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Stochastic approximation is a framework unifying many random iterative algorithms occurring in a diverse
range of applications. The stability of the process is often difficult to verify in practical applications and the
process may even be unstable without additional stabilisation techniques. We study a stochastic approxi-
mation procedure with expanding projections similar to Andradóttir [Oper. Res. 43 (1995) 1037–1048]. We
focus on Markovian noise and show the stability and convergence under general conditions. Our framework
also incorporates the possibility to use a random step size sequence, which allows us to consider settings
with a non-smooth family of Markov kernels. We apply the theory to stochastic approximation expectation
maximisation with particle independent Metropolis–Hastings sampling.

Keywords: expectation maximisation; independent Metropolis–Hastings; particle Markov chain Monte
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1. Introduction

Stochastic approximation (SA) is concerned with finding the zeros of a function defined on the
space � ⊂ Rd as

h(θ) :=
∫

X
H(θ, x)πθ (dx), (1.1)

where {πθ }θ∈� is a family of probability distributions on a generic measurable space (X, B(X))

and H :� × X → � is a measurable function. In numerous situations h behaves like a gradient,
suggesting that a recursion of the type θi+1 = θi + γi+1h(θi) where (γi)i≥1 is a sequence of
nonnegative step sizes decaying to zero, can be used to find the aforementioned roots.

Often in applications, the integral (1.1) needs to be approximated numerically. We focus here
on methods relying on Monte Carlo simulation where sampling exactly from πθ for any θ ∈ � is
not possible directly and instead Markov chain Monte Carlo methods are used. Let {Pθ }θ∈� be
a family of Markov transition probabilities with stationary distributions {πθ }θ∈�, respectively.
Then, the standard SA recursion with Markovian dynamic is as follows

Xi+1|θ0,X0, . . . , θi,Xi ∼ Pθi
(Xi, ·),

θi+1 = θi + γi+1H(θi,Xi+1).
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Stability of this process is far from obvious and a significant effort has been dedicated to its
study (e.g., [7], Section 7.3). Problems occur in particular when ergodicity, a term to be made
more precise later, of Pθ vanishes as θ approaches a set of critical values denoted ∂� hereafter.
Younes [30], Section 6.3, gives an example of a situation where the Robbins–Monro algorithm
fails for this reason.

Cures include projection on a fixed set R0 ⊂ �, that is, given a projection mapping �R0 :� \
R0 → R0, one can define [20,21]

θ∗
i+1 = θi + γi+1H(θi,Xi+1),

θi+1 = θ∗
i+1I

{
θ∗
i+1 ∈ R0

}+ �R0

(
θ∗
i+1

)
I
{
θ∗
i+1 /∈ R0

}
.

Projection on a fixed set R0 might not be satisfactory when for example the location of the zeros
of h(θ) is not known a priori. It is also possible that the projection induces spurious attractors on
the boundary of R0.

Adaptive projections overcome these difficulties by considering an increasing sequence of
projection sets {Ri}i≥0 which forms a covering of �. The process is defined through [4,11–13,
28]

θ∗
i+1 = θi + γi+1H(θi,Xi+1),

θi+1 = θ∗
i+1I

{
θ∗
i+1 ∈ Rri

}+ �R0

(
θ∗
i+1

)
I
{
θ∗
i+1 /∈ Rri

}
,

ri+1 = ri + I
{
θ∗
i+1 /∈ Rri

}
,

where ri is the indicator of the current reprojection set and r0 ≡ 0. Adaptive projections can be
shown to lead to stable recursions under rather general conditions. In the case of a Markovian
noise, one usually modifies also Xi+1 so that [4]

Xi+1|θ0,X0, . . . , θi,Xi ∼ Pθi

(
X∗

i , ·
)

with

X∗
i := I

{
θ∗
i ∈ Ri−1

}
Xi + I

{
θ∗
i /∈ Ri−1

}
�̂K0(Xi),

where �̂K0 : X → K0 maps Xi to a suitable (usually compact) set K0 ⊂ X. This corresponds effec-
tively to ‘restarting’ the process, with a smaller step size sequence and a bigger feasible set Rri+1.
One can show that the projections occur finitely often under fairly general conditions, whence
the process is eventually stable [4]. In practice, this algorithm may be wasteful if {Ri}i≥0 or K0
are ill-defined, and the projections occur frequently.

We focus here on the study of a different stabilising approach where projection occurs on an
expanding (with time) sequence of projection sets {Ri}. Our approach is similar to Andradóttir’s
[1]; see also [26,27], but we consider a more general framework with two major differences.
First, we focus on a Markovian noise setting, and second, we allow the step size sequence, now
denoted (�i)i≥1, to be random.1 Our analysis is inspired by earlier related work in adaptive
Markov chain Monte Carlo [25]. The generic algorithm can be given as follows.

1The recent work of Sharia [27] includes random step sizes as well, but our assumptions on �i are completely different.
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Algorithm 1.1. Let {Ri}i≥0 be subsets of � and let the weights (�i)i≥1 be nonnegative ran-
dom variables. The stochastic approximation process (θi,Xi)i≥0 with expanding projection sets
{Ri}i≥0 is defined for any starting point (θ0,X0) ≡ (θ, x) ∈ R0 × X and recursively for i ≥ 0 as
follows

Xi+1|Fi ∼ Pθi
(Xi, ·),

θ∗
i+1 = θi + �i+1H(θi,Xi+1),

θi+1 = θ∗
i+1I

{
θ∗
i+1 ∈ Ri+1

}+ θ
proj
i+1 I

{
θ∗
i+1 /∈ Ri+1

}
,

where Fi stands for the σ -algebra generated by θ0,X0, θ1,X1,�1, . . . , θi,Xi,�i , and where
θ

proj
i+1 is a σ(Fi ,Xi+1, θ

∗
i+1)-measurable random variable taking values in Ri+1.

Most common practical projection mechanisms include θ
proj
i+1 := θi ‘rejecting’ an update out-

side the current feasible set, and θ
proj
i+1 := �Ri+1(θ

∗
i+1), where �Ri+1 :� \ Ri+1 → Ri+1 is a

measurable mapping.
In words, the expanding projections approach only ensures that θi is in a feasible set Ri but

does not involve potentially harmful ‘restarts’ as is the case with the adaptive reprojection strat-
egy. Note particularly that unlike with the adaptive reprojections strategy, we need not project
Xi+1 at all. We believe that these advantages can provide significantly better results in certain
settings, but this is at the expense of requiring more when proving the stability and the conver-
gence of the process. In short, we must be able to control certain quantitative criteria within each
feasible set Ri . The random step size sequence allows one to consider situations where the fam-
ily of Markov kernels {Pθ }θ∈� is not necessarily smooth in a manner that is usually considered
in the stochastic approximation literature (e.g., [8]).

Other stabilisation techniques in the literature related to our approach include the state-
dependent averaging framework of Younes [30] and a state-dependent step size sequence of
Kamal [19]. Particularly the former shares similarities with the present work, as it also relies on
quantifying the ergodicity rates of Markov kernels explicitly. Our stabilisation approach differs,
however, crucially from these methods, adding only the projections to the basic Robbins–Monro
algorithm. We remark also that our present approach may be used in some situations to prove
the stability and convergence of an unmodified Robbins–Monro stochastic approximation. This
is possible, loosely speaking, if one can show that projections do not occur at all with a positive
probability; see [25] for an example of such a situation. We point out also the work [6] suggesting
a generic method to establish the stability of unmodified Markovian Robbins–Monro stochastic
approximation at the expense of more stringent assumptions.

Our main results show that the SA process (θi)i≥0 produced by our expanding projections
algorithm ‘stays away from ∂�’ almost surely for any starting point (θ, x) ∈ R0 × X under
conditions on H(·, ·), {Pθ }θ∈�, (Ri )i≥0 and (�i)i≥1. Figure 1 summarises the inter-dependency
between our various main conditions and results and in order to help the reader we provide a
nomenclature of some of the constants involved in Appendix D.

Section 2 contains two fundamental results, Theorems 2.5 and 2.8, which both establish sta-
bility of Algorithm 1.1 under abstract noise conditions and the existence of a Lyapunov function
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Figure 1. Road map of the main results and assumptions.

satisfying two distinct sets of assumptions which, roughly speaking, allow us to tackle instability
at infinity or at a finite point. Section 3 focuses on establishing the required noise conditions
with verifiable assumptions on the Markov kernels. First, Theorem 3.3 establishes the aforemen-
tioned noise conditions under Condition 3.1, which essentially involves a trade-off between the
sequences (�i)i≥0 and (ξi)i≥0 and properties of the solution of the Poisson equation related to
{Pθ }θ∈� and H(·, ·). Second, essentially assuming geometric ergodicity, Propositions 3.17 and
3.19 establish the required conditions in the scenarios where {Pθ }θ∈� depends smoothly on θ

and where it does not respectively—the latter case requires the introduction of random step-sizes
(�i)i≥0 (see also the comments in the introduction of Section 3.3).

We complement our stability results in Section 4 with a discussion on how one can use existing
results in the literature to obtain convergence of (θi)i≥0 to a zero of h. Finally, we apply our
theory to a new stochastic approximation expectation maximisation algorithm involving particle
independent Metropolis–Hastings sampling in Section 5.

2. General stability results

We denote throughout the article the probability distribution associated to the process (θi,Xi)i≥0
defined in Algorithm 1.1 and starting at (θ0,X0) ≡ (θ, x) ∈ � × X as Pθ,x(·) and the associated
expectation as Eθ,x[·]. For any subset A ⊂ E of some space E, we denote Ac its complement in
E. We also denote 〈·, ·〉 the standard inner product and | · | the associated norm on � ⊂ Rd . We
also use the notation a ∨ b := max{a, b} and a ∧ b := min{a, b}.

The approach we develop relies on the existence of a Lyapunov function w :� → [0,∞) for
the recursion on θ and the subsequent proof that {w(θi)} is Pθ,x -a.s. under some adequate level.
For any M > 0, we define the level sets WM := {θ ∈ �: w(θ) ≤ M}. Our general stability results
are inspired by a proof due to Benveniste, Metivier and Priouret [8], Theorem 17, page 239, but
differ in many respects as we shall see.

We consider two different settings concerning the way w behaves on the boundary ∂� of
�. Section 2.1 assumes that limθ→∂� w(θ) = ∞, which is well suited for example to the case
� = R and ∂� = {−∞,∞}. Section 2.2 considers the case where w may not be unbounded,
which requires stronger assumptions on the behaviour of w. This setting subsumes for example
the case where � ⊂ R and ∂� contains some points on the real line. Both of the scenarios share
the following set of assumptions.
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Condition 2.1. There exists a twice continuously differentiable function w :� → [0,∞) such
that

(i) the Hessian matrix Hessw :� → Rd×d of w is bounded so that

Cw := sup
θ∈�

sup
|θ0|=1

∣∣Hessw(θ)θ0
∣∣ < ∞,

(ii) the projection sets are increasing subsets of �, that is, Ri ⊂ Ri+1 for all i ≥ 0, and
�̂ := ⋃∞

i=0 Ri ⊂ �,
(iii) there exists a constant M0 > 0 such that for any θ ∈ W c

M0
∩ �̂〈∇w(θ),h(θ)

〉 ≤ 0,

(iv) the family of random variables {θproj
i }i≥1 satisfies for all i ≥ 1 whenever θ∗

i /∈ Ri

θ
proj
i ∈ Ri and w

(
θ

proj
i

) ≤ w
(
θ∗
i

)
Pθ,x-a.s.,

(v) there exists constants αw, c ∈ [0,∞) and a non-decreasing sequence of constants ξi ∈
[1,∞) satisfying supθ∈Ri

|∇w(θ)| ≤ cξ
αw

i for all i ≥ 0.

Remark 2.2. Condition 2.1

(i) Can often be established by introducing a Lyapunov function defined through w := ψ ◦w̃,
where ψ : [0,∞) → [0,∞) is a suitable concave function modifying the values of another
Lyapunov function w̃ which satisfies the drift condition (iii) but does not have finite
second derivatives; see [8], Remark on page 239.

(ii) Is often satisfied with �̂ = �, but accomodates also projections sets which do not cover
�, but only certain admissible values �̂ � �. As an extreme case, this allows to use the
present framework to check that a fixed projection does not induce spurious attractors on
the boundary of �̂. Notice also that the function H(θ, x) and the corresponding mean
field h(θ) need only be defined for values θ ∈ �̂.

(iii) Will be replaced with a stricter drift in Theorem 2.8, where w is not required to diverge
on the boundary ∂�̂.

(iv) Is satisfied trivially by the choices θ
proj
i := θi−1 and θ

proj
i := �Ri

(θ∗
i ), if the projection

sets are defined as the level sets of the Lyapunov function, that is Ri := WMi
for some

Mi > 0. In the Markovian case, the projections are assumed to satisfy an additional con-
tinuity condition; see Theorem 3.3.

(v) Involves in practice a sequence that grows at most at a rate ξi := i ∨ 1, with some power
αw ∈ [0,1). The sequence ξi plays a central role also in controlling the ergodicity rate of
the Markov chain in Ri ; see Remark 3.2.

Hereafter, we denote the ‘centred’ version of H as H̄ (θ, x) := H(θ, x)−h(θ). For the stability
results, we shall introduce the following general condition on the noise sequence. In general
terms, it is related to the rate at which {θi} may approach ∂�̂ in relation to the growth of |H(θ, x)|
and the loss of ergodicity of {Pθ }. Establishing practical and realistic conditions under which this
assumption holds will be the topic of Section 3.
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Condition 2.3. For any (θ, x) ∈ R0 × X it holds that

(i) Pθ,x

(
lim

i→∞�i+1
∣∣∇w(θi)

∣∣ · ∣∣H(θi,Xi+1)
∣∣ = 0

)
= 1,

(ii) Eθ,x

[ ∞∑
i=0

�2
i+1

∣∣H(θi,Xi+1)
∣∣2] < ∞,

(iii) Eθ,x

[
sup
k≥0

∣∣∣∣∣
k∑

i=0

�i+1
〈∇w(θi), H̄ (θi,Xi+1)

〉∣∣∣∣∣
]

< ∞.

In what follows, we shall focus on a single condition implying Condition 2.3(i) and (ii). It is
slightly more stringent, but more convenient to check in practice.

Lemma 2.4. Suppose Condition 2.1 holds and

Eθ,x

[ ∞∑
i=0

�2
i+1ξ

2αw

i

∣∣H(θi,Xi+1)
∣∣2] < ∞. (2.1)

Then, Condition 2.3(i) and (ii) hold.

Proof. Note first that Condition 2.3(ii) holds trivially, because ξ
2αw

i ≥ 1. For Condition 2.3(i),
consider

Eθ,x

[ ∞∑
i=0

(
�i+1

∣∣∇w(θi)
∣∣ · ∣∣H(θi,Xi+1)

∣∣)2

]
≤ c2Eθ,x

[ ∞∑
i=0

�2
i+1ξ

2αw

i

∣∣H(θi,Xi+1)
∣∣2].

�

2.1. Unbounded Lyapunov function

When lim
θ→∂�̂

w(θ) = ∞, it is enough to show that the sequence w(θi) is bounded in order to
ensure the stability of θi .

Theorem 2.5. Assume Conditions 2.1 and 2.3 hold. Then, for any (θ, x) ∈ R0 × X

Pθ,x

(
lim sup
i→∞

w(θi) < ∞
)

= 1.

Proof. To show the Pθ,x -a.s. boundedness of {w(θi)} we fix (θ, x) ∈ R0 × X and introduce
the following quantities. Let M0 < M1 < · · · < Mn → ∞ be an increasing sequence tending to
infinity and consider the level sets WMi

⊂ �. We assume that M0 is chosen large enough so that
θ0 = θ ∈ WM0 . For any n ≥ 0, we define the first exit time of θi from the level set WMn as

σn := inf{i ≥ 0: θi /∈ WMn},
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with the usual convention that inf{∅} = ∞. For any n ≥ 0, we define the time following the last
exit of θi from WM0 before σn as

τn := 1 + sup{i ≤ σn: θi ∈ WM0},
which is finite at least whenever σn is finite by our assumption that θ0 ∈ WM0 . With these defini-
tions, the claim holds once we show that limn→∞ Pθ,x(σn < ∞) = 0.

To begin with, define for n ≥ 1 the following sets characterising the jumps out of WM0

Dn :=
{

I{τn < ∞}[w(θτn) − w(θτn−1)
] ≤ Mn − M0

2

}
.

We first show that limn→∞ Pθ,x(Dn) = 1. Clearly

D̃n :=
{

sup
i≥0

[
w(θi+1) − w(θi)

] ≤ Mn − M0

2

}
⊂ Dn (2.2)

and since Mn → ∞, one has {supi≥0[w(θi+1) − w(θi)] < ∞} = ⋃∞
n=1 D̃n. Lemma 2.6 shows

that 1 = Pθ,x(
⋃∞

n=1 D̃n) = limn→∞ Pθ,x(D̃n) ≤ limn→∞ Pθ,x(Dn) because D̃n is an increasing
sequence and by (2.2), respectively.

Now, it remains to focus on proving that

lim
n→∞ Pθ,x

(
Dn ∩ {σn < ∞}) = 0.

In order to achieve this observe first that w(θσn)−w(θτn−1) ≥ Mn −M0 on {σn < ∞}, implying
that on Dn ∩ {σn < ∞},

w(θσn) − w(θτn) = w(θσn) − w(θτn−1) − [
w(θτn) − w(θτn−1)

] ≥ Mn − M0

2
.

This allows us to deduce the following bound

Pθ,x

(
Dn ∩ {σn < ∞}) = Eθ,x

[
I
{
Dn ∩ {σn < ∞}}]

≤ Eθ,x

[
I
{
Dn ∩ {σn < ∞}} w(θσn) − w(θτn)

(1/2)(Mn − M0)

]

≤ 2

Mn − M0
Eθ,x

[
I{σn < ∞}[w(θσn) − w(θτn)

]]
.

Since Mn → ∞, the proof will be finished once we show that

sup
n≥0

Eθ,x

[
I{σn < ∞}[w(θσn) − w(θτn)

]]
< ∞. (2.3)

Thanks to Condition 2.1(iv), we have for any i ≥ 0 that w(θi+1) ≤ w(θ∗
i+1) and consequently

w(θi+1) − w(θi) ≤ �i+1
〈∇w(θi), h(θi)

〉
+ �i+1

〈∇w(θi), H̄ (θi,Xi+1)
〉+ �2

i+1
Cw

2

∣∣H(θi,Xi+1)
∣∣2.
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So in particular, since 〈∇w(θi), h(θi)〉 ≤ 0 whenever θi ∈ W c
M0

,

I{σn < ∞}[w(θσn) − w(θτn)
]

= I{σn < ∞}
σn−1∑
i=τn

[
w(θi+1) − w(θi)

]

≤ I{σn < ∞}
(

σn−1∑
i=τn

�i+1
〈∇w(θi), H̄ (θi,Xi+1)

〉+ �2
i+1

Cw

2

∣∣H(θi,Xi+1)
∣∣2).

Recall the following estimate for partial sums∣∣∣∣∣
k∑

i=j

ai

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=0

ai −
j−1∑
i=0

ai

∣∣∣∣∣ ≤
∣∣∣∣∣

k∑
i=0

ai

∣∣∣∣∣+
∣∣∣∣∣
j−1∑
i=0

ai

∣∣∣∣∣ ≤ 2 sup
k≥0

∣∣∣∣∣
k∑

i=0

ai

∣∣∣∣∣, (2.4)

implying in our case that

1

2
I{σn < ∞}[w(θσn) − w(θτn)

]

≤ I{σn < ∞}
(

sup
k≥0

∣∣∣∣∣
k∑

i=0

�i+1
〈∇w(θi), H̄ (θi,Xi+1)

〉∣∣∣∣∣+
∞∑
i=0

�2
i+1

Cw

2

∣∣H(θi,Xi+1)
∣∣2).

Now, Condition 2.3(ii) and (iii) imply (2.3) allowing us to conclude. �

Lemma 2.6. Under Condition 2.3 we have, Pθ,x -almost surely

lim sup
i→∞

[
w(θi+1) − w(θi)

] ≤ 0, (2.5)

sup
i≥0

[
w(θi+1) − w(θi)

]
< ∞. (2.6)

Proof. We first prove that limi→∞ |w(θ∗
i+1) − w(θi)| = 0, Pθ,x -a.s. By a Taylor expansion, we

get ∣∣w(
θ∗
i+1

)− w(θi)
∣∣ ≤ ∣∣∇w(θi)

∣∣ · ∣∣�i+1H(θi,Xi+1)
∣∣+ �2

i+1Cw

∣∣H(θi,Xi+1)
∣∣2.

The terms on the right converge to zero Pθ,x -a.s. by Condition 2.3(i) and (ii), respectively. Now,
(2.5) follows since by Condition 2.1(iv) w(θi+1) − w(θi) ≤ w(θ∗

i+1) − w(θi). We conclude by
noting that (2.6) follows directly from (2.5). �

2.2. Bounded Lyapunov function

In the previous section, the Lyapunov function satisfied lim
θ→∂�̂

w(θ) = ∞. If this is not the
case, we need to replace Condition 2.1(iii) with a more stringent condition quantifying the drift
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outside WM0 , while not requiring lim
θ→∂�̂

w(θ) = ∞.

Condition 2.7. The Lyapunov function and the step size sequence satisfy

δi := inf
θ∈Ri\WM0

−〈∇w(θ),h(θ)
〉
> 0 and

∞∑
i=1

�iδi = ∞ Pθ,x-almost surely.

Theorem 2.8. Assume Conditions 2.1, 2.3 and 2.7 hold, and in addition that the following con-
dition on the noise holds

lim
m→∞ sup

k>m

∣∣∣∣∣
k∑

i=m

�i+1
〈∇w(θi), H̄ (θi,Xi+1)

〉∣∣∣∣∣ = 0. (2.7)

Then for any M > M0, the tails of the trajectories of {θi} are eventually contained within WM

Pθ,x -a.s., that is,

Pθ,x

(⋃
m≥0

⋂
n≥m

{θn ∈ WM}
)

= 1.

Proof. We first show that θn must visit WM0 infinitely often Pθ,x -a.s., in other words

Pθ,x

(⋃
m≥1

⋂
n≥m

{θn /∈ WM0}
)

= 0. (2.8)

For any m ≥ 0, we define the hitting times κm := inf{i > m: θi ∈ WM0} and notice that⋃
m≥1

⋂
n≥m

{θn /∈ WM0} =
⋃
m≥1

{θm /∈ WM0} ∩ {κm = ∞}.

Recall that for any i ≥ 0

w(θi+1) − w(θi) ≤ �i+1
〈∇w(θi), h(θi)

〉
+ �i+1

〈∇w(θi), H̄ (θi,Xi+1)
〉+ �2

i+1
Cw

2

∣∣H(θi,Xi+1)
∣∣2.

So in particular, and thanks to Condition 2.7, for n > m

I{θm /∈ WM0}
[
w(θn∧κm) − w(θm)

]

= I{θm /∈ WM0}
(n∧κm)−1∑

i=m

I{θi /∈ WM0}
[
w(θi+1) − w(θi)

]

≤ I{θm /∈ WM0}
(n∧κm)−1∑

i=m

�i+1

[
−δi + 〈∇w(θi), H̄ (θi,Xi+1)

〉+ �i+1
Cw

2

∣∣H(θi,Xi+1)
∣∣2].
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From this, we obtain the following inequality holding Pθ,x -a.s. on {θm /∈ WM0} for any n > m

Eθ,x

[
I{κm = ∞}

n−1∑
i=m

�i+1δi

∣∣∣Fm

]
− w(θm)

≤ Eθ,x

[
I{κm = ∞}

n−1∑
i=m

�i+1
〈∇w(θi), H̄ (θi,Xi+1)

〉
(2.9)

+ �2
i+1

Cw

2

∣∣H(θi,Xi+1)
∣∣2∣∣∣Fm

]
.

Using this inequality, we shall see that for any m > 0

Pθ,x

({θm /∈ WM0} ∩ {κm = ∞}) = 0. (2.10)

Suppose the contrary, Pθ,x({θm /∈ WM0} ∩ {κm = ∞}) > 0. Then, because of Condition 2.7, we
observe that the conditional expectation on the left hand side of (2.9) necessarily tends to infinity
almost surely as n → ∞. Denote then the conditional expectation on the right hand side of (2.9)
by E

(m,n)
θ,x . As in the proof of Theorem 2.5, we have the following upper bound

Eθ,x

[
E

(m,n)
θ,x

] ≤ Eθ,x

[
sup
k≥0

∣∣∣∣∣
k∑

i=0

�i+1
〈∇w(θi), H̄ (θi,Xi+1)

〉∣∣∣∣∣+
∞∑
i=0

�2
i+1

Cw

2

∣∣H(θi,Xi+1)
∣∣2],

which is finite by Condition 2.3 and independent of m and n. By letting n → ∞ we end up with
a contradiction, unless (2.10) holds. Consequently, the event⋃

m≥1

{θm /∈ WM0} ∩ {κm = ∞}

has null probability and we obtain (2.8).
We now show that for any fixed M > M0

Pθ,x

(⋃
m≥0

⋂
n≥m

{θn ∈ WM}
)

= 1.

We are going to apply Lemma 2.9 below with δ = M − M0 > 0 to the events

Am = {θm ∈ WM0} ∩
⋃
k>m

{θk /∈ WM},

and denote

Bm := {θm ∈ WM0} \ Am = {θm ∈ WM0} ∩
⋂
k>m

{θk ∈ WM}.
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We may write ⋂
n≥1

⋃
m≥n

{θm ∈ WM0} =
⋂
n≥1

⋃
m≥n

Am ∪ Bm

=
⋂
n≥1

[(⋃
m≥n

Am

)
∪
(⋃

m≥n

Bm

)]
.

Now, since
⋃

m≥nAm and
⋃

m≥nBm are both decreasing events with respect to n → ∞, we have

1 = lim
n→∞ Pθ,x

(⋃
m≥n

{θm ∈ WM0}
)

= lim
n→∞

[
Pθ,x

(⋃
m≥n

Am

)
+ Pθ,x

(⋃
m≥n

Bm

)
− Pθ,x

(⋃
m≥n

Am ∩
⋃
m≥n

Bm

)]
.

By Lemma 2.9, limn→∞ Pθ,x(
⋃

m≥n Am) = 0, so we end up with limn→∞ Pθ,x(
⋃

m≥n Bm) = 1,
implying the claim. �

Lemma 2.9. Assume the conditions of Theorem 2.8, let δ > 0 and denote

Am := {θm ∈ WM0} ∩
⋃
k>m

{θk /∈ WM0+δ}.

Then, limn→∞ Pθ,x(
⋃

m≥n Am) = 0.

Proof. Define the random times σm := inf{i > m: θi /∈ WM0+δ} and τm := sup{i ∈ [m,σm): θi ∈
WM0} + 1, both finite on Am. Recall that on {θi ∈ W c

M0
} we have

w(θi+1) − w(θi) ≤ �i+1
〈∇w(θi), H̄ (θi,Xi+1)

〉+ �2
i+1

Cw

2

∣∣H(θi,Xi+1)
∣∣2,

so on Am we may bound

w(θσm) − w(θτm) ≤
σm−1∑
i=τm

�i+1
〈∇w(θi), H̄ (θi,Xi+1)

〉+ �2
i+1

Cw

2

∣∣H(θi,Xi+1)
∣∣2

≤ 2 sup
k>m

∣∣∣∣∣
k∑

i=m

�i+1
〈∇w(θi), H̄ (θi,Xi+1)

〉∣∣∣∣∣+
∞∑

i=m

�2
i+1

Cw

2

∣∣H(θi,Xi+1)
∣∣2

=: Cm

by a similar argument as in (2.4). On Am one clearly has w(θσm) − w(θτm−1) > δ, implying that
Cm + w(θτm) − w(θτm−1) > δ. We deduce that

Ãm :=
{
Cm + sup

i≥m

[
w(θi+1) − w(θi)

]
> δ

}
⊃ Am.
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The sets Ãm are clearly decreasing with respect to m and limm→∞ Pθ,x(Ãm) = 0 by Lemma 2.6
and because Condition 2.3(ii) and (2.7) imply limm→∞ Cm = 0. This concludes the proof, be-
cause

⋃
m≥n Am ⊂ ⋃

m≥n Ãm = Ãn. �

3. Verifying noise conditions

The aim of this section is to provide verifiable conditions which will imply the conditions of
the stability theorems in Section 2. We proceed progressively and start by a general result in
Theorem 3.3 which ensures both Condition 2.3 and that in (2.7) hold given a set of abstract
conditions involving some expectations as well as properties of the solutions of the Poisson
equation.

Condition 3.1, required in Theorem 3.3, shall be verified in detail below for a family of geo-
metrically ergodic Markov kernels. In Section 3.1, we first gather general known results related
to Condition 3.1(ii) and (iii). In Section 3.2, we consider the case where the mapping θ → Pθ is
Hölder continuous, which allows us to establish Condition 3.1(iv). In Section 3.3, we consider
the case where the aforementioned Hölder continuity may not hold, and a continuity is enforced
by using a random step size sequence, allowing us to recover Condition 3.1(iv) in such situations.

Condition 3.1. Condition 2.1 holds with constants (ξi)i≥0 and αw ∈ (0,∞). For all θ ∈ �̂, the
solution gθ : X → � to the Poisson equation gθ (x) − Pθgθ (x) ≡ H̄ (θ, x) exists and for all i ≥ 0
the step size �i+1 is independent of Fi and Xi+1. Moreover, there exist a measurable function
V : X → [1,∞) and constants c < ∞, βH ,βg ∈ [0,1/2] and αg,αH ,αV ∈ [0,∞) such that for
all (θ, x) ∈ R0 × X

(i) sup
θ∈Ri

∣∣H(θ, x)
∣∣ ≤ cξ

αH

i V βH (x),

(ii) Eθ,x

[
V (Xi)

] ≤ cξ
αV

i V (x),

(iii) sup
θ∈Ri

[∣∣gθ (x)
∣∣+ ∣∣Pθgθ (x)

∣∣] ≤ cξ
αg

i V βg (x),

(iv)
∞∑
i=1

E[�i+1]ξαw

i Eθ,x

[∣∣Pθi
gθi

(Xi) − Pθi−1gθi−1(Xi)
∣∣] < ∞,

(v)
∞∑
i=1

E
[
�2

i

]
ξ

2αw+2((αH +βH αV )∨(αg+βgαV ))

i < ∞,

(vi)
∞∑
i=1

E[�i+1�i]ξαH +αg+(βH +βg)αV

i < ∞,

(vii)
∞∑
i=1

∣∣E[�i+1 − �i]
∣∣ξαw+αg+βgαV

i < ∞,

where we write E := Eθ,x whenever the expectation does not depend on θ and x.
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Remark 3.2. These assumptions call for various comments of practical relevance to the actual
implementation of the algorithm with expanding projections. Once H(·, ·) and {Pθ }θ∈� are cho-
sen the user is left with the choice of (ξi)i≥0 and (�i)i≥0, which must in particular satisfy the
summability conditions above. For the purpose of efficiency we would like (ξi)i≥0 to grow as fast
as possible, as we may otherwise slow convergence down. A common choice for the step-size
sequence is �i = ci−η for some constants c ∈ (0,∞) and η ∈ (1/2,1] – this implies a required
condition to establish convergence. The sequence (ξi)i≥0 is determined by the user through the
choice of the sequence of reprojection sets (Ri )i≥0 and we point out that the constants αH ,αV

and αg typically depend on that choice (whereas βH and βg typically do not). We show how these
constants can be obtained from the properties of {Pθ }θ∈� in Sections 3.1–3.3. Now if (ξi)i≥0 is
increasing at a rate slower than any power sequence, for example of the order log i or i(log i)−p

for some p ∈ (0,1), then it is easy to see that the summability conditions (v)–(vii) are always sat-
isfied. In the situation where ξi = ip for p ∈ (0,1], then the conditions (v)–(vii) require stricter
assumptions on η and the constants αH ,αV ,αg,βH and βg which may not be satisfiable. We
however point out a possible sub-optimality of the results stated above. Indeed, in order to sim-
plify presentation we have decided to quantify the growth of the various quantities involved in
the algorithm in terms of powers of (ξi)i≥0 only, whereas other scales may be possible, such as
log(ξi), in which case some of the constants αH ,αV or αg may be taken arbitrarily small in the
statement above. It is also possible to revisit our proofs with such more precise estimates and
obtain a set of weaker assumptions.

In practice, the conditions (iii) and (iv) add more requirements which are inter-related with
(v)–(vii); Propositions 3.17 and 3.19 summarise the conditions when θ �→ Pθ admits a Hölder-
continuity, and when a random step size sequence is used to satisfy (iv), respectively. Appendix D
contains a summary of the related constants.

Theorem 3.3. Suppose Conditions 2.1 and 3.1 hold and for all i ≥ 0 the projections satisfy
|θi+1 − θi | ≤ |θ∗

i+1 − θi |. Then, for all (θ, x) ∈ R0 × X,

Eθ,x

[ ∞∑
i=0

�2
i+1ξ

2αw

i

∣∣H(θi,Xi+1)
∣∣2] < ∞, (3.1)

lim
m→∞ Eθ,x

[
sup
n≥m

∣∣∣∣∣
n∑

i=m

�i+1
〈∇w(θi), H̄ (θi,Xi+1)

〉∣∣∣∣∣
]

= 0. (3.2)

Proof. Throughout the proof, C denotes a constant which may have a different value upon each
appearance. For (3.1), we may use Condition 3.1(i) and (ii) with Jensen’s inequality to obtain

Eθ,x

[ ∞∑
i=0

�2
i+1ξ

2αw

i

∣∣H(θi,Xi+1)
∣∣2] ≤ C

∞∑
i=0

E
[
�2

i+1

]
ξ

2αw+2αH

i Eθ,x

[
V 2βH (Xi+1)

]

≤ CV 2βH (x)

∞∑
i=0

E
[
�2

i+1

]
ξ

2αw+2αH +2βH αV

i ,

where the sum converges by Condition 3.1(v).



558 C. Andrieu and M. Vihola

Consider then (3.2), and denote the partial sums for n ≥ m ≥ 1 as

Am,n :=
n∑

i=m

�i+1
〈∇w(θi), H̄ (θi,Xi+1)

〉
.

Since H̄ (θi,Xi+1) = gθi
(Xi+1) − Pθi

gθi
(Xi+1), we may write

�i+1
〈∇w(θi), H̄ (θi,Xi+1)

〉
= �i+1

〈∇w(θi), gθi
(Xi+1) − Pθi

gθi
(Xi)

〉
+ �i+1

〈∇w(θi),Pθi
gθi

(Xi) − Pθi−1gθi−1(Xi)
〉

+ �i+1
〈∇w(θi),Pθi−1gθi−1(Xi) − Pθi

gθi
(Xi+1)

〉
,

where the last term can be written as

�i+1
〈∇w(θi),Pθi−1gθi−1(Xi) − Pθi

gθi
(Xi+1)

〉
= �i+1

〈∇w(θi) − ∇w(θi−1),Pθi−1gθi−1(Xi)
〉

+ �i

〈∇w(θi−1),Pθi−1gθi−1(Xi)
〉− �i+1

〈∇w(θi),Pθi
gθi

(Xi+1)
〉

+ (�i+1 − �i)
〈∇w(θi−1),Pθi−1gθi−1(Xi)

〉
.

When summing up, the middle term on the right is telescoping, so in total we may write Am,n =∑5
k=1 Rk

m,n where

R1
m,n :=

n∑
i=m

�i+1
〈∇w(θi), gθi

(Xi+1) − Pθi
gθi

(Xi)
〉
,

R2
m,n :=

n∑
i=m

�i+1
〈∇w(θi),Pθi

gθi
(Xi) − Pθi−1gθi−1(Xi)

〉
,

R3
m,n :=

n∑
i=m

�i+1
〈∇w(θi) − ∇w(θi−1),Pθi−1gθi−1(Xi)

〉
,

R4
m,n := �m

〈∇w(θm−1),Pθm−1gθm−1(Xm)
〉− �n+1

〈∇w(θn),Pθngθn(Xn+1)
〉
,

R5
m,n :=

n∑
i=m

(�i+1 − �i)
〈∇w(θi−1),Pθi−1gθi−1(Xi)

〉
.

We shall show that (3.2) holds for each of these five terms in turn, which is sufficient to yield the
claim.
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Notice that {R1
m,i}ni=m is a martingale with respect to the filtration {Fi}ni=m, whence

Eθ,x

[∣∣R1
m,n

∣∣2] =
n∑

i=m

Eθ,x

[
�2

i+1

∣∣〈∇w(θi), gθi
(Xi+1) − Pθi

gθi
(Xi)

〉∣∣2]

≤ C

n∑
i=m

ξ
2αw

i E
[
�2

i+1

]
Eθ,x

[∣∣gθi
(Xi+1)

∣∣2 + ∣∣Pθi
gθi

(Xi)
∣∣2]

≤ C

n∑
i=m

ξ
2αw+2αg

i E
[
�2

i+1

]
Eθ,x

[
V 2βg (Xi+1) + V 2βg (Xi)

]

≤ CV 2βg (x)

n∑
i=m

ξ
2αw+2αg+2βgαV

i+1 E
[
�2

i+1

]
,

by the fact that �i+1 is independent of Fi and Xi+1, Condition 2.1(v), Condition 3.1(ii) and (iii).
Now, Jensen’s and Doob’s inequality imply

(
Eθ,x

[
sup
n≥m

∣∣R1
m,n

∣∣])2 ≤ Eθ,x

[
sup
n≥m

∣∣R1
m,n

∣∣2] ≤ CV 2βg (x)

∞∑
i=m

ξ
2αw+2αg+2βgαV

i+1 E
[
�2

i+1

]
.

This yields limm→∞ Eθ,x[supn≥m |R1
m,n|] = 0, because the term on the right tends to zero as

m → ∞ by Condition 3.1(v).
For the second term R2

m,n, we may simply write

Eθ,x

[
sup
n≥m

∣∣R2
m,n

∣∣] ≤ Eθ,x

[ ∞∑
i=m

∣∣�i+1
〈∇w(θi),Pθi

gθi
(Xi) − Pθi−1gθi−1(Xi)

〉∣∣]

≤ C

∞∑
i=m

ξ
αw

i E[�i+1]Eθ,x

[∣∣Pθi
gθi

(Xi) − Pθi−1gθi−1(Xi)
∣∣],

which converges to zero as m → ∞ by Condition 3.1(iv).
Now we inspect R3

m,n. First, since the Hessian is bounded as in Condition 2.1(i), we have∣∣∇w(θi) − ∇w(θi−1)
∣∣ ≤ Cw|θi − θi−1| ≤ Cw

∣∣θ∗
i − θi−1

∣∣ = Cw�i

∣∣H(θi−1,Xi)
∣∣

≤ Cwξ
αH

i �iV
βH (Xi),

and consequently

Eθ,x

[
sup
n≥m

∣∣R3
m,n

∣∣] ≤ C

∞∑
i=m

E[�i+1�i]ξαg+αH

i Eθ,x

[
V βg+βH (Xi)

]

≤ CV βg+βH (x)

∞∑
i=m

E[�i+1�i]ξαg+αH +(βg+βH )αV

i ,
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by Condition 3.1(i), (ii) and (iii). The claim follows for R3
m,n by Condition 3.1(vi).

Let us then focus on R4
m,n. We have for any i ≥ m

∣∣�i

〈∇w(θi−1),Pθi−1gθi−1(Xi)
〉∣∣ ≤ C�iξ

αw+αg

i V βg (Xi).

Now we have

Eθ,x

[
sup
n≥m

∣∣R4
m,n

∣∣2] ≤ C

∞∑
i=m

ξ
2αw+2αg

i E
[
�2

i

]
Eθ,x

[
V 2βg (Xi)

]

≤ CV 2βg (x)

∞∑
i=m

ξ
2αw+2αg+2βgαV

i E
[
�2

i

]
,

so (3.2) holds for R4
m,n by Condition 3.1(v).

We shall apply Lemma 3.4 below for the last term R5
m,n, with Zi := �i and

Bi−1 := 〈∇w(θi−1),Pθi−1gθi−1(Xi)
〉

with |Bi−1| ≤ Cξ
αw+αg

i−1 V βg (Xi).

By the independence of �i+1 and �i , and because ξi+1 ≥ ξi ≥ ξi−1, we easily establish the
required bounds

∞∑
i=1

Var(�i+1 − �i)Eθ,x

[
B2

i−1

] ≤ CV 2βg (x)

∞∑
i=1

E
[
�2

i

]
ξ

2αw+2αg+2βgαV

i < ∞,

∞∑
i=1

∣∣E[�i+1 − �i]
∣∣E[|Bi−1|] ≤ CV βg (x)

∞∑
i=1

∣∣E[�i+1 − �i]
∣∣ξαw+αg+βgαV

i < ∞,

by Condition 3.1(v) and (vii), respectively. �

Lemma 3.4. Let {Gi}i≥0 be a filtration and for all i ≥ 0 let Bi and Zi be Gi -adapted random
variables so that Zi is independent of Gi−1 and

∞∑
i=1

Var(Zi+1 − Zi)E
[
B2

i−1

]
< ∞ and

∞∑
i=1

∣∣E[Zi+1 − Zi]
∣∣E[|Bi−1|] < ∞.

Then,

lim
m→∞ E

[
sup
n≥m

∣∣∣∣∣
n∑

i=m

(Zi+1 − Zi)Bi−1

∣∣∣∣∣
]

= 0.
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Proof. Suppose for now that m is even and n odd and denote m = 2m̄ and n = 2n̄+ 1. Write the
sum

n∑
i=m

(Zi+1 − Zi)Bi−1 =
n̄∑

j=m̄

(Z2j+1 − Z2j )B2j−1 +
n̄∑

k=m̄

(Z2k+2 − Z2k+1)B2k. (3.3)

We shall first show that the claim holds for the first term on the right. Denote Ḡj = G2j+1,
Z̄j = Z2j+1 − Z2j and B̄j−1 = B2j−1. Observe that E[Z̄j |Ḡj−1] = E[Z̄j ] and write

n̄∑
j=m̄

(Z2j+1 − Z2j )B2j−1 =
n̄∑

j=m̄

(
Z̄j − E[Z̄j ]

)
B̄j−1 +

n̄∑
j=m̄

E[Z̄j ]B̄j−1.

Now, the first term on the right-hand side is a martingale with respect to Ḡj , and so by Doob’s
inequality and by assumption

E

[
sup
n̄≥m̄

(
n̄∑

j=m̄

(
Z̄j − E[Z̄j ]

)
B̄j−1

)2]
≤ 4

∞∑
j=m̄

Var(Z̄j )E
[
B̄2

j−1

] m̄→∞−−−−→0.

For the second term, by assumption

E

[
sup
n̄≥m̄

∣∣∣∣∣
n̄∑

j=m̄

E[Z̄j ]B̄j−1

∣∣∣∣∣
]

≤
∞∑

j=m̄

∣∣E[Z̄j ]
∣∣E[|B̄j−1|

] m̄→∞−−−−→0.

The same arguments apply also for the second term on the right-hand side of (3.3), and for any
integers m ≥ n ≥ 1, by a change of the indices. �

3.1. Geometrically ergodic Markov kernels

In this section, we focus on the scenario where for any θ ∈ � the kernel Pθ is geometrically
ergodic. This condition is satisfied by numerous Markov chains of practical interest, see for
example, [17,18,22] and references therein. This section gathers together standard results about
the regularity of the solutions to the Poisson equation (see, e.g., [3,4]).

Throughout this section, suppose V : X → [1,∞) is a fixed measurable function. We shall
denote the V -norm of a measurable function f : X → Rd by ‖f ‖V := supx |f (x)|/V (x). We
also assume that for each θ ∈ �̂, the Markov kernel Pθ admits a unique invariant probability
measure πθ .

Condition 3.5. For any r ∈ (0,1] and any θ ∈ �̂, there exist constants Mθ,r ∈ [0,∞) and ρθ,r ∈
(0,1), such that for any function ‖f ‖V r < ∞∣∣P k

θ (x, f ) − πθ (f )
∣∣ ≤ V r(x)‖f ‖V r Mθ,rρ

k
θ,r

for all k ≥ 0 and all x ∈ X.
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Having Condition 3.5 one can bound the V r -norm of the solutions of the Poisson equation,
making the dependence on θ explicit. This result is a restatement of [3], Proposition 3, in quan-
titative form; we provide it here for the reader’s convenience.

Proposition 3.6. Assume Condition 3.5 holds. Then, for any function ‖f ‖V r < ∞, the functions
gθ : X → Rd defined for all θ ∈ �̂ by

gθ (x) :=
∞∑

k=0

[
P k

θ f (x) − πθ (f )
]

exist, solve the Poisson equation gθ (x) − Pθgθ (x) ≡ f (x) − πθ(f ), and satisfy the bound

‖gθ‖V r ∨ ‖Pθgθ‖V r ≤ Mθ,r(1 − ρθ,r )
−1‖f ‖V r . (3.4)

Proof. It is evident that gθ solves the Poisson equation whenever the sum converges. By the
definition of gθ and Condition 3.5, we have

‖gθ‖V r ≤
∞∑

k=0

∥∥P k
θ f − πθ (f )

∥∥
V r ≤ Mθ,r‖f ‖V r

∞∑
k=0

ρk
θ,r = Mθ,r(1 − ρθ,r )

−1‖f ‖V r .

The same bound applies clearly also for Pθgθ , establishing (3.4). �

We also need the following simple lemma in order to establish Condition 3.1(ii).

Lemma 3.7. Suppose that for all i ≥ 0 there exist constants λi ∈ [0,1) and bi ∈ [0,∞) such
that

sup
θ∈Ri

PθV (x) ≤ λiV (x) + bi for all x ∈ X, (3.5)

and that both (λi)i≥0 and (bi)i≥0 are non-decreasing. Then, for any (θ, x) ∈ R0 × X and i ≥ 0,
the bound Eθ,x[V (Xi+1)] ≤ (1 − λi)

−1(bi ∨ V (x)) holds.

Proof. By construction, for all i ≥ 1 we have Eθ,x[V (Xi)|Fi−1] = Pθi−1V (Xi−1) and θi−1 ∈
Ri−1, so we may use (3.5) iteratively to obtain

Eθ,x

[
V (Xi+1)

] ≤ Eθ,x

[
λiV (Xi) + bi

] ≤ · · · ≤ (
bi ∨ V (x)

) i∑
k=0

λk
i ≤ bi ∨ V (x)

1 − λi

.
�

Let us consider next a case where the ergodicity rates in each projection set Ri are controlled
by the sequence ξi .

Condition 3.8. Suppose Condition 3.5 holds with constants Mθ,r , ρθ,r satisfying

sup
θ∈Ri

Mθ,r ≤ crξ
αM

i and sup
θ∈Ri

(1 − ρθ,r )
−1 ≤ crξ

αρ

i
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for some constants αM,αρ ∈ [0,∞), and a constant cr ∈ [0,∞) depending only on r .

Proposition 3.9. If Condition 3.8 holds, then Condition 3.1(iii) holds with αg = αH + αM + αρ

and βg = βH .

Proof. Corollary of Proposition 3.6 with r = βg . �

Finally, we shall state a result similar to [25], Lemma 3, yielding Condition 3.5 from simulta-
neous, but θ -dependent, drift and minorisation conditions. These conditions can be verified for
random-walk Metropolis kernels with a target distribution having super-exponential tail decay
and sufficiently regular tail contours [3,18,25,29].

Condition 3.10. Suppose that P is an irreducible and aperiodic Markov kernel with invariant
distribution π , that there exists a Borel set C ⊂ X, a probability measure ν concentrated on C,
constants λ ∈ [0,1), b < ∞ and δ ∈ (0,1] such that v := supx∈C V (x) < ∞ and

PV (x) ≤ λV (x) + bI{x ∈ C} for all x ∈ X,

P (x,A) ≥ δν(A) for all x ∈ C and any Borel set A ⊂ X.

Proposition 3.11. Assume Condition 3.10. Then, for any r ∈ (0,1] there exists a constant c∗
r ∈

[1,∞) depending only on r such that for all ‖f ‖V r < ∞ and k ≥ 1

∥∥P k(x,f ) − π(f )
∥∥

V r ≤ V r(x)Mrρ
k
r ‖f ‖V r ,

where the constants Mr ∈ [1,∞) and ρr ∈ (0,1) are defined in terms of the constants in Condi-
tion 3.10 as follows

ρr := 1 − [
c∗
r (1 − λ)−4δ−13b̄6]−1

,

Mr := c∗
r (1 − λ)−4δ−15b̄7,

where b̄ := b ∨ v ≥ 1.

The proof of Proposition 3.11 is given in Appendix A.

3.2. Smooth family of Markov kernels

In many practically interesting settings, the mapping θ �→ Pθ , possibly restricted to a suitable set,
satisfies a Hölder continuity condition. This continuity allows one to establish Condition 3.1(iv)
in a natural way [3,4,8]. We restate these results in a quantitative manner below, so that they are
directly applicable in the present setting. The Hölder continuity condition is given as follows.
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Condition 3.12. Suppose Condition 3.5 holds and for any θ, θ ′ ∈ �̂, there exist a constant
Dθ,θ ′,r ∈ [0,∞) and a constant βD ∈ (0,∞) independent of θ , θ ′ and r such that for any function
‖f ‖V r < ∞

‖Pθf − Pθ ′f ‖V r ≤ ‖f ‖V r Dθ,θ ′,r |θ − θ ′|βD .

We consider below only the case when Pθ and Pθ ′ admit the same stationary measure; this
is a commonly encountered in adaptive Markov chain Monte Carlo. The general case is slightly
more involved, but can be handled as well; we refer the reader to [4] for details. We start by a
lemma characterising the difference of the iterates of the kernels.

Lemma 3.13. Assume Condition 3.12 holds and f is a measurable function with ‖f ‖V r < ∞
and that πθ = πθ ′ =: π . Then, for any k ≥ 0

∥∥P k
θ f − P k

θ ′f
∥∥

V r ≤ Mθ,rMθ ′,rDθ,θ ′,r k(ρθ,r ∨ ρθ ′,r )
k−1

∣∣θ − θ ′∣∣βD‖f ‖V r .

Proof. We use the following telescoping decomposition

P k
θ f − P k

θ ′f =
k∑

j=1

P
k−j
θ (Pθ − Pθ ′)P j−1

θ ′ f =
k∑

j=1

(
P

k−j
θ − �

)
(Pθ − Pθ ′)

(
P

j−1
θ ′ f − π(f )

)
,

where �(x,A) := π(A) for all x ∈ X and all measurable A ⊂ X.
By Condition 3.5 and Condition 3.12,

∥∥(Pθ − Pθ ′)
(
P

j−1
θ ′ f − π(f )

)∥∥
V r ≤ ∥∥P j−1

θ ′ f − π(f )
∥∥

V r Dθ,θ ′,r
∣∣θ − θ ′∣∣βD

≤ Dθ,θ ′,rMθ ′,rρ
j−1
θ ′,r ‖f ‖V r

∣∣θ − θ ′∣∣βD .

Writing then

∥∥P k
θ f − P k

θ ′f
∥∥

V r ≤ k sup
1≤j≤k

∥∥(P k−j
θ − �

)
(Pθ − Pθ ′)

(
P

j−1
θ ′ f − π(f )

)∥∥
V r ,

and applying Condition 3.5 once more yields the claim. �

Proposition 3.14. Assume Condition 3.12 holds, πθ = πθ ′ =: π and ‖fθ‖V r ∨ ‖fθ ′‖V r < ∞.
Then, the solutions of the Poisson equation defined as gθ := ∑∞

k=0[P k
θ fθ − πθ (fθ )] sat-

isfy

‖gθ − gθ ′ ‖V r ∨ ‖Pθgθ − Pθ ′gθ ′ ‖V r ≤ Mθ,rMθ ′,rDθ,θ ′,r
(1 − (ρθ,r ∨ ρθ ′,r ))2

|θ − θ ′|βD‖fθ‖V r

(3.6)
+ Mθ ′,r (1 − ρθ ′,r )

−1‖fθ − fθ ′ ‖V r .
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Proof. With the estimate from Lemma 3.13,

‖gθ − gθ ′ ‖V r ≤
∞∑

k=0

(∥∥P k
θ fθ − P k

θ ′fθ

∥∥
V r + ∥∥P k

θ ′(fθ − fθ ′) − π(fθ − fθ ′)
∥∥

V r

)

≤ Mθ,rMθ ′,rDθ,θ ′,r
∣∣θ − θ ′∣∣βD‖fθ‖V r

∞∑
k=0

k(ρθ,r ∨ ρθ ′,r )
k−1

+ Mθ ′,r (1 − ρθ ′,r )
−1‖fθ − fθ ′ ‖V r .

The same bound clearly holds also for ‖Pθgθ − Pθ ′gθ ′ ‖V r yielding (3.6). �

We shall provide some sufficient conditions to verify Condition 3.1(iv).

Condition 3.15. Condition 3.12 holds with constants satisfying sup(θ,θ ′)∈R2
i
Dθ,θ ′,r ≤ cD

r ξ
αD

i

for some constant cD
r ∈ [0,∞) depending only on r ∈ (0,1], Condition 3.1(i) and (ii) hold with

constants αH ,βH and αV , and there exist constants c < ∞, α� ∈ [0,∞) and β� > 0 such that

sup
(θ,θ ′)∈R2

i

∥∥H(θ, ·) − H
(
θ ′, ·)∥∥

V βH
≤ cξ

α�

i

∣∣θ − θ ′∣∣β�.

Proposition 3.16. Suppose Conditions 3.1(i) and (ii), 3.8 and 3.15 hold, the constants βD,β� ∈
(0,1/βH − 1], for any i ≥ 0 the step size �i is independent of Xi and the projections satisfy
|θi+1 − θi | ≤ |θ∗

i+1 − θi |. Then, the solutions gθ to the Poisson equation gθ − Pθgθ = H̄ (θ, ·)
exist for all θ ∈ �̂, and there is a constant c < ∞ such that for all (θ, x) ∈ R0 × X

Eθ,x

∣∣Pθi
gθi

(Xi) − Pθi−1gθi−1(Xi)
∣∣

≤ cE
[
�

βD

i

]
ξ

2αM+2αρ+αD+(βD+1)(βH αV +αH )

i V (βD+1)βH (x)

+ cE
[
�

β�

i

]
ξ

αM+αρ+α�+β�αH +(β�+1)βH αV

i V (β�+1)βH (x).

Proof. By assumption, both θi and θi−1 are in Ri , so |θi − θi−1| ≤ �i |H(θi−1,Xi)| ≤
c�iξ

αH

i V βH (Xi). Proposition 3.14 yields, with r = βH and denoting Hθ(x) := H(θ, x),

‖Pθi
gθi

− Pθi−1gθi−1‖V βH

≤ Mθi,βH
Mθi−1,βH

Dθi,θi−1,βH

(
1 − (ρθi ,βH

∨ ρθi−1,βH
)
)−2|θi − θi−1|βD‖Hθi

‖V βH

+ Mθi−1,βH
(1 − ρθi−1,βH

)−1‖Hθi
− Hθi−1‖V βH

≤ cξ
2αM+2αρ+αD

i |θi − θi−1|βD‖Hθi
‖V βH + cξ

αM+αρ

i ‖Hθi
− Hθi−1‖V βH

≤ cξ
2αM+2αρ+αD+αH (1+βD)

i �
βD

i V βDβH (Xi) + cξ
αM+αρ+α�+β�αH

i �
β�

i V β�βH (Xi).
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The independence of �i and Xi and Condition 3.1(ii) with Jensen’s inequality (we have (1 +
(βD ∨ β�))βH ∈ (0,1]) imply the claim. �

Now, we shall consider the common case where (�i)i≥1 is a deterministic power sequence.
Then, Condition 3.1 can be established.

Proposition 3.17. Suppose �i ≡ ci−η for all i ≥ 1 with some c < ∞ and η ∈ (1/2,1]. Then, if
the conditions of Proposition 3.16 hold and

∞∑
i=1

i−(1+βD)ηξ
αw+2αM+2αρ+αD+(βD+1)(βH +αV +αH )

i < ∞, (3.7)

∞∑
i=1

i−(1+β�)ηξ
αM+αρ+α�+β�αH +(β�+1)βH αV

i < ∞, (3.8)

∞∑
i=1

i−2ηξ
2αw+2(αH +αM+αρ+βH +αV )

i < ∞, (3.9)

then, Condition 3.1 holds.

Proof. Condition 3.1(i) and (ii) hold by assumption. Propositions 3.9 and 3.16 imply Condition
3.1(iii) with αg = αH + αM + αρ and βg = βH . Condition 3.1(iv) follows from Proposition 3.16
with (3.7) and (3.8).

Observe then that �i+1�i ≤ �2
i = c2i−2η and by the mean value theorem |�i+1 −�i | = cη(i +

hi)
−η−1 ≤ cηi−η−1 ≤ η�2

i where hi ∈ [0,1]. Conditions 3.1(v)–(vii) follow easily from (3.9), by
the fact αg = αH + αM + αρ and βg = βH . �

3.3. Non-smooth family of Markov kernels

When the mapping θ → Pθ does not admit (local) Hölder-continuity as discussed above, estab-
lishing Condition 3.1 is more involved, but possible using a random step size sequence which,
in intuitive terms, enforce continuity in a stochastic manner. We focus on a specific step size
sequence given as �i := γiI{Ui ≤ pi} where the Ui are independent uniform [0,1] random vari-
ables and both sequences γi and pi decay to zero. It will be clear later on that these sequences
must satisfy

∑
i γipi = ∞,

∑
i γ

2
i pi < ∞ and

∑
i γip

2
i < ∞; for simplicity of exposition, we

shall consider below the particular example where γi and pi decay with a power law.
The definition of (�i)i≥1 above will result in practice in keeping the value of θi fixed for longer

and longer (random) periods. We remark that one could consider inducing such a behaviour also
in a deterministic manner, but we do not pursue this here.

Proposition 3.18. Assume Conditions 2.1 and 3.8 hold and for all i ≥ 1 the step size �i is
independent of Xi . Suppose also that Condition 3.1(i) holds with αH ∈ [0,∞) and βH ∈ [0,1/2],
and Condition 3.1(ii) holds with αV ∈ [0,∞).
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Then, the solutions gθ to the Poisson equation gθ − Pθgθ = H̄ (θ, ·) exist for all θ ∈ �̂, and
there exists a constant c < ∞ such that for any (θ, x) ∈ R0 × X

Eθ,x

[∣∣Pθi
gθi

(Xi) − Pθi−1gθi−1(Xi)
∣∣] ≤ cP(�i �= 0)ξ

αM+αρ+αH +βH αV

i V βH (x).

Proof. The solutions gθ to the Poisson equation exist by Proposition 3.6. If �i = 0 then clearly
θi = θi−1 and so∣∣Pθi

gθi
(Xi) − Pθi−1gθi−1(Xi)

∣∣
= I{�i �= 0}∣∣Pθi

gθi
(Xi) − Pθi−1gθi−1(Xi)

∣∣
≤ cI{�i �= 0}(ξαM+αρ

i

∥∥H(θi, ·)
∥∥

V βH
+ ξ

αM+αρ

i−1

∥∥H(θi−1, ·)
∥∥

V βH

)
V βH (Xi),

by Proposition 3.6. The claim follows by Conditions 3.1(i) and (ii), and by the independence of
�i and Xi . �

Next, we shall consider the particular case where (�i)i≥1 is defined by two sequences with a
power decay.

Proposition 3.19. Let (Ui)i≥1 be a sequence of independent and uniformly distributed random
variables on [0,1], and assume �i ≡ γiI{Ui ≤ pi}, where the constant sequences (γi)i≥1 ⊂ (0,1)

and (pi)i≥1 ⊂ [0,1] are defined as γi := cγ i−ηγ and pi := cpi−ηp for some cγ , cp ∈ (0,∞) and
ηγ , ηp ∈ (0,1) such that ηγ + ηp ≤ 1, 2ηγ + ηp > 1 and ηγ + 2ηp > 1.

If Conditions 3.1(i) and (ii) and Condition 3.8 hold, and

∞∑
i=1

i−ηγ −2ηpξ
αw+αM+αρ+αH +βH αV

i < ∞, (3.10)

∞∑
i=1

i−2ηγ −ηpξ
2(αw+αH +αM+αρ+βH αV )

i < ∞, (3.11)

then, Condition 3.1 is satisfied.

Proof. Proposition 3.9 implies Condition 3.1(iii) with βg = βH and αg = αH + αM + αρ . Com-
pute E[�i+1]P(�i �= 0) = γi+1pi+1pi ≤ ci−ηγ −2ηp . Then, Proposition 3.18 with (3.10) imply
Condition 3.1(iv).

Let us then compute E[�2
i ] = γ 2

i pi = ci−2ηγ −ηp , and observe that E[�i+1�i] = ci−2ηγ −2ηp ≤
ci−2ηγ −ηp and that |E[�i+1 −�i]| ≤ ci−ηγ −ηp−1 ≤ ci−2ηγ −ηp . With these bounds, (3.11) implies
Conditions 3.1(v)–(vii). �

Remark 3.20. We emphasise that while our conditions on (�i)i≥1 are only sufficient, it is neces-
sary that the random step sizes decay to zero, that is lim supi→∞ �i = 0. Otherwise, the procedure
might not converge; see [24], Example 4, for a related result in the context of adaptive Markov
chain Monte Carlo.
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4. Convergence

Up to this point, we have only considered the stability of the stochastic approximation process
with expanding projections. Indeed, after showing the stability we know that the projections can
occur only finitely often (almost surely), and the noise sequence can typically be controlled.
Given this, the stochastic approximation literature provides several alternatives to show the con-
vergence (e.g., [7–9,11,21]).

In some special cases, one can employ our stability results directly to establish convergence;
namely, if the strict drift condition (2.7) holds outside an arbitrary small neighbourhood of the
zeros of h. We believe, however, that such a result has only a limited applicability, because we
suspect that it is often useful to consider two different Lyapunov functions w and ŵ to establish
the stability and convergence, respectively.

In many practical scenarios, the ‘true’ Lyapunov function ŵ, which would yield convergence,
cannot be given in a closed form. It is also possible that ŵ does not satisfy Condition 2.1 at
all. We believe that it is often possible to find a simpler ‘approximate Lyapunov function’ w

satisfying Condition 2.1, which yields a suitable drift away from the boundary of the space, but
does not necessarily qualify as a true Lyapunov function to establish the convergence.

We formulate below a more general convergence result following [4] for reader’s conve-
nience.

Condition 4.1. The set � ⊂ Rd is open, the mean field h :� → Rd is continuous, and there
exists a continuously differentiable function ŵ :� → [0,∞) such that

(i) there exists a constant M0 > 0 such that

L := {
θ ∈ � :

〈∇ŵ(θ), h(θ)
〉 = 0

} ⊂ {
θ ∈ � : ŵ(θ) < M0

}
,

(ii) there exists M1 ∈ (M0,∞] such that {θ ∈ � : ŵ(θ) ≤ M1} is compact,
(iii) for all θ ∈ � \ L, the inner product 〈∇ŵ(θ), ĥ(θ)〉 < 0, and
(iv) the closure of ŵ(L) has an empty interior.

Theorem 4.2. Assume Condition 4.1 holds, and let K ⊂ � be a compact set intersecting L,
that is, K ∩ L �= ∅. Suppose that (γi)i≥1 is a sequence of non-negative real numbers satisfying
limi→∞ γi = 0 and

∑∞
i=1 γi = ∞. Consider the sequence (θi)i≥0 taking values in � and defined

through the recursion θi = θi−1 + γih(θi−1) + γiεi for all i ≥ 1, where (εi)i≥1 take values in
Rd .

If there exists an integer i0 such that {θi}i≥i0 ⊂ K and limm→∞ supn≥m |∑n
i=m γiεi | = 0, then

limn→∞ infx∈L∩K |θn − x| = 0.

Proof. Theorem 4.2 is a restatement of [4], Theorem 2.3, but without the monotonicity assump-
tion on the sequence (γi)i≥1. The proof of [4], Theorem 2.3, applies unchanged, but the reader
can also consult [5], Theorem 5, which is a slight generalisation of Theorem 4.2. �

Remark 4.3. The stability results of the present paper ensure that θi are eventually contained in
a level set of w which can usually be assumed compact. Then, one can take K = WM ′ for some
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(random) M ′ > 0, and the trajectories of (θi)i≥0 are eventually contained within K, and there are
only finitely many projections, almost surely. To employ Theorem 4.2, it then suffices to show
that for any M in the possible range of w

lim
m→∞ sup

n≥m

∣∣∣∣∣
n∑

i=m

�iH̄ (θi,Xi+1)I{θi ∈ WM}
∣∣∣∣∣ = 0. (4.1)

For the sake of completeness and because our setting involves the random step sizes (�i)i≥1,
we give a detailed theorem to establish this noise condition, by a straightforward modification of
Theorem 3.3.

Theorem 4.4. Suppose that for all i ≥ 1, the step size �i is independent of Fi−1 and Xi , and
the sums

∑
i≥1 E[�2

i ] and
∑

i≥1 |E[�i+1 − �i]| are finite. Let R ⊂ �̂ be a compact set such that
there exists a constant c < ∞ so that for any (θ, x) ∈ R × X

sup
i≥0

Eθ,x

[
V (Xi+1)I

{
Ai

R
}] ≤ cV (x), (4.2)

sup
θ∈R

[∣∣gθ (x)
∣∣+ ∣∣Pθgθ (x)

∣∣] ≤ cV βg (x), (4.3)

∞∑
i=1

E[�i+1]Eθ,x

[∣∣Pθi
gθi

(Xi) − Pθi−1gθi−1(Xi)
∣∣I{Ai

R
}]

< ∞, (4.4)

where gθ is the solution of the Poisson equation as in Proposition 3.6 and Ai
R := ⋂i

n=0{θn ∈ R}.
Then, (4.1) holds for Pθ,x -almost every ω ∈ ⋂

i≥0 Ai
R.

The proof of Theorem 4.4 is given in Appendix B.

Remark 4.5. The condition (4.4) may be checked in practice either with Proposition 3.16 or with
Proposition 3.19. To apply Theorem 4.2 in the case of random step sizes, one must check also
that

∑∞
i=1 �i diverges almost surely. Assuming the conditions of Theorem 4.4, it is sufficient

to ensure that
∑∞

i=1 E[�i] = ∞, because Zn := ∑n
i=1(�i − E[�i]) form an a.s. convergent L2-

martingale.

5. Application: Particle independent Metropolis–Hastings
expectation maximisation

We consider a stochastic approximation expectation maximisation (EM) algorithm [14] for static
parameter maximum likelihood estimation in time series models, employing a particle indepen-
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dent Metropolis–Hastings (PIMH) sampler [2] in order to approximate the expectation step of
the EM algorithm. We present the generic algorithm in Section 5.1. Then, we focus on a spe-
cific example involving a Poisson count model with an intensity determined by a latent process.
The model is given in Section 5.2 and the employed particle filter is discussed in Section 5.3.
We establish the stability of the algorithm in Section 5.4 and conclude with a brief numerical
experiment in Section 5.5.

5.1. Generic PIMH-EM algorithm

We assume a state space setting where a latent process X1:n := (X1,X2, . . . ,Xn) defined on some
measurable space X gives rise to an observation process Y1:n := (Y1, Y2, . . . , Yn) taking values in
a measurable space Y and assumed to consist of independent random variables given the latent
process X1:n. The process X1:n typically follows a Markov model parameterised by a vector ζ

taking values in a measurable parameter space �. The conditional marginal distributions of the
observations given the latent process are also assumed to be parameterised by ζ . This allows
one to define the so-called complete-data likelihood pζ (x1:n, y1:n) for any x1:n ∈ X n and y1:n ∈
Y n and, when applicable, the EM algorithm allows one to iteratively maximise the likelihood
pζ (y1:n). We will assume below that for any x1:n ∈ X n and y1:n ∈ Y n there exists a unique
parameter value ζ̂ ∈ � maximising the complete-data likelihood, which is also assumed to be
uniquely determined through a vector of sufficient statistics taking values in an open set � ⊂
Rd .

Application of the EM algorithm requires one to compute the expectation of the complete-data
log-likelihood with respect to pζ (dx1:n|y1:n). When this is not possible analytically one resorts
to numerical methods, and we focus here on the use of Markov chain Monte Carlo (MCMC) al-
gorithms. More precisely, we focus on the use of a methodology recently introduced in [2] which
combines MCMC and particle filters and is particularly well suited to sampling in state-space
models. Let us denote by (X̃,A) ∼ PF(y1:n, ζ ) the full output of a particle filter targeting the con-
ditional distribution pζ (dx1:n|y1:n) of the model with the parameter value ζ . This output consists
of all the random variables generated by the particle filter, that is, the state variables before resam-
pling X̃ ∈ X n×N and the ancestor indices A ∈ N(n−1)×N ; see [2] for details. The sample trajecto-
ries relevant to the approximation of quantities dependent on pζ (dx1:n|y1:n), denoted X1:n,k ∈ X n

hereafter, and the associated weights Wk ∈ [0,1] for k = 1, . . . ,N can be recovered from X̃ and A
through functions x̄1:n : X n×N × N(n−1)×N × N → X n and w̄ : X n×N × N(n−1)×N × N → [0,1],
such that

X1:n,k := x̄1:n(X̃,A, k) and Wk := w̄(X̃,A, k).

We also introduce a ‘sufficient statistics’ function t : X n × Y n → � which, given a set of observa-
tions and one trajectory of the latent state variables, returns the sufficient statistics underpinning
the complete-data likelihood. From our earlier assumption, we can define the function ζ̂ :� → �

which returns the parameter value maximising the conditional likelihood given some sufficient
statistics θ ∈ �.
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We can now summarise our PIMH-EM algorithm with the projections �Ri
:� → Ri to the

sets R0 ⊂ R1 ⊂ · · · ⊂ � as follows.

Algorithm 5.1. Choose an initial value for the parameters ζ0 ∈ � and set(
X̃(0),A(0)∗

) ∼ PF(y1:n, ζ0), (5.1)

θ0 := �R0

[
N∑

k=1

W
(0)
k t

(
X

(0)
1:n,k, y1:n

)]
. (5.2)

For i ≥ 1, proceed recursively as follows:(
X̃(i)∗ ,A(i)∗

) ∼ PF
(
y1:n, ζ̂ (θi−1)

)
, (5.3)

(
X̃(i),A(i)

) :=

⎧⎪⎪⎨
⎪⎪⎩
(
X̃(i)∗ ,A(i)∗

)
, with probability min

{
1,

Ẑ
ζ̂ (θi−1)

(X̃(i)∗ )

Ẑ
ζ̂ (θi−1)

(X̃(i−1))

}
,

(
X̃(i−1),A(i−1)

)
, otherwise,

(5.4)

θi := �Ri

[
θi−1 + �i

(
N∑

k=1

W
(i)
k t

(
X

(i)
1:n,k, y1:n

)− θi−1

)]
, (5.5)

where the step (5.4) implements an accept-reject mechanism, and Ẑζ (X̂) stands for the estimate
of the likelihood pζ (y1:n) computed with the given particles X̂ [2] and (�i)i≥1 is a random step
size sequence taking values in [0,∞).

We can rewrite the steps (5.3) and (5.4) as (X̃(i),A(i)) ∼ P PIMH
ζ̂ (θi−1)

((X̃(i−1),A(i−1)), ·), in terms

of a Markov kernel P PIMH
ζ with the invariant distribution πPIMH

ζ (dx̃,da). As shown in [2],

πPIMH
ζ (dx̃,da) has the property that for any function f : X n → R

∫ N∑
k=1

w̄(x̃,a, k)f
(
x̄1:n(x̃,a, k)

)
πPIMH

ζ (dx̃,da) =
∫

f (x1:n)pζ (dx1:n|y1:n),

whenever the integrals above are well-defined. Note that it is possible to further improve on this
scheme by using smoothing procedures within the particle filtering procedure, but we do not con-
sider such a possibility here. Given this, we define H(θ, (x̃,a)) := ∑N

k=1 w̄(x̃,a, k)t (x̄1:n(x̃,a,

k))− θ . Assuming �Ri
(θ) = θ for all θ ∈ Ri , we can rewrite (5.3)–(5.5) in our generic stochas-

tic approximation framework as follows

Xi ∼ Pθi−1(Xi−1, ·),
θ∗
i = θi−1 + �iH(θi−1,Xi ), (5.6)

θi = θ∗
i I
{
θ∗
i ∈ Ri

}+ θ
proj
i I

{
θ∗
i /∈ Ri

}
,
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where Xi := (X̃(i),A(i)) stands for the state variable, Pθi
:= P PIMH

ζ̂ (θi )
and θ

proj
i = �Ri

(θ∗
i ). Note

also that the initial value θ0 computed in (5.1) and (5.2) belongs to the initial projection set R0.

Remark 5.2. A similar algorithm to our PIMH-EM algorithm has been independently developed
recently by Donnet and Samson [15]. They apply the algorithm to the problem of maximum
likelihood estimation of static parameters in continuous-time diffusion models. Our work differs
in various ways: at a theoretical level, Donnet and Samson [15] (essentially) assume a compact
state space X , which, among other things, eliminates the need to establish the stability of the
recursion. At a methodological level, apart from the stabilisation procedure through the expand-
ing projections scheme, our algorithm differs in that we use a random step size sequence, which
allows us to consider families of Markov kernels {Pθ }θ∈� which do not satisfy Hölder-continuity
as discussed in Section 3.2.

5.2. Example: Poisson count model with random intensity

Our specific example is a Poisson count model with an intensity determined by a autoregressive
process [10,16,31]. The latent stationary AR(1) process is determined by an initial distribution
X1 ∼ N(0, (1 − ρ2)−1σ 2) and for 2 ≤ k ≤ n through

Xk = ρXk−1 + σεk,

where εk are independent standard Gaussian random variables. The observations are condition-
ally independent following the law

Yk|Xk ∼ Poisson
(
eα+Xk

)
.

For brevity, we keep ρ ∈ (−1,1) and σ 2 > 0 fixed, so that the unknown parameter of the model
is ζ := α ∈ � := R.

The complete data log-likelihood for the model considered satisfies log(pζ (x1:n, y1:n)) =
L(x1:n, ζ ) + c where c = c(ρ,σ 2) ∈ R is a constant and

L(x1:n, ζ ) :=
n∑

i=1

[
yi(α + xi) − eα+xi

]− 1

2σ 2

[
x2

1 + x2
n + (

1 + ρ2) n−1∑
i=2

x2
i − 2ρ

n∑
i=2

xixi−1

]
.

Let us introduce a sufficient statistics function t (x1:n, y1:n) := t (x1:n) := ∑n
i=1 exi taking values

in � := (0,∞). Then, denoting with Eζ the expectation with respect to pζ (dx1:n|y1:n), we can
write the mean field of the stochastic approximation as

h(θ) = E
ζ̂ (θ)

(
t (X1:N)

)− θ.

It is straightforward to check that the unique parameter value maximising the complete-data
likelihood is ζ̂ (θ) := α̂(θ) = log(

ȳ
θ
), where ȳ := ∑n

i=1 yi .
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5.3. Particle filter for the example

We use the AR(1) process prior as a proposal distribution in our particle filter, that is,

qζ (xi |x1:i−1, y1:i ) := pζ (xi |xi−1) = N
(
xi;ρxi−1, σ

2). (5.7)

For our convenience, we augment the state space by adding an artificial initial state X0 ∼
N(0, (1 − ρ2)−1σ 2) with no associated observations, which we sample perfectly.

For our analysis, we need to quantify the dependence on ζ of the (geometric) rates of ergodicity
of the PIMH kernel for a particular drift function. We shall see that for this it is sufficient to upper
bound the weights of the particle filter and to lower bound the true likelihood.

Proposition 5.3. The weights of the particle filter for 1 ≤ i ≤ n

wζ (xi, xi−1) := pζ (yi |xi)pζ (xi |xi−1)

qζ (xi |x1:i−1, y1:i )
(5.8)

with the proposal distribution qζ (xi |x1:i−1, y1:i ) given in (5.7), applied to the model described in
Section 5.2 satisfy for all i ≥ 1

sup
(xi ,xi−1)∈R2

wζ (xi, xi−1) ≤ 1. (5.9)

Proof. Because we use the prior proposal, the particle weights are determined by the likelihood.
The observations are discrete, so the likelihood is upper bounded by one. �

Proposition 5.4. The log-likelihood of the model satisfies, with ȳ := ∑n
i=1 yi , the bound

logpζ (y1:n) ≥ −
n∑

i=1

logyi ! + ȳα − n exp

(
α + σ 2

2(1 − ρ2)

)
. (5.10)

Proof. We may write the log-likelihood in terms of an expectation with respect to the stationary
latent process X1:n, and use Jensen’s inequality to obtain

logpζ (y1:n) = logE

[
n∏

i=1

p(yi |Xi, ζ )

]
≥

n∑
i=1

E
[
logp(yi |Xi, ζ )

]

=
n∑

i=1

E
[
yi(α + Z) − eα+Z − log(yi !)

]
,

where Z follows the stationary distribution of X1:n, that is, Z is zero-mean Gaussian with the
variance σ 2

Z := (1 − ρ2)−1σ 2. By recalling that the mean of a log-Gaussian random variable eZ

is exp(σ 2
Z/2), we obtain the desired bound (5.10). �
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We now turn to the particle independent Metropolis–Hastings (PIMH) kernel in this context.
Denote by qPF

ζ the overall distribution of the random variables (X̃,A) generated by the particle
filter with the proposal distribution qζ (xi |x1:i−1, y1:i ) given in (5.7) and targeting pζ (x1:n, y1:n).
The PIMH is nothing but an ordinary independent Metropolis–Hastings algorithm with the pro-
posal distribution qPF

ζ and the target distribution πPIMH
ζ .

Proposition 5.5. The ratio of the overall distribution of the particle filter and the target density
satisfies the bound

inf
(x̃,a)∈X

dqPF
ζ

dπPIMH
ζ

(x̃,a) ≥ c1 exp
[
ȳα − c2eα

]
, (5.11)

with constants c1 = c1(y1:n) > 0 and c2 = c2(ρ,σ 2, n) > 0.

Proof. In case of the Particle IMH, [2], page 299,

dπPIMH
ζ

dqPF
ζ

(x̃,a) = Ẑζ (x̃,a)

Zζ

=
n∏

k=1

1

N

N∑
i=1

wζ

(
x̃k,i , x̃

a
k−1,i

)/
pζ (y1:n),

where N is the number of particles, wζ are the unnormalised particle weights given in (5.8)
and x̃k,i and x̃a

k−1,i stand for the ith particle at time k and its ancestor, respectively. The bound
(5.11) follows directly from the bounds (5.9) and (5.10) established in Propositions 5.3 and 5.4,
respectively. �

The bound on the ratio of the proposal and target densities in Proposition 5.5 ensures a uniform
ergodicity of the PIMH sampler. We, however, must be able to analyse the ergodic behaviour
of the algorithm for unbounded functions. Therefore, we consider geometric ergodicity with
a certain ‘drift’ function V , which will allow us to control averages of functions f such that
supx∈X |f (x)|/V (x) < ∞.

Proposition 5.6. Let qPF
ζ (dx̃,da) stand for the overall proposal density of the particle filter with

the one-step proposal density qζ (xi |x1:i−1, y1:i ) given in (5.7) and denote

V (x̃,a) :=
n∑

i=1

N∑
j=1

e2|x̃j
i |.

Then, the following bounds hold

qζ (V ) ≤ 2nNn exp

(
2σ 2

1 − ρ2

)
, (5.12)

sup
(x̃,a)∈X

H(θ, (x̃,a))

V 1/2(x̃,a)
≤ √

nN + |θ |
V 1/2(x̃,a)

. (5.13)
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Proof. The overall proposal density of the particle filter without selection q̂ζ (x1:n) is in fact the
finite-dimensional distribution of the stationary AR(1) prior. Denote by X̂1:n ∼ q̂ζ . We obtain by
a crude bound

qζ (V ) ≤
n∑

i=1

NiE
[
e2|X̂i |] ≤ nNn sup

1≤i≤n

E
[
e−2X̂i + e2X̂i

]
.

Our X̂i are Gaussian with zero mean and variance σ 2/(1 − ρ2), and E[exp(±X̂i)] =
exp(Var(X̂i)/2). We obtain (5.12).

Consider then (5.13). Because |w̄| ≤ 1, we have∣∣H(θ, (x̃,a)
∣∣ ≤ N sup

1≤k≤N

∣∣t(x̄1:n(x̃,a, k)
)∣∣+ |θ |.

Because x̄1:n only chooses a path among the state variables x̃ and the sufficient statistics of the
chosen paths satisfy

t
(
x̄1:n(x̃,a, k)

)2 =
(

n∑
i=1

exp
(
x̄i (x̃,a, k)

))2

≤ n

n∑
i=1

exp
(
2x̄i (x̃,a, k)

)
,

where x̄i (x̃,a, k) = x̃i,j (k,i) for some integer 1 ≤ j (k, i) ≤ N . Therefore, |t (x̄1:n(x̃,a, k))| ≤√
nV 1/2(x̃,a), and we get (5.13). �

5.4. Stability of the PIMH-EM

We already have most of the ingredients to establish the stability of the PIMH-EM algorithm
with expanding projections applied to our example Poisson count model with random intensity.
What remains is to identify a Lyapunov function w for the sufficient statistic. For this purpose,
we study the properties of the mean field h(θ).

Proposition 5.7. For any constant c ∈ (1,∞) there exists a cθ = cθ (c, σ
2, ρ, y1:n) ∈ (0,1] such

that

h(θ) ≥ cθ1−(1/2)1T �−11 log θ for all θ ∈ (
0, cθ ], (5.14)

h(θ) ≤ −c−1θ for all θ ∈ [c−1
θ ,∞)

. (5.15)

Proof. Observe first that we may write, up to a constant,

pζ (x1:n, y1:n) = det
(
�−1/2) exp

(
−1

2
xT

1:n�−1x1:n +
n∑

i=1

[
yi(α + xi) − eα+xi

])
,

where �−1 = �−1(ρ,σ 2) ∈ Rn×n is a symmetric and positive definite matrix with all elements
equal to zero except the diagonal elements which satisfy �−1

1,1 = �−1
n,n = 1/σ 2 and �−1

2,2 = · · · =
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�−1
n−1,n−1 = (1 + ρ2)/σ 2, and the first diagonal above and below the main diagonal which are

such that �−1
i,i−1 = �−1

i−1,i = −ρ/σ 2 for i = 2, . . . , n.
We may write the mean field as

h(θ) =
∫

Rn

(
n∑

i=1

exi − θ

)
pα̂(θ)(x1:n, y1:n)

pα̂(θ)(y1:n)
dx1:n

= θ

∫
Rn

exp

(
−1

2
xT �−1x +

n∑
i=1

yixi − ȳ

n∑
i=1

exi

θ

)(
n∑

i=1

exi

θ
− 1

)
dx (5.16)

/∫
Rn

exp

(
−1

2
xT �−1x +

n∑
i=1

yixi − ȳ

n∑
i=1

exi

θ

)
dx.

For (5.15), it is enough to observe that by dominated convergence limθ→∞ h(θ)/θ = −1.
Let us then consider the case where θ is small (5.14). Denote the numerator in (5.16) by Nh,

and use the change of variables ui := exi /θ for all i = 1, . . . , n to write

Nh =
∫

R
n+

exp

(
−1

2
(log θ × 1 + logu)T �−1(log θ × 1 + logu)

)( n∑
i=1

ui − 1

)

× exp

(
n∑

i=1

yi log(θui) − ȳ

n∑
i=1

ui

)
du∏n
i=1 ui

,

where we use the convention logu := [logu1, . . . , logun]T and 1 := [1, . . . ,1]T . By rearranging
the terms, this can be written as

Nh = θ ȳ−(1/2)1T �−11 log θ

∫
R

n+
θ−1T �−1 logu

(
n∑

i=1

ui − 1

)
g�(u)du, (5.17)

where the function g� is independent of θ and for all u ∈ Rn+ and all �−1 ∈ Rn×n,

g�(u) := exp

(
−1

2
loguT �−1 logu +

n∑
i=1

(yi − 1) logui − ȳ

n∑
i=1

ui

)
> 0.

We shall partition the domain Rn+ according to the sign of the integrand in (5.17) as I− := {u ∈
Rn+:

∑n
i=1 ui < 1} and I+ := Rn+ \ I−. Observe that for all u ∈ I−, the elements of logu are all

negative, and the row sums of �−1 are all positive. Therefore, −1T �−1 logu > 0 for all u ∈ I−
and because the integral is finite for any fixed θ > 0,

lim
θ→0+

∫
I−

θ−1T �−1 logu

(
n∑

i=1

ui − 1

)
g�(u)du = 0.
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On the other hand, considering the subset Î+ := {u ∈ Rn+: ∀i = 1, . . . , n log(ui) > 0} ⊂ I+, then
similarly −1T �−1 logu < 0 for all u ∈ Î+, whence

lim
θ→0+

∫
Î+

θ−1T �−1 logu

(
n∑

i=1

ui − 1

)
g�(u)du = ∞.

Overall, we deduce that for any constant c′ > 0 there exists a cθ = cθ (c
′,�,y1:n) > 0 such that

for all θ ∈ (0, cθ ),

Nh ≥ c′c�θ ȳ−(1/2)1T �−11 log θ > 0.

We are left with upper bounding the denominator Dh in (5.16), which we write as an expecta-
tion with respect to a random variable X ∼ N(0,�)

Dh = c�E

[
exp

(
n∑

i=1

yiXi − ȳ

θ

n∑
i=1

eXi

)]
.

By elementary calculus, one can compute that for y, ȳ, θ > 0

sup
x∈R

exp

(
yx − ȳ

θ
ex

)
= θy exp

(
y log

y

ȳ
− y

)
,

so Dh ≤ cy1:n,�θ ȳ , and we deduce (5.14) by choosing c′ sufficiently large. �

Now we are ready to establish the stability of the PIMH-EM in our example setting.

Proposition 5.8. Consider Algorithm 5.1 applied to the model specified in Section 5.2, with
the projections (5.6). The projection sets are defined as Ri := {θ ∈ �: θi ≤ θ ≤ θ̄i} and the

projections as θ
proj
i := (θ i ∨ θ∗

i ) ∧ θ̄i , with the constant sequences θi ↓ 0 and θ̄i ↑ ∞ satisfying

lim inf
i→∞ θi log(i) = ∞ and lim sup

i→∞
θ̄i

iε
= 0

for all ε > 0. The step sizes are defined as �i := cγ i−ηγ I{Ui ≤ cpi−ηp } where cγ , cp ∈ (0,∞),
and the constants ηγ , ηp ∈ (0,1) satisfy ηγ + ηp < 1, 2ηγ + ηp > 1 and ηγ + 2ηp > 1, and
(Ui)i≥1 are uniform (0,1) distributed random variables independent on the history Fi−1 and
Xi .

Then, there exists 0 < c1 < c2 < ∞ such that for any (θ, x) ∈ R0 × X,

Pθ,x

( ∞⋃
m=1

∞⋂
n=m

{c1 ≤ θi ≤ c2}
)

= 1.

Proof. Let cθ ∈ (0,1) be the constant from Proposition 5.7 applied with, say, c = 1, and define
ŵ(θ) := |θ − c∗

θ | with c∗
θ := (cθ + c−1

θ )/2. Define w as the smoothed version of ŵ through the
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convolution w := ŵ ∗ φ with a C∞-mollifier φ supported on a sufficiently small [−εφ, εφ], so
that w = ŵ on (0, cθ ] ∪ [c−1

θ ,∞). Then, w is twice differentiable with bounded derivatives,
w(θ) < w(θ ′) for all θ ∈ WM0 = [cθ , c

−1
θ ] and θ ′ ∈ R \ WM0 , where M0 := c∗

θ − cθ > 0. To sum
up, letting ξi := i ∨ 1 for i ≥ 0, Conditions 2.1(i), (ii), (iv) and (v) hold with αw = 0 and with
some constant c < ∞.

Now, we turn into establishing Condition 2.7. The bounds from Proposition 5.7 imply δ :=
infθ≥cθ −〈h(θ),∇w(θ)〉 > 0 and

δi := inf
θ∈[θi ,c

−1
θ ]

−〈
h(θ),∇w(θ)

〉 ≥ c inf
θ∈[θi ,c

−1
θ ]

θ1−ch log(θ)

= cθ
1−ch log(θ i )

i ≥ c1(log i)−c2 log log i

for i ≥ 2, where c1, c2 ∈ (0,∞). Therefore, with our choice of the step sizes
∑∞

i=1(δ ∧
δi)E[�i] = ∞, implying that

∑∞
i=1(δ ∧ δi)�i = ∞ almost surely.2

Recalling that α̂(θ) = log(ȳ/θ), we bound by Proposition 5.5

ε̂(θ) := inf
(x̃,a)∈X

dqPF
α̂(θ)

dπPIMH
α̂(θ)

(x̃,a) ≥ c1

(
e−c2/θ

θ

)ȳ

,

where c1, c2 < ∞ are constants independent of θ . Now, fix an ε > 0. Then, it is straightforward
to check that there exists a constant c < ∞ such that for all i ≥ 1

sup
θ∈Ri

1

ε̂(θ)
=

(
sup

θ∈[θi ,1]
1

ε̂(θ)

)
∨
(

sup
θ∈[1,θ̄i ]

1

ε̂(θ)

)
≤ cξε

i .

Without loss of generality, we may assume ε̂(θ) ≤ 1/2, so Corollary C.2 implies that the Pθ is
geometrically ergodic with constants M̂ = M̂(ε̂(θ)) = cε̂−2(θ) and ρ̂ = ρ̂(ε̂(θ)) = (1 − ε̂(θ)/2).
It is easy to see that then Condition 3.8 holds with αM = 2ε and αρ = ε.

Let V be defined as in Proposition 5.6. Then, there exists a constant c < ∞ such that

sup
θ∈Ri

∥∥H(θ, ·)∥∥
V 1/2 ≤ c2 + sup

θ∈Ri

|θ | = c2 + θ̄i ≤ cξε
i ,

implying Condition 3.1(i) with βH = 1/2 and αH = ε. The drift condition assumed in Lemma 3.7
holds with λi = 1 − infθ∈Ri

ε̂(θ) and bi = b < ∞ due to Corollary C.2. This implies Condition
3.1(ii) with αV = αρ = ε.

Now, Proposition 3.19 is applicable as soon as we choose ε > 0 above sufficiently small so
that

αw + αM + αρ + αH + βH αV < (ηγ + 2ηp − 1) ∧ 2ηγ + ηp − 1

2
.

Proposition 3.19 implies Condition 3.1, allowing us to establish the noise condition in Theo-
rem 3.3. Finally, Theorem 2.8 yields the claim with c1 = cθ and c2 = c−1

θ . �

2The random variables Zn := ∑n
i=1(δ ∧ δi )(�i − E[�i ]) form an a.s. convergent L2-martingale.
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Figure 2. Trajectories of the estimate α̂(θi ) corresponding the PIMH-EM started from three different initial
values for α̂0. The dashed lines correspond to the boundaries induced to α̂(θi ) by (θi )i≥0 and (θ̄i )i≥0.
Notice the logarithmic scale on the x-axis (iterations).

We remark that the condition for θ̄i in Proposition 5.8 can be relaxed by only assuming it to
hold with a certain fixed ε > 0 depending on ȳ, ηγ and ηp .

5.5. Numerical experiment

We illustrate our algorithm briefly in practice in the setup of Proposition 5.8. We consider the
same setting as Fort and Moulines [16]: we have n = 100 simulated observations of the model of
Section 5.2 with parameters α = 2, ρ = 0.4 and σ 2 = 1.

We use the following projection sequences to control the sufficient statistic

θi := c logε−1(i + 2) and θ̄i := c̄1(i + 2)c̄2/ logε̄ (i+2),

with the constants c = 0.1mθ , c̄1 = 10mθ , ε = ε̄ = 0.1 and c̄2 = 1, where mθ := n exp( σ 2

2(1−ρ2)
)

is the prior expectation of the sufficient statistic. The step size sequence parameters are cγ = 6,
cp = 3 and γη = γp = 0.35. The number of particles is set to N = 1000.

Figure 2 shows the trajectories of the estimates α̂(θi) for 10,000 iterations of the algorithm
starting from three different initial values α̂0 ∈ {0,2,4}. The final values of the estimates α̂ are
within 2.10–2.16. The average acceptance rate during the runs varied between 46–72%. Notice
the unstable initial behaviour of the estimates in Figure 2, which is controlled by the projections.

Appendix A: Geometric ergodicity from drift condition

Before the proof of Proposition 3.11, we restate the result by Meyn and Tweedie [23] upon which
the proof relies.

Theorem A.1 (Meyn and Tweedie [23] Theorem 2.3). Suppose Condition 3.10 holds. Then,
for all k ≥ 0 and ‖f ‖V < ∞∣∣P k

s (x, f ) − π(f )
∣∣ ≤ V (x)(1 + γ )

ρ

ρ − ϑ
ρk‖f ‖V
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for any ρ > ϑ = 1 − M̃−1, for

M̃ = 1

(1 − λ̌)2

[
1 − λ̌ + b̌ + b̌2 + ζ̄

(
b̌(1 − λ̌) + b̌2)],

defined in terms of

γ = δ−2[4b + 2δλv], λ̌ = (λ + γ )/(1 + γ ) < 1 and b̌ = v + γ < ∞,

and the bound

ζ̄ ≤ 4 − δ2

δ5

(
b

1 − λ

)2

.

Proof of Proposition 3.11. Let us first consider the claim for r = 1. Define first

ζ̄ := (
4 − δ2)δ−5b2(1 − λ)−2 ≤ 4δ−5b̄2(1 − λ)−2,

and observe that γ := δ−2[4b + 2δλv] ≤ 6δ−2b̄. We also have

λ̌ := λ + γ

1 + γ
≤ λ + 6δ−2b̄

1 + 6δ−2b̄
implying

1

1 − λ̌
≤ 1 + 6δ−2b̄

1 − λ
≤ 7δ−2b̄

1 − λ
.

We have also b̌ := v + γ ≤ 7δ−2b̄. Now, we can bound

M̃ := 1

(1 − λ̌)2

[
1 − λ̌ + b̌ + b̌2 + ζ̄

(
b̌(1 − λ̌) + b̌2)]

≤ 1

(1 − λ̌)2
ζ̄
(
5b̌2) ≤ 48,020(1 − λ)−4δ−13b̄6.

Now we can take ρ1 := 1 − [100,000(1 − λ)−4δ−13b̄6]−1 satisfying ρ1 > 1 − M̃−1/2. Finally,
the claim holds with c∗

1 = c∗ := 336,140 by setting

M1 := (1 + γ )
ρ

ρ − (1 − M̃−1)
≤ (1 + γ )2M̃ ≤ 336,140(1 − λ)−4δ−15b̄7.

Let us consider then the case r ∈ (0,1). Observe first that by Jensen’s inequality

PV r(x) ≤ (
PV (x)

)r ≤ λrV r(x) for all x /∈ C,

PV r(x) ≤
(

sup
z∈C

V (z) + b
)r ≤ 2r (v ∨ b)r for all x ∈ C.

That is, Condition 3.10 holds for V r with λr := λr , b̄r := 2b̄r , and vr := supx∈C V r(x) =
(supx∈C V (x))r = vr . Because t �→ t r is concave, λr ≤ 1 − r(1 − λ) and so (1 − λr)−1 ≤
r−1(1 − λ)−1. We may take c∗

r := (2r−1)4c∗. �
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Appendix B: Noise condition for convergence theorem

Proof of Theorem 4.4. We give only the required modifications to the proof of Theorem 3.3
regarding (3.2). First, by symbolically substituting ∇w ≡ 1, it is sufficient to show that claim
holds for the following four terms in turn:

R1
m,n :=

n∑
i=m

�i+1
(
gθi

(Xi+1) − Pθi
gθi

(Xi)
)
I
{
Ai

R
}
,

R2
m,n :=

n∑
i=m

�i+1
(
Pθi

gθi
(Xi) − Pθi−1gθi−1(Xi)

)
I
{
Ai

R
}
,

R4
m,n := (

�mPθm−1gθm−1(Xm) − �n+1Pθngθn(Xn+1)
)
I
{
An

R
}
,

R5
m,n :=

n∑
i=m

(�i+1 − �i)Pθi−1gθi−1(Xi)I
{
Ai−1

R
}
.

The first term R1
m,n is a martingale, so by Doob’s inequality, (4.2) and (4.3),

(
Eθ,x

[
sup
n≥m

∣∣R1
m,n

∣∣])2 ≤ C

∞∑
i=m

Eθ,x

[
�2

i+1

∣∣gθi
(Xi+1) − Pθi

gθi
(Xi)

∣∣2I
{
Ai

R
}]

≤ CV 2βg (x)

∞∑
i=m

E
[
�2

i+1

] m→∞−−−−→0.

The claim for the second term is implied directly by (4.4). For the term R4
m,n, it is enough to

observe that

Eθ,x

[
sup
n≥m

(
R4

m,n

)2
]

≤ 4
∞∑

i=m

E
[
�2

i

]
Eθ,x

[∣∣Pθi−1gθi−1(Xi)
∣∣2I

{
Ai−1

R
}] ≤ CV 2βg (x)

∞∑
i=m

E
[
�2

i

]
.

Finally, we may employ Lemma 3.4 for R5
m,n with Ui := �i and Bi−1 := |Pθi−1gθi−1(Xi)|I{Ai−1

R }
because Eθ,x[|Bi−1|] ≤ CV βg (x) and Eθ,x[B2

i−1] ≤ CV 2βg (x). �

Appendix C: Geometric ergodicity of IMH

We provide here quantitative bounds for the ergodicity constants for independent Metropolis–
Hastings kernels. To our knowledge, the results here are new, and can be useful also in other
settings.

Recall that the independent Metropolis–Hastings kernel with target density π and proposal
density q on space X ⊂ Rd is defined as

P(x,A) :=
∫

A

α(x, y)q(y)dy + I{x ∈ A}
(

1 −
∫

X
α(x, y)q(y)dy

)
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for all x ∈ X and measurable A ⊂ X, where the acceptance probability α(x, y) is defined as

α(x, y) := min

{
1,

π(y)/q(y)

π(x)/q(x)

}
.

Proposition C.1. Assume P is the independent Metropolis–Hastings kernel with target density
π and proposal density q satisfying ε := infx∈X q(x)/π(x) > 0. Let V : X → [1,∞) be a function
with q(V ) < ∞. Then,

(i) the drift inequality

PV (x) ≤ ρV (x) + q(V ) for all x ∈ X

holds with the constant ρ := 1 − ε, and
(ii) the following bound holds for any measurable function f : X → Rd with ‖f ‖V :=

supx∈X |f (x)|/V (x) < ∞, all k ≥ 1 and all x ∈ X∣∣P kf (x) − π(f )
∣∣ ≤ kM(1 − ε)k‖f ‖V V (x),

where the constant M = q(V )[1 + ε−1 + (1 − ε)−1].
Proof. Denote by r(x) := π(x)/q(x) so that α(x, y) = min{1, r(x)/r(y)} and compute

PV (x)

V (x)
− 1 =

∫
V (y)α(x, y)q(y)dy

V (x)
−

∫
min

{
r−1(y), r−1(x)

}
π(y)dy ≤ q(V )

V (x)
− ε.

This readily implies (i).
Observe then that for any measurable A ⊂ X, the following uniform minorisation inequality

holds

P(x,A) ≥
∫

A

α(x, y)q(y)dy ≥ επ(A).

By this inequality, one can define a Markov kernel Q(x,A) := (1 − ε)−1(P (x,A)− επ(A)). By
(i), we have QV (x) ≤ (1 − ε)−1(ρV (x) + q(V )) = V (x) + (1 − ε)−1q(V ) so by induction we
obtain

QkV (x) ≤ V (x) + k(1 − ε)−1q(V ).

Observe that for any probability measure ν with ν(V ) < ∞, one has ν(|f |) ≤ ‖f ‖V ν(V ), and
that

π(V ) =
∫

π(x)

q(x)
V (x)q(x)dx ≤ ε−1q(V ).

Note that πQ = π , whence by denoting �(x, ·) := π(·) one can compute for any k ≥ 1∣∣P kf (x) − π(f )
∣∣ = ∣∣(P − �)P k−1f (x)

∣∣ = (1 − ε)
∣∣(Q − �)P k−1f (x)

∣∣
= (1 − ε)

∣∣QP k−1f (x) − π(f )
∣∣ = · · · = (1 − ε)k

∣∣Qkf (x) − π(f )
∣∣

≤ (1 − ε)k
(
V (x) + k(1 − ε)−1 + ε−1)‖f ‖V q(V ),
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establishing (ii). �

Corollary C.2. In Proposition C.1, the bound (ii) can be replaced with the following∣∣P kf (x) − π(f )
∣∣ ≤ M ′(1 − ζ ε)k‖f ‖V V (x),

where ζ ∈ (0,1) can be chosen arbitrarily and where

M ′ = M

e

[
log

(
1 − ζ ε

1 − ε

)]−1

.

If ε ≤ 1/2, then M ′ can be taken as M ′ = 2M[e(1 − ζ )ε]−1.

Proof. From Proposition C.1, we obtain∣∣P kf (x) − π(f )
∣∣ ≤ kM(1 − ε)k‖f ‖V V (x)

≤ M ′(1 − ζ ε)k‖f ‖V V (x),

with

M ′ := M sup
k≥1

k

(
1 − ε

1 − ζ ε

)k

≤ M

e

[
log

(
1 − ζ ε

1 − ε

)]−1

,

since by a straightforward calculation one obtains for any a ∈ (0,1) that supx>0 xax =
(e log(1/a))−1. Suppose then that ε ≤ 1/2 and notice that for any h > 0 one has log(1 + h) ≥
h − 1

2h2 and so

log

(
1 − ζ ε

1 − ε

)
≥ (1 − ζ )ε

1 − ε

(
1 − 1

2

(1 − ζ )ε

1 − ε

)
≥ 1

2
(1 − ζ )ε. �

Appendix D: Nomenclature

• αw in Condition 2.1, page 549, related to the growth of supθ∈Ri
|∇w(θ)|.

• αH ,βH in Condition 3.1, page 556, characterise supθ∈Ri
|H(θ, x)|.

• αV ,βV in Condition 3.1, page 556, characterise Eθ,x[V (Xi)].
• αg,βg in Condition 3.1, page 556, characterise supθ∈Ri

[|gθ (x)| + |Pθgθ (x)|].
• βD in Condition 3.12, page 564, characterises the Hölder continuity of ‖Pθf − Pθ ′f ‖V r .
• α�,β� in Condition 3.15, page 565, characterise the size of sup(θ,θ ′)∈R2

i
‖H(θ, ·) −

H(θ ′, ·)‖V βH .
• αM and αρ are defined in Condition 3.8, page 562, and characterise the loss of ergodic-

ity through the growth of geometric ergodicity constants supθ∈Ri
Mθ,r and supθ∈Ri

(1 −
ρθ,r )

−1, respectively.
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