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Perturbation analysis of Poisson processes
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We consider a Poisson process � on a general phase space. The expectation of a function of � can be
considered as a functional of the intensity measure λ of �. Extending earlier results of Molchanov and
Zuyev [Math. Oper. Res. 25 (2010) 485–508] on finite Poisson processes, we study the behaviour of this
functional under signed (possibly infinite) perturbations of λ. In particular, we obtain general Margulis–
Russo type formulas for the derivative with respect to non-linear transformations of the intensity measure
depending on some parameter. As an application, we study the behaviour of expectations of functions of
multivariate Lévy processes under perturbations of the Lévy measure. A key ingredient of our approach is
the explicit Fock space representation obtained in Last and Penrose [Probab. Theory Related Fields 150
(2011) 663–690].

Keywords: Fock space representation; Lévy process; Margulis–Russo type formula; perturbation; Poisson
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1. Introduction

The aim of this paper is to advance the perturbation analysis of a Poisson process � on a gen-
eral measurable space (X, X ). For any σ -finite measure λ on (X, X ), we let �λ denote the
distribution of a Poisson process with intensity measure λ, see, for example, [12], Chapter 12.
Further we let Pλ be a probability measure on some fixed measurable sample space such that
Pλ(� ∈ ·) = �λ. We let Eλ denote the expectation operator with respect to Pλ. Let f (�) be
some (measurable) function of �. Under certain assumptions on f , Molchanov and Zuyev [18]
showed for finite measures λ and ν the variational formula

Eνf (�) = Eλf (�) +
∞∑

n=1

1

n!
∫ (

EλD
n
x1,...,xn

f (�)
)
(ν − λ)n

(
d(x1, . . . , xn)

)
, (1.1)

where

Dn
x1,...,xn

f (�) =
∑

J⊂{1,2,...,n}
(−1)n−|J |f

(
� +

∑
j∈J

δxj

)
, x1, . . . , xn ∈ X, n ∈ N. (1.2)

Here, |J | denotes the number of elements of J , while δx is the Dirac measure located at a point
x ∈ X. It is common to say that ν results from λ by adding the perturbation ν − λ.

In this paper, we shall extend (1.1) to σ -finite measures λ and ν. One can use a pathwise
defined thinning and superposition construction to move from Pλ to Pν , see Remark 4.2. In
general, ν − λ is a signed measure that cannot be defined on the whole σ -field X . Integration
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with respect to ν − λ, however, is well defined via (4.1) below. Under an additional assumption
on ν and λ (satisfied for positive, negative and many other perturbations of λ), we shall establish
a condition that is necessary and sufficient for (1.1) to hold for all bounded functions of �. If, for
instance, λ ≤ ν, this condition is equivalent to the absolute continuity �λ � �ν . The variational
formula does not only hold for bounded functions but under a more general second moment
assumption on f .

A consequence of (1.1) are derivative formulas of the form

d

dθ
Eλ+θ(ν−λ)f (�) =

∫
Eλ+θ(ν−λ)Dxf (�)(ν − λ)(dx), θ ∈ [0,1], (1.3)

where Dx := D1
x is the first order difference (or add one cost) operator. This can be generalized

to non-linear perturbations of λ and to more than one parameter. Such formulas are useful in the
performance evaluation, optimization and simulation of discrete event systems [1,10]. Applica-
tions in a spatial setting can be found in [2,18]. Equation (1.3) can be seen as a Poisson version
of the Margulis–Russo formula for Bernoulli random fields (see, e.g., [5]). Such formulae are,
for instance, an important tool in both discrete and continuum percolation theory.

The extension of the identity (1.1) from finite to σ -finite measures is a non-trivial task. Our
approach is based on a combination of the recent Fock space representation in [13] with classical
results in [7] on the absolute continuity of Poisson process distributions. A related approach to
derivatives of the type (1.3) for marked point processes on the real line was taken in [9]. For
Poisson processes on the line and under a (rather strong) continuity assumptions on f the result
(1.1) can be considered as a special case of the main result in [4].

The paper is organized as follows. In Section 2, we introduce some basic notation and re-
call facts about the Fock space representation and likelihood functions of Poisson processes. In
Section 3, we use an elementary but illustrative argument to prove a simple version of (1.1). In
Section 4, we prove and discuss Theorem 4.1, which is the main result of this paper. In Section 5,
we derive conditions on λ and ν that are necessary for (1.1) to hold for all bounded functions f .
In some cases these conditions are also sufficient. Section 6 gives general Margulis–Russo type
formulas for derivatives. The final Section 7 treats perturbations of the Lévy measure of a Lévy
process in Rd .

2. Preliminaries

Let N be the space of integer-valued σ -finite measures ϕ on X equipped with the smallest σ -field
N making the mappings ϕ �→ ϕ(B) measurable for all B ∈ X . We fix a measurable mapping
� :
 → N, where (
, F ) is some abstract measurable (sample) space. For any σ -finite measure
λ on (X, X ) we let Pλ be a probability measure on (
, F ) such that Pλ(� ∈ ·) = �λ is the
distribution of a Poisson process with intensity measure λ.

For any measurable f : N → R and x ∈ X the function Dxf on N is defined by

Dxf (ϕ) := f (ϕ + δx) − f (ϕ), ϕ ∈ N. (2.1)

The difference operator Dx and its iterations play a central role in the variational analysis of
Poisson processes. For n ≥ 2 and (x1, . . . , xn) ∈ Xn we define a function Dn

x1,...,xn
f : N → R
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inductively by

Dn
x1,...,xn

f := D1
x1

Dn−1
x2,...,xn

f, (2.2)

where D1 := D and D0f = f . Note that

Dn
x1,...,xn

f (ϕ) =
∑

J⊂{1,2,...,n}
(−1)n−|J |f

(
ϕ +

∑
j∈J

δxj

)
, (2.3)

where |J | denotes the number of elements of J . This shows that the operator Dn
x1,...,xn

is sym-
metric in x1, . . . , xn, and that (ϕ, x1, . . . , xn) �→ Dn

x1,...,xn
f (ϕ) is measurable.

From [13], Theorem 1.1, we obtain for any measurable f,g : N → R satisfying Eλf (�)2 < ∞
and Eλg(�)2 < ∞ that

Eλf (�)g(�) =
∞∑

n=0

1

n!
∫ (

EλD
n
x1,...,xn

f (�)
)(

EλD
n
x1,...,xn

g(�)
)
λn

(
d(x1, . . . , xn)

)
, (2.4)

where the summand for n = 0 has to be interpreted as (Eλf (�))(Eλg(�)). (The integral of a
constant c with respect to λ0 is interpreted as c.)

Next, we recall a result from [7] in a slightly modified form. Consider two σ -finite measures
ν,ρ on X such that ν � ρ, that is, ν is absolutely continuous with respect to ρ. Let h := dν/dρ

be the corresponding density (Radon–Nikodym derivative) and assume that∫
(h − 1)2 dρ < ∞. (2.5)

This implies that the sets Cn := {|h − 1| ≥ 1/n}, n ∈ N, have finite measure with respect to both
ν and ρ, cf. also [7]. Define measurable functions Ln : N → [0,∞) by

Ln(ϕ) := 1
{
ϕ(Cn) < ∞}

eρ(Cn)−ν(Cn)
∏

y∈ϕCn

h(y), (2.6)

where ϕB is the restriction of ϕ ∈ N to a measurable set B ⊂ X and the product is over all points
of the support of ϕCn taking into account the multiplicities, that is,

∏
y∈ϕCn

h(y) := exp

[∫
Cn

lnh(y)ϕ(dy)

]
,

where ln 0 := −∞.

Proposition 2.1. With ν and ρ as above we have for any measurable g : N → R that

Eνg(�) = EρLν,ρ(�)g(�), (2.7)

where

L(ϕ) := Lν,ρ(ϕ) := lim inf
n→∞ Ln(ϕ) (2.8)
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if this limit inferior is finite and L(ϕ) := Lν,ρ(ϕ) := 0 otherwise. Furthermore,

EρLν,ρ(�)2 < ∞. (2.9)

Proof. It follows as in the proof of Theorem 1 in [7] that Ln(�) converges Pρ -a.s. to a random
variable Y such that Eνg(�) = EρYg(�) for all measurable g : N → R. Hence, (2.7) holds.
Furthermore, we have for any n ∈ N that

EρLn(�)2 = exp
[
2ρ(Cn) − 2ν(Cn)

]
Eρ

[ ∏
y∈�∩Cn

h(y)2
]

= exp

[
2ρ(Cn) − 2

∫
Cn

hdρ

]
exp

[∫
Cn

(
h2 − 1

)
dρ

]

= exp

[∫
Cn

(h − 1)2 dρ

]
,

where we have used a well-known property of Poisson processes to obtain the second equality.
(Because ρ(Cn) < ∞ one can use a direct calculation based on the mixed sample representation
or take f := − lnh2 in [12], Lemma 12.2(i), see also [16], 1.5.6.) Fatou’s lemma implies that

EρL(�)2 ≤ exp

[∫
(h − 1)2 dρ

]
,

which is finite by assumption (2.5). �

Remark 2.2. As noted above, (2.5) implies that �ν � �ρ . The converse is generally not true.
However, if h is bounded then (2.5) is necessary and sufficient for �ν � �ρ . This follows from
the main result in [7], see also Theorem 1.5.12 in [16].

3. Finite non-negative perturbations

In this section, we fix a σ -finite measure λ on X and a finite measure μ on X. In this case, we
can derive the variational formula (1.1) for ν := λ + μ under a minimal integrability assumption
on the function f . Our proof (basically taken from [18]) is elementary but instructive.

Theorem 3.1. Let f : N → R be a measurable function such that Eλ+μ|f (�)| < ∞. Then (1.1)
holds, where all expectations exist and the series converges absolutely.

Proof. We perform a formal calculation using Fubini’s theorem. This will be justified below.
Denoting the right-hand side of (1.1) by I , and using (1.2), we have that

I =
∞∑

n=0

1

n!
∫ ( ∑

J⊂{1,...,n}
(−1)n−|J |Eλf

(
� +

∑
j∈J

δxj

))
μn

(
d(x1, . . . , xn)

)
.
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By symmetry,

I =
∞∑

n=0

1

n!
n∑

m=0

(
n

m

)
(−1)n−mμ(X)n−m

∫
Eλf (� + δx1 + · · · + δxm)μm

(
d(x1, . . . , xm)

)

=
∞∑

m=0

1

m!
∞∑

n=m

(−1)n−m

(n − m)! μ(X)n−m

∫
Eλf (� + δx1 + · · · + δxm)μm

(
d(x1, . . . , xm)

)

= e−μ(X)
∞∑

m=0

1

m!
∫

Eλf (� + δx1 + · · · + δxm)μm
(
d(x1, . . . , xm)

)

=
∫

Eλf (� + ϕ)�μ(dϕ),

where in the last step we have used the mixed sample representation of finite Poisson processes,
see, for example, [12], Theorem 12.7. Noting that the distribution Pλ+μ(� ∈ ·) is that of a sum
of two independent Poisson processes with intensity measures λ and μ, respectively, we obtain
that I = Eλ+μf (�), as desired.

To justify the use of Fubini’s theorem, we need to show that

c :=
∞∑

n=0

1

n!
n∑

m=0

(
n

m

)
μ(X)n−m

∫
Eλ

∣∣f (� + δx1 + · · · + δxm)
∣∣μm

(
d(x1, . . . , xm)

)
< ∞.

By a similar calculation as above,

c = eμ(X)

∞∑
m=0

1

m!
∫

Eλ

∣∣f (� + δx1 + · · · + δxm)
∣∣μm

(
d(x1, . . . , xm)

)

= e2μ(X)Eλ+μ

∣∣f (�)
∣∣ < ∞.

This proves the theorem. �

4. General perturbations

In this section, we allow also signed and infinite perturbations of the intensity measure of �. This
requires more advanced techniques, as the Fock space representation (2.4) and Proposition 2.1.

We consider two σ -finite measures λ and ν on X. We take a σ -finite measure ρ dominating λ

and ν, that is, λ + ν � ρ. Let hλ := dλ/dρ, hν := dν/dρ. The integral of a measurable function
g : Xn → R with respect to (ν − λ)n is defined by∫

g d(ν − λ)n :=
∫

g(x1, . . . , xn)(hν − hλ)
⊗n(x1, . . . , xn)ρ

n
(
d(x1, . . . , xn)

)
, (4.1)
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where, for any function h : X → R, the function h⊗n : Xn → R is given by

h⊗n(x1, . . . , xn) :=
n∏

j=1

h(xj ).

Note that our definition of
∫

g d(ν − λ)n does not depend on the choice of ρ. The following
theorem is the main result of this paper.

Theorem 4.1. Assume that ∫
(1 − hλ)

2 dρ +
∫

(1 − hν)
2 dρ < ∞. (4.2)

Let f : N → R be a measurable function such that Eρf (�)2 < ∞. Then

∞∑
n=0

1

n!
∫ ∣∣EλD

n
x1,...,xn

f (�)
∣∣|hν − hλ|⊗n(x1, . . . , xn)ρ

n
(
d(x1, . . . , xn)

)
< ∞ (4.3)

and (1.1) holds.

Remark 4.2. Let �λ be a Poisson process with intensity measure λ defined on some abstract
probability space. Then we can use independent thinning and superposition to generate a Poisson
process �ν with intensity measure ν. Let A := {x ∈ X :hλ(x) > hν(x)} and define p : X → [0,1]
by p(x) := hν(x)/hλ(x) for x ∈ A and by p(x) := 1, otherwise. Let �′ be a p-thinning of �λ,
see [12], Chapter 12. Then �′ is a Poisson process with intensity measure

p(x)λ(dx) = 1A(x)hν(x)ρ(dx) + 1X\Ahλ(x)ρ(dx).

Let �′′ be a Poisson process with intensity measure 1X\A(x)(hν(x)−hλ(x))ρ(dx), independent
of �′. Then �′ + �′′ is a Poisson process with intensity measure hν(x)ρ(dx) = ν(dx). In some
applications, it might be convenient to couple �λ and the perturbed process �ν in a different
way. For instance, �λ could be an independent marking of a homogeneous Poisson process of
arrival times and one might wish to keep the times and to change only the marks.

Proof of Theorem 4.1. By assumption (4.2), we can apply Proposition 2.1 to both λ and ν. It
follows from (2.6) and (2.8) that Lλ,ρ(� + δx) = hλ(x)Lλ,ρ(�) for all x ∈ X. Therefore,

Dn
x1,...,xn

Lλ,ρ(�) = Lλ,ρ(�)

n∏
i=1

(
hλ(xi) − 1

)
.

Since EρLλ,ρ(�) = 1 we obtain that

EρDn
x1,...,xn

Lλ,ρ(�) =
n∏

i=1

(
hλ(xi) − 1

)
, x1, . . . , xn ∈ X, n ∈ N. (4.4)
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Denoting the right-hand side of (1.1) by I , we have

I =
∞∑

n=0

1

n!
∫ (

EρLλ,ρ(�)Dn
x1,...,xn

f (�)
)
(ν − λ)n

(
d(x1, . . . , xn)

)
. (4.5)

In the following, we assume that f is bounded, an assumption that will be removed in the final
part of the proof. Then Dn

x1,...,xn
f (�) is for any fixed (x1, . . . , xn) bounded and hence square-

integrable. Hence, we can apply (2.4) to the expectations in (4.5) and use (4.4) to obtain that

I =
∞∑

n=0

∞∑
k=0

1

n!
1

k!
∫ ∫ (

EρDn+k
y1,...,yk,x1,...,xn

f (�)
) k∏

j=1

(
hλ(yj ) − 1

)

× ρk
(
d(y1, . . . , yk)

)
(ν − λ)n

(
d(x1, . . . , xn)

)
=

∞∑
n=0

∞∑
k=0

1

n!
1

k!
∫ (

EρDn+k
x1,...,xn+k

f (�)
) k∏

j=1

(
hλ(xj ) − 1

)

×
n+k∏

j=k+1

(
hν(xj ) − hλ(xj )

)
ρn+k

(
d(x1, . . . , xn+k)

)
,

where the use of Fubini’s theorem will be justified below. Swapping the order of summation, we
obtain

I =
∞∑

k=0

∞∑
n=k

1

(n − k)!
1

k!
∫ (

EρDn
x1,...,xn

f (�)
) k∏

j=1

(
hλ(xj ) − 1

)

×
n∏

j=k+1

(
hν(xj ) − hλ(xj )

)
ρn

(
d(x1, . . . , xn)

)

=
∞∑

n=0

1

n!
∫ n∑

k=0

(
n

k

) k∏
j=1

(
hλ(xj ) − 1

) n∏
j=k+1

(
hν(xj ) − hλ(xj )

)

× (
EρDn

x1,...,xn
f (�)

)
ρn

(
d(x1, . . . , xn)

)
=

∞∑
n=0

1

n!
∫ n∏

j=1

(
hν(xj ) − 1

)(
EρDn

x1,...,xn
f (�)

)
ρn

(
d(x1, . . . , xn)

)
,

where we have used

n∏
j=1

(
hν(xj ) − hλ(xj ) + hλ(xj ) − 1

) =
∑

J⊂{1,...,n}

∏
j1∈J

(
hλ(xj1) − 1

) ∏
j2 /∈J

(
hν(xj2) − hλ(xj2)

)
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and the permutation invariance of (EρDn
x1,...,xn

f (�))ρn(d(x1, . . . , xn)) to obtain the last equal-
ity. We are now using Proposition 2.1, the identity (4.4) with λ replaced by ν, and (2.4) to obtain
that

I =
∞∑

n=0

1

n!
∫ (

EρDnLν,ρ(�)
)(

EρDnf (�)
)

dρn

= EρLν,ρ(�)f (�) = Eνf (�),

where Dnf (ϕ) denotes for any ϕ ∈ N the mapping (x1, . . . , xn) �→ Dn
x1,...,xn

f (ϕ). This proves
(1.1) for bounded f .

To justify the formal calculation above and to establish (4.3), we need to show that

c :=
∞∑

n=0

1

n!
∫ n∑

k=0

(
n

k

) k∏
j=1

∣∣hλ(xj ) − 1
∣∣ n∏
j=k+1

∣∣hν(xj ) − hλ(xj )
∣∣

× ∣∣EρDn
x1,...,xn

f (�)
∣∣ρn

(
d(x1, . . . , xn)

)
is finite. By permutation invariance,

c =
∞∑

n=0

1

n!
∫ (|hλ − 1| + |hν − hλ|

)⊗n∣∣EρDnf (�)
∣∣dρn

≤
∞∑

n=0

1

n!
∫ (

2|hλ − 1| + |hν − 1|)⊗n∣∣EρDnf (�)
∣∣dρn.

The Cauchy–Schwarz inequality yields,

c ≤
∞∑

n=0

√
an

n!
(∫ ((

2|hλ − 1| + |hν − 1|)⊗n)2 dρn

)1/2

=
∞∑

n=0

√
an

n!
(∫ (

2|hλ − 1| + |hν − 1|)2 dρ

)n/2

,

where

an :=
∫ (

EρDnf (�)
)2 dρn, n ∈ N0.

Applying Cauchy–Schwarz again, yields

c2 ≤
( ∞∑

n=0

an

n!

) ∞∑
n=0

1

n!
(∫ (

2|hλ − 1| + |hν − 1|)2 dρ

)n

.

The first series in the above product converges by (2.4) (we have Eρf (�)2 < ∞). The second
series converges, since the integral there is finite by (4.2) and the Minkowski inequality.
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We now extend the result to general f satisfying Eρf (�)2 < ∞. We take a sequence of
bounded functions fl , l ∈ N, such that Eρ(f (�) − fl(�))2 → 0 as l → ∞. We know already
that

Eνfl(�) =
∞∑

n=0

1

n!
∫ (

EλD
nfl(�)

)
d(ν − λ)n (4.6)

holds for all l ∈ N. By Cauchy–Schwarz,

Eν

∣∣f (�) − fl(�)
∣∣ = EρLν,ρ

∣∣f (�) − fl(�)
∣∣

(4.7)
≤ (

EρL2
ν,ρ

)1/2(
Eρ

(
f (�) − fl(�)

)2)1/2 → 0

as l → ∞. Hence, the left-hand side of (4.6) tends to Eνf (�) as l → ∞. To deal with the right-
hand side, we consider sequences g = (gn)n≥0, where g0 ∈ R and gn, n ≥ 1, is a measurable
function on Xn. Introduce the space V of all such sequences satisfying

‖g‖ :=
∞∑

n=0

1

n!
∫

|gn||hν − hλ|⊗n dρn < ∞.

Then V is a direct sum of Banach spaces and hence a Banach space as well. For l ∈ N define

gl,n := EλD
nfl(�), n ≥ 0, gl := (gl,n)n≥0 ∈ V.

Our next aim is to show that (gl) is a Cauchy-sequence. We have for l,m ∈ N that

‖gl − gm‖ =
∞∑

n=0

1

n!
∫ ∣∣EλD

nfl(�) − EλD
nfm(�)

∣∣|hν − hλ|⊗n dρn

=
∞∑

n=0

1

n!
∫ ∣∣EρLλ,ρ(�)Dnfl,m(�)

∣∣|hν − hλ|⊗n dρn,

where fl,m := fl − fm. From the calculation in the first part of the proof, we obtain that

‖gl − gm‖ ≤
∞∑

n=0

1

n!
∫ ∣∣EρDnfl,m(�)

∣∣(2|hλ − 1| + |hν − 1|)⊗n
dρn.

Applying the Cauchy–Schwarz inequality twice, as in the second part of the proof yields

‖gl − gm‖2 ≤ a

∞∑
n=0

1

n!
∫ (

EρDnfl,m(�)
)2

dρn,

where

a :=
∞∑

n=0

1

n!
(∫ (

2|hλ − 1| + |hν − 1|)2 dρ

)n

.
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By (2.4),

‖gl − gm‖2 ≤ aEρfl,m(�)2 = aEρ

(
fl(�) − fm(�)

)2
.

By the choice of fl the sequence (gl ) has the Cauchy property. Because V is complete, there is a
g = (gn) ∈ V such that ‖gl − g‖ → 0 as l → ∞. Since,∣∣∣∣∣

∞∑
n=0

1

n!
∫

gnd(ν − λ)n −
∞∑

n=0

1

n!
∫

gl,n d(ν − λ)n

∣∣∣∣∣ ≤
∞∑

n=0

1

n!
∫

|gn − gl,n||hν − hλ|⊗n dρn,

we obtain from (4.6) and (4.7) that

Eνf (�) =
∞∑

n=0

1

n!
∫

gnd(ν − λ)n.

It remains to show that, for any fixed n ≥ 0,

|hν − hλ|⊗ngn = |hν − hλ|⊗nEλD
nf (�), ρn-a.e. (4.8)

We claim that

lim
l→∞

∫
Bn

Eλ

∣∣Dnf (�) − Dnfl(�)
∣∣dρn = 0 (4.9)

for all B ∈ X with λ(B) < ∞ and ρ(B) < ∞. As in the proof of [13], Lemma 2.3, it suffices to
demonstrate that

lim
l→∞

∫
Bm

Eλ

∣∣∣∣∣f
(

� +
m∑

i=1

δyi

)
− fl

(
� +

m∑
i=1

δyi

)∣∣∣∣∣ρm
(
d(y1, . . . , ym)

) = 0 (4.10)

for all m ∈ {1, . . . , n}. By the (multivariate) Mecke equation (see, e.g., [17] or [13], (2.10)) the
integral in (4.10) equals

Eρ

∫
Bm

Lλ,ρ(� − δy1 − · · · − δym)
∣∣f (�) − fl(�)

∣∣�(m)
(
d(y1, . . . , ym)

)
, (4.11)

where, for ϕ ∈ N, ϕ(m) is the measure on Xm defined by

ϕ(m)(C) :=
∫

· · ·
∫

1C(y1, . . . , ym)

(
ϕ −

m−1∑
j=1

δyj

)
(dym)

×
(

ϕ −
m−2∑
j=1

δyj

)
(dym−1) × · · · (4.12)

× (ϕ − δy1)(dy2)ϕ(dy1), C ∈ X ⊗m.
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By Lemma 4.3 below and the Cauchy–Schwarz inequality, (4.11) tends to 0 as l → ∞. Now
(4.9) implies that gl,n = EλD

nfl(�) tends to EλD
nf (�) ρn-a.e. on Bn as l → ∞ along a

subsequence. Since

lim
l→∞

∫
|gn − gl,n||hν − hλ|⊗n dρn = 0,

there is a further subsequence N′ ⊂ N such that |hν − hλ|⊗ngl,n tends to |hν − hλ|⊗ngn ρn-a.e.
on Bn as l → ∞ along N′. It follows that (4.8) holds for ρn restricted to Bn. Since ρ and λ are
σ -finite we obtain (4.8). This completes the proof of the theorem. �

In the final part of the above proof, we have used the following lemma. Recall the definition
(4.12).

Lemma 4.3. Assume that (4.2) holds and let B ∈ X satisfy λ(B) < ∞ and ρ(B) < ∞. Then we
have for all m ≥ 1 that

Eρ

(∫
Bm

Lλ,ρ(� − δx1 − · · · − δxm)�(m)
(
d(x1, . . . , xm)

))2

< ∞.

Proof. Writing the square of the inner integral as a double integral and using a combinatorial
argument, we see that it suffices to prove that

Eρ

∫
Bm−k

∫
Bm

Lλ,ρ(� − δx1 − · · · − δxm)Lλ,ρ(� − δx1 − · · · − δxk
− δy1 − · · · − δym−k

)

× (� − δy1 − · · · − δym−k
)(m)

(
d(x1, . . . , xm)

)
�(m−k)

(
d(y1, . . . , ym−k)

)
< ∞

for all k ∈ {0, . . . ,m} (with the obvious convention for k = m). Applying the Mecke equation
twice, we obtain that this expression equals

Eρ

∫
Bm−k

∫
Bm

Lλ,ρ(� + δy1 + · · · + δym−k
)Lλ,ρ(� + δxk+1 + · · · + δxm)

× ρm
(
d(x1, . . . , xm)

)
ρm−k

(
d(y1, . . . , ym−k)

)
.

Since

Lλ,ρ(� + δy1 + · · · + δym−k
) = Lλ,ρ(�)hλ(y1) × · · · × hλ(ym−k),

we obtain that the above expectation equals ρ(B)m−kλ(B)mEρLλ,ρ(�)2 which is finite by
Proposition 2.1. �

Remark 4.4. In the case ρ = λ (this requires ν � λ) the proof of Theorem 4.1 becomes
considerably simpler. Another simplification is possible if Eρf (�)2+ε < ∞ for some ε > 0.
Then Eρ(Dn

x1,...,xn
f (�))2 < ∞ for all n ≥ 1 and ρn-a.e. (x1, . . . , xn). Indeed, by the proof of

Lemma 2.3 in [13] it is enough to show that Eρf (�)2�(B)k < ∞ for all k ∈ N and any B ∈ X
with ρ(B) < ∞. Since �(B) has finite moments of any order, this is a direct consequence of
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Hölder’s inequality. We can then apply (2.4) to the expectations in (4.5) and proceed exactly
as in the proof of Theorem 4.1. This makes the final (and somewhat tricky) part of this proof
superfluous.

We continue with providing special cases of Theorem 4.1. We let ν = ν1 + ν2 (resp., λ =
λ1 + λ2) be the Lebesgue decomposition of ν (resp., λ) with respect to λ (resp., ν). Hence
ν1 � λ and ν2 ⊥ λ, where the latter means that ν2 and λ are singular, that is concentrated on
disjoint measurable subsets of X.

Theorem 4.5. Let f : N → R be measurable. Assume that either

∫ (
1 − dν1

dλ

)2

dλ + ν2(X) < ∞ (4.13)

and Eλ+ν2f (�)2 < ∞, or that

∫ (
1 − dλ1

dν

)2

dν + λ2(X) < ∞ (4.14)

and Eν+λ2f (�)2 < ∞. Then (1.1) holds.

Proof. We prove only the first assertion. There are disjoint measurable subsets B1 and B2 of X

such that

λ(X \ B1) = ν2(X \ B2) = 0. (4.15)

In particular, ν1(X \ B1) = 0. Let ρ := λ + ν2. It is easy to check that

hλ = 1B1, hν = 1B1h1 + 1B2 ,

where h1 := dν1/dλ. We have∫
(hν − 1)2 dρ =

∫
(1B1h1 − 1X\B2)

2 dρ =
∫

(1B1h1 − 1X\B2)
2 dλ =

∫
(h1 − 1)2 dλ

and
∫
(hλ − 1)2 dρ = ρ(X \ B1) = ν2(X). Therefore, (4.2) holds and the result follows from

Theorem 4.1. �

The next corollary deals with a monotone perturbation of λ.

Corollary 4.6. Let μ be a σ -finite measure on X and assume that h := dλ/d(λ + μ) satisfies∫
(1 − h)2 d(λ + μ) < ∞. (4.16)
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Then we have for all measurable f with Eλ+μf (�)2 < ∞ that

Eλ+μf (�) = Eλf (�) +
∞∑

n=1

1

n!
∫ (

EλD
n
x1,...,xn

f (�)
)
μn

(
d(x1, . . . , xn)

)
. (4.17)

Proof. Apply the second part of Theorem 4.5 with ν = λ + μ. Then λ2 = 0 and dλ/dν = h. �

Remark 4.7. In the situation of Corollary 4.6, we may assume that h ≤ 1. Then 1−h is a density
of μ with respect to λ + μ, so that

∫
(1 − h)2 d(λ + μ) = ∫

(1 − h)dμ. In particular, μ(X) < ∞
implies (4.16), cf. Theorem 3.1.

The results of this section can be extended so as to cover additional randomization.

Remark 4.8. Let (Y, Y ) be a measurable space and η :
 → Y be a measurable mapping such
that Pλ((η,�) ∈ ·) = V ⊗ �λ for all σ -finite measures λ, where V is a probability mea-
sure on (Y, Y ), not depending on λ. The definition of the difference operator can be ex-
tended to measurable functions f : Y × N → R in the following natural way. If n ∈ N and
x1, . . . , xn ∈ X then Dn

x1,...,xn
f : Y × N → R is defined by Dn

x1,...,xn
f (y,ϕ) := Dn

x1,...,xn
fy(ϕ),

where fy := f (y, ·), y ∈ Y. Assume now that λ, ν,ρ satisfy the assumptions of Theorem 4.1
and that Eρf (η,�)2 < ∞. We claim that (4.3) and (1.1) hold when replacing � by (η,�). This
implies that all results of this section (as well as those of Section 6) remain valid with the obvious
changes.

To verify the above claim we define, for any ϕ ∈ N, f̃ (ϕ) := ∫
f (y,ϕ)V(dy) and conclude

from Jensen’s inequality that Eρf̃ (�)2 ≤ Eρf (η,�)2 < ∞. Hence, Theorem 4.1 applies and we
need to show for all n ∈ N that

EλD
n
x1,...,xn

f̃ (�) = EλD
n
x1,...,xn

f (η,�), ρn-a.e. (x1, . . . , xn).

In view of (1.2) and Fubini’s theorem it is sufficient to show for all m ≥ 0 that

Eλ

∫ ∣∣f (y,� + δx1 + · · · + δxm)
∣∣V(dy) = Eλ

∣∣f (η,� + δx1 + · · · + δxm)
∣∣ < ∞

for ρm-a.e. (x1, . . . , xm) (with the obvious convention for m = 0). To this end, we take
B1, . . . ,Bm ∈ X with finite measure with respect to both λ and ρ, let B := B1 × · · · × Bm,
and obtain from the Mecke equation that∫

B

Eλ

∣∣f (η,� + δx1 + · · · + δxm)
∣∣ρm

(
d(x1, . . . , xm)

)

= Eρ

∫
B

Lλ,ρ(�)
∣∣f (η,� + δx1 + · · · + δxm)

∣∣ρm
(
d(x1, . . . , xm)

)

= Eρ

∣∣f (η,�)
∣∣ ∫

B

Lλ,ρ(� − δx1 − · · · − δxm)�(m)
(
d(x1, . . . , xm)

)
,

which is finite by Cauchy–Schwarz, Lemma 4.3 and our assumption Eρf (η,�)2 < ∞.
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5. Necessary conditions for the variational formulas

Again we consider two σ -finite measures λ, ν on X. The squared Hellinger distance between
these two measures is defined as

H(λ, ν) := 1

2

∫
(
√

hλ − √
hν)

2 dρ, (5.1)

where (as before) ρ is a σ -finite measure dominating λ and ν and hλ, respectively, hν are the
corresponding densities.

Theorem 5.1. Assume that (1.1) holds for all bounded measurable f : N → R. Then �λ and �ν

are not singular and

H(λ, ν) < ∞. (5.2)

Proof. Assume on the contrary that �λ and �ν are singular. Then we find disjoint sets F,G ∈ N
such that �λ(F) = �ν(G) = 1. We now proceed as in the proof of Theorem 9.1.13 in [16].
Let Cn ∈ X , n ∈ N, be such that λ(Cn) + ν(Cn) < ∞, and Cn ↑ X as n → ∞. Recall that the
restriction of ϕ ∈ N to B ∈ X is denoted by ϕB . We have for any n ∈ N that

exp
[−λ(Cn)

] = Pλ

(
�(Cn) = 0,� ∈ F

) = Pλ

(
�(Cn) = 0,�X\Cn

∈ F
)

= Pλ

(
�(Cn) = 0

)
Pλ(�X\Cn

∈ F) = exp
[−λ(Cn)

]
Pλ(�X\Cn

∈ F).

A similar calculation applies to Pν . It follows that the sets

Fn :=
∞⋂

m=n

{ϕ ∈ N :ϕX\Cn
∈ F }, Gn :=

∞⋂
m=n

{ϕ ∈ N :ϕX\Cn
∈ G}, n ∈ N, (5.3)

have the properties

Pλ(� ∈ Fn) = Pν(� ∈ Gn) = 1, n ∈ N.

This implies

Pλ

(
� ∈ F ′) = Pν

(
� ∈ G′) = 1, (5.4)

where F ′ := ⋃
n∈N

Fn and G′ := ⋃
n∈N

Gn. Since F ∩ G = ∅ we have Fn ∩ Gn = ∅ for any
n ∈ N. Since Fn and Gn are increasing, we obtain that F ′ ∩ G′ = ∅. Since Cn ↑ X we have for
any (ϕ, x) ∈ N×X that ϕ ∈ F ′ if and only if ϕ +δx ∈ F ′. Therefore, for f := 1F ′ , Dn

x1,...,xn
f ≡ 0

for all n ∈ N and all x1, . . . , xn ∈ X. Using this fact as well as (5.4) (together with F ′ ∩ G′ = ∅),
we see that (1.1) fails.

A classical result by Liese [14] (see also [15], Theorem (3.30)) says that

H(�λ,�ν) = 1 − e−H(λ,ν) (5.5)

so that singularity of �λ and �ν is equivalent to H(λ, ν) = ∞ (see [14], (3.2)). �
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Recall the Lebesgue decompositions ν = ν1 + ν2 of ν with respect to λ and λ = λ1 + λ2 of λ

with respect to ν.

Corollary 5.2. Assume that (1.1) holds for all bounded measurable f : N → R. Then

∫ (
1 −

√
dν1

dλ

)2

dλ + ν2(X) +
∫ (

1 −
√

dλ1

dν

)2

dν + λ2(X) < ∞. (5.6)

Moreover, we have that �ν1 � �λ and �λ1 � �ν and in particular �ν � �λ (resp., �λ � �ν )
provided that λ � ν (resp., ν � λ). If, in addition, the density dν1/dλ (resp., dλ1/dν) may be
chosen bounded, then (4.13) (resp., (4.14)) holds.

Proof. Since the definition (5.1) of H(λ, ν) is independent of the dominating measure ρ, we
have (see also the proof of Theorem 4.5)

H(λ, ν) =
∫ (

1 −
√

dν1

dλ

)2

dλ + ν2(X) =
∫ (

1 −
√

dλ1

dν

)2

dν + λ2(X). (5.7)

Hence, (5.6) follows from (5.2) while the asserted absolute continuity relations follow from (5.6)
and [14], Satz (3.3) (see [16], Theorem 1.5.12). If dν1/dλ may be chosen bounded, then (4.14)
follows from (5.6) and the identity (1 − x) = (1 − √

x)(1 + √
x), x ≥ 0. �

For monotone perturbations, Corollary 5.2 yields the following characterization of the varia-
tional formula.

Corollary 5.3. Let μ be a σ -finite measure on X.

(i) The variational formula (4.17) holds for all bounded and measurable f : N → R if and
only if h := dλ/d(λ + μ) satisfies (4.16).

(ii) Assume that μ ≤ λ and let ν := λ − μ. Then (1.1) holds for all bounded and measurable
f : N → R if and only if hμ := dμ/dλ satisfies

∫
h2

μ dλ < ∞.

Remark 5.4. In general, inequality (5.6) is weaker than both (4.13) and (4.14). We do not know
whether (5.6) is sufficient for (1.1) to hold for all bounded measurable f .

Example 5.5. Assume that λ is Lebesgue measure on X := Rd for some d ≥ 1. Let μ := cλ for
some c > 0. Then dλ/d(λ + μ) = (1 + c)−1, so that (4.16) fails. Let Bn be a ball with centre at
the origin and radius n ∈ N and let f be the measurable function on N defined by

f (ϕ) := 1
{

lim
n→∞λ(Bn)

−1ϕ(Bn) = 1
}
.

Then Eλf (�) = 1 while Eλ+μf (�) = 0. On the other hand we have Dn
x1,...,xn

f ≡ 0 for all n ≥ 1
and all x1, . . . , xn ∈ Rd . Hence (4.17) fails.
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Remark 5.6. Theorem 5.1 and (5.7) show that (1.1) can only hold for all bounded functions f if
the non-absolutely continuous part of the perturbation of λ has finite mass while the absolutely
continuous part of the perturbation leads to a distribution �ν that is absolutely continuous with
respect to the original distribution �λ. Example 5.5 shows what can go wrong with (1.1) if
this second condition fails. If one condition is violated, then this does not mean that (1.1) does
not hold for some bounded measurable f . In fact, Theorem 4.1 shows that the formula holds
whenever f depends on the restriction of � to a set B ∈ X with λ(B) < ∞ and ν(B) < ∞.

6. Derivatives and Russo-type formulas

In this section, we consider σ -finite measures λ,ρ on X and assume that λ is absolutely contin-
uous with respect to ρ with density hλ. We also consider a measurable function h : X → R and
assume that ∫

(1 − hλ)
2 dρ +

∫
h2 dρ < ∞. (6.1)

Theorem 6.1. Assume that (6.1) holds. Let θ0 ∈ R and assume that I ⊂ R is an interval with
non-empty interior such that θ0 ∈ I and hθ := hλ + (θ − θ0)h ≥ 0 ρ-a.e. for θ ∈ I . For θ ∈ I let
λθ denote the measure with density hθ with respect to ρ. Let f : N → R be a measurable function
such that Eρf (�)2 < ∞. Then,

Eλθ f (�) = Eλf (�) +
∞∑

n=1

(θ − θ0)
n

n!
∫ (

EλD
nf (�)

)
h⊗n dρn, θ ∈ I, (6.2)

where EλD
n(�) denotes the function (x1, . . . , xn) �→ EλD

n
x1,...,xn

f (�) and the series converges
absolutely. Moreover,

d

dθ
Eλθ f (�) =

∫ (
Eλθ Dxf (�)

)
h(x)ρ(dx), θ ∈ I. (6.3)

Proof. Let θ ∈ I . By our assumptions 1 − hθ = (1 − hλ) − (θ − θ0)h is square-integrable with
respect to ρ. Hence we can apply Theorem 4.1 with ν = λθ to obtain (6.2). In particular we get
(6.3) for θ = θ0.

To derive (6.3) for general θ ∈ I we apply the above with (λθ , hθ ) instead of (λ,hλ) and with
θ instead of θ0. Since

hθ̃ = hλ + (θ − θ0)h + (θ̃ − θ)h = hθ + (θ̃ − θ)h, θ̃ ∈ I,

we obtain the desired result from (6.3) using the same function h as before. �

Corollary 6.2. Let ν be another σ -finite measure with density hν with respect to ρ. Assume that
(4.2) holds. Then

Eλ+θ(ν−λ)f (�) = Eλf (�) +
∞∑

n=1

θn

n!
∫ (

EλD
nf (�)

)
d(ν − λ)n, θ ∈ [0,1], (6.4)
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provided that Eρf (�)2 < ∞.

Proof. We take in Theorem 6.1 h := hν − hλ, I := [0,1] and θ0 := 0. The result follows upon
noting that square-integrability of h is implied by the Minkowski inequality. �

Remark 6.3. Fix a measurable function f : N → R such that Eρf (�)2 < ∞. Let hλ satisfy∫
(1 − hλ)

2 dρ < ∞ and let Hλ be the set of all measurable functions h : X → R such that∫
h2 dρ < ∞ and hλ + θh ≥ 0 ρ-a.e. for all θ in some (possibly one-sided) neighborhood Ih

of 0. For h ∈ Hλ and θ ∈ Ih we let λθ denote the measure with density hθ := hλ + θh with
respect to ρ. Then Theorem 6.1 states that

lim
θ→0

θ−1(Eλθ f (�) − Eλf (�)
) = Gλ,f (h), h ∈ Hλ, (6.5)

where

Gλ,f (h) :=
∫ (

EλDxf (�)
)
h(x)ρ(dx). (6.6)

Hence Gλ,f (h) is the Gâteaux derivative of the mapping ν �→ Eνf (�) at λ in the direction h.

If the perturbation is absolutely continuous with respect to the original measure λ, then we
can strengthen (6.5) to Fréchet differentiability as follows. Let H ∗

λ be the set of all measurable
functions h : X → R such that

∫
h2 dλ < ∞ and 1 + h ≥ 0 λ-a.e.

Proposition 6.4. Let f : N → R be measurable and such that Eλf (�)2 < ∞. For h ∈ H ∗
λ let λh

denote the measure with density 1 + h with respect to λ. Then

Eλh
f (�) = Eλf (�) + Gλ,f (h) + o

(‖h‖), h ∈ H ∗
λ , (6.7)

where Gλ,f (h) is defined by (6.6), ‖h‖ :=
√∫

h2 dλ and limt→0 t−1o(t) = 0.

Proof. We apply Theorem 4.1 with ρ = λ (so that hλ ≡ 1) and ν = λh to obtain that

Eλh
f (�) = Eλf (�) + Gλ,f (h) + ch,

where

ch :=
∞∑

n=2

1

n!
∫

EλD
nf (�)h⊗n dλn.

Applying the triangle inequality and then the Cauchy–Schwarz inequality to each summand gives

|ch| ≤
∞∑

n=2

1

n!
(∫ (

EλD
nf (�)

)2 dλn

)1/2(∫
h2 dλ

)n/2

.
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Applying the Cauchy–Schwarz inequality again yields

|ch| ≤
( ∞∑

n=2

1

n!
∫ (

EλD
nf (�)

)2 dλn

)1/2( ∞∑
n=2

1

n!
(∫

h2 dλ

)n
)1/2

.

The first factor is finite by (2.4) and the second equals õ(‖h‖), where õ(t) :=
√

et2 − 1 − t2. �

Next, we generalize (6.3) to possibly non-linear perturbations of λ.

Theorem 6.5. Assume that (6.1) holds. Let θ0 ∈ R and assume that I ⊂ R is an interval with
non-empty interior such that θ0 ∈ I . For any θ ∈ I let Rθ : X → R be a measurable function such
that the following assumptions are satisfied:

(i) For all θ ∈ I , hλ + (θ − θ0)(h + Rθ) ≥ 0 ρ-a.e.
(ii) limθ→θ0 Rθ = 0 ρ-a.e.

(iii) There is a measurable function R : X → [0,∞) such that |Rθ | ≤ R ρ-a.e. for all θ ∈ I

and
∫

R2 dρ < ∞.

For θ ∈ I , let λθ denote the measure with density hλ + (θ − θ0)(h + Rθ) with respect to ρ. Let
f : N → R be a measurable function such that Eρf (�)2 < ∞. Then

d

dθ
Eλθ f (�)

∣∣∣∣
θ=θ0

=
∫ (

EλDxf (�)
)
h(x)ρ(dx). (6.8)

Proof. In view of
∫

h2 dρ < ∞ and assumption (iii), it is possible to apply Theorem 4.1 to the
measure ν = λθ . This gives for θ ∈ I \ {θ0}

(θ − θ0)
−1(Eλθ f (�) − Eλf (�)

)
=

∫ (
EλDf (�)

)
(h + Rθ)dρ (6.9)

+
∞∑

n=2

(θ − θ0)
n−1

n!
∫ (

EλD
nf (�)

)
(h + Rθ)

⊗n dρn.

Applying Theorem 4.1 to the measure ν with density hλ + |h| + R with respect to ρ yields

∞∑
n=0

1

n!
∫ ∣∣EλD

nf (�)
∣∣(|h| + R

)⊗n dρn < ∞.

Hence the result follows from assumption (ii) and bounded convergence. �

The case where the perturbed measure λθ is absolutely continuous with respect to λ is of
special interest. Then the assumptions (ii) and (iii) in Theorem 6.5 can be simplified.
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Theorem 6.6. Assume that
∫

h2 dλ < ∞. Let θ0 ∈ R and assume that I ⊂ R is an interval with
non-empty interior such that θ0 ∈ I . For any θ ∈ I let Rθ : X → R be a measurable function such
that the following assumptions are satisfied:

(i) For all θ ∈ I , 1 + (θ − θ0)(h + Rθ) ≥ 0 λ-a.e.
(ii) limθ→θ0

∫
R2

θ dλ = 0.

For θ ∈ I , let λθ denote the measure with density 1 + (θ − θ0)(h + Rθ) with respect to λ. Let
f : N → R be a measurable function such that Eλf (�)2 < ∞. Then

d

dθ
Eλθ f (�)

∣∣∣∣
θ=θ0

=
∫ (

EλDxf (�)
)
h(x)λ(dx). (6.10)

Proof. This time we apply Theorem 4.1 with ρ = λ (so that hλ ≡ 1) and ν = λθ . To treat the
right-hand side of (6.9), we first note that

∫ ∣∣EλDf (�)
∣∣|Rθ |dλ ≤

(∫ (
EλDf (�)

)2 dλ

)1/2(∫
R2

θ dλ

)1/2

.

By assumption (ii), this tends to zero as θ → θ0. It remains to show that

cθ :=
∞∑

n=2

1

n!
∫ ∣∣EλD

nf (�)
∣∣|h + Rθ |⊗n dλn

is bounded in θ . As in the proof of Proposition 6.4, it follows that

c2
θ ≤

( ∞∑
n=2

1

n!
∫ (

EλD
nf (�)

)2 dλn

)( ∞∑
n=2

1

n!
(∫

(h + Rθ)
2 dλ

)n
)

.

Here the first factor is finite by Theorem 4.1 while the second remains bounded by assump-
tion (ii). �

Corollary 6.7. Let the assumptions of Theorem 6.6 be satisfied. Then

d

dθ
Eλθ f (�)

∣∣∣∣
θ=θ0

= Eλ

∫ (
f (�) − f (� − δx)

)
h(x)�(dx). (6.11)

Proof. The result follows from (6.10) and the Mecke equation from [17]. �

Remark 6.8. The results of this section generalize the Poisson cases of the derivative formulas
in [2] and [9], where one can also find some earlier predecessors. We note that [2] and [9] study
more general point processes.

Finally in this section, we deal with the case, where λθ is a multiple of a finite measure.
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Corollary 6.9. Assume that λ is a finite measure and let f : N → R be a measurable function
such that Eθ0λf (�)2 < ∞ for some θ0 > 0. Then θ �→ Eθλf (�) is analytic on [0,∞). Moreover,

d

dθ
Eθλf (�) =

∫
EθλDxf (�)λ(dx), θ ≥ 0, (6.12)

d

dθ
Eθλf (�) = θ−1Eθλ

∫ (
f (�) − f (� − δx)

)
�(dx), θ > 0. (6.13)

Proof. Apply Theorem 6.1 with ρ := θ0λ, λ := 0, h := θ−1
0 , θ0 := 0 and I := [0,∞). This yields

the first two assertions. As before, formula (6.13) is a consequence of (6.12) and the Mecke
formula. �

Remark 6.10. Consider in Corollary 6.9 a general σ -finite measure λ but assume that the func-
tion f does only depend on the restriction of � to some set B ∈ X with λ(B) < ∞. Applying
the corollary to λ(B ∩·) gives (6.12). This is extended in [6] to functions that depend measurably
on the σ -field associated with a stopping set satisfying suitable integrability assumptions.

Remark 6.11. Let f := 1A, where A ∈ N is increasing, that is, whenever ϕ ∈ A then ϕ + δx ∈ A

for all x ∈ X. Then∫ (
f (�) − f (� − δx)

)
�(dx) =

∫
1{� ∈ A,� − δx /∈ A}�(dx)

is the number of points of � that are pivotal for A. Hence (6.13) expresses the derivative of
Pθλ(� ∈ A) in terms of the expected number of pivotal elements. This Poisson counterpart of
the Margulis–Russo formula for Bernoulli fields was first proved in [19]. In the more general
setting of Corollary 6.7, the pivotal elements have to be counted in a weighted way.

7. Perturbation analysis of Lévy processes

In this section, we apply our results to Rd -valued Lévy processes, that is, to processes X =
(Xt )t≥0 with homogeneous and independent increments and X0 = 0. We assume that X is con-
tinuous in probability. By Proposition II.3.36 in [11] and Theorem 15.4 in [12], we can then
assume that a.s.

Xt = bt +Wt +
∫

|x|≤1

∫ t

0
x
(
�(ds,dx)−dsν(dx)

)+
∫

|x|>1

∫ t

0
x�(ds,dx), t ≥ 0, (7.1)

where b ∈ Rd , W = (W)t≥0 is a d-dimensional Wiener process with covariance matrix � and
� is an independent Poisson process on [0,∞) × Rd with intensity measure λ1 ⊗ ν. Here λ1 is
Lebesgue measure on [0,∞) and ν is a Lévy measure on Rd , that is, a measure on Rd having
ν({0}) = 0, and

∫
(|x|2 ∧ 1)ν(dx) < ∞. The integrals in (7.1) have to be interpreted as limits

in probability. Let D denote the space of all Rd -valued right-continuous functions on R+ with
left-hand limits on (0,∞). By [12], Theorem 15.1, we can and will interpret X as a random
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element in D equipped with the Kolmogorov product σ -field. The characteristic triplet (�,b, ν)

determines the distribution of X. In this section, we fix � and let Pb,ν denote a probability
measure on (
, F ) such that Pb,ν(X ∈ ·) is the distribution of a Lévy process with characteristic
triplet (�,b, ν). The expectation with respect to this measure is denoted by Eb,ν . As before,
we let Pλ1⊗ν denote a probability measure such that Pλ1⊗ν(� ∈ ·) = �λ1⊗ν . Similarly as in
Remark 4.8, we assume that under Pλ1⊗ν the (fixed) process W = (W)t≥0 is a Wiener process as
above, independent of �.

Let F denote the space of all Rd -valued functions on R+ equipped with the Kolmogorov
product σ -field. For w ∈ F and (t1, x1) ∈ [0,∞) × Rd we define wt1,x1 ∈ F by w

t1,x1
t := wt +

1{t ≥ t1}x1. Clearly the mapping (w, t1, x1) �→ wt1,x1 is measurable. Moreover, if w ∈ D then
also wt1,x1 ∈ D. For any measurable f : F → R, the measurable function �t1,x1f : F → R is
defined by

�t1,x1f (w) := f
(
wt1,x1

) − f (w), w ∈ F. (7.2)

Similarly as at (2.2), we can iterate this definition to obtain, for (t1, x1, . . . , tn, xn) ∈ ([0,∞) ×
Rd)n a function �n

t1,x1,...,tn,xn
f : F → R. Further, we define �0f := f . For s > 0 and w ∈ F

let w(s) ∈ F be defined by w(s)(t) := w(t ∧ s) and let Ãs denote the σ -field generated by the
mapping w �→ w(s). An Ãs -measurable function f : F → R has the property that �t,xf ≡ 0
whenever t > s. Define As := Ãs ∩ D.

In the next theorem, we consider three Lévy measures ν, ν′, ν∗. We assume that ν and ν′ are
absolutely continuous with respect to ν∗ with densities gν and gν′ , respectively, that satisfy

∫
(1 − gν)

2 dν∗ +
∫

(1 − gν′)2 dν∗ < ∞, (7.3)

∫
|x|≤1

|x|∣∣1 − gν(x)
∣∣ν∗(dx) +

∫
|x|≤1

|x|∣∣1 − gν′(x)
∣∣ν∗(dx) < ∞. (7.4)

We also consider b, b′, b∗ ∈ Rd such that

b = b∗ +
∫

|x|≤1
x
(
gν(x) − 1

)
ν∗(dx), b′ = b∗ +

∫
|x|≤1

x
(
gν′(x) − 1

)
ν∗(dx). (7.5)

In the following theorem and also later, we abuse our notation by interpreting for a function
g : Rd → R and n ∈ N, g⊗n as a function on ([0,∞) × Rd)n.

Theorem 7.1. Assume that (7.3), (7.4) and (7.5) hold. Let f : D → R be At0 -measurable for
some t0 > 0 and assume that Eb∗,ν∗f (X)2 < ∞. Then

∞∑
n=0

1

n!
∫ ∣∣Eb,ν�

nf (X)
∣∣|gν′ − gν |⊗n d

(
λ1 ⊗ ν∗)n

< ∞, (7.6)
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where Eb,ν�
nf (X) denotes the function (t1, x1, . . . , tn, xn) �→ Eb,ν�

n
t1,x1,...,tn,xn

f (X). Further-
more,

Eb′,ν′f (X) = Eb,νf (X) +
∞∑

n=1

1

n!
∫ (

Eb,ν�
nf (X)

)
(gν′ − gν)

⊗n d
(
λ1 ⊗ ν∗)n

. (7.7)

Proof. Let X := [0,∞) × Rd and define N as before. Let N0 be the measurable set of all ϕ ∈ N
such that ϕ([0, s] × {x : 1/n ≤ |x| ≤ n}) < ∞ for all s > 0 and n ∈ N. Since ν is a Lévy measure
we have Pλ1⊗ν(� ∈ N0) = 1. For ϕ ∈ N0 and n ∈ N, we define T n(ϕ) ∈ F by the pathwise
integrals

T n(ϕ)t := bt +
∫

1/n≤|x|≤1

∫ t

0
x
(
ϕ(ds,dx) − dsν(dx)

) +
∫

n≥|x|>1

∫ t

0
xϕ(ds,dx).

Define Tb,ν(ϕ) ∈ F by

Tb,ν(ϕ)t := lim inf
n→∞ T n(ϕ), t ≥ 0,

whenever this is finite, and by Tb,ν(ϕ)t := 0, otherwise. For ϕ /∈ N0 we let Tb,ν(ϕ) ≡ 0. Then
Tb,ν is a measurable mapping from N to F. It is a basic property of Poisson and Lévy processes
([12], Chapter 15) that T n(�)t converges in Pλ1⊗ν -probability and that

Pλ1⊗ν

(
W + Tb,ν(�) ∈ ·) = Pb,ν(X ∈ ·) on F, (7.8)

where here and later we interpret X also as a random element in F. Assumptions (7.4) and (7.5)
imply that Tb,ν = Tb′,ν′ = Tb∗,ν∗ =: T , so that the following holds on F:

Pλ1⊗ν′
(
W + T (�) ∈ ·) = Pb′,ν′(X ∈ ·), Pλ1⊗ν∗

(
W + T (�) ∈ ·) = Pb∗,ν∗(X ∈ ·). (7.9)

Let λ
t0
1 be the restriction of λ1 to the interval [0, t0]. Let f̃ : F → R be an Ãt0 -measurable function

satisfying Eb∗,ν∗ f̃ (X)2 < ∞. We apply Theorem 4.1 and Remark 4.8 with (λ, ν,ρ) replaced
with (λ

t0
1 ⊗ ν,λ

t0
1 ⊗ ν′, λt0

1 ⊗ ν∗), with η = W and with the function (w,ϕ) �→ f̃ (w + T (ϕ)).
Assumption (4.2) is implied by (7.3), while E

λ
t0
1 ⊗ν∗(W + f̃ (T (�)))2 < ∞ follows from (7.9)

and assumption on f̃ . (By Ãt0 -measurability of f̃ we have f̃ (T (ϕ)) = f̃ (T (ϕt0)) for any ϕ ∈ N0,
where ϕt0 is the restriction of ϕ to [0, t0] × Rd .) Using that for ϕ ∈ N0,

Dn
(t1,x1),...,(tn,xn)(f̃ ◦T )(ϕ) = (

�n
t1,x1,...,tn,xn

f̃
)(

T (ϕ)
)
, (t1, x1, . . . , tn, xn) ∈ ([0,∞)×Rd

)n
,

we obtain (7.6) and (7.7) with f̃ instead of f .
To conclude the proof, we need a Ãt0 -measurable function f̃ : F → R such that f = f̃ on D.

Such a function trivially exists if f (w) = g(wt1, . . . ,wtn), where 0 ≤ t1 ≤ · · · ≤ tn ≤ t0 and
g : Rn → R is Borel-measurable. Therefore, the existence follows by a monotone class argu-
ment. �
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Remark 7.2. In the above proof, we cannot apply Theorem 4.1 with (λ, ν,ρ) replaced with
(λ1 ⊗ν,λ1 ⊗ν′, λ1 ⊗ν∗). For instance, the first integral in (4.2) would diverge as soon as ν �= ν∗.
Therefore, we have assumed the function f to depend only on the restriction of X to a finite time
interval.

Remark 7.3. If ∫ (|x| ∧ 1
)
ν(dx) < ∞, (7.10)

it is common, to rewrite (7.1) as

Xt = at + Wt +
∫

Rd

∫ t

0
x�(ds,dx), t ≥ 0, (7.11)

where a := b − ∫
|x|≤1 xν(dx). If all three measures ν, ν′, ν∗ satisfy (7.10), then we might replace

(b, b′, b∗) by (a, a′, a∗) (with a′ and a∗ defined similarly as a) and simplify (7.5) to a = a′ = a∗.

Remark 7.4. By [11], Theorem IV.4.39, the finiteness of the first integrals in (7.3) and (7.4)
together with the first identity in (7.5) imply that Pb,ν(X

(t) ∈ ·) is, for every t ≥ 0, absolutely
continuous with respect to Pb∗,ν∗(X(t) ∈ ·). (Recall that X

(t)
s := Xt∧s .) In fact, this conclusion

remains true under the weaker assumption
∫
(1 − √

gν)
2 dν∗ < ∞. We do not know whether the

assumption (7.3) in Theorem 7.1 can be weakend to
∫
(1 −√

gν)
2 dν∗ + ∫

(1 −√
gν′)2 dν∗ < ∞,

see also Remark 5.4.

Our next theorem is the Lévy version of Theorem 6.1. We consider a Lévy measure ν with
density gν with respect to some other Lévy measure ν∗ and a measurable function g : Rd → R

such that∫
(1 − gν)

2 dν∗ < ∞,

∫
g2 dν∗ < ∞,

∫ (‖x‖ ∧ 1
)∣∣g(x)

∣∣ν∗(dx) < ∞. (7.12)

Theorem 7.5. Assume that (7.12) holds and the first integral in (7.4) is finite. Let b and b∗ satisfy
the first identity in (7.5). Let θ0 ∈ R and assume that I ⊂ R is an interval with non-empty interior
such that θ0 ∈ I and gθ := gν + (θ − θ0)g ≥ 0 ν∗-a.e. for θ ∈ I . For θ ∈ I let

bθ := b + (θ − θ0)

∫
|x|≤1

xg(x)ν∗(dx) (7.13)

and let νθ denote the measure with density gθ with respect to ν∗. Let f : D → R be At0 -
measurable for some t0 > 0 and assume that Eb∗,ν∗f (X)2 < ∞. Then

Ebθ ,νθ f (X) = Eb,νf (X)
(7.14)

+
∞∑

n=1

(θ − θ0)
n

n!
∫ (

Eb,ν�
nf (X)

)
g⊗n d

(
λ1 ⊗ ν∗)n

, θ ∈ I,
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where the series converges absolutely. In particular,

d

dθ
Ebθ ,νθ f (X)

∣∣∣∣
θ=θ0

=
∫ ∫ (

Eb,ν�t,xf (X)
)
g(x)dtν∗(dx). (7.15)

Proof. Noting that

bθ = b∗ +
∫

|x|≤1
x
(
gθ (x) − 1

)
ν∗(dx), (7.16)

and using the mapping T defined in the proof of Theorem 7.1, the result follows from Theo-
rem 6.1 and Remark 4.8. �

Remark 7.6. Consider ν and ν∗ such that the first integrals in (7.3), respectively, in (7.4) are
finite. Let b and b∗ satisfy the first identity in (7.5). Let f : D → R be a measurable function
such that Eb∗,ν∗f (X)2 < ∞. By Theorem 7.5

Gb,ν,f (g) :=
∫ ∫ (

Eb,ν�t,xf (X)
)
g(x)dtν∗(dx) (7.17)

can be interpreted as the Gâteaux derivative of the mapping ν′ �→ Eν′,b′f (X) at ν in the direc-
tion g, where b′ is determined by b, and ν′ and the function g satisfies the second and third
equality in (7.12) as well as gλ + θg ≥ 0 ν∗-a.e. for all θ in some open neighborhood of 0.
Proposition 6.4 on Fréchet derivatives can be adapted in a similar way. Details are left to the
reader.

The next result deals with non-linear perturbations and is a consequence of Theorem 6.5.

Theorem 7.7. Assume that (7.12) holds. Let θ0 ∈ R and assume that I ⊂ R is an interval with
non-empty interior such that θ0 ∈ I . For any θ ∈ I let Rθ : Rd → [0,∞) be a measurable function
such that the following assumptions are satisfied:

(i) For all θ ∈ I , gν + (θ − θ0)(g + Rθ) ≥ 0 ν∗-a.e.
(ii)

∫
(|x| ∧ 1)|Rθ(x)|ν∗(dx) < ∞.

(iii) limθ→θ0 Rθ = 0 ν∗-a.e.
(iv) There is a measurable function R : Rd → [0,∞) such that |Rθ | ≤ R ν∗-a.e. and∫
R(x)2ν∗(dx) < ∞.

For θ ∈ I , let νθ denote the measure with density gν + (θ − θ0)(g + Rθ) with respect to ν∗. Let
b, b∗ ∈ R satisfy the first identity in (7.5) and define

bθ := b + (θ − θ0)

∫
|x|≤1

x
(
g(x) + Rθ(x)

)
ν∗(dx). (7.18)

Let f : D → R be At0 -measurable for some t0 > 0 and such that Eb∗,ν∗f (X)2 < ∞. Then (7.15)
holds.
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Remark 7.8. Assume that we can take ν∗ = ν in Theorem 7.7 (yielding that νθ � ν). By Theo-
rem 6.6, assumptions (iii) and (iv) can then be replaced with limθ→θ0

∫
R2

θ dν = 0.

We finish this section with some examples.

Example 7.9. Let α ∈ (0,2) and let Q be a finite measure on the unit sphere Sd−1 := {x ∈
Rd : |x| ≤ 1}. Then

ν :=
∫

Sd−1

∫ ∞

0
1{ru ∈ ·}r−α−1 drQ(du)

is the Lévy measure of an α-stable Lévy process, see, for example, [3]. Consider the Lévy mea-
sure

μ :=
∫

Sd−1

∫ 1

0
1{ru ∈ ·}r−α′−1 drQ′(du),

where 0 < α′ < α/2 and Q′ is a finite measure on Sd−1. Assume that Q′ � Q with a density
that is square-integrable with respect to Q. It is not difficult to check that the density g := dμ/dν

satisfies the assumptions of Theorem 7.5 with ν∗ = ν, I = [0,∞) and θ0 = 0.

Example 7.10. Let d = 1, α ∈ (0,2) and ν(dx) := 1{x �= 0}x−α−1 dx be the Lévy measure of a
(symmetric) α-stable process. It is again easy to check that, for β > 0, the density g of the mea-
sure μβ(dx) := 1{x > 0}x−1e−βx dx with respect to ν satisfies the assumptions of Theorem 7.5
with ν∗ = ν, I = [0,∞) and θ0 = 0. For θ ≥ 0, the measure θμ is the Lévy measure of a Gamma
process with shape parameter θ and scale parameter β , see, for example, [3]. (Under P0,θμβ and
for W ≡ 0, the random variable Xt has a Gamma distribution with shape parameter θt and scale
parameter β .)

Example 7.11. We let ν and μβ be as in Example 7.10. This time we are interested in derivatives
with respect to the scale parameter β . We fix β0 > 0 and θ ≥ 0. Our aim is to apply Theorem 7.7
with I = (β0/2,3β0/2), θ0 = β0, νβ := ν + θμβ , and ν∗ := ν. The measure ν in Theorem 7.7 is
being replaced with νβ0 . We have noted in Example 7.10 that

∫
(1 − gβ0)

2 dν < ∞, where gβ0 is
the Radon–Nikodym derivative of νβ0 with respect to ν. Next, we note that

νβ(dx) = νβ0(dx) + 1{x > 0}θ(
e−(β−β0)x − 1

)
xαe−β0xν(dx)

(7.19)
= [

gβ0(x) + (β − β0)
(
g(x) + Rβ(x)

)]
ν(dx),

where

g(x) := −1{x > 0}θxα+1e−β0x, Rβ(x) := −1{x > 0}θxαe−β0x
∞∑

n=2

(β0 − β)n−1

n! xn.

Clearly, g(x)2 and (|x| ∧ 1)|g(x)| are integrable with respect to ν. We need to check the assump-
tions (i)–(iv) of Theorem 7.7. Assumption (i) follows from (7.19) while (iii) is obvious. Further,
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we have for β ∈ I that |Rβ | ≤ R, where

R(x) := 1{x > 0}θxαe−β0x
∞∑

n=0

(β0/2)n−1

n! xn = 1{x > 0}θc−1xαe−cx,

where c := β0/2. Since
∫
(x ∧1)R(x)ν(dx) < ∞ and

∫
R(x)2ν(dx) < ∞ we obtain (ii) and (iv).

Let b ∈ R. In view of (7.16), we define

bβ := b +
∫ 1

0
x
(
gβ(x) − 1

)
ν(dx) = b + θ

∫ 1

0
e−βx dx = b + θ

β

(
1 − e−β

)
.

Under the assumption Eb,νf (X)2 < ∞, we then obtain that

d

dβ
Ebβ ,ν+θμβ f (X)

∣∣∣∣
β=β0

= −θ

∫ ∫ (
Ebβ0 ,ν+θμβ0

�t,xf (X)
)
e−β0x dt dx. (7.20)

Remark 7.12. It is a common feature of Examples 7.9 and 7.10 that the perturbation ν′ − ν

is infinite. Theorem 3.1 would not be enough to treat these cases. In Example 7.11 however,
νβ0 − νβ is finite so that one might use Theorem 3.1 in the case β < β0.

Finally in this section we assume d = 1 and apply our results to the running supremum

St := sup{Xs : 0 ≤ s ≤ t}, t ≥ 0,

of X. We fix t0 > 0 and define

Zt := sup{Xs : t ≤ s ≤ t0}, Yt := St − Zt, 0 ≤ t ≤ t0.

Proposition 7.13. Let ν, ν∗, g, gν, b, b∗, I, θ0 be as in Theorem 7.5 and define bθ , gθ as in that
theorem. Assume moreover that ∫

x>1
x2ν∗(dx) < ∞. (7.21)

Then θ �→ Ebθ ,νθ St0 is analytic on I . Moreover,

d

dθ
Ebθ ,νθ St0

∣∣∣∣
θ=θ0

=
∫ ∫ (

(x − y)+ − y−)
g(x)Q(dy)ν∗(dx), (7.22)

where, for x ∈ R, x+ := max{x,0}, x− := −min{x,0}, and

Q :=
∫ t0

0
Pb,ν(Yt ∈ ·)dt. (7.23)

Proof. We define a measurable function f : D → R by

f (w) := sup{ws : 0 ≤ s ≤ t0}, w ∈ D.
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It follows from the Lévy–Khintchine representation (7.1), Doob’s inequality and moment
properties of Poisson integrals that (7.21) is sufficient (and actually also necessary) for
Eb∗,ν∗f (X)2 < ∞. (This argument is quite standard.) Hence, we can apply Theorem 7.5.

It remains to compute the right-hand side of (7.15). Let t ∈ (0, t0]. For x > 0 we have

f
(
Xt,x

) =
⎧⎨
⎩

St0 + x, if St− ≤ Zt ,
Zt + x, if Zt < St− ≤ Zt + x,
St0, if Zt + x < St−,

so that

f
(
Xt,x

) − f (X) = 1{Yt ≤ 0}x + 1{0 < Yt ≤ x}(x − Yt ) = (x − Yt )
+ − (Yt )

−,

provided that St− = St . Note that the latter equality holds for λ1-a.e. t > 0. Similarly we obtain
for x < 0 that

f
(
Xt,x

) − f (X) = 1{x < Yt ≤ 0}Yt + 1{Yt ≤ x}x = (x − Yt )
+ − (Yt )

−,

whenever St− = St . Hence, (7.22) follows from (7.15). Note that the integrability required
for (7.22) is part of the assertion of Theorem 7.5. But it does also follow more directly from
|f (Xt,x) − f (X)| ≤ 2|x| and the fact that

∫ |g(x)||x|ν∗(dx) is finite by assumption (7.12) on g,
(7.21), and the Cauchy–Schwarz inequality. �

Remark 7.14. We consider the situation of Proposition 7.13 but do not assume (7.21). For u ∈ R

wen can then apply Theorem 7.5 to the real and the imaginary part of the complex-valued and
bounded function f (X) := eiuSt0 . This shows that θ �→ Ebθ ,νθ f (X) is analytic. The derivative at
θ0 can be expressed in terms of the measure

Q′ :=
∫ t0

0
Pb,ν

(
(St ,Zt ) ∈ ·)dt (7.24)

that contains more information than the measure (7.23). The same remark applies to the bounded
function f (X) := 1{St0 > u}. The details are left to the reader.

For a general Lévy process the distribution of St is not known. The measures (7.23) and (7.24)
are not known either. This hints at the fact that perturbation analysis cannot help in finding
explicit distributions. What equation (7.22) does, however, is to identify the Gâteaux derivative of
Eb,νSt0 in the direction g, see Remark 7.6. The measure (7.23), controlling all these derivatives,
is completely determined by the distribution of the process (Xt )t≤t0 under Pb,ν . We do not make
any attempt to review the vast literature on the running supremum of Lévy processes but just
refer to [8] for some recent progress.
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