude of shrinkage. Both A and λ are to be determined. A sketch of
our approach is as follows.

(i) For a fixed A, the optimal choice of λ in minimizing the risk is

λopt = tr(DA)

Eθ(XTATAX)
.

(ii) For a fixed A and a scalar constant c ≥ 0, consider the estimator

δA,c = X − c

XTATAX
AX.
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By Theorem 1, an upper bound on the risk function of δA,c is

R(δA,c, θ) ≤ tr(D) + Eθ

[
c{c − 2c∗(D,A)}

XTATAX

]
, (10)

where c∗(D,A) = tr(DA)−2λmax(DA). Requiring the second term to be no greater than
0 shows that if c∗(D,A) ≥ 0, then δA,c is minimax provided

0 ≤ c ≤ 2c∗(D,A). (11)

If c∗(D,A) ≥ 0, then the upper bound (10) has a minimum at c = c∗(D,A).
(iii) By taking c = c∗(D,A) in δA,c , consider the estimator

δA = X − c∗(D,A)

XTATAX
AX

subject to c∗(D,A) ≥ 0, so that δA is minimax by step (ii). A positive-part estimator
dominating δA is defined componentwise by

(
δ+
A

)
j

=
{

1 − c∗(D,A)aj

XTATAX

}
+
Xj , (12)

where (a1, . . . , ap) are the diagonal elements of A. The upper bound (10) on the risk
functions of δA and δ+

A , subject to c∗(D,A) ≥ 0, gives

R(δA, θ) ≤ tr(D) − Eθ

{
c∗2(D,A)

XTATAX

}
. (13)

We propose to choose A based on some optimality criterion, such as minimizing the
Bayes risk with a normal prior centered at 0 (Berger [5]).

Further discussions of steps (i)–(iii) are provided in Sections 3.2–3.3.

3.2. Constructing estimators: Steps (i)–(ii)

We first develop steps (i)–(ii) for the general problem where neither � nor Q may be diagonal.
The results can be as concisely stated as those just presented for the canonical problem where �

is diagonal and Q = I . Such a unification adds to the attractiveness of the proposed approach.
Consider estimators of the form (9), where A is not necessarily diagonal, but

A� is nonnegative definite. (14)

Condition (14) is invariant under a linear transformation. To see this, let B be a nonsingu-
lar matrix and �∗ = B�BT and A∗ = BAB−1. For the transformed problem of estimating
θ∗ = Bθ based on X∗ = BX with variance matrix �∗, the transformed estimator from (9) is
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δ∗ = X∗ −λA∗X∗. The application of condition (14) to δ∗ says that A∗�∗ = BA�BT is nonneg-
ative definite and therefore is equivalent to (14) itself. For the canonical problem where � = D

(diagonal), condition (14) only requires that AD is nonnegative definite, allowing A to be non-
diagonal. On the other hand, it seems intuitively appropriate to restrict A to be diagonal. Then
condition (14) is equivalent to saying that A is nonnegative definite (and diagonal), which is the
condition introduced on A in the sketch in Section 3.1.

The risk of an estimator of the form (9) is

Eθ

{
(X − θ − λAX)TQ(X − θ − λAX)

}
= Eθ

{
(X − θ)TQ(X − θ)

} + λ2Eθ

(
XTATQAX

) − 2λEθ

{
(X − θ)TQAX

}
.

For a fixed A, the optimal λ in minimizing the risk is

λopt = Eθ {(X − θ)TQAX}
Eθ(XTATQAX)

= tr(�QA)

Eθ(XTATQAX)
.

Replacing Eθ(X
TATQAX) by XTATQAX and tr(�QA) by a scalar constant c ≥ 0 leads to the

estimator

δA,c = X − c

XTATQAX
AX.

For a generalization, replacing c by r(XTATQAX) with a scalar function r(·) ≥ 0 leads to the
estimator

δA,r = X − r(XTATQAX)

XTATQAX
AX.

We provide in Theorem 1 an upper bound on the risk function of δA,r .

Theorem 1. Assume that r(·) almost differentiable (Stein [27]). If (14) holds and r(·) ≥ 0 is
nondecreasing, then for each θ ,

R(δA,r , θ) ≤ tr(�Q) + Eθ

[
r{r − 2c∗(�,Q,A)}

XTATQAX

]
, (15)

where r = r(XTATQAX) and c∗(�,Q,A) = tr(A�Q)−λmax(A�Q+�ATQ). Taking r(·) ≡
c ≥ 0 in (15) gives an upper bound on R(δA,c, θ).

Requiring the second term in the risk upper bound (15) to be no greater than 0 leads to a
sufficient condition for δA,r to be minimax.

Corollary 1. If (14) holds and c∗(�,Q,A) ≥ 0, then δA,r is minimax provided

0 ≤ r(·) ≤ 2c∗(�,Q,A) and r(·) is nondecreasing. (16)

Particularly, δA,c is minimax provided 0 ≤ c ≤ 2c∗(�,Q,A).
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For the canonical problem, inequality (15) and condition (16) for δA,c give respectively (10)
and (11). These results generalize the corresponding ones for δS

c and δB
c in Section 2, by the

specific choices A = I or D−1. The generalization also holds if c is replaced by a scalar function
r(·) > 0. In fact, condition (16) reduces to Baranchik’s [2] condition in the homoscedastic case.

If c∗(�,Q,A) ≥ 0, then the risk upper bound (15) has a minimum at r(·) ≡ c = c∗(�,Q,A).
As a result, consider the estimator

δA = X − c∗(�,Q,A)

XTATQAX
AX,

which is minimax provided c∗(�,Q,A) ≥ 0. If A = Q−1�−1 (Berger [3]), then c∗(�,Q,A) =
p − 2 and, by the proof of Theorem 1 in the Appendix, the risk upper bound (15) becomes exact
for δA,c . Therefore, for A = Q−1�−1, the estimator δA = δA,p−2 is uniformly best in the class
δA,c , in agreement with the result that δJS

p−2 is uniformly best among δJS
c in the homoscedastic

case.
The estimator δA has desirable properties of invariance. First, δA is easily shown to be in-

variant under a multiplicative transformation A �→ aA for a scalar a > 0. Second, δA is in-
variant under a linear transformation of the inference problem. Similarly as discussed below

(14), let B be a nonsingular matrix and �∗ = B�BT, Q∗ = BT−1
QB−1, and A∗ = BAB−1.

For the transformed problem of estimating θ∗ = Bθ based on X∗ = BX, the transformed
estimator from δA is X∗ − {c∗(�,Q,A)/(X∗TA∗TQ∗A∗X∗)}A∗X∗, whereas the application
of δA is X∗ − {c∗(�∗,Q∗,A∗)/(X∗TA∗TQ∗A∗X∗)}A∗X∗. The two estimators are identical
because A∗�∗Q∗ = BA�QB−1, �∗A∗TQ∗ = B�ATQB−1, and hence c∗(�∗,Q∗,A∗) =
c∗(�,Q,A).

Finally, we present a positive-part estimator dominating δA in the case where both A� and
QA are symmetric, that is,

A� = �AT and QA = ATQ. (17)

Similarly to (14), it is easy to see that this condition is invariant under a linear transfor-
mation. Condition (17) is trivially true if �, Q, and A are diagonal. In the Appendix, we
show that (17) holds if and only if there exists a nonsingular matrix B such that Q = BTB ,

� = B−1DBT−1
, and A = B−1A∗B , where D and A∗ are diagonal and the diagonal elements

of D or A∗ are, respectively, the eigenvalues of �Q or A. In the foregoing notation, �∗ = D

and Q∗ = I . For the problem of estimating θ∗ = Bθ based on X∗ = BX, consider the estima-
tor η = X − {c∗(D,A∗)/(X∗TA∗TA∗X∗)}A∗X and the positive-part estimator η+ with the j th
component,

{
1 − c∗(D,A∗)

X∗TA∗TA∗X∗ a∗
j

}
+
X∗

j ,

where (a∗
1 , . . . , a∗

p) are the diagonal elements of A∗. The estimator η+ dominates η by a simple
extension of Baranchik [1], Section 2.5. By a transformation back to the original problem, η
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yields δA, whereas η+ yields

δ+
A = B−1 diag

[{
1 − c∗(�,Q,A)

XTATQAX
a∗

1

}
+
, . . . ,

{
1 − c∗(�,Q,A)

XTATQAX
a∗
p

}
+

]
BX.

Then δ+
A dominates δA. Therefore, (15) also gives an upper bound on the risk of δ+

A , with r(·) ≡
c∗(�,Q,A), even though δ+

A is not of the form δA,r .
In practice, a matrix A satisfying (17) can be specified in two steps. First, find a nonsingular

matrix B such that Q = BTB and � = B−1DBT−1
, where D is diagonal. Second, pick a diag-

onal matrix A∗ and define A = B−1A∗B . The first step is always feasible by taking B = OC,
where C is a nonsingular matrix such that Q = CTC and O is an orthogonal matrix O such that
O(C�CT)OT is diagonal. Given (�,Q) and D, it can be shown that A and δ+

A depend on the
choice of A∗, but not on that of B , provided that a∗

j = a∗
k if dj = dk for any j, k = 1, . . . , p. In the

canonical case where � = D and Q = I , this condition amounts to saying that any coordinates
of X with the same variances should be shrunk in the same way.

3.3. Constructing estimators: Step (iii)

Different choices of A lead to different estimators δA and δ+
A . We study how to choose A, de-

pending on (�,Q) but not on X, to approximately optimize risk reduction while preserving
minimaxity for δA. The estimator δ+

A provides even greater risk reduction than δA. We focus on
the canonical problem where � = D (diagonal) and Q = I . Further, we restrict A to be diagonal
and nonnegative definite.

As discussed in Berger [4], any estimator can have significantly smaller risk than δ0 = X only
for θ in a specific region. Berger [4,5] considered the situation where significant risk reduction
is desired for an elliptical region{

θ : (θ − μ)T�−1(θ − μ) ≤ p
}
, (18)

with μ and � the prior mean and prior variance matrix. See δRB and δMB reviewed in Sec-
tion 2. To measure average risk reduction for θ in region (18), Berger [5] used the Bayes
risk with the normal prior θ ∼ N(μ,�). For simplicity, assume throughout that μ = 0 and
� = diag(γ1, . . . , γp) is diagonal.

We adopt Berger’s [5] ideas of specifying an elliptical region and using the Bayes risk to quan-
tify average risk reduction in this region. We aim to find A, subject to c∗(D,A) ≥ 0, minimizing
the Bayes risk of δA with the prior π� , θ ∼ N(0,�),

R(δA,π�) = Eπ�Eθ

(‖δA − θ‖2),
where Eπ� denotes the expectation with respect to the prior π� . Given A, the risk R(δA,π�)

can be numerically evaluated. A simple Monte Carlo method is to repeatedly draw θ ∼ N(0,�)

and X|θ ∼ N(θ,D) and then take the average of ‖δA(X) − θ‖2. But it seems difficult to literally
implement the foregoing optimization. Alternatively, we develop a simple method for choosing
A by two approximations.
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First, if c∗(D,A) ≥ 0, then taking the expectation of both sides of (13) with respect to the
prior π� gives an upper bound on the Bayes risk of δA:

R(δA,π�) ≤ tr(D) − Em

{
c∗2(D,A)

XTATAX

}
, (19)

where Em denotes the expectation with respect to the marginal distribution of X in the Bayes
model, that is, X ∼ N(0,D + �). An approximation strategy for choosing A is to minimize
the upper bound (19) on the Bayes risk or to maximize the second term. The expectation
Em{(XTATAX)−1} can be evaluated as a 1-dimensional integral by results on inverse moments
of quadratic forms in normal variables (e.g., Jones [20]). But the required optimization problem
remains difficult.

Second, approximations can be made to the distribution of the quadratic form XTATAX. Sup-
pose that XTATAX is approximated with the same mean by {∑p

j=1(dj +γj )a
2
j }χ2

p/p, where χ2
p

is a chi-squared variable with p degrees of freedom. Then Em{(XTATAX)−1} is approximated
by {p/(p − 2)}{∑p

j=1(dj + γj )a
2
j }−1. We show in the Appendix that this approximation gives a

valid lower bound:

Em

(
1

XTATAX

)
≥ p

p − 2
· 1∑p

j=1(dj + γj )a
2
j

. (20)

A direct application of Jensen’s inequality shows that Em{(XTATAX)−1} ≥ {∑p

j=1(dj +
γj )a

2
j }−1. But the lower bound (20) is strictly tighter and becomes exact when (d1 + γ1)a

2
1 =

· · · = (dp + γp)a2
p . No simple bounds such as (20) seem to hold if more complicated approxima-

tions (e.g., Satterthwaite [24]) are used.
Combining (19) and (20) shows that if c∗(D,A) ≥ 0, then

R(δA,π�) ≤ tr(D) − p

p − 2
· c∗2(D,A)∑p

j=1(dj + γj )a
2
j

. (21)

Notice that δA is invariant under a multiplicative transformation A �→ aA for a scalar a > 0, and
so is the upper bound (21). Our strategy for choosing A is to minimize the upper bound (21)
subject to c∗(D,A) ≥ 0 or, equivalently, to solve the constrained optimization problem:

max
A

c∗(D,A) =
p∑

j=1

djaj − 2 max
j=1,...,p

dj aj

(22)

subject to
p∑

j=1

(dj + γj )a
2
j = fixed.

The condition c∗(D,A) ≥ 0 is dropped, because for p ≥ 3, the achieved maximum is at least
c∗(D,aD−1) = a(p − 2) > 0 for some scalar a > 0. In spite of the approximations used in our
approach, Theorem 2 shows that not only the problem (22) admits a non-iterative solution, but
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also the solution has a very interesting interpretation. For convenience, assume thereafter that the
indices are sorted such that d2

1/(d1 + γ1) ≥ d2
2/(d2 + γ2) ≥ · · · ≥ d2

p/(dp + γp).

Theorem 2. Assume that p ≥ 3, D = diag(d1, . . . , dp) with dj > 0 and � = diag(γ1, . . . , γp)

with γj ≥ 0 (j = 1, . . . , p). For problem (22), assume that A = diag(a1, . . . , ap) with aj ≥ 0
(j = 1, . . . , p) and

∑p

j=1(dj + γj )a
2
j = ∑p

j=1 d2
j /(dj + γj ), satisfied by aj = dj/(dj + γj ).

Then the following results hold.

(i) There exists a unique solution, A† = diag(a
†
1, . . . , a

†
p), to problem (22).

(ii) Let ν be the largest index such that dνa
†
ν = max(d1a

†
1, . . . , dpa

†
p). Then ν ≥ 3, d1a

†
1 =

· · · = dνa
†
ν > dja

†
j for j ≥ ν + 1, and

a
†
j = Kν

(
ν∑

k=1

dk + γk

d2
k

)−1
ν − 2

dj

(j = 1, . . . , ν),

a
†
j = Kν

dj

dj + γj

(j = ν + 1, . . . , p),

where Kν = {∑p

j=1 d2
j /(dj + γj )}1/2M

−1/2
ν and

Mν = (ν − 2)2∑ν
j=1(dj + γj )/d

2
j

+
p∑

j=ν+1

d2
j

dj + γj

.

The achieved maximum value, c∗(D,A†), is KνMν (> 0).
(iii) The resulting estimator δA† is minimax.

We emphasize that, although A can be considered a tuning parameter, the solution A† is data
independent, so that δA† is automatically minimax. If a data-dependent choice of A were used,
minimaxity would not necessarily hold. This result is achieved both because each estimator δA

with c∗(D,A) ≥ 0 is minimax and because a global criterion (such as the Bayes risk) is used,
instead of a pointwise criterion (such as the frequentist risk at the unknown θ ), to select A. By
these considerations, our approach differs from the usual exercise of selecting a tuning parameter
in a data-dependent manner for a class of candidate estimators.

There is a remarkable property of monotonicity for the sequence (M3,M4, . . . ,Mp), which
underlies the uniqueness of ν and A†.

Corollary 2. The sequence (M3,M4, . . . ,Mp) is nonincreasing: for 3 ≤ k ≤ p−1, Mk ≥ Mk+1,
where the equality holds if and only if

k − 2∑k
j=1(dj + γj )/d

2
j

= d2
k+1

dk+1 + γk+1
.
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The condition dνa
†
ν > dν+1a

†
ν+1 is equivalent to saying that the left side is greater than the right-

hand side in the above expression for k = ν. Therefore, ν is the smallest index 3 ≤ k ≤ p − 1
with this property, and Mν > Mν+1.

The estimator δA† is invariant under scale transformations of A†. Therefore, the constant Kν

can be dropped from the expression of A† in Theorem 1.

Corollary 3. The solution A† = diag(a
†
1, . . . , a

†
p) can be rescaled such that

a
†
j =

(
ν∑

k=1

dk + γk

d2
k

)−1
ν − 2

dj

(j = 1, . . . , ν), (23)

a
†
j = dj

dj + γj

(j = ν + 1, . . . , p). (24)

Then c∗(D,A†) = ∑p

j=1 a
†
j

2
(dj + γj ) = Mν . Moreover, it holds that

a
†
j ≤ dj

dj + γj

(j = 1, . . . , ν). (25)

The estimator δA† can be expressed as

δA† = X −
∑p

j=1 a
†
j

2
(dj + γj )∑p

j=1 a
†
j

2
X2

j

A†X. (26)

The foregoing results lead to a simple algorithm for solving problem (22):

(i) Sort the indices such that d2
1/(d1 + γ1) ≥ · · · ≥ d2

p/(dp + γp).
(ii) Take ν to be the smallest index k (corresponding to the largest Mk) such that 3 ≤ k ≤

p − 1 and

k − 2∑k
j=1(dj + γj )/d

2
j

>
d2
k+1

dk+1 + γk+1
,

or take ν = p if there exists no such k.
(iii) Compute (a

†
1, . . . , a

†
p) by (23)–(24).

This algorithm is guaranteed to find the (unique) solution to problem (22) by a fixed number of
numerical operations. No iteration or convergence diagnosis is required. Therefore, the algorithm
is exact and non-iterative, in contrast with usual iterative algorithms for nonlinear, constrained
optimization.

The estimator δA† has an interesting interpretation. By (23)–(24), there is a dichotomous seg-
mentation in the shrinkage direction of the coordinates of X based on d∗

j = d2
j /(dj + γj ). This

quantity d∗
j is said to reflect the Bayes “importance” of θj , that is, the amount of reduction in
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Bayes risk obtainable in estimating θj in Berger [5]. The coordinates with high d∗
j are shrunk

inversely in proportion to their variances dj as in Berger’s [3] estimator δB
c , whereas the coordi-

nates with low d∗
j are shrunk in the direction of the Bayes rule. Therefore, δA† mimics the Bayes

rule to reduce the Bayes risk, except that δA† mimics δB
c for some coordinates of highest Bayes

“importance” in order to achieve minimaxity. In fact, by inequality (25), the relative shrinkage,
a

†
j /{dj/(dj + γj )}, of each Xj (j = 1, . . . , ν) in δA† versus the Bayes rule is always no greater

than that of Xk (k = ν + 1, . . . , p).
The expression (26) suggests that there is a close relationship in beyond the shrinkage direc-

tion between δA† and the Bayes rule under the Bayes model, X ∼ N(0,D + �). In this case,

Em(
∑p

j=1 a
†
j

2
X2

j ) = ∑p

j=1 a
†
j

2
(dj + γj ), and hence δA† behaves similarly to X − A†X. There-

fore, on average under the Bayes model, the coordinates of X are shrunk in δA† the same as
in the Bayes rule, except that some coordinates of highest Bayes “importance” are shrunk no
greater than in the Bayes rule. While this discussion seems heuristic, we provide in Section 3.4 a
rigorous analysis of the Bayes risk of δA† , compared with that of the Bayes rule.

We now examine δA† for two types of priors: γ1 = · · · = γp = γ and γj = γ dj (j = 1, . . . , p),
referred to as the homoscedastic and heteroscedastic priors. For both types, (d∗

1 , . . . , d∗
p) are of

the same order as the variances (d1, . . . , dp). Recall that δA is invariant under a multiplicative
transformation of A. For both the homoscedastic prior with γ = 0 and the heteroscedastic prior
regardless of γ ≥ 0, the solution A† = diag(a

†
1, . . . , a

†
p) can be rescaled such that

a
†
j =

(
ν∑

k=1

d−1
k

)−1
ν − 2

dj

(j = 1, . . . , ν),

a
†
j = 1 (j = ν + 1, . . . , p).

Denote by A
†
0 this rescaled matrix A†, corresponding to � = 0. Then coordinates with high

variances are shrunk inversely in proportion to their variances, whereas coordinates with low
variances are shrunk symmetrically. For � = 0, the proposed method has a purely frequen-
tist interpretation: it seeks to minimize the upper bound (21) on the pointwise risk of δA at
θ = 0.

For the homoscedastic prior with γ → ∞, the proposed method is then to minimize the upper
bound (21) on the Bayes risk of δA with an extremely flat, homoscedastic prior. As γ → ∞, the
solution A† can be rescaled such that

a
†
j =

(
ν∑

k=1

d−2
k

)−1
ν − 2

dj

(j = 1, . . . , ν),

a
†
j = dj (j = ν + 1, . . . , p).

Denote by A
†∞ this rescaled matrix A†. Then coordinates with low (or high) variances are shrunk

directly (or inversely) in proportion to their variances. The direction A
†∞ can also be obtained
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by using a fixed prior in the form γj = γ d1 − dj (j = 1, . . . , p) for arbitrary γ ≥ 1, where
d1 = maxj=1,...,p dj .

Finally, in the homoscedastic case (d1 = · · · = dp = σ 2), if the prior is also homoscedastic

(γ1 = · · · = γp = γ ), then ν = p, a
†
1 = · · · = a

†
p , and δA† reduces to the James–Stein estimator

δJS
p−2, regardless of σ 2 and γ .

3.4. Evaluating estimators

The estimator δA† is constructed by minimizing the upper bound (21) on the Bayes risk subject
to minimaxity. In addition to simplicity, interpretability, and minimaxity demonstrated for δA† , it
remains important to further study risk properties of δA† and show that δA† can provide effective
risk reduction over δ0 = X. Write δA† = δA†(�) whenever needed to make explicit the dependency
of A† on �.

First, we study how close the Bayes risk of δA†(�) can be to that of the Bayes rule, which is
the smallest possible among all estimators including non-minimax ones, under the prior π� , θ ∼
N(0,�). The Bayes rule δ

Bayes
� is given componentwise by (δ

Bayes
� )j = {1 − dj /(dj + γj )}Xj ,

with the Bayes risk

R
(
δ

Bayes
� ,π�

) = tr(D) −
p∑

j=1

d∗
j ,

where d∗
j = d2

j /(dj +γj ), indicating the Bayes “importance” of θj (Berger [5]). The upper bound
(21) on the Bayes risk of δA†(�) gives

R{δA†(�),π�} ≤ tr(D) − p

p − 2
Mν = tr(D) − p

p − 2

{
(ν − 2)2∑ν
j=1 d∗

j
−1

+
p∑

j=ν+1

d∗
j

}
, (27)

because c∗(D,A†) = ∑p

j=1(dj + γj )a
†
j

2 = Mν and hence c∗2(D,A†)/{∑p

j=1(dj + γj )a
†
j

2} =
Mν by Corollary 3. It appears that the difference between R{δA†(�),π�} and R(δ

Bayes
� ,π�) tends

to be large if ν is large. But d∗
1 ≥ · · · ≥ d∗

ν cannot differ too much from each other because by
Corollary 1,

k − 2 ≤
k∑

j=1

d∗
k+1

d∗
j

≤ k (k = 3, . . . , ν − 1).

Then the difference between R{δA†(�),π�} and R(δ
Bayes
� ,π�) should be limited even if ν is large.

A careful analysis using these ideas leads to the following result.
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Theorem 3. Suppose that the prior is θ ∼ N(0,�). If ν = 3, then

R{δA†(�),π�} ≤ tr(D) −
p∑

j=3

d∗
j +

(
d∗

3 − 2

p − 2

p∑
j=4

d∗
j − p

p − 2

d∗
3

3

)
(28)

≤ tr(D) −
p∑

j=3

d∗
j + 2

3
d∗

3 . (29)

If ν ≥ 4, then

R{δA†(�),π�} ≤ tr(D) −
p∑

j=3

d∗
j +

(
d∗

3 + d∗
4 − 2

p − 2

p∑
j=5

d∗
j − 4p

p − 2

d∗
ν

ν

)
(30)

≤ tr(D) −
p∑

j=3

d∗
j + (

d∗
3 + d∗

4

)
. (31)

Throughout, an empty summation is 0.

There are interesting implications of Theorem 3. By (29) and (31),

R{δA†(�),π�} ≤ R
(
δ

Bayes
� ,π�

) + (
d∗

1 + d∗
2 + d∗

3 + d∗
4

)
. (32)

Then δA†(�) achieves almost the minimum Bayes risk if d∗
1 /{tr(D) − ∑p

j=1 d∗
j } ≈ 0. In terms of

Bayes risk reduction, the bound (32) shows that

tr(D) − R{δA†(�),π�} ≥
(

1 − d∗
1 + d∗

2 + d∗
3 + d∗

4∑p

j=1 d∗
j

){
tr(D) − R

(
δ

Bayes
� ,π�

)}
.

Therefore, δA†(�) achieves Bayes risk reduction within a negligible factor of that achieved by the
Bayes rule if d∗

1 /
∑p

j=1 d∗
j ≈ 0.

In the homoscedastic case where both D = σ 2I and � = γ I , δA† reduces to δJS
p−2, regard-

less of γ ≥ 0 (Section 3.3). Then the bounds (28) and (30) become exact and give Efron
and Morris’s [17] result that R(δJS

p−2,πγ I ) = tr(D) − (p − 2){σ 4/(σ 2 + γ )} or equivalently

tr(D) − R(δJS
p−2,πγ I ) = (1 − 2/p){tr(D) − R(δ

Bayes
γ I ,πγ I )}.

It is interesting to compare the Bayes risk bound of δA†(�) with that of the following simpler
version of Berger’s [5] estimator δMB:

δMB2
j = Xj −

{
1

d∗
j

p∑
k=j

(
d∗
k − d∗

k+1

) (k − 2)+∑k
	=1 X2

	/(d	 + γ	)

}
dj

dj + γj

Xj .
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By Berger [5], δMB2 is minimax and

R
(
δMB2,π�

) = tr(D) −
p∑

j=3

d∗
j − 2

p∑
j=3

d∗
j

j

(
1 − d∗

j

j − 1

j−1∑
k=1

1

d∗
k

)
(33)

≤ tr(D) −
p∑

j=3

d∗
j . (34)

There seems to be no definite comparison between the bounds (28) and (30) on R{δA†(�),π�}
and the exact expression (33) for R(δMB2,π�), although the simple bounds (29) and (31) is
slightly higher, by at most d∗

3 + d∗
4 , than the bound (34). Of course, each risk upper bound gives

a conservative estimate of the actual performance, and comparison of two upper bounds should
be interpreted with caution. In fact, the positive-part estimator δ+

A† yields lower risks than those

of the non-simplified estimator δMB in our simulation study (Section 4).
The simplicity of δA† and δ+

A† makes it easy to further study them in other ways than using the
Bayes (or average) risk. No similar result to the following Theorem 4 has been established for
δMB or δMB2. Corresponding to the prior N(0,�), consider the worst-case (or maximum) risk

R(δ,H�) = sup
θ∈H�

R(δ, θ)

over the hyper-rectangle H� = {θ : θ2
j ≤ γj , j = 1, . . . , p} (e.g., Donoho et al. [16]). Applying

Jensen’s inequality to (13) shows that if c∗(D,A) > 0, then

R(δA, θ) ≤ tr(D) − c∗2(D,A)∑p

j=1(dj + θ2
j )a2

j

,

which immediately leads to

R(δA,H�) ≤ tr(D) − c∗2(D,A)∑p

j=1(dj + γj )a
2
j

. (35)

By the discussion after (20), a direct application of Jensen’s inequality to (19) shows that the
Bayes risk R(δA,π�) is also no greater than the right-hand side of (35), whereas inequality (20)
leads to a strictly tighter bound (21). Nevertheless, the upper bound (35) on the worst-case risk
of δA†(�) gives

R{δA†(�),H�} ≤ tr(D) − Mν = tr(D) −
{

(ν − 2)2∑ν
j=1 d∗

j
−1

+
p∑

j=ν+1

d∗
j

}
,

similarly as how (21) leads to (27) on the Bayes risk of δA†(�). Therefore, the following result
holds by the same proof of Theorem 3.
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Theorem 4. Suppose that H� = {θ : θ2
j ≤ γj , j = 1, . . . , p}. If ν = 3, then

R{δA†(�),H�} ≤ tr(D) −
p∑

j=3

d∗
j + 2

3
d∗

3 .

If ν ≥ 4, then

R{δA†(�),H�} ≤ tr(D) −
p∑

j=3

d∗
j +

(
d∗

3 + d∗
4 − 4

d∗
ν

ν

)

≤ tr(D) −
p∑

j=3

d∗
j + (

d∗
3 + d∗

4

)
.

There are similar implications of Theorem 4 to those of Theorem 3. By Donoho et al. [16], the
minimax linear risk over H� , RL(H�) = infδ linear R(δ,H�), coincides with the minimum Bayes
risk R(δ

Bayes
� ,π�), and is no greater than 1.25 times the minimax risk over H� , RN(H�) =

infδ R(δ,H�). These results are originally obtained in the homoscedastic case (d1 = · · · = dp),
but they remain valid in the heteroscedastic case by the independence of the observations Xj and
the separate constraints on θj . Therefore, a similar result to (32) holds:

R{δA†(�),H�} ≤ RL(H�) + (
d∗

1 + d∗
2 + d∗

3 + d∗
4

)
≤ 1.25RN(H�) + (

d∗
1 + d∗

2 + d∗
3 + d∗

4

)
.

If d∗
1 /{tr(D) − ∑p

j=1 d∗
j } ≈ 0, then δA† achieves almost the minimax linear risk (or the minimax

risk up to a factor of 1.25) over the hyper-rectangle H� , in addition to being globally minimax
with θ unrestricted.

The foregoing results might be considered non-adaptive in that δA†(�) is evaluated with respect
to the prior N(0,�) or the parameter set H� with the same � used to construct δA†(�). But, by the
invariance of δA under scale transformations of A, δA†(�) is identical to the estimator, δA†(�α),
that would be obtained if � is replaced by �α = α(D + �) − D for any scalar α such that the
diagonal matrix �α is nonnegative definite. By Theorems 3–4, this observation leads directly to
the following adaptive result. In contrast, no adaptive result seems possible for δMB.

Corollary 4. Let �α = α(D +�)−D and α0 = maxj=1,...,p{dj/(dj +γj )} (≤ 1). Then for each
α ≥ α0,

max
[
R{δA†(�),π�α },R{δA†(�),H�α }] ≤ R

(
δ

Bayes
�α

,π�α

) + α−1(d∗
1 + d∗

2 + d∗
3 + d∗

4

)
= RL(H�α ) + α−1(d∗

1 + d∗
2 + d∗

3 + d∗
4

)
,

where R(δ
Bayes
�α

,π�α ) = tr(D) − α−1 ∑p

j=1 d∗
j .
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For fixed �, δA†(�) can achieve close to the minimum Bayes risk or the minimax linear risk
with respect to each prior in the class {N(0,�α): α ≥ α0} or each parameter set in the class
{H�α : α ≥ α0} under mild conditions. For illustration, consider the case of a heteroscedastic
prior with � ∝ D. Then {�α: α ≥ α0} can be reparameterized as {γD: γ ≥ 0}. By Corollary 4,
for each γ ≥ 0,

max
{
R(δ

A
†
0
,πγD),R(δ

A
†
0
,HγD)

} ≤ R
(
δ

Bayes
γD ,πγD

) + d1 + d2 + d3 + d4

1 + γ
,

where R(δ
Bayes
γD ,πγD) = {γ /(1 + γ )} tr(D) and d1 ≥ d2 ≥ · · · ≥ dp . Therefore, if d1/ tr(D) ≈ 0,

then δ
A

†
0

achieves the minimum Bayes risk, within a negligible factor, under the prior N(0, γD)

for each γ > 0. This can be seen as an extension of the result that in the homoscedastic case,
δJS
p−2 asymptotically achieves the minimum Bayes risk under the prior N(0, γ I ) for each γ > 0

as p → ∞.
Finally, we compare the estimator δA† with a block shrinkage estimator, suggested by the

differentiation in the shrinkage of low- and high-variance coordinates by δA† . Consider the esti-
mator

δblock =
{

δB
τ−2(X1, . . . ,Xτ )

δB
p−τ−2(Xτ+1, . . . ,Xp)

}
,

where τ is a cutoff index, and δB
c (Y ) = Y if Y is of dimension 1 or 2. The index τ can be selected

such that the coordinate variances are relatively homogeneous in each block. Alternatively, a spe-
cific strategy for selecting τ is to minimize an upper bound on the Bayes risk of δblock, similarly
as in the development of δA† . Applying (21) with A = D−1 to δB

p−2 in the two blocks shows that

R(δblock,π�) ≤ tr(D) − Lτ , where

Lk = k − 2

(1/k)
∑k

j=1(dj + γj )/d
2
j

+ p − k − 2

(1/(p − k))
∑p

j=k+1(dj + γj )/d
2
j

.

The first (or second) term in Lk is set to 0 if k ≤ 2 (or k ≥ p − 2). Then τ can be defined as the
smallest index such that Lτ = max(L1,L2, . . . ,Lp). But the upper bound (27) on R(δA† ,π�) is
likely to be smaller than the corresponding bound on R(δblock,π�), because {k/(k − 2)}Mk ≥
Lk for each k ≥ 3 by the Cauchy–Schwarz inequality {∑p

j=k+1 d2
j /(dj + γj )}{∑p

j=k+1(dj +
γj )/d

2
j } ≥ (p − k)2. Therefore, δA† tends to yield greater risk reduction than δblock. This analysis

also indicates that δA† can be advantageous over δblock extended to multiple blocks.
The rationale of forming blocks in δA† and δblock differs from that in existing block shrinkage

estimators (e.g., Brown and Zhao [13]). As discussed in Cai [14], block shrinkage has been de-
veloped mainly in the homoscedastic case as a technique for pooling information: the coordinate
means are likely to be similar to each other within a block. Nevertheless, it is possible to both
deal with heterogeneity among coordinate variances and exploit homogeneity among coordinate
means within individual blocks in our approach using a block-homoscedastic prior (i.e., the prior
variances are equal within each block). This topic can be pursued in future work.
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4. Simulation study

4.1. Setup

We conduct a simulation study to compare the following 8 estimators,

(i) Non-minimax estimators: δEB by (2), δXKB by (3), δRB by (7) with � = 0;
(ii) Minimax estimators: δB+

p−2 by (6), δMB by (8) with � = 0 or γ I for some large γ , δ+
A by

(12) with A = A
†
0 and A

†∞.

Recall that A
†
0 corresponds to � = 0 or � ∝ D and A

†∞ corresponds to � = γ I with γ → ∞. In
contrast, letting the diagonal elements of � tend to ∞ in any direction in δRB and δMB leads to
δ0 = X. Setting � to 0 or ∞ is used here to specify the relevant estimators, rather than to restrict
the prior on θ .

For completeness, we also study the following estimators: δB+
2(p−2) by (6), δRB with p − 2

replaced by 2(p−2) in (7), δMB with (k−2)+ replaced by 2(k−2)+ in (8), and δ+
A with c∗(D,A)

replaced by 2c∗(D,A) in (12), referred to as the alternative versions of δB+
p−2, δRB, δMB, and δ+

A

respectively. The usual choices of the factors, p − 2, (k − 2)+, and c∗(D,A), are motivated
to minimize the risks of the non-positive-part estimators, but may not be the most desirable
for the positive-part estimators. As seen below, the alternative choices 2(p − 2), 2(k − 2)+,
and 2c∗(D,A) can lead to risk curves for the positive-part estimators rather different from those
based on the usual choices (p−2), (k−2)+, and c∗(D,A). Therefore, we compare the estimators
δB+
p−2, δRB, δMB, and δ+

A and, separately, their alternative versions.
Each estimator δ is evaluated by the pointwise risk function R(δ, θ) as θ moves in a certain

direction or the Bayes risk function R(δ,π) as π varies in a set of priors on θ . Consider the
homoscedastic prior N(0, η2I/p) or the heteroscedastic prior N{0, η2D/ tr(D)} for η ≥ 0. As
discussed in Section 3.3, the Bayes risk with the first or second prior is meant to measure average
risk reduction over the region {θ : ‖θ‖2 ≤ η2} or {θ : θTD−1θ ≤ pη2/ tr(D)}. Corresponding to
the two priors, consider the direction along (η/

√
p, . . . , η/

√
p) or (η

√
d1, . . . , η

√
dp)/

√
tr(D),

where η gives the Euclidean distance from 0 to the point indexed by η. The two directions are
referred to as the homoscedastic and heteroscedastic directions.

We investigate several configurations for D, including (5) and

(d1, d2, . . . , d10) = (40,20,10,5,5,5,1,1,1,1) or (36)

= (40,20,10,7,6,5,4,3,2,1) or (37)

= 5%,15%, . . . ,95% quantiles of 8/χ2
3 or 24/χ2

5 ,

where χ2
k is a chi-squared variable with k degrees of freedom. In the last case, (d1, . . . , d10)

can be considered a typical sample from a scaled inverse chi-squared distribution, which is the
conjugate distribution for normal variances. In the case (36), the coordinates may be segmented
intuitively into three groups with relatively homogeneous variances. In the case (37), there is no
clear intuition about how the coordinates should be segmented into groups.

For fixed D, the pointwise risk R(δ, θ) is computed by repeatedly drawing X ∼ N(θ,D) and
then taking the average of ‖δ − θ‖2. The Bayes risk is computed by repeatedly drawing θ ∼
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N(0,�) and X|θ ∼ N(θ,D) and then taking the average of ‖δ − θ‖2. Each Monte Carlo sample
size is set to 105.

4.2. Results

The relative performances of the estimators are found to be consistent across different configu-
rations of D studied. Moreover, the Bayes risk curves under the homoscedastic prior are similar
to the pointwise risk curves along the homoscedastic direction. The Bayes risk curves under the
heteroscedastic prior are similar to the pointwise risk curves along the heteroscedastic direction.
Figure 1 shows the pointwise risks of the estimators with the usual versions of δB+

p−2, δRB, δMB,

and δ+
A and Figure 2 shows those of the estimators with the alternative versions of δB+

p−2, δRB,

δMB, and δ+
A for the case (36), with roughly three groups of coordinate variances, which might

be considered unfavorable to our approach. For both A
†
0 and A

†∞, the cutoff index ν is found to
be 3. See the supplementary material (Tan [30]) for the Bayes risk curves of all these estimators
for the case (36) and the results for other configurations of D.

A number of observations can be drawn from Figures 1–2. First, δEB, δXKB, and δRB have
among the lowest risk curves along the homoscedastic direction. But along the heteroscedastic
direction, the risk curves of δEB and δXKB rise quickly above the constant risk of X as η increases.
Moreover, all the risk curves of δEB, δXKB, and δRB along the θ1 axis exceed the constant risk of
X as |θ1| increases. Therefore, δEB, δXKB, and δRB fail to be minimax, as mentioned in Section 2.

Second, δB+
p−2 or δB+

2(p−2) has among the highest risk curve, except where the risk curves of δEB

and δXKB exceed the constant risk of X along the heteroscedastic direction. The poor perfor-
mance is expected for δB+

p−2 or δB+
2(p−2), because there are considerable differences between the

coordinate variances in (36).
Third, among the minimax estimators, δ+

A with A = A
†
0 or A

†∞ has the lowest risk curve along
various directions, whether the usual versions of δB+

p−2, δMB, and δ+
A are compared (Figure 1) or

the alternative versions are compared (Figure 2).
Fourth, the risk curve of δ+

A with A = A
†
0 is similar to that of δ+

A with A = A
†∞ along the het-

eroscedastic direction. But the former is noticeably higher than the latter along the homoscedastic
direction as η increases, whereas is noticeably lower than the latter along the θ1 axis as |θ1| in-
creases. These results agree with the construction of A

†
0 using a heteroscedastic prior and A

†∞
using a flat, homoscedastic prior. Their relative performances depend on the direction in which
the risks are evaluated.

Fifth, δMB with � = 0 has risk curves below that of δB+
p−2 or δB+

2(p−2), but either above or

crossing those of δ+
A with A = A

†
0 and A

†∞. Moreover, δMB with � = (162/p)I has elevated,
almost flat risk curves for η from 0 to 16. This seems to indicate an undesirable consequence of
using a non-degenerate prior for δMB in that the risk tends to increase for θ near 0, and remains
high for θ far away from 0.

The foregoing discussion involves the comparison of the risk curves as θ moves away from 0
between δMB and δ+

A† specified with fixed priors. Alternatively, we compare the pointwise risks

at θ = (η/
√

p, . . . , η/
√

p) or (η
√

d1, . . . , η
√

dp)/
√

tr(D) and the Bayes risks under the prior
N(0, η2I/p) or N{0, η2D/ tr(D)} between δMB and δ+

A† specified with the prior N(0, η2I/p) for
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Figure 1. Pointwise risks along the homoscedastic (first row) and heteroscedastic (second row) directions
and θ1 axis (third row) in the case (36). Left: non-minimax estimators δEB (�), δRB (�), δXKB (�). Right:
minimax estimators δB+

p−2 (�), δMB with � = 0 (•) and � = (162/p)I (◦), δ+
A

with A = A
†
0 (�) and A

†∞
(�).
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Figure 2. Pointwise risks along the homoscedastic (first row) and heteroscedastic (second row) directions
and θ1 axis (third row) in the case (36), with the same legend as in Figure 1. The alternative versions of
δB+
p−2, δRB, δMB, and δ+

A
are used.
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a range of η. The homoscedastic prior used in the specification of δMB and δ+
A† can be consid-

ered correctly specified or misspecified, when the Bayes risks are evaluated under, respectively,
the homoscedastic or heteroscedastic prior or when the pointwise risks are evaluated along the
homoscedastic or heteroscedastic direction. For each situation, δ+

A† has lower pointwise or Bayes

risks than δMB. See Figure A2 in the supplementary material (Tan [30]).

5. Conclusion

The estimator δA† and its positive-part version δ+
A† are not only minimax and but also have

desirable properties including simplicity, interpretability, and effectiveness in risk reduction. In
fact, δA† is defined by taking A = A† in a class of minimax estimators δA. The simplicity of
δA† holds because δA is of the linear form (I − λA)X, with A and λ indicating the direction
and magnitude of shrinkage. The interpretability of δA† holds because the form of A† indicates
that one group of coordinates are shrunk in the direction of Berger’s [3] minimax estimator
whereas the remaining coordinates are shrunk in the direction of the Bayes rule. The effectiveness
of δA† in risk reduction is supported, in theory, by showing that δA† can achieve close to the
minimum Bayes risk simultaneously over a scale class of normal priors (Corollary 4). For various
scenarios in our numerical study, the estimators δ+

A† with extreme priors yield more substantial
risk reduction than existing minimax estimators.

It is interesting to discuss a special feature of δA,r and hence of δA,c and δA among linear,
shrinkage estimators of the form

δ = X − h
(
XTBX

)
AX, (38)

where A and B are nonnegative definite matrices and h(·) is a scalar function. The estimator
δA,r corresponds to the choice B ∝ ATQA, which is motivated by the form of the optimal λ

in minimizing the risk of (I − λA)X for fixed A. On the other hand, Berger and Srinivasan [8]
showed that under certain regularity conditions on h(·), an estimator (38) can be generalized
Bayes or admissible only if B ∝ �−1A. This condition is incompatible with B ∝ ATQA, unless
A ∝ Q−1�−1 as in Berger’s [3] estimator. Therefore, δA including δA† is, in general, not gener-
alized Bayes or admissible. This conclusion, however, does not apply directly to the positive-part
estimator δ+

A , which is no longer of the linear form (I − λA)X.
There are various topics that can be further studied. First, the prior on θ is fixed, independently

of data in the current paper. A useful extension is to allow the prior to be estimated within a
certain class, for example, homoscedastic priors N(0, γ I ), from the data, in the spirit of empirical
Bayes estimation (e.g., Efron and Morris [17]). Second, the Bayes risk with a normal prior is used
to measure average risk reduction in an elliptical region (Section 3.3). It is interesting to study
how our approach can be extended when using a non-normal prior on θ , corresponding to a
non-elliptical region in which risk reduction is desired.

Appendix

Preparation. The following extends Stein’s [27] lemma for computing the expectation of the
inner product of X − θ and a vector of functions of X.
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Lemma 1. Let X = (X1, . . . ,Xp)T be multivariate normal with mean θ and variance ma-
trix �. Assume that g = (g1, . . . , gp)T :Rp → Rp is almost differentiable Stein [27] with
Eθ {|∇j gi(X)|} < ∞ for i, j = 1, . . . , p, where ∇j = ∂/∂xj . Then

Eθ

{
(X − θ)Tg(X)

} = tr
[
�Eθ

{∇g(X)
}]

,

where ∇g(x) is the matrix with (i, j)th element ∇j gi(x).

Proof. A direct generalization of Lemma 2 in Stein [27] to a normal random vector with non-
identity variance matrix gives

Eθ

{
(X − θ)gi(X)

} = �ET
θ

{∇gi(X)
}
,

where ∇gi(x) is the row vector with j th element ∇j gi(x). Taking the ith element of both sides
of the equation gives

Eθ

{
(Xi − θi)gi(X)

} =
p∑

j=1

σijEθ

{∇j gi(X)
}
,

where σij is the (i, j)th element of �. Summing both sides of the preceding equation over i gives
the desired result. �

Proof of Theorem 1. By direct calculation, the risk of δA,r is

R(δA,r , θ) = tr(�Q) + Eθ

(
r2

XTATQAX

)
− 2Eθ

{
(X − θ)T rQAX

XTATQAX

}
.

By Lemma 1 and the fact that tr(�QAXXTATQA) = XTATQA�QAX, the third term after the
minus sign in R(δA,r , θ) is

2Eθ

{
r

tr(�QA)

XTATQAX

}
− 4Eθ

{
r
XTATQA�QAX

(XTATQAX)2

}
+ 4Eθ

(
r ′ XTATQA�QAX

XTATQAX

)
.

By condition (14), ATQA�QA is nonnegative definite. By Section 21.14 and Exercise 21.32 in
Harville [18], (xTATQA�QAx)/(xTATQAx) ≤ λmax(A�Q + �ATQ)/2 for x �= 0. Then the
preceding expression is bounded from below by

2Eθ

{
r

tr(�QA) − λmax(A�Q + �ATQ)

XTATQAX

}
,

which leads immediately to the upper bound on R(δA,r , θ). �

Proof for condition (17). We show that if condition (17) holds, then there exists a non-
singular matrix B with the claimed properties. The converse is trivially true. Let R be the
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unique symmetric, positive definite matrix such that R2 = Q. Then RAR−1 is symmet-
ric, that is, RAR−1 = R−1ATR, because QA = ATQ. Moreover, R�R and RAR−1 com-
mute, that is, RAR−1(R�R) = R�R(RAR−1)T = R�R(RAR−1), because A� = �AT and
RAR−1 is symmetric. Therefore, R�R and RAR−1 are simultaneously diagonalizable (Harville
[18], Section 21.13). There exists an orthogonal matrix O such that O(R�R)OT = D and
O(RAR−1)OT = A∗ for some diagonal matrices D and A∗. Then B = OR satisfies the claimed
properties. �

Proof of inequality (20). We show that if (Z1, . . . ,Zp) are independent standard normal vari-
ables, then E{(∑p

j=1 a2
j Z

2
j )

−1} ≥ {p/(p − 2)}(∑p

j=1 a2
j )

−1. Let S = ∑p

j=1 Z2
j . Then S and

(Z2
1/S, . . . ,Z2

p/S) are independent, S ∼ χ2
p , and (Z2

1/S, . . . ,Z2
p/S) ∼ Dirichlet(1/p, . . . ,1/p).

The claimed inequality follows because E{(∑p

j=1 a2
jZ

2
j )

−1} = E{(∑p

j=1 a2
jZ

2
j /S)−1}E(S−1),

E(S−1) = 1/(p − 2), and E{(∑p

j=1 a2
jZ

2
j /S)−1} ≥ (

∑p

j=1 a2
j /p)−1 by Jensen’s inequality. �

Proofs of Theorem 2 and Corollary 2. Consider the transformation δj = d2
j /(dj + γj ) and

αj = {(dj + γj )/dj }aj , so that δjαj = djaj and δjα
2
j = (dj + γj )a

2
j . Problem (22) is then trans-

formed to maxα1,...,αp {∑p

j=1 δjαj − 2 max(δ1α1, . . . , δpαp)}, subject to αj ≥ 0 (j = 1, . . . , p)

and
∑p

j=1 δjα
2
j = ∑p

j=1 δj , which is of the form of the special case of (22) with γj = 0
(j = 1, . . . , p). But it is easy to verify that if the claimed results hold for the transformed prob-
lem, then the results hold for original problem (22). Therefore, assume in the rest of proof that
γj = 0 (j = 1, . . . , p).

There exists at least a solution, A†, to problem (22) by boundedness of the constraint set. Let
K = {k: dka

†
k = dνa

†
ν , k = 1, . . . , p} and Kc = {j : dja

†
j < dνa

†
ν , j = 1, . . . , p}. A key of the

proof is to exploit the fact that, by the setup of problem (22), (a
†
1, . . . , a

†
p) is automatically a

solution to the problem

max
a1,...,ap

p∑
j=1

djaj − 2dνaν,

subject to aj ≥ 0, dj aj ≤ dνaν (j = 1, . . . , p), and (A.1)

p∑
j=1

dja
2
j =

p∑
j=1

dj .

The Karush–Kuhn–Tucker condition for this problem gives

−1 + 2λa
†
j − d−1

j ρj = 0 forj ∈Kc, (A.2)

−1 + 2λa
†
k + μk − d−1

k ρk = 0 for k (�= ν) ∈K, (A.3)

−1 + 2λa†
ν +

(
2 −

∑
k∈K\{ν}

μk

)
− d−1

ν ρν = 0, (A.4)
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where λ, μk ≥ 0 (k ∈ K \ {ν}), and ρj ≥ 0 satisfying ρja
†
j = 0 (j = 1, . . . , p) are Lagrange

multipliers.
First, we show that a

†
j > 0 and hence ρj = 0 for j = 1, . . . , p. If Kc =∅, then either a

†
j > 0 for

j = 1, . . . , p, or a
†
1 = · · · = a

†
p = 0. The latter case is infeasible by the constraint

∑p

j=1 dja
2
j =∑p

j=1 dj . Suppose Kc �= ∅. By (A.2), a
†
j > 0 for each j ∈ Kc. Then a

†
k > 0 for each k ∈ K

because dka
†
k > dja

†
j .

Second, we show that ν ≥ 3. If Kc = ∅, then ν = p ≥ 3. Suppose Kc �= ∅. Then λ > 0
by (A.2). Summing (A.3) over k (�= ν) ∈ K and (A.4) shows that −ν + 2λ

∑ν
k=1 a

†
k + 2 = 0.

Therefore, ν > 2 or equivalently ν ≥ 3.
Third, we show that K = {1,2, . . . , ν} and Kc = {ν + 1, . . . , p}. For each k (�= ν) ∈ K and j ∈

Kc, a
†
k ≤ a

†
j by (A.2)–(A.3) and then dk > dj because dka

†
k > dja

†
j . The inequalities also hold

for k = ν, by application of the argument to problem (A.1) with ν replaced by some k (�= ν) ∈ K.
Then Kc = {ν + 1, . . . , p} because dν > dj for each j ∈ Kc, d1 ≥ d2 ≥ · · · ≥ dp , and ν is the
largest element in K.

Fourth, we show the expressions for (a
†
1, . . . , a

†
p) and the achieved maximum value. By the

definition of K, a
†
k ∝ d−1

k for k = 1, . . . , ν. By (A.2), a
†
j ∝ 1 for j = ν + 1, . . . , p. Let y† = dνa

†
ν

and z† = a
†
ν+1. Then (y†, z†) is a solution to the problem

max
y,z

(ν − 2)y +
(

p∑
j=ν+1

dj

)
z,

subject to y ≥ 0, z ≥ 0, y ≥ dν+1z, and(
ν∑

k=1

d−1
k

)
y2 +

(
p∑

j=ν+1

dj

)
z2 =

p∑
j=1

dj .

By the definition of K, y† > dν+1z
† and hence (y†, z†) lies off the boundary in the constraint set.

Then (y†, z†) is a solution to the foregoing problem with the constraint y ≥ dν+1z removed. The
problem is of the form of maximizing a linear function of (y, z) subject to an elliptical constraint.
Straightforward calculation shows that

y† =
(∑p

j=1 dj

Mν

)1/2
ν − 2∑ν
j=1 d−1

j

, z† =
(∑p

j=1 dj

Mν

)1/2

,

and the achieved maximum value is (
∑p

j=1 dj )
1/2M

1/2
ν , where Mν = (ν − 2)2/(

∑ν
j=1 d−1

j )

+∑p

j=ν+1 dj .
Finally, we show that the sequence (M3,M4, . . .Mp) is nonincreasing: Mk ≥ Mk+1, where

the equality holds if and only if k − 2 = ∑k
j=1 dk+1/dj . Because y† > dν+1z

† or ν − 2 >∑ν
j=1 dν+1/dj , this result implies that Mν > Mν+1 and hence A† is a unique solution to (22).

Let Lk = {(∑k
j=1 dj )(

∑k
j=1 d−1

j ) − (k − 2)2}/∑k
j=1 d−1

j so that Mk = ∑p

j=1 dj − Lk . By the
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identity (b + β)/(a + α) − b/a = (β/α − b/a){α/(a + α)} and simple calculation,

Lk+1 − Lk =
[∑k

j=1(dj /dk+1 + dk+1/dj ) − 2k + 4

d−1
k+1

−
{

k∑
j=1

dj − (k − 2)2∑k
j=1 d−1

j

}]
d−1
k+1∑k+1

j=1 d−1
j

(A.5)

= dk+1
{rk − (k − 2)}2

rk(rk + 1)
,

where rk = ∑k
j=1 dk+1/dj . Therefore, Lk ≤ Lk+1. Moreover, Lk = Lk+1 if and only if rk =

k − 2, that is,
∑k

j=1 dk+1/dj = k − 2. �

Proof of Corollary 3. It suffices to show (25). By Corollary 2,
∑ν−1

k=1 d∗
ν /d∗

k ≥ ν − 3 and hence∑ν
k=1 d∗

ν /d∗
k ≥ ν − 2. Then for j = 1, . . . , ν.

a
†
j = (ν − 2)d∗

j
−1∑ν

k=1 d∗
k

−1

dj

dj + γj

≤ (ν − 2)d∗
ν

−1∑ν
k=1 d∗

k
−1

dj

dj + γj

≤ dj

dj + γj

,

because d∗
j ≥ d∗

ν for j ≤ ν. �

Proof of Theorem 3. Let Lk = ∑k
j=1 d∗

j − (k − 2)2/
∑k

j=1 d∗
j

−1 so that Mk = ∑p

j=1 d∗
j − Lk ,

similarly as in the proof of Theorem 2. By equation (A.5) with rk = ∑k
j=1 d∗

k+1/d
∗
j and dk+1

replaced by d∗
k+1,

Lν = L3 +
ν−1∑
k=3

(Lk+1 − Lk) = L3 +
ν−1∑
k=3

d∗
k+1

{rk − (k − 2)}2

rk(rk + 1)
.

By the relationship rk = (d∗
k+1/d

∗
k )(1 + rk−1) and simple calculation,

L3 = d∗
1 + d∗

2 + d∗
3 − 1

d∗
1

−1 + d∗
2

−1 + d∗
3

−1

= d∗
1 + d∗

2 + d∗
3 −

ν−1∑
k=3

d∗
k+1

(
1

rk
− 1

rk + 1

)
− d∗

ν

rν−1 + 1
.

If ν ≥ 4, combining the two preceding equation gives

Lν = d∗
1 + d∗

2 + d∗
3 +

ν−1∑
k=3

d∗
k+1

{rk − (k − 2)}2 − 1

rk(rk + 1)
− d∗

ν

rν−1 + 1

≤ d∗
1 + d∗

2 + d∗
3 +

ν−1∑
k=3

d∗
k+1

3

k(k + 1)
− d∗

ν

ν
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= d∗
1 + d∗

2 + d∗
3 + d∗

4 − 3
ν−2∑
k=3

d∗
k+1 − d∗

k+2

k + 1
− 4

d∗
ν

ν

≤ d∗
1 + d∗

2 + d∗
3 + d∗

4 − 4
d∗
ν

ν
.

The first inequality follows because k −2 ≤ rk ≤ k for k = 3, . . . , ν −1 and {t − (k −2)}2/{t (t +
1)} is increasing for k − 2 ≤ t ≤ k with a maximum at t = k. The second inequality follows
because d∗

1 ≥ d∗
2 ≥ · · · ≥ d∗

p . Therefore, if ν ≥ 4 then

p

p − 2
Mν ≥ p

p − 2

{
p∑

j=1

d∗
j −

(
d∗

1 + d∗
2 + d∗

3 + d∗
4 − 4

d∗
ν

ν

)}

=
p∑

j=3

d∗
j −

(
d∗

3 + d∗
4 − 2

p − 2

p∑
j=5

d∗
j − 4p

p − 2

d∗
ν

ν

)
.

If ν = 3, then Lν ≤ d∗
1 + d∗

2 + d∗
3 − d∗

3 /3 and hence

p

p − 2
Mν ≥ p

p − 2

{
p∑

j=1

d∗
j − (

d∗
1 + d∗

2 + d∗
3 − d∗

3 /3
)}

=
p∑

j=3

d∗
j −

(
d∗

3 − 2

p − 2

p∑
j=4

d∗
j − p

p − 2

d∗
3

3

)
.

This completes the proof. �
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