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Clustering of Markov chain exceedances
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The tail chain of a Markov chain can be used to model the dependence between extreme observations. For a
positive recurrent Markov chain, the tail chain aids in describing the limit of a sequence of point processes
{Nn,n ≥ 1}, consisting of normalized observations plotted against scaled time points. Under fairly general
conditions on extremal behaviour, {Nn} converges to a cluster Poisson process. Our technique decomposes
the sample path of the chain into i.i.d. regenerative cycles rather than using blocking argument typically
employed in the context of stationarity with mixing.

1. Introduction

One of the effects of dependence in a time series is that extremes tend to cluster. This has applied
implications to risk contagion over time but is also mathematically interesting and the challenge
is to precisely relate the dependence structure to the clustering. For Markov dependence, how do
we describe exceedance clusters?

Point processes powerfully describe extremal behaviour of certain time series. Under appro-
priate conditions on marginal distributions and rapid decay of dependence as a function of time
lag for the process {Xj : j ≥ 0}, the exceedance point process Nn defined by

Nn

([0, s] × (a,∞]) = #{j ≤ sn : Xj > abn} (1.1)

converges weakly to a Poisson limit as n → ∞, where bn → ∞ is a threshold sequence. This
leads to a number of results on asymptotic distributions of large order statistics and exceedances
of an extreme level. Such results have been developed in a variety of contexts by [3,6,10–12,14,
21]. More specific results exist for regularly varying processes [4,7], regenerative processes [1,
27], and Markov chains [22,35]. Distributions of functionals of such point processes have been
considered in [28,29,36].

For stationary processes, the dependence structure causes extremes to occur in clusters. The
clustering is often summarized using the extremal index θ introduced by Leadbetter et al. [14],
which is related to the asymptotic mean cluster size. To obtain a point process convergence re-
sult, authors often employ the big block/little block technique and mixing conditions, such as
Leadbetter’s D(un) (see [14]), to split the process into approximately independent and iden-
tically distributed blocks. With an appropriate choice of block size, extremes within one such
block belong asymptotically to the same cluster. Under an assumption controlling the extremal
behaviour within each block, such as via the distribution of the number of exceedances, Nn gen-
erally converges to a limiting compound Poisson process, where the compounding at each time
point approximates the clustering within each block. For Markov chains, the tail chain is an
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asymptotic process that models behaviour upon reaching an extreme state; see [22,23,26,30–32].
Point process results for stationary Markov chains employ the tail chain to specify the compound-
ing in the limit process. Under Markov dependence, the within-block behaviour is determined
merely by conditions on the marginal distribution and the transition kernel. Basrak and Segers
[4] extended the tail chain model to general multivariate regularly varying stationary processes.

Rootzén [27] focuses on regenerative processes, which split naturally into cycles. In this case,
the within-block condition is replaced by an assumption on the extremal behaviour over a cycle.
The main difference is that the cycles are of random but finite length, whereas the block size
increases deterministically with n. In particular, Rootzén shows that convergence of the sequence
of processes counting the number of exceedances depends on the asymptotics of the distribution
of the cycle maximum as well as the marginal distribution.

We combine these two approaches to derive the weak limit of {Nn} when {Xn} is a positive
recurrent Markov chain. Such chains display a regenerative structure and in the limit, Nn is
approximated by a process consisting of clusters of points stacked above common time points,
each corresponding to a separate regenerative cycle. The heights of the points in each cluster
are determined by an independent run of the tail chain. This paper requires some distributional
results for the tail chain process that were derived in [26] and Section 2 offers a summary of
necessary facts. We focus on the case of heavy-tailed marginals, but believe our approach could
be extended to accommodate more general marginal distributions.

1.1. Notation and conventions

We review notation and relevant concepts. In general, bold symbols represent vectors or se-
quences and for x = (x1, x2, . . .), write xm := (x1, . . . , xm).

f ← the left-continuous inverse of a monotone function f , i.e.,
f ←(x) = inf{y : f (y) ≥ x}.

RVρ the class of regularly varying functions with index ρ.
D[0,∞) the space of real-valued càdlàg functions on [0,∞) endowed with the

Skorohod topology.
Dleft[0,∞) left continuous functions on [0,∞) with finite right hand limits and

metrized by the Skorohod metric.
D↑[0,∞) the subspace of Dleft[0,∞) consisting of non-decreasing functions f with

f (0) = 0 and limx→∞ f (x) = ∞.
K(E) the collection of compact subsets of E.
C(E) the space of real-valued continuous, bounded functions on E.
C+

K(E) the space of non-negative continuous functions on E with compact support.
M+(E) the space of non-negative Radon measures on E.
Mp(E) the space of Radon point measures on E.
LEB Lebesgue measure on R.
PRM(μ) Poisson random measure on E with mean measure μ.
εx(·) point measure at x, i.e., εx(A) = 1A(x).
να a measure on (0,∞] given by να(x,∞] = x−α for x > 0, α > 0.
⇒ weak convergence of probability measures [5].
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For a space E which is locally compact with countable base (for example, a subset of
[−∞,∞]d ), a sequence of measures {μn} ⊂ M+(E) converges vaguely to μ ∈ M+(E) (writ-
ten μn

v−→ μ) if
´

E
f dμn → ´

E
f dμ as n → ∞ for any f ∈ C+

K(E). The vague topology on

M+(E) is metrizable by the vague metric, dv , i.e., dv(μn,μ) → 0 iff μn
v→ μ. See [13,20,25] for

further details. A distribution F on [0,∞) has a regularly varying tail with index α > 0, denoted
1 − F ∈ RV−α , if there exists b(t) → ∞ such that

tF
(
b(t)·) v−→ να(·) in M+(0,∞] as t → ∞,

where να(x,∞] = x−α for x > 0. The function b(·) is called a scaling function.
If X = (X0,X1,X2, . . .) is a (homogeneous) Markov chain and K is a Markov transition

kernel, we write X ∼ K to mean that the dependence structure of X is specified by K , i.e.,

P[Xn+1 ∈ · | Xn = x] = K(x, ·), n = 0,1, . . . .

Also, Pμ[X ∈ ·] specifies the initial distribution P[X0 ∈ ·] = μ (abbreviate Px := Pεx ), and Eμ

denotes expectation with respect to Pμ.

2. Extremal component and tail chain approximation

Let X = (X0,X1, . . .) be a Markov chain on [0,∞) with transition kernel K . The tail chain is a
finite-dimensional approximation to the chain X used to study the limit of {Nn} given by (1.1).
Building on theory developed in [23,30,31], [26] presents the tail chain approximation in terms
of a related process known as the extremal component of X, an approach we follow here.

2.1. Tail chain approximation

Suppose the transition kernel K is in the domain of attraction of a distribution G (denoted K ∈
D(G)) which means [26],

K(t, t ·) ⇒ G(·) on [0,∞] as t → ∞.

Taking ξ1, ξ2, . . . i.i.d. random variables with common distribution G, set ξ(n) = ∏n
j=1 ξj , n ≥ 1

with ξ(0) = 1 and write ξ = {ξ(n), n ≥ 0}. The tail chain associated with G [22,26,31] is T =
(T0, T1, . . .) given by

Tn = T0ξ1 · · · ξn = T0ξ(n), n ≥ 0. (2.1)

Thus T is a multiplicative random walk and {0} is an absorbing barrier for T , accessible if
G({0}) > 0.

An extremal boundary for X is a function y(t) satisfying 0 ≤ y(t) → 0, such that

K
(
tut , t

[
0, y(t)

]) −→ G
({0}) as t → ∞, (2.2)
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for any non-negative function ut = u(t) → u > 0. Such a function always exists if K ∈ D(G)

[26, Section 3.2]. If y(t) is an extremal boundary, any function 0 ≤ ỹ(t) → 0 with ỹ(t) ≥ y(t) for
t ≥ t0 is also an extremal boundary. If G({0}) = 0, then y(t) ≡ 0 is a convenient choice. Given
an extremal boundary for K , the extremal component of X is the process X prior to X crossing
below the scaled extremal boundary and identically 0 afterwards. The first downcrossing occurs
at time

τ(t) = inf
{
n ≥ 0 : Xn ≤ ty(t)

}
, (2.3)

and the extremal component is the process X(t) = (X
(t)
0 ,X

(t)
1 , . . .) defined by

X(t)
n = Xn · 1{n<τ(t)}, n = 0,1, . . . .

Starting from an extreme level X0 = t , the extremal boundary separates extreme states from
non-extreme states for the scaled process t−1X.

The tail chain approximation is the following [26, Theorem 3.3]. For K ∈ D(G), u > 0, m ≥ 1,

Ptu

[
t−1(X(t)

1 , . . . ,X(t)
m

) ∈ ·] ⇒ Pu

[
(T1, . . . , Tm) ∈ ·] on [0,∞]m as t → ∞. (2.4)

So, the tail chain maps extreme states onto (0,∞) and contracts non-extreme states to the point
{0}. Note τ(t) = inf{n ≥ 0 : X(t)

n = 0}.
If the finite-dimensional extremal behaviour of X is completely accounted for by the extremal

component, then the tail chain approximation (2.4) extends from X(t) to X. When is this the case?
Say that K satisfies the regularity condition if for any non-negative function ut = u(t) → 0,

K(tut , t ·) ⇒ ε0(·) on [0,∞] as t → ∞. (2.5)

Equivalent forms of (2.5) exist in [26, Section 4], and a relatively easy-to-check sufficient condi-
tion is given in terms of update functions. If either (a) y(t) ≡ 0 is an extremal boundary; or (b) K

satisfies the regularity condition (2.5), then for u > 0, we strengthen (2.4) to [26, Theorem 4.1],

Ptu

[
t−1(X1, . . . ,Xm) ∈ ·] ⇒ Pu

[
(T1, . . . , Tm) ∈ ·] on [0,∞]m as t → ∞. (2.6)

2.2. Finite-dimensional convergence

The conditional approximation (2.4) requires that the initial state become extreme. Combining
(2.4) with a heavy tailed initial distribution makes X(t) have an unconditional distribution that is
regularly varying (in a sense to be discussed) with a limit measure determined by the tail chain.
Depending on assumptions, convergences take place on E� := (0,∞] × [0,∞]m or the larger
space E

∗ := [0,∞]m+1 \ {0}.

Theorem 2.1 ([26, Proposition 5.1(b), Theorem 5.1]). Let X be a Markov chain on [0,∞)

with K ∈ D(G), and suppose X0 ∼ H , with 1 − H ∈ RV−α with scaling function b(·). On E�
define the measure

μ(dx0, dxm) = να(dx0)Px0

[
(T1, . . . , Tm) ∈ dxm

]
, (2.7)
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and extend this to a measure μ∗ on E
∗ by defining μ∗(· ∩ E�) = μ(·) and μ∗(E∗ \ E�) = 0. For

any m ≥ 1, the following convergences take place as t → ∞.

(a) In M+((0,∞]m × [0,∞]),

P
[
(X0, . . . ,Xm)/b(t) ∈ (·) ∩ (0,∞]m × [0,∞]] v−→ μ

(
(·) ∩ (0,∞]m × [0,∞]),

and in M+(E�)

tP
[(

X
(b(t))
0 , . . . ,X(b(t))

m

)
/b(t) ∈ ·] v−→ μ(·). (2.8)

If either (i) G({0}) = 0; (ii) y(t) ≡ 0 is an extremal boundary; or (iii) K satisfies the
regularity condition (2.5), then (2.8) can be strengthened to

tP
[
(X0, . . . ,Xm)/b(t) ∈ ·] v−→ μ(·), in M+(E�). (2.9)

(b) In the bigger space E
∗, we have

tP
[(

X
(b(t))
0 , . . . ,X(b(t))

m

)
/b(t) ∈ ·] v−→ μ∗(·) in M+

(
E

∗) (2.10)

if and only if

Eξα
1 < ∞ and tP

[
X

(b(t))
j /b(t) ∈ ·] v−→ (

Eξα
1

)j
να(·)

(2.11)
in M+(0,∞], j = 1, . . . ,m.

Part (a) requires that the first observation is large and with added conditions, part (b) removes
this requirement. Regardless of whether (2.11) holds, the limit is always a lower bound on the
tail weight of X

(t)
j , since

lim inf
t→∞ tP

[
X

(b(t))
j /b(t) > x

] ≥ μ
(
(0,∞] × [0,∞]j−1 × (x,∞] × [0,∞]m−j

) = (
Eξα

1

)j
x−α

by (2.8) and Lemma 2.1 below. Markov’s inequality, (2.8) and a moment condition:

∃ε > 0 such that lim
δ↓0

lim sup
t→∞

tE
[(

X
(b(t))
j /b(t)

)ε1{X0≤δb(t)}
] = 0, j = 1, . . . ,m, (2.12)

imply (2.11). See [16].
Here is a formula that helps evaluate μ in (2.7) on certain sets.

Lemma 2.1. For a random variable Y , define the measure ν(dx, dy) = να(dx)P[xY ∈ dy] on
[0,∞]2 \ {(0,0)}. We compute

ν
([0, x] × (y,∞]) = y−αE

[
Yα1{Y>yx−1}

] − x−αP
[
Y > yx−1]. (2.13)

In particular, ν([0,∞] × (y,∞]) = y−αEYα .



1424 S.I. Resnick and D. Zeber

Proof. We obtain

ν
([0, x] × (y,∞]) =

ˆ
[0,x]

να(ds)P
[
Y > ys−1] =

ˆ
[x−α,∞]

ds P
[
Y > ys1/α

]

=
ˆ

[x−α,∞]
ds P

[
y−αYα > s

]
by change of variables. Applying Fubini’s theorem, this becomes

ˆ
(x−α,∞]

(
s − x−α

)
P
[
y−αYα ∈ ds

] = y−αE
[
Yα1{Y>yx−1}

] − x−αP
[
Y > yx−1].

Letting x → ∞, this quantity converges to y−αEYα by monotone convergence. �

2.3. Maximum of the extremal component

We give conditions on the extremal component which enable an informative point process limit
result by controlling the positive portion of the extremal component, the random vector of random
length {X(t)

j : j = 0, . . . , τ (t)−1} = {Xj : j = 0, . . . , τ (t)−1}. The conditions imply restrictions
on the behaviour of the tail chain T .

We study a positive recurrent chain X by splitting it into regenerative cycles and analyzing
its extremal properties via the extremal components of the cycles. For regenerative processes,
Asmussen [1] and Rootzén [27] point out the connection between point process convergence and
the asymptotic distribution of cycle maxima. Informed by this approach, we consider when the
distribution of the maximum over the extremal component has a regular variation property. The
limit measure of this regular variation can be used to compute an extremal index for X [27].

Here is a condition that controls the persistence of non-zero values of the extremal component:

lim
m→∞ lim sup

t→∞
P
[

sup
j≥m

X
(b(t))
j /b(t) > a

∣∣X0 > δb(t)
]

= 0 for all a, δ > 0. (2.14)

Note supj≥m X
(b(t))
j = (supm≤j<τ(b(t)) Xj )1{τ(b(t))>m}. Compare this condition with [4, Condi-

tion 4.1] and [22, Equation (3.1)], which are formulated in terms of block sizes. Condition (2.14)
is a tightness condition that complements the finite-dimensional convergences (2.8). Section 3
gives simpler sufficient conditions depending on whether G({0}) > 0 or G({0}) = 0. Condition
(2.14) requires that the chain drift back to the non-extreme states after visiting an extreme state
and makes non-extreme states recurrent and the tail chain transient.

Proposition 2.1. Let X ∼ K ∈ D(G) be Markov on [0,∞) with initial distribution H satisfying
1 − H ∈ RV−α with scaling function b(t), so that (2.8) holds. If X satisfies Condition (2.14),
then

lim
m→∞ P

[
sup
j≥m

ξ(j) > a
]

= 0, a > 0, (2.15)
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and ξ(n) → 0 as n → ∞ in probability and almost surely and therefore,

P[Tn → 0] = 1. (2.16)

So the tail chain is transient and the additive random walk {logTn}n≥0 satisfies logTm →
−∞. The tail chain T and X live on the same state space [0,∞) but for T , {0} is a special
boundary state which represents the collection of non-extreme states of X under the tail chain
approximation.

Proof of Proposition 2.1. Observe from (2.8), as t → ∞,

tP
[
X0 > b(t), sup

m≤j≤r

X
(b(t))
j > b(t)

]
−→

ˆ
(1,∞]

να(dx)Px

[
sup

m≤j≤r

Tj > 1
]

=
ˆ

(1,∞]
να(dx)P

[
sup

m≤j≤r

ξ(j) > x−1
]
.

Therefore, by monotonicity and then monotone convergence,

lim sup
t→∞

tP
[
X0 > b(t), sup

j≥m

X
(b(t))
j > b(t)

]
≥ lim

r→∞

ˆ
(1,∞]

να(dx)P
[

sup
m≤j≤r

ξ(j) > x−1
]

=
ˆ

(1,∞]
να(dx)P

[
sup
j≥m

ξ(j) > x−1
]

=:
ˆ

(1,∞]
να(dx)fm(x).

Condition (2.14) implies that
´
(1,∞] να(dx)fm(x) → 0 as m → ∞. We claim that fm(x) → 0 for

any x > 0. Suppose instead that infm fm(x0) ≥ c > 0 for some x0. Since the fm are all increasing
in x, we have infm fm(x) ≥ c for x ≥ x0. But this implies that

lim inf
m→∞

ˆ
(1,∞]

να(dx)fm(x) ≥ lim inf
m→∞

ˆ
(1∨x0,∞]

να(dx)fm(x) ≥ cνα(1 ∨ x0,∞] > 0

by Fatou’s Lemma, contradicting Condition 2.14. Therefore, P[supj≥m ξ(j) > x−1] → 0 as m →
∞ for all x > 0, establishing (2.15). �

Condition (2.14) assumes the first observation exceeds δb(t) which is in the spirit of (2.8).
For translating the stronger convergence of unconditional distributions (2.10) in the bigger space
E

∗ := [0,∞]m+1 \ {0} to point process convergence, we will require an additional assumption:

∃m0 ≥ 1 such that
(2.17)

lim
δ↓0

lim sup
t→∞

tP
[
X0/b(t) ≤ δ, sup

j≥m0

X
(b(t))
j /b(t) > a

]
= 0 for all a > 0.
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Analogously to (2.12), by Markov’s inequality a moment condition is sufficient for Condition
(2.17):

lim
δ↓0

lim sup
t→∞

tE
[(

sup
j≥m0

X
(b(t))
j /b(t)

)ε

1{X0≤δb(t)}
]

= 0, for some ε > 0.

Condition (2.17) implies a uniform bound on the αth moment of the tail chain states.

Proposition 2.2. Let X ∼ K ∈ D(G) be a Markov chain on [0,∞) with initial distribution H

satisfying 1 − H ∈ RV−α , whose extremal component satisfies (2.10) on M+(E∗). If X satisfies
Condition (2.17) then,

E
(

sup
j≥1

ξ(j)α
)

< ∞. (2.18)

Remark. Under (2.18), we necessarily have Eξα
1 ≤ 1 since

sup
j≥1

(
Eξα

1

)j = sup
j≥1

Eξ(j)α ≤ E
(

sup
j≥1

ξ(j)α
)

< ∞.

Recalling (2.11), the marginal tails of the extremal component cannot be heavier than the tail
of H .

Proof of Proposition 2.2. Under (2.10),

tP
[

sup
m0≤j≤r

X
(b(t))
j > b(t)

]
−→

ˆ
(0,∞]

να(dx)P
[

sup
m0≤j≤r

ξ(j) > x−1
]

= E
(

sup
m0≤j≤r

ξ(j)α
)

by Lemma 2.1. Therefore,

lim sup
t→∞

tP
[

sup
j≥m0

X
(b(t))
j > b(t)

]
≥ lim

r→∞ E
(

sup
m0≤j≤r

ξ(j)α
)

= E
(

sup
j≥m0

ξ(j)α
)
.

Furthermore, by Condition (2.17), for some δ > 0,

lim sup
t→∞

tP
[

sup
j≥m0

X
(b(t))
j > b(t)

]

≤ lim sup
t→∞

tP
[
X0 ≤ δb(t), sup

j≥m0

X
(b(t))
j > b(t)

]
+ lim sup

t→∞
tP

[
X0 > δb(t)

]
< ∞

showing that E(supj≥m0
ξ(j)α) < ∞ which is enough for (2.18). �

Under both Conditions (2.14) and (2.17), we derive the tail behaviour of the maximum of the
extremal component of X.

Proposition 2.3. Let X ∼ K ∈ D(G) be a Markov chain on [0,∞) with initial distribution H

satisfying 1 − H ∈ RV−α , whose extremal component satisfies both (2.10) on M+(E∗). If X
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satisfies Conditions (2.14) and (2.17), then

tP
[

sup
0≤j<τ(b(t))

Xj/b(t) ∈ ·
]

v−→ c · να(·) in M+(0,∞], (2.19)

where c = P[supj≥1 ξ(j) ≤ 1] + E[supj≥1 ξ(j)α1{supj≥1 ξ(j)>1}].

Proof. For x > 0, we have [supj<τ(b(t)) Xj/b(t) > x] = [supj≥0 X
(b(t))
j /b(t) > x]. For m ≥ 1,

we have on the one hand, by (2.10),

lim inf
t→∞ tP

[
sup

0≤j<τ(b(t))

Xj/b(t) > x
]

≥ lim
t→∞ tP

[
sup

0≤j<m

X
(b(t))
j /b(t) > x

]

= x−α +
ˆ

[0,x)

να(du)Pu

[
sup

1≤j<m

Tj > x
]
,

from which, letting m → ∞,

lim inf
t→∞ tP

[
sup

0≤j<τ(b(t))

Xj/b(t) > x
]

≥ x−α +
ˆ

[0,x)

να(du)Pu

[
sup
j≥1

Tj > x
]
. (2.20)

On the other hand, for δ > 0 we have

tP

[
sup
j≥m

X
(b(t))
j

b(t)
> x

]
≤ tP

[
X0

b(t)
> δ, sup

j≥m

X
(b(t))
j

b(t)
> x

]
+ tP

[
X0

b(t)
≤ δ, sup

j≥m

X
(b(t))
j

b(t)
> x

]
.

Given ε > 0, by Condition (2.17), we may choose δ small enough that

lim sup
t→∞

tP
[
X0 ≤ δb(t), sup

j≥m0

X
(b(t))
j > b(t)x

]
< ε/2,

where m0 is from Condition (2.17). Condition (2.14) permits the choice m1 ≥ m0 so large that

lim sup
t→∞

tP
[
X0 > δb(t), sup

j≥m1

X
(b(t))
j > b(t)x

]
< ε/2.

Therefore, lim supt→∞ tP[supj≥m X
(b(t))
j /b(t) > x] < ε for m ≥ m1, and so

lim sup
t→∞

tP
[

sup
0≤j<τ(b(t))

Xj/b(t) > x
]

< lim
m→∞ lim sup

t→∞
tP

[
sup

0≤j<m

X
(b(t))
j /b(t) > x

]
+ ε

= x−α +
ˆ

[0,x)

να(du)Pu

[
sup
j≥1

Tj > x
]
+ ε.

Combine this with (2.20), and apply formula (2.13) for ν([0, x] × (x,∞]) to complete the
proof. �



1428 S.I. Resnick and D. Zeber

3. Point process convergence for Markov chains

We now derive the limit of the exceedance point process Nn defined in (1.1), where X =
(X0,X1, . . .) is a Markov chain on [0,∞) with transition kernel K ∈ D(G). We write

Nn =
∞∑

j=0

ε(j/n,Xj /bn), (3.1)

using the notation εx to denote the measure assigning unit mass at the point x and Nn is a
random element of Mp([0,∞)×(0,∞]), the space of Radon point measures on [0,∞)×(0,∞],
endowed with the topology of vague convergence [13,20,25].

If X is positive recurrent, it is a regenerative process ([2, Section VII.3], [17]) so the sample
path of X splits into identically distributed cycles between visits to certain set. The extremal
properties of X are determined by extremal behaviour of the individual cycles. This approach
has been developed for Markov chains by Rootzén [27], as well as for queues by Asmussen [1].
Our approach introduces the tail chain approximation to describe the extremal behaviour of the
regenerative cycles using their extremal component.

3.1. Cycle decomposition

Consider the case where X has a positive recurrent atom A. For positive recurrent chains, atoms
can be constructed by several methods if no natural atom exists. See, e.g., [8, Chapter 6] or [18,
Chapter I.5]. An atom is a set such that for a probability distribution H on [0,∞),

K(y, ·) = H(·) for all y ∈ A and Py[τA < ∞] = 1 for y ≥ 0, (3.2)

and τA = inf{n ≥ 0 : Xn ∈ A} is the first hitting time of A. Positive recurrence means that

EH τA < ∞, (3.3)

where EH denotes expectation with respect to H considered as the initial distribution of X0.
Under (3.2), the sample path of X splits into i.i.d. cycles between visits to A, as follows.

Define the times {Sk}, {τA
k } recursively according to

τA
0 = τA, S0 = τA

0 + 1; (3.4)

τA
k = inf{n ≥ 0 : XSk−1+n ∈ A}, Sk = Sk−1 + τA

k + 1, k ≥ 1.

Thus, the sequence 0 ≤ S0 − 1 < S1 − 1 < S2 − 1 < · · · gives the indices when X is in A, and
XSk

∼ H for k ≥ 0. The values τA
k ≥ 0 are the number of steps X takes outside of A between

visits to A. The cycles end by visits to A; cycles are the random elements

C0 = (X0,X1, . . . ,XτA
0∈

A

) and Ck = (XSk−1
�
H

, . . . ,XSk−1+τA
k∈

A

), k ≥ 1
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of the space of finite sequences S = ⋃∞
m=1 R

m. The strong Markov property implies C0,C1, . . .

are independent, and C1,C2, . . . are identically distributed. In particular, for k ≥ 1,

P
[{

Ck; τA
k

} ∈ ·] = P
[{

(XSk−1 , . . . ,XSk−1+τA
k
); τA

k

} ∈ ·] = PH

[{
(X0, . . . ,XτA

); τA

} ∈ ·].
Furthermore, 0 < S0 < S1 < S2 < · · · is a renewal process, with

q = E(S1 − S0) = EH τA + 1 < ∞ (3.5)

by (3.3). Applying the cycle decomposition, we may now write (3.1) as

Nn =
∞∑

j=0

ε(j/n,Xj /bn) =
S0−1∑
j=0

ε(j/n,Xj /bn) +
∞∑

k=0

τA
k+1∑

j=0

ε((Sk+j)/n,XSk+j /bn) = χ0
n + χ∗

n . (3.6)

As a family of random elements in Mp([0,∞) × (0,∞]), {χ0
n } is asymptotically negligible.

Lemma 3.1. Assuming (3.3) and bn → ∞, χ0
n ⇒ 0, the null measure, in Mp([0,∞) × (0,∞]).

Proof. Let f ∈ C+
K([0,∞) × (0,∞]) with support in [0,R] × [M,∞] for integers R,M . It is

sufficient to verify that P[χ0
n(f ) > γ ] → 0, for any γ > 0. We have as n → ∞,

P
[
χ0

n(f ) > γ
] = P

[
S0−1∑
j=0

f

(
j

n
,
Xj

bn

)
> γ

]

≤
r∑

m=0

P

[
m∑

j=0

f

(
j

n
,
Xj

bn

)
> γ, τA = m

]
+ P[τA > r],

and

r∑
m=0

P

[
m∑

j=0

f

(
j

n
,
Xj

bn

)
> γ, τA = m

]
≤ (r + 1)P

[
r∑

j=0

f

(
j

n
,
Xj

bn

)
> γ

]

≤ (r + 1)P
[

sup
0≤j≤r

Xj ≥ bnM
]

−→ 0.

Choosing r to make P[τA > r] arbitrarily small, the result follows. �

3.2. Point process convergence

Lemma 3.1 and Slutsky’s theorem means that the asymptotic behavior of Nn and χ∗
n are the

same. We obtain a weak limit for χ∗
n using the tail chain approximation discussed in Section 2,

provided that a cycle’s extremal behaviour is adequately described by its extremal component.
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As usual, assume K ∈ D(G), 1 −H ∈ RV−α and suppose y(t) is an extremal boundary for X.
We require a mild assumption that the atom A be a bounded subset of the state space [0,∞),

supA < ∞, (3.7)

as would usually be the case. Fix k ≥ 1. The number of steps needed by the scaled process in the
k-th cycle to cross below the extremal boundary is

τk(t) = inf
{
n ≥ 0 : XSk−1+n ≤ ty(t)

}
.

The extremal component of the k-th cycle is Ck(t) := {XSk−1+j : j = 0, . . . , τk(t) − 1}.
Without loss of generality, we suppose the extremal component of a cycle is a subset of the

complete cycle. To see this, observe from the definition of τ(t) and τA, without loss of generality,

P
[
τ(t) ≤ τA,∀t > 0

] = 1. (3.8)

Indeed, (3.7) implies that A ⊂ [0, c] some c. Define τc = inf{n ≥ 0 : Xn ≤ c} and P[τc ≤ τA] = 1;
we claim further that we may suppose P[τ(t) ≤ τc,∀t > 0] = 1. If y(t) ≥ c/t for all t > 0, then
this follows directly. Otherwise, verify that ỹ(t) = y(t)∨ c/t is also an extremal boundary for K

(see the remarks after (2.2)), and the corresponding downcrossing time satisfies P[τ̃ (t) ≤ τc,∀t >

0] = 1.
Therefore, for k ≥ 1,

P
[{

(XSk−1 , . . . ,XSk−1+τk(t)−1); τk(t), τ
A
k

} ∈ ·] = PH

[{
(X0, . . . ,Xτ(t)−1); τ(t), τA

} ∈ ·] (3.9)

and {(Ck(t); τk(t), τ
A
k ) : k ≥ 1} are independent, since each is a function of {Ck; τA

k }. These
facts suggest we approximate χ∗

n by a point process whose observations consist of the extremal
components of iid copies of the chain X started from X0 ∼ H . This approximation is facilitated
by additional notation. Let {X,Xk = (Xkj , j ≥ 0) : k ≥ 0} be i.i.d. copies of the Markov chain
X ∼ K with respect to PH (·); that is the initial distribution of each chain is fixed to be H . Define

τ̃k+1(t) = inf
{
j ≥ 0 : Xkj ≤ ty(t)

}
, k = 0,1, . . . ,

and for k ≥ 0, form the extremal component X
(t)
k = {Xkj · 1{j<τ̃k+1(t)}, j ≥ 0} of the kth chain.

Thus with respect to PH (·), (X
(t)
k , τ̃k+1(t))

d= (X(t), τ (t)) for k ≥ 0, with the tilde differentiating
the times τ̃k(t) defined on the kth process Xk from the cycle times τk(t) defined on X. Recall
τ(t) is also defined on X.

Next, generate an i.i.d. family of tail chains by letting {ξ , ξ k = (ξk(n), n ≥ 0) : k ≥ 0} be
i.i.d. copies of the process ξ = (ξ(n), n ≥ 0), recalling the notation around (2.1). Additionally,
put τ ∗

k+1 = inf{j ≥ 0 : ξk(j) = 0}, the first time the kth tail chain hits 0. Use the convention
inf ∅ = ∞; for example, τ ∗

k+1 = ∞ a.s., k ≥ 0, if G({0}) = 0. Finally, let

ζ =
∞∑

k=0

ε(tk,ik) ∼ PRM(LEB × να),
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be a Poisson random measure on Mp([0,∞) × (0,∞]), independent of the {ξ k}, with mean
measure a product of Lebesgue measure on the time axis [0,∞) and Pareto measure να (given
by να(x,∞] = x−α) on the observation axis (0,∞]. Recall α is the tail index of H̄ .

The point process consisting of the observations X
(bn)
k , spaced in time according to the renewal

times {Sk}, converges to a cluster Poisson process which is basically ζ with a time scaling and
compounded in the second coordinate according to the i.i.d. tail chains {ξ k}. This result is basic
to analyzing the asymptotic behavior of Nn in (3.1).

Proposition 3.1. Let X be a Markov chain on [0,∞) with transition kernel K ∈ D(G), and
initial distribution H , such that tH(b(t)·) v→ να(·) in M+(0,∞], where b(t) → ∞ and bn =
b(n). The renewal process {Sk} is defined in (3.4), with mean interarrival time q given by (3.5).
With the notation introduced in the previous paragraphs, we have the following with respect to
PH .

(a) If X satisfies Condition (2.14), then given δ > 0, in Mp([0,∞) × (0,∞]), as n → ∞,

ηn :=
∞∑

k=0

τ̃k+1(bn)−1∑
j=0

ε
(

Sk+j

n
,
Xkj
bn

)
1{Xk0≥δbn} ⇒

∞∑
k=0

τ∗
k+1−1∑
j=0

ε(qtk,ikξk(j))1{ik≥δ} =: η. (3.10)

(b) Suppose X satisfies (2.10) as well as both Conditions (2.14) and (2.17). Then in
Mp([0,∞) × (0,∞]), as n → ∞,

η∗
n :=

∞∑
k=0

τ̃k+1(bn)−1∑
j=0

ε
(

Sk+j

n
,
Xkj
bn

)
⇒

∞∑
k=0

τ∗
k+1−1∑
j=0

ε(qtk,ikξk(j)) =: η∗. (3.11)

Section 4 (p. 1440) contains the proof. Paralleling the discussion in Section 2, we have two
results depending on the strength of the conditions. The weaker assumptions of part (a) yield a
result that selects cycles starting from an exceedance. Part (b) does not have to do such cycle
selection.

The points of the limit process are arranged in stacks above common time points qtk . The
heights of the points in each stack are specified by an independent run of the tail chain starting
from ik . If G({0}) > 0, then the τ ∗

k are i.i.d. Geometric random variables with parameter G({0}),
so all stacks have finite length. If G({0}) = 0, then P[τ ∗

k = ∞] = 1 for each k. In this case,
Condition (2.14) is necessary to ensure that η∗ is Radon, by forcing the tail chain to drift towards
0 as in (2.16). The process η retains only those stacks of η∗ whose initial value exceeds the
threshold δ. Because there are an infinite number of ik in any neighbourhood of 0, dispensing
with the restriction in δ requires that not too many of the ξk(j) are large. This translates to the
condition Eξα

1 ≤ 1, provided by Condition (2.17).
To analyze Nn in (3.1), we approximate χ∗

n in (3.6) by η∗
n in (3.11), provided the extremal

component adequately describes extremal behaviour within each cycle. If the extremal boundary
is not identically zero, behavior between the end of the extremal component and the end of the
cycle is not be captured by the tail chain and we require that such observations do not significantly
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influence extremal properties. To guarantee a result analogous to Part (a) above, we require,

lim
t→∞ P

[
sup

τ(b(t))<j<τA

Xj/b(t) > a
∣∣X0 > δb(t)

]
= 0 for all a, δ > 0, (3.12)

and for a result analogous to Part (b) above, we require,

lim
t→∞ tP

[
sup

τ(b(t))<j<τA

Xj/b(t) > a
]

= 0 for all a > 0. (3.13)

With these conditions, the point process Nn converges to the limit η∗, and the distribution of the
cycle maximum behaves as if it has a regularly varying tail.

Theorem 3.1. Let X be a Markov chain on [0,∞) with transition kernel K ∈ D(G). Suppose
that K has a positive recurrent bounded atom in the sense of (3.2), (3.3), and (3.7). Define the
renewal process {Sk} with mean interarrival time q as in (3.4) and (3.5) and assume further that
tH(b(t)·) v→ να(·) in M+(0,∞], where b(t) → ∞. With respect to PH , the following hold.

(a) If X satisfies Conditions (2.14) and (3.12), then given δ > 0,

Ñn :=
∑

0≤j<S0

ε
(

j
n
,
Xj
bn

)
+

∞∑
k=1

∑
Sk−1≤j<Sk

1{XSk−1≥δbn}ε
(

j
n
,
Xj
bn

)
⇒ η (3.14)

in Mp([0,∞) × (0,∞]), as n → ∞, where η is defined in (3.10).
(b) Suppose additionally that X satisfies (2.10) as well as Conditions (2.14), (2.17) and (3.13).

Recall η∗ from (3.11). Then, in Mp([0,∞) × (0,∞]), as n → ∞,

Nn ⇒ η∗, (3.15)

and furthermore, the distribution of the cycle maximum has a regularly varying tail,

tPH

[
b(t)−1 sup

0≤j<τA

Xj ∈ ·
]

v−→ c · να(·) in M+(0,∞], (3.16)

where

c = P
[
sup
j≥1

ξ(j) ≤ 1
]
+ E

[
sup
j≥1

ξ(j)α1{supj≥1 ξ(j)>1}
]
. (3.17)

Proof. (a) First, note that Ñn = χ0
n + χn, where

χn =
∞∑

k=0

τA
k+1∑

j=0

ε
(

Sk+j

n
,
XSk+j

bn
)
1{XSk

≥δbn}.
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Hence, by Lemma 3.1 it remains to show that χn ⇒ η. Split χn according to the times {τk(bn)}:

χn =
∞∑

k=0

τk+1(bn)−1∑
j=0

ε
(

Sk+j

n
,
XSk+j

bn
)
1{XSk

≥δbn} +
∞∑

k=0

τA
k+1∑

j=τk+1(bn)

ε
(

Sk+j

n
,
XSk+j

bn
)
1{XSk

≥δbn} = χ ′
n + χ ′′

n .

The equality holds on the set {τk(bn) ≤ τA
k ;n ≥ 1, k ≥ 1}, which has probability 1 by (3.8).

Because of (3.9) and the independence of the (Ck(t), τk(t)), we have χ ′
n

d= ηn for each n, and
ηn ⇒ η by Proposition 3.1(a). By Slutsky’s theorem, the result follows if χ ′′

n ⇒ 0, so we show

P
[
χ ′′

n (f ) > γ
] = P

[ ∞∑
k=0

τA
k+1∑

j=τk+1(bn)

f

(
Sk + j

n
,
XSk+j

bn

)
1{XSk

≥δbn} > γ

]
−→ 0,

for any f ∈ C+
K([0,∞)× (0,∞]) and γ > 0. Let f have support in [0,R]× [M,∞] for integers

R,M . The previous probability is bounded by

P

[
2Rn−1∑
k=0

τA
k+1∑

j=τk+1(bn)

f

(
Sk + j

n
,
XSk+j

bn

)
1{XSk

≥δbn} > 0

]

+ P

[ ∞∑
k=2Rn

τA
k+1∑

j=τk+1(bn)

f

(
Sk + j

n
,
XSk+j

bn

)
1{XSk

≥δbn} > 0

]
.

Observe that the second term is at most P[S2Rn/n ≤ R] = P[S2Rn/2Rn ≤ 1/2] → 0 as n → ∞,
since Sn/n → q a.s., and q ≥ 1 by (3.5). The first term is bounded by

P

[
2Rn−1⋃
k=0

({
XSk

bn

≥ δ

}
∩

τA
k+1⋃

j=τk+1(bn)

{
XSk+j

bn

≥ M

})]
≤ 2RnPH

[
X0

bn

≥ δ, sup
τ(bn)<j<τA

Xj

bn

≥ M

]
,

which vanishes as n → ∞ by Condition (3.12).
(b) Recalling the decomposition (3.6), by Lemma 3.1 it is sufficient to show that χ∗

n ⇒ η∗.
This follows by a similar argument as in part (a). Write

χ∗
n =

∞∑
k=0

τk+1(bn)−1∑
j=0

ε
(

Sk+j

n
,
XSk+j

bn
)
+

∞∑
k=0

τA
k+1∑

j=τk+1(bn)

ε
(

Sk+j

n
,
XSk+j

bn
)
= χ∗

n
′ + χ∗

n
′′
.

Then χ∗
n

′ d= η∗
n ⇒ η∗ by Proposition 3.1(b), and Condition (3.13) implies that χ∗

n
′′ ⇒ 0.

Next, we show (3.16). In light of (3.8), we have

0 ≤ tPH

[
sup

0≤j<τA

Xj

b(t)
> x

]
− tPH

[
sup

0≤j<τ(b(t))

Xj

b(t)
> x

]
≤ tPH

[
sup

τ(b(t))<j<τA

Xj

b(t)
> x

]
−→ 0
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under Condition (3.13). Recalling that

tPH

[
sup

0≤j<τ(b(t))

Xj

b(t)
> x

]
−→ cx−α

as t → ∞ by Proposition 2.3 (p. 1426), where c is as in (3.17), completes the proof. �

Setting Mn = ∨
0≤j≤n Xj , Rootzén shows [27, Theorem 3.2] that (3.16) implies

P[Mn ≤ bnx] −→ exp
(−cq−1x−α

)
, x > 0,

where c is given by (3.17), and q is the mean interarrival time (3.5). Hence, in the stationary
case, θ = c/q is the extremal index of the process X ([15, Section 2.2], [14]). On the other hand,
for stationary regularly varying Markov chains with K ∈ D(G) satisfying a condition analogous
to Condition (2.14), it is known [4, Remark 4.7],

θ = P
[
sup
j≥1

Yξ(j) ≤ 1
]

= P
[
sup
j≥1

ξ(j) ≤ 1
]
− E

[
sup
j≥1

ξ(j)α1{supj≥1 ξ(j)≤1}
]

= c − E
(

sup
j≥1

ξ(j)α
)
,

where Y ∼ Pareto(α) supported on [1,∞), independent of {ξ(j)}. Hence, for a stationary
Markov chain X satisfying the assumptions of Theorem 3.1(b), the extremal index is given by

θ = 1

q − 1
E
(

sup
j≥1

ξ(j)α
)

= E(supj≥1 ξ(j)α)

EH τA

.

3.3. Discussion of conditions

We now consider simplifications of the above conditions.

3.3.1. Cases where G({0}) = 0

If G({0}) = 0, we can replace X(b(t)) with X in the finite-dimensional convergence (2.8) when
H has a regularly varying tail, meaning that the tail chain approximation completely describes
the extremes of the chain X in a finite dimensional sense. However, G({0}) = 0 also implies that
for any m > 0, as t → ∞,

Pt

[
m < τ(t) ≤ τA

] −→ 1 (3.18)

(see [26, Proposition 5.1(d)]) meaning that, as the initial observation becomes more extreme, it
takes longer for X to return to A to complete the cycle. Hence, for Condition (2.14) to hold, we
need a condition that ensures X eventually drifts away from extreme states:

lim
m→∞ lim sup

t→∞
Pt

[
sup

m≤j<τA

Xj > ta
]

= 0 for all a > 0. (3.19)
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Proposition 3.2. Suppose X ∼ K ∈ D(G) with G({0}) = 0 and positive recurrent bounded atom
A, and X0 ∼ H with 1 − H ∈ RV−α . If X satisfies Condition (3.19), both Conditions (2.14) and
(3.12) hold and consequently, the convergence (3.14) takes place.

Proof. We first show that

lim
m→∞ lim sup

t→∞
tPH

[
X0/b(t) > δ, sup

m≤j<τA

Xj/b(t) > a
]

= 0 for all a, δ > 0. (3.20)

Indeed, for c > δ, we have,

tPH

[
X0

b(t)
> δ, sup

m≤j<τA

Xj

b(t)
> a

]
≤
ˆ

[δ,c]
tPH

[
X0

b(t)
∈ du

]
Pb(t)u

[
sup

m≤j<τA

Xj

b(t)
> a

]

+ tPH

[
X0

b(t)
> c

]
.

Furthermore, for δ ≤ u ≤ c,

Pb(t)u

[
sup

m≤j<τA

Xj

b(t)
> a

]
≤ Pb(t)u

[
sup

m≤j<τA

Xj

b(t)u
>

a

c

]
≤ sup

s≥b(t)δ

Ps

[
sup

m≤j<τA

Xj

s
>

a

c

]
.

Hence, by Condition (3.19),

lim
m→∞ lim sup

t→∞
tPH

[
X0

b(t)
> δ, sup

m≤j<τA

Xj

b(t)
> a

]
≤ να[δ, c] · 0 + να(c,∞] = c−α.

Letting c → ∞ establishes (3.20). As (3.8) implies that supm≤j<τ(b(t)) Xj ≤ supm≤j<τA
Xj ,

Condition (2.14) follows. To verify Condition (3.12), argue that

PH

[
X0

b(t)
> δ,

τA−1∨
j=τ(b(t))

Xj

b(t)
> a

]
≤ PH

[
X0

b(t)
> δ, τ

(
b(t)

) ≤ m − 1

]

+ PH

[
X0

b(t)
> δ,

τA−1∨
j=m

Xj

b(t)
> a

]
,

of which the first term vanishes as t → ∞ because of (3.18) (see [26, Proposition 5.1(d)]). Appeal
to (3.20) and let m → ∞ to complete the proof. �

Condition (3.19) is a condition on the transition kernel K ; this is best discussed by recalling
(see [26, p. 5] for discussion) that a transition kernel K ∈ D(G) has an update function ψ of the
form

ψ
(
x, (Z,W)

) = Zx + φ(x,W), (3.21)



1436 S.I. Resnick and D. Zeber

where Z ∼ G and t−1φ(t,w) → 0 for w ∈ C with P[W ∈ C] = 1 and we can represent K as

K(x,B) = P
[
ψ

(
x, (Z,W)

) ∈ B
]
.

Take Vr = (Zr,Wr), i.i.d. copies of V = (Z,W), and write V r = (V1, . . . , Vr ). For r ≥ 1 let
ψr(x,V r ) denote the r-step update function, i.e., Kr(x,B) = P[ψr(x,V r ) ∈ B], and ψ0(x) =
x. By iteration,

ψr(x,V r ) =
(

r∏
j=1

Zj

)
x +

r−1∑
�=1

(
r∏

j=�+1

Zj

)
φ
(
ψ�−1(x,V �−1),W�

) + φ
(
ψr−1(x,V r−1),Wr

)
.

Thus Condition (3.19) requires both Zm → 0 as in (2.16), and also an asymptotic stochastic
boundedness condition on φ(·,W). Alternately, one could give criteria for Condition (3.19) using
mean drift conditions for X or logX [18, p. 229].

3.3.2. Cases where G({0}) > 0

In this case, (2.4) implies

Ptu

[
τ(t) = m

] −→ P
[
τ ∗ = m

]
, m ≥ 1,

where τ ∗ is a Geometric random variable with parameter G({0}). Hence, the tail chain terminates
after a finite number of steps. If either y0(t) ≡ 0 is an extremal boundary, or K satisfies the
regularity condition (2.5) (p. 1422), Theorem 2.1 assures us that convergence (2.8) holds for X

with respect to PH , and Condition (2.14) follows directly since

lim sup
t→∞

tP
[

sup
j≥m

X
(b(t)
j /b(t) > a,X0 > δb(t)

]
≤ lim sup

t→∞
tP

[
X0 > δb(t), τ

(
b(t)

) ≥ m
]

=
ˆ ∞

δ

να(dx)P
[
xξ(m) > 0

] → 0 (m → ∞).

The regularity condition (2.5) extends to any finite number of steps; that is, iterates of K also
satisfy the condition. However, unless y0(t) ≡ 0 is an extremal boundary, we need the regular-
ity condition to hold uniformly over the whole cycle of random length τA to prevent X from
returning to an extreme state within the same cycle, after crossing below the extremal bound-
ary. Condition (3.22) given next accomplishes this. (Note that even if y0(t) ≡ 0 is an extremal
boundary for K , we are using an extremal boundary y(t) chosen to satisfy (3.8).)

lim
t→∞ Ptut

[
sup

1≤j<τA

Xj > ta
]

= 0 whenever ut = u(t) → 0, a > 0. (3.22)

Recalling the update function form (3.21), the regularity condition (2.5) holds if the function
φ(·,w) is bounded near 0 for each w in a set of probability 1 [26, Proposition 4.1]. Condition
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(3.22) is a stronger boundedness restriction on φ(·,w) near 0. Alternatively, when K satisfies the
regularity condition (2.5), Condition (3.22) may be viewed as a restriction on τA, since then

lim
m→∞ lim sup

t→∞
Ptut [τA > m] = 0 whenever ut = u(t) → 0, (3.23)

it is sufficient for (3.22). This follows from the decomposition

Ptut

[
sup

1≤j<τA

Xj > ta
]

≤ Ptut [τA > m] + Ptut

[
sup

1≤j≤m

Xj > ta
]
,

with (3.23) controlling the first right-hand term and (2.5) controlling the second.

Proposition 3.3. Suppose X ∼ K ∈ D(G) with G({0}) > 0 and 1 − H ∈ RV−α and X has a
positive recurrent, bounded atom A. Then X satisfies (2.14) with respect to PH . Moreover, if
either

(i) y0(t) ≡ 0 is an extremal boundary for K ,

or

(ii) Condition (3.22) holds,

then Condition (3.12) holds with respect to PH and thus convergence (3.14) takes place.

Proof. First, note that by [26, Proposition 5.1(d)], as t → ∞,

tPH

[
X0

b(t)
> δ, sup

j≥m

Xj
(b(t))

b(t)
> a

]
≤ tPH

[
X0

b(t)
> δ, τ

(
b(t)

)
> m

]
(3.24)

→ δ−α
(
1 − G

({0}))m
.

Since G({0}) > 0, the right side of (3.24) vanishes as m → ∞, establishing Condition (2.14).
Next, to analyze Condition (3.12), consider the case where y0(t) ≡ 0 is an extremal boundary,
and write τ0 = inf{n ≥ 0 : Xn = 0}. For any m,

tPH

[
X0/b(t) > δ, sup

τ(b(t))<j<τA

Xj/b(t) > a
]

≤
m∑

r=1

tPH

[
X0/b(t) > δ, τ

(
b(t)

) = r, τ0 > r
]

+ tPH

[
X0/b(t) > δ, τ

(
b(t)

)
> m

]
, (3.25)

which is obtained by splitting according to whether τ(b(t)) ≤ m or the complement and using
the fact that τ(b(t)) = r and supτ(b(t))<j<τA

Xj/b(t) > a implies τ0 > r . For a typical term in
the sum,

tPH

[
X0/b(t) > δ, τ

(
b(t)

) = r, τ0 > r
] ≤ tPH

[
X0/b(t) > δ, τ0 > r

]
− tPH

[
X0/b(t) > δ, τ

(
b(t)

)
> r

]
−→ δ−α

(
1 − G

({0}))r − δ−α
(
1 − G

({0}))r = 0,
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the convergence following from [26, Proposition 5.1(d)], since both y(t) and y0(t) are extremal
boundaries. The right most term in (3.25) is handled as in (3.24).

Finally analyze Condition (3.12) when Condition (3.22) holds. For any m, we have

tPH

[
X0/b(t) > δ, sup

τ(b(t))<j<τA

Xj/b(t) > a
]

≤
m∑

r=1

tPH

[
X0/b(t) > δ, sup

r<j<τA

Xj/b(t) > a, τ
(
b(t)

) = r
]

+ tPH

[
X0/b(t) > δ, τ

(
b(t)

)
> m

]
,

and

tPH

[
X0/b(t) > δ, sup

r<j<τA

Xj/b(t) > a, τ
(
b(t)

) = r
]

(3.26)

=
ˆ

(δ,∞]×(y(b(t)),∞]r−1×[0,∞]
tPH

[
(X0,Xr )/b(t) ∈ d(x0,xr )

]
ht (xr),

where

ht (x) = 1{[0,y(b(t))]}(x)Pb(t)x

[
sup

1≤j<τA

Xj/b(t) > a
]
.

We claim that ht (ut ) → 0 whenever ut → u ≥ 0. Indeed, if u > 0, then ht (ut ) = 0 for large t

such that y(b(t)) < u. Otherwise, ut → 0, and ht (ut ) → 0 by Condition (3.22). Therefore, the
integral converges to 0 by combining Lemmas 8.2 and 8.4 with Theorem 3.2 from [26]. Applying
(3.24) completes the proof. �

3.4. Weak convergence to a cluster process

If the finite-dimensional distributions of X are jointly regularly varying (in the sense of (2.10)
with X replacing X(b(t))), we obtain a point process limit for X under a condition analogous to
Condition (2.17): There exists m′

0 ≥ 1 such that

lim
δ↓0

lim sup
t→∞

tPH

[
X0/b(t) ≤ δ, sup

m′
0≤j<τA

Xj/b(t) > a
]

= 0 for all a > 0. (3.27)

Proposition 3.4. Suppose X ∼ K ∈ D(G) has a positive recurrent, bounded atom A, and 1 −
H ∈ RV−α . Assume further that, with respect to PH , X is regularly varying in the sense of (2.10),
with X replacing X(b(t)), and satisfies Condition (3.12). Under Condition (3.27), both Conditions
(2.17) and (3.13) hold with respect to PH .
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Proof. Recalling supm≤j<τ(b(t)) Xj ≤ supm≤j<τA
Xj yields (2.17). Next, given δ > 0, write

PH

[
sup

τ(b(t))<j<τA

Xj

b(t)
> a

]
≤ PH

[
X0

b(t)
> δ, sup

τ(b(t))<j<τA

Xj

b(t)
> a

]

+ PH

[
X0

b(t)
≤ δ, sup

1≤j<τA

Xj

b(t)
> a

]
.

Condition (3.12) makes the first right side term go to 0 as t → ∞ and for the second term we
have,

lim sup
t→∞

PH

[
X0

b(t)
≤ δ, sup

1≤j<τA

Xj

b(t)
> a

]

≤ lim sup
t→∞

PH

[
X0

b(t)
≤ δ, sup

1≤j<m′
0

Xj

b(t)
> a

]
+ lim sup

t→∞
PH

[
X0

b(t)
≤ δ, sup

m′
0≤j<τA

Xj

b(t)
> a

]

= μ∗([0, δ] × [0,a]c) + lim sup
t→∞

PH

[
X0

b(t)
≤ δ, sup

m′
0≤j<τA

Xj

b(t)
> a

]

where a = (a, . . . , a). Letting δ ↓ 0, the first term vanishes by (2.10), since μ∗(E∗
� \ E�) = 0

[26, Theorem 5.1]. The second term is taken care of by Condition (3.27). �

We now rephrase Theorem 3.1 in terms of our new conditions.

Theorem 3.2. Let X be a Markov chain on [0,∞) with transition kernel K ∈ D(G) such that
K has a positive recurrent bounded atom in the sense of (3.2), (3.3), and (3.7). The initial distri-
bution H has a regularly varying tail and satisfies tH(b(t)·) v→ να(·) in M+(0,∞]. Assume for
any m ≥ 0 that (X0, . . . ,Xm) is regularly varying in M+([0,∞]m+1 \ {0}),

tPH

[
(X0, . . . ,Xm)/b(t) ∈ (dx0, dxm)

] v−→ να(dx0)Px0

[
(T1, . . . , Tm) ∈ dxm

]
(3.28)

and that Condition (3.27) holds with respect to PH .

(a) If G({0}) = 0, and K satisfies Condition (3.19), then

∞∑
j=0

ε
(

j
n
,
Xj
bn

)
⇒

∞∑
k=0

∞∑
j=0

ε(qtk,ikξk(j)) in Mp

([0,∞) × (0,∞]) as n → ∞.

(b) If G({0}) > 0, and either y0(t) ≡ 0 is an extremal boundary for K , or K satisfies Condi-
tion (3.22), then

∞∑
j=0

ε
(

j
n
,
Xj
bn

)
⇒

∞∑
k=0

τ∗
k+1−1∑
j=0

ε(qtk,ikξk(j)) in Mp

([0,∞) × (0,∞]) as n → ∞,

where the {τ ∗
k } are i.i.d. Geometric random variables with parameter G({0}).
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4. Proof of Proposition 3.1

Recall that {X,Xk, k ≥ 0} are i.i.d. copies of a Markov chain X ∼ K with heavy tailed initial dis-
tribution H satisfying tH((b(t)·) v→ να(·) in M+(0,∞] where b(t) → ∞. The extremal bound-
ary downcrossing time by Xk is {τ̃k(t)}. Let {ξ , ξ k, k ≥ 0} be i.i.d. copies of the multiplicative
random walk ξ = {ξ(m),m ≥ 0}. The hitting time of 0 by ξ k is τ ∗

k . A PRM on [0,∞) × (0,∞]
with mean measure LEB × να , independent of the {ξ , ξ k, k ≥ 0} is ζ = ∑

ε(tk,ik) and {Sk} is
the renewal process given by (3.4) with finite mean interarrival time q . For convenience, write
X

(t)
k,m = (X

(t)
k0 , . . . ,X

(t)
km) and ξ k,m = (ξk(0), . . . , ξk(m)).

Proof of Proposition 3.1. (a) First, recall that, under our assumptions K ∈ D(G) and H having
a regularly varying tail, the convergence (2.8) takes place for the chain X on the space E� :=
(0,∞] × [0,∞]m, with limit measure μ given by (2.7). This implies that [24, Corollary 6.1,
p. 183],

∞∑
k=0

ε
(k/n,X

(bn)
k,m /bn)

=
∞∑

k=0

ε
(k/n,(X

(bn)
k0 ,...,X

(bn)
km )/bn)

⇒ PRM(LEB × μ), (4.1)

in Mp([0,∞) × E�). Since
∑∞

k=0 ε(tk,ik,ξ k,m) is PRM on [0,∞) × E� ([24, Proposition 5.3,
p. 123]), a mapping argument ([24, Proposition 5.2, p. 121]) implies

∞∑
k=0

ε(tk,ikξ k,m) =
∞∑

k=0

ε(tk,ik,ikξk(1),...,ikξk(m)) ∼ PRM(LEB × μ),

in Mp([0,∞) × E�), by (2.7). So we can rewrite (4.1) in Mp([0,∞) × E�),

ϑn =
∞∑

k=0

ε
(k/n,X

(bn)
k,m /bn)

⇒
∞∑

k=0

ε(tk,ikξ k,m) = ϑ. (4.2)

Second, we rescale the time axis to place points at the epochs Sk . (See [19].) The counting
function for the points {Sk} is N(t) = ∑

k εSk
[0, t] and N←(t) = inf{s : N(s) ≥ t} = S[t] is the

left continuous inverse process. Define �n(·) = n−1N←(n·), so that Sk/n = �n(k/n) and �n is
a random element of D↑[0,∞), the subspace of non-decreasing elements of Dleft[0,∞). By the
Strong Law of Large Numbers, with probability 1,

�n(t) = [nt]
n

S[nt]
[nt] −→ t · q, t ≥ 0,

so �n(·) → q(·) in D↑[0,∞). We transform time points using the mapping T1 : D↑[0,∞) ×
M+([0,∞) × E�) �→ M+([0,∞) × E�) given by

T1m(f ) =
¨

f
(
x(u), v

)
m(du,dv), f ∈ C+

K

([0,∞) × E�
)
. (4.3)
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Applying [24, Proposition 3.1, p. 57] to (4.2), we have (�n(·),ϑn) ⇒ (q(·),ϑ) in D↑[0,∞) ×
Mp([0,∞)×E�). Since T1 is a.s. continuous at (q(·),ϑ) (Lemma 4.1, p. 1446), the Continuous
Mapping Theorem gives in Mp([0,∞) × E�),

η′
n =

∞∑
k=0

ε
(Sk/n,X

(bn)
k,m /bn)

= T1(�n,ϑn) ⇒ T1
(
q(·),ϑ) =

∞∑
k=0

ε(qtk,ikξ k,m) = η′. (4.4)

Now stack the components of X
(bn)
k,m above the time point Sk/n. To make functionals continu-

ous, it is necessary to compactify the state space by letting �δ := [δ,∞]×[0,∞]m. Define the re-
striction functional T2 : Mp([0,∞)×E�) → Mp([0,∞)×�δ) by T2m = m(·∩ ([0,∞)×�δ)).
From [9, Proposition 3.3], T2 is almost surely continuous at η′ provided P[η′(∂([0,∞)×�δ)) =
0] = 1 and since E(η′(∂([0,∞) × �δ))) = 0 due to να({δ}) = 0, the a.s. continuity is verified.
Therefore, in Mp([0,∞) × �δ), the restricted version of (4.4) is η′′

n := T2(η
′
n) ⇒ T2(η

′) =: η′′.
Define the stacking functional T3 : Mp([0,∞) × �δ) → Mp([0,∞) × [0,∞]) by

T3

(∑
k

ε(tk,yk(0),...,yk(m))

)
=

∑
k

m∑
j=0

ε(tk,yk(j))

or for m ∈ Mp([0,∞) × �δ), f ∈ C+
K([0,∞) × [0,∞]), T3m(f ) = ˜ {∑m

j=0 f (u, vj )}m(du,

dv). Given such f with support in [0,R] × [0,∞], R a positive integer, the function ϕ(u,v) :=∑m
j=0 f (u, vj ) ∈ C+

K([0,∞)×�δ), since it is clearly non-negative continuous, and ϕ = 0 outside

of [0,R] × �δ . The continuity of T3 is clear: given mn
v→ m in Mp([0,∞) × �δ), we have

T3mn(f ) = mn(ϕ) → m(ϕ) = T3m(f ). Consequently, in Mp([0,∞) × [0,∞]),

η̂n =
∞∑

k=0

m∑
j=0

ε
(

Sk
n

,
X

(bn)
kj
bn

)

1{ Xk0
bn

≥δ} = T3
(
η′′

n

) ⇒ T3
(
η′′) =

∞∑
k=0

m∑
j=0

ε(qtk,ikξk(j))1{ik≥δ} = η̂. (4.5)

Now adjust the sum over j to replace X
(bn)
kj with Xkj . From (4.5), we readily get,

η̂n

(· ∩ ([0,∞) × (0,∞])) ⇒ η̂
(· ∩ ([0,∞) × (0,∞])) in Mp

([0,∞) × (0,∞]) (4.6)

by noting that any f ∈ C+
K([0,∞)× (0,∞]) extends to f̄ ∈ C+

K([0,∞)×[0,∞]) with f̄ (s,0) =
0 for s ≥ 0. Moreover, recalling {τ̃k+1(t)} and {τ ∗

k+1}, the first hitting times of 0 by {X(t)
k } and

{ξ k} respectively, put

σk+1(t) = τ̃k+1(t) ∧ (m + 1) and σ ∗
k+1 = τ ∗

k+1 ∧ (m + 1), k ≥ 0.

Using this notation, the convergence (4.6) becomes, in Mp([0,∞) × (0,∞]),

η̃n =
∞∑

k=0

σk+1(bn)−1∑
j=0

ε
(

Sk
n

,
Xkj
bn

)
1{ Xk0

bn
≥δ} ⇒

∞∑
k=0

σ ∗
k+1−1∑
j=0

ε(qtk,ikξk(j))1{ik≥δ} = η̃. (4.7)
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Equation (4.7) allows spreading the stacks of η̃n in time and we verify

η̃∗
n =

∞∑
k=0

σk+1(bn)−1∑
j=0

ε
(

Sk+j

n
,
Xkj
bn

)
1{ Xk0

bn
≥δ} ⇒ η̃ in Mp

([0,∞) × (0,∞]). (4.8)

This follows from Slutsky’s theorem if dv(η̃
∗
n, η̃n)

P→ 0, where dv is the vague metric on
Mp([0,∞) × (0,∞]); it suffices to show that P[|η̃∗

n(f ) − η̃n(f )| > γ ] → 0 for any f ∈
C+

K([0,∞) × (0,∞]) and γ > 0. For such f with support in [0,R] × [M,∞], for R,M pos-
itive integers, we have

P
[∣∣η̃∗

n(f ) − η̃n(f )
∣∣ > γ

]

= P

[∣∣∣∣∣
∞∑

k=0

σk+1(bn)−1∑
j=0

f

(
Sk + j

n
,
Xkj

bn

)
1{ Xk0

bn
≥δ} −

∞∑
k=0

σk+1(bn)−1∑
j=0

f

(
Sk

n
,
Xkj

bn

)
1{ Xk0

bn
≥δ}

∣∣∣∣∣ > γ

]

≤ P

[ ∞∑
k=0

σk+1(bn)−1∑
j=1

∣∣∣∣f
(

Sk + j

n
,
Xkj

bn

)
− f

(
Sk

n
,
Xkj

bn

)∣∣∣∣

× ε
(

Sk
n

,
Xkj
bn

)

([0,R] × [M,∞])1{ Xk0
bn

≥δ} > γ

]
.

Since f is uniformly continuous, given ρ > 0, there exists v > 0 such that |f (x) − f (y)| < ρ

whenever ‖x − y‖ < v. For n so large that m/n < v, we have

∞∑
k=0

σk+1(bn)−1∑
j=1

∣∣∣∣f
(

Sk + j

n
,
Xkj

bn

)
− f

(
Sk

n
,
Xkj

bn

)∣∣∣∣ε(
Sk
n

,
Xkj
bn

)

([0,R] × [M,∞])1{ Xk0
bn

≥δ}

< ρ · η̃n

([0,R] × [M,∞]),
implying that

lim sup
n→∞

P
[∣∣η̃∗

n(f ) − η̃n(f )
∣∣ > γ

] ≤ lim sup
n→∞

P
[
η̃n

([0,R] × [M,∞]) ≥ γρ−1]
≤ P

[
η̃
([0,R] × [M,∞]) ≥ γρ−1]

by (4.7). So (4.8) follows by letting ρ → 0.
Finally, we remove the restriction in m on the stacks. Recall the definitions of ηn and η from

Proposition 3.1. To apply a Slutsky argument (e.g., [24], Theorem 3.5, p. 56), we show, for γ > 0,

lim
m→∞ P

[
dv(η̃, η) > γ

] = 0 and lim
m→∞ lim sup

n→∞
P
[
dv

(
η̃∗

n, ηn

)
> γ

] = 0. (4.9)
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Let f ∈ C+
K([0,∞) × (0,∞]) with support [0,R] × [M,∞]. Taking δ < a < ∞, we write

∣∣η̃(f ) − η(f )
∣∣ =

∞∑
k=0

∞∑
j=m+1

f
(
qtk, ikξk(j)

) · (1{δ≤ik<a} + 1{ik≥a}).

Hence,

P
[∣∣η̃(f ) − η(f )

∣∣ > γ
] ≤ P

[ ∞∑
k=0

∞∑
j=m+1

f
(
qtk, ikξk(j)

)
1{δ≤ik<a} > γ/2

]

+ P

[ ∞∑
k=0

∞∑
j=m+1

f
(
qtk, ikξk(j)

)
1{ik≥a} > γ/2

]

= A + B.

Writing ξ∗
k (m) = supj≥m+1 ξk(j) for k ≥ 0, term A is bounded by

P

[ ∞∑
k=0

{
ε(tk,ik)

([0,R/q] × [δ, a)
) ∞∑

j=m+1

1{ξk(j)> M
a

}

}
> 0

]

≤ P
[
ζ ′
m

([0,R/q] × [δ,∞] × (M/a,∞)
)
> 0

]
,

where, since {ξ k} are i.i.d. and independent of ζ , in Mp([0,∞) × (0,∞] × [0,∞]),

ζ ′
m =

∞∑
k=0

ε(tk,ik,ξ
∗
k (m)) ∼ PRM

(
LEB × να × P

[
sup

j≥m+1
ξ(j) ∈ ·

])
.

Therefore, P[ζ ′
m([0,R/q] × [δ,∞] × (Ma−1,∞)) > 0] = 1 − exp{−λ}, where

λ = LEB[0,R/q] · να[δ,∞] · P
[

sup
j≥m+1

ξ(j) > Ma−1
]

= Rq−1δ−αP
[

sup
j≥m+1

ξ(j) > Ma−1
]

−→ 0

as m → ∞ by (2.15), a consequence of Condition (2.14). For term B , we have the bound

P
[
ζ
([0,R/q] × [a,∞]) > 0

] = 1 − exp
{−Eζ

([0,R/q] × [a,∞])} = 1 − exp
{−Rq−1a−α

}
.

Letting a → ∞ establishes the first limit in (4.9).
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To prove the second limit in (4.9), observe that

P
[∣∣η̃∗

n(f ) − ηn(f )
∣∣ > γ

] = P

[ ∞∑
k=0

τ̃k+1(bn)−1∑
j=m+1

f

(
Sk + j

n
,
Xkj

bn

)
1{ Xk0

bn
≥δ} > γ

]

≤ P

[
2Rn−1∑
k=0

∞∑
j=m+1

f

(
Sk + j

n
,
X

(bn)
kj

bn

)
1{ Xk0

bn
≥δ} > 0

]

+ P

[ ∞∑
k=2Rn

∞∑
j=m+1

f

(
Sk + j

n
,
X

(bn)
kj

bn

)
1{ Xk0

bn
≥δ} > 0

]
.

The first term is bounded by

P

[
2Rn−1⋃
k=0

({
Xk0

bn

≥ δ

}
∩

∞⋃
j=m+1

{
X

(bn)
kj

bn

≥ M

})]
≤ 2RnP

[
X0

bn

≥ δ, sup
j≥m+1

Xj
(bn)

bn

≥ M

]
,

and

lim
m→∞ lim sup

n→∞
nP

[
X0

bn

≥ δ, sup
j≥m+1

Xj
(bn)

bn

≥ M

]
= 0

by Condition (2.14). The second term is at most P[S2Rn/n ≤ R] = P[S2Rn/2Rn ≤ 1/2] → 0 as
n → ∞, since Sn/n → q a.s., and q ≥ 1 by (3.5). This establishes (4.9), completing the proof of
part (a).

(b) This amounts to removing the restrictions in δ, under the additional assumptions (2.10)
and Condition (2.17). We proceed via a Slutsky argument showing that for any γ > 0,

lim
δ→0

P
[
dv

(
η,η∗) > γ

] = 0 and lim
δ→0

lim sup
n→∞

P
[
dv

(
ηn, η

∗
n

)
> γ

] = 0. (4.10)

Let f ∈ C+
K([0,∞) × (0,∞]) with support [0,R] × [M,∞], and note that

∣∣η(f ) − η∗(f )
∣∣ =

∞∑
k=0

τ∗
k+1−1∑
j=0

f
(
qtk, ikξk(j)

)
1{ik<δ}.

Hence, writing ξ∗
k = supj≥1 ξk(j), and ζ ′ = ∑∞

k=0 ε(tk,ik,ikξ
∗
k ), we have

P
[∣∣η(f ) − η∗(f )

∣∣ > γ
] ≤ P

[ ∞∑
k=0

ε(tk,ik)[0,R/q] × (0, δ)

∞∑
j=0

1{ikξk(j)≥M} > 0

]

≤ P
[
ζ ′([0,R/q] × (0, δ) × [M,∞]) > 0

]
.
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The {ξ k} are i.i.d. and independent of ζ , so ζ ′ ∼ PRM(μ′) on Mp[0,∞)× (0,∞]× [0,∞] with

μ′(ds, dx, dy) = LEB(dx) · να(dx) · P
[
sup
j≥1

ξ(j) ∈ x−1dy
]

by [24, Proposition 5.6, p. 144]. Therefore, P[ζ ′([0,R/q] × (0, δ) × [M,∞]) > 0] = 1 −
exp{−λ}, where by Lemma 2.1,

λ = Rq−1
ˆ

(0,δ)

να(dx)P
[
sup
j≥1

ξ(j) ≥ Mx−1
]

≤ Rq−1M−αE
[
sup
j≥1

ξ(j)α · 1{supj≥1 ξ(j)>Mδ−1}
]
.

Apply (2.18) and dominated convergence as δ ↓ 0 to get λ → 0 and hence the first limit in (4.10).
For the second limit in (4.10), we have

P
[∣∣ηn(f ) − η∗

n(f )
∣∣ > γ

] = P

[ ∞∑
k=0

τ̃k+1(bn)−1∑
j=0

f

(
Sk + j

n
,
Xkj

bn

)
1
{ X

(bn)
k0
bn

<δ}
> γ

]

≤ P

[
2Rn−1∑
k=0

τ̃k+1(bn)−1∑
j=0

f

(
Sk + j

n
,
Xkj

bn

)
1
{ X

(bn)
k0
bn

<δ}
> 0

]

+ P

[ ∞∑
k=2Rn

τ̃k+1(bn)−1∑
j=0

f

(
Sk + j

n
,
Xkj

bn

)
1
{ X

(bn)
k0
bn

<δ}
> 0

]
.

As above, the second term is at most P[S2Rn/n ≤ R] → 0 as n → ∞. The first term is bounded
by

P

[
2Rn−1⋃
k=0

({
X

(bn)
k0

bn

< δ

}
∩

τ̃k+1(bn)−1⋃
j=1

{
Xkj

bn

≥ M

})]

≤ 2RnP

[
X

(bn)
0

bn

< δ, sup
j≥1

X
(bn)
j

bn

≥ M

]

≤ 2RnP

[
X

(bn)
0

bn

< δ, sup
1≤j≤m0

X
(bn)
j

bn

≥ M

]
+ 2RnP

[
X

(bn)
0

bn

< δ, sup
j≥m0+1

X
(bn)
j

bn

≥ M

]

= An(δ) + Bn(δ),

with m0 as in Condition (2.17). For An(δ), we have by (2.10),

lim
δ↓0

lim sup
n→∞

An(δ) = lim
δ↓0

2Rμ∗([0, δ] × ([0,M)m0
)c) = 0.

For the second, limδ↓0 lim supn→∞ Bn(δ) = 0 by Condition (2.17). This establishes (4.10). �
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For completeness, the following lemma notes the continuity of the map T1 defined in (4.3).
See also [33,34].

Lemma 4.1. The mapping T1 : D↑[0,∞) × M+([0,∞) × E) → M+([0,∞) × E) given by

T1m(f ) =
¨

f
(
x(u), v

)
m(du,dv), f ∈ C+

K

([0,∞) × E
)
,

is continuous at (x,m) whenever the function x(·) is continuous.

Proof. (a) Suppose xn → x0 in D↑[0,∞) (with respect to the Skorohod topology), where x0 is
continuous, and mn

v→ m0 in M+([0,∞)× E). Let f ∈ C+
K([0,∞)× E) with support contained

in [0,R]×B . We show that T1mn(f ) → T1m0(f ). For n ≥ 0, write fn(u, v) = f (xn(u), v). The
fn are supported on x−1

n ([0,R]) × B , and x−1
n ([0,R]) = [0, x←

n (R)], where x←
n is the right-

continuous inverse of xn. We now argue that the fn, n ≥ 0, have a common compact support. In-
deed, we have x←

n → x←
0 pointwise, so x←

n (R) → x←
0 (R). Thus, for large n, [0, x←

n (R)]×B ⊂
[0, x←

0 (R) + 1] × B; without loss of generality, m0(∂([0, x←
0 (R) + 1] × B)) = 0. Furthermore,

fn → f0 uniformly: suppose (un, vn) → (u0, v0) ∈ [0,∞) × E. Then xn(un) → x0(u0) since
x0 is continuous, and so f (xn(un), vn) → f (x0(u0), v0) by the continuity of f . Consequently,
m̃n(f ) → m̃0(f ) by [26, Lemma 8.2(b)]. �
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