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We show that the density of Z = argmax{W(t) − t2}, sometimes known as Chernoff’s density, is log-
concave. We conjecture that Chernoff’s density is strongly log-concave or “super-Gaussian”, and provide
evidence in support of the conjecture.
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1. Introduction: Two limit theorems

We begin by comparing two limit theorems.
First the usual central limit theorem: Suppose that X1, . . . ,Xn are i.i.d. EX1 = μ, E(X2) <

∞, σ 2 = Var(X). Then, the classical Central Limit theorem says that
√

n(Xn − μ) →d N
(
0, σ 2).

The Gaussian limit has density

φσ (x) = 1√
2πσ

exp

(
− x2

2σ 2

)
= e−V (x),

V (x) = − logφσ (x) = x2

2σ 2
+ log(

√
2πσ),

V ′′(x) = (− logφσ )′′(x) = 1

σ 2
> 0.

Thus, logφσ is concave, and hence φσ is a log-concave density. As is well known, the normal
distribution arises as a natural limit in a wide range of settings connected with sums of indepen-
dent and weakly dependent random variables; see, for example, Le Cam [30] and Dehling and
Philipp [11].

Now for a much less well-known limit theorem in the setting of monotone regression. Sup-
pose that the real-valued function r(x) is monotone increasing for x ∈ [0,1]. For i ∈ {1, . . . , n},
suppose that xi = i/(n + 1), εi are i.i.d. with E(εi) = 0, σ 2 = E(ε2

i ) < ∞, and suppose that we
observe (xi, Yi), i = 1, . . . , n, where

Yi = r(xi) + εi ≡ μi + εi, i ∈ {1, . . . , n}.
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The isotonic estimator μ̂ of μ = (μ1, . . . ,μn) is given by

μ̂j = max
i≤j

min
k≥j

{ ∑k
l=i Yl

k − i + 1

}
,

μ̂ = (μ̂1, . . . , μ̂n) ≡ T Y

= least squares projection of Y onto Kn,

Kn = {
y ∈ R

n: y1 ≤ · · · ≤ yn

}
.

For fixed x0 ∈ (0,1) with xj ≤ x0 < xj+1 we set r̂n(x0) ≡ r̂n(xj ) = μ̂j .
Brunk [7] showed that if r ′(x0) > 0 and if r ′ is continuous in a neighborhood of x0, then

n1/3(̂rn(x0) − r(x0)
) →d

(
σ 2r ′(x0)/2

)1/3
(2Z1),

where, with {W(t): t ∈ R} denoting a two-sided standard Brownian motion process started at 0,

2Z1 = slope at zero of the greatest convex minorant of W(t) + t2

d= slope at zero of the least concave majorant of W(t) − t2 (1.1)

d= 2 argmin
{
W(t) + t2}.

The density f of Z1 is called Chernoff’s density. Chernoff’s density appears in a number of
nonparametric problems involving estimation of a monotone function:

• Estimation of a monotone regression function r : see, for example, Ayer et al. [1], van Ee-
den [44], Brunk [7], and Leurgans [31].

• Estimation of a monotone decreasing density: see Grenander [12], Prakasa Rao [37], and
Groeneboom [14].

• Estimation of a monotone hazard function: Grenander [13], Prakasa Rao [38], Huang and
Zhang [26], Huang and Wellner [25].

• Estimation of a distribution function with interval censoring: Groeneboom and Wellner [21],
Groeneboom [16].

In each case:

• There is a monotone function m to be estimated.
• There is a natural nonparametric estimator m̂n.
• If m′(x0) 
= 0 and m′ continuous at x0, then

n1/3(m̂n(x0) − m(x0)
) →d C(m,x0)2Z1,

where 2Z1 is as in (1.1).

See Kim and Pollard [29] for a unified approach to these types of problems.
The first appearance of Z1 was in Chernoff [9]. Chernoff [9] considered estimation of the

mode of a (symmetric unimodal) density f via the following simple estimator: if X1, . . . ,Xn are
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i.i.d. with density h and distribution function H , then for each fixed a > 0 let

x̂a ≡ center of the interval of length 2a containing the most observations.

Let xa be the center of the interval of length 2a maximizing H(x + a) − H(x − a) = P(X ∈
(x − a, x + a]). (Note that this xa is not the mode if f is not symmetric.) Then Chernoff shows:

n1/3(x̂a − xa) →d

(
h(xa + a)

c

)1/3

2Z1,

where c ≡ h′(xa − a)−h′(xa + a). Chernoff also showed that the density fZ1 = f of Z1 has the
form

f (z) ≡ fZ1(z) = 1
2g(z)g(−z), (1.2)

where

g(t) ≡ lim
x↗t2

∂

∂x
u(t, x),

where, with W standard Brownian motion,

u(t, x) ≡ P (t,x)
(
W(z) > z2, for some z ≥ t

)
is a solution to the backward heat equation

∂

∂t
u(t, x) = −1

2

∂2

∂x2
u(t, x)

under the boundary conditions

u
(
t, t2) = lim

x↗t2
u(t, x) = 1, lim

x→−∞u(t, x) = 0.

Again let W(t) be standard two-sided Brownian motion starting from zero, and let c > 0. We
now define

Zc ≡ sup
{
t ∈ R: W(t) − ct2 is maximal

}
. (1.3)

As noted above, Zc with c = 1 arises naturally in the limit theory for nonparametric estimation of
monotone (decreasing) functions. Groeneboom [15] (see also Daniels and Skyrme [10]) showed
that for all c > 0 the random variable Zc has density

fZc(t) = 1
2gc(t)gc(−t),

where gc has Fourier transform given by

ĝc(λ) =
∫ ∞

−∞
eiλsgc(s)ds = 21/3c−1/3

Ai(i(2c2)−1/3λ)
. (1.4)
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Groeneboom and Wellner [22] gave numerical computations of the density fZ1 , distribution func-
tion, quantiles, and moments.

Recent work on the distribution of the supremum Mc ≡ supt∈R(W(t)−ct2) is given in Janson,
Louchard and Martin-Löf [27] and Groeneboom [17]. Groeneboom [18] studies the number of
vertices of the greatest convex minorant of W(t) + t2 in intervals [a, b] with b − a → ∞; the
function gc with c = 1 also plays a key role there.

Our goal in this paper is to show that the density fZc is log-concave. We also present evidence
in support of the conjecture that fZc is strongly log-concave: that is, (− logfZc)

′′(t) ≥ some c >

0 for all t ∈ R.
The organization of the rest of the paper is as follows: log-concavity of fZc is proved in

Section 2 where we also give graphical support for this property and present several corollaries
and related results. In Section 3, we give some partial results and further graphical evidence for
strong log-concavity of f ≡ fZ1 : that is,

(− logf )′′(t) ≥ (− logf )′′(0) = 3.4052 . . . = 1/(0.541912 . . .)2 ≡ 1/σ 2
0

for all t ∈ R. As will be shown in Section 3, this is equivalent to f (t) = ρ(t)φσ0(t) with ρ

log-concave. In Section 4, we briefly discuss some of the consequences and corollaries of log-
concavity and strong log-concavity, sketch connections to some results of Bondesson [5,6], and
list a few of the many further problems.

2. Chernoff’s density is log-concave

Recall that a function h is a Pólya frequency function of order m (and we write h ∈ PFm) if
K(x,y) ≡ h(x − y) is totally positive of order m: that is, det(Hm(x, y) ≥ 0 for all choices of
x1 ≤ · · · ≤ xm and y1 ≤ · · · ≤ ym where Hm ≡ Hm(x, y) = (h(xi − yj ))

m
i,j=1. It is well known

and easily proved that a density f is PF2 if and only if it is log-concave. Furthermore, h is a
Pólya frequency function (and we write h ∈ PF∞) if K(x,y) ≡ h(x − y) is totally positive of all
orders m; see, for example, Schoenberg [42], Karlin [28], and Marshall, Olkin and Arnold [33].
Following Karlin [28], we say that h is strictly PF∞ if all the determinants det(Hm) are strictly
positive.

Theorem 2.1. For each c > 0 the density fZc(x) = (1/2)gc(x)gc(−x) is PF2; that is, log-
concave.

The Fourier transform in (1.4) implies that gc has bilateral Laplace transform (with a slight
abuse of notation)

ĝc(z) =
∫

ezsgc(s)ds = 21/3c−1/3

Ai((2c2)−1/3z)
(2.1)

for all z such that Re(z) > −a1/(2c2)−1/3 where −a1 is the largest zero of Ai(z) in (−∞,0).
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To prove Theorem 2.1, we first show that gc is PF∞ by application of the following two results.

Theorem 2.2 (Schoenberg, 1951). A necessary and sufficient condition for a (density) function
g(x), −∞ < x < ∞, to be a PF∞ (density) function is that the reciprocal of its bilateral Laplace
transform (i.e., Fourier) be an entire function of the form

ψ(s) ≡ 1

ĝ(s)
= Ce−γ s2+δssk

∞∏
j=1

(1 + bj s) exp(−bj s), (2.2)

where C > 0, γ ≥ 0, δ ∈ R, k ∈ {0,1,2, . . .}, bj ∈ R,
∑∞

j=1 |bj |2 < ∞. (For the subclass of
densities, the if and only if statement holds for 1/ĝ of this form with ψ(0) = C = 1 and k = 0.)

Proposition 2.1 (Merkes and Salmassi). Let {−ak} be the zeros of the Airy function Ai (so that
ak > 0 for each k). The Hadamard representation of Ai is given by

Ai(z) = Ai(0)e−νz

∞∏
k=1

(1 + z/ak) exp(−z/ak),

where

Ai(0) = 1

32/3�(2/3)
= �(1/3)

31/62π
≈ 0.35503,

Ai′(0) = − 1

31/3�(1/3)
= −31/6�(2/3)

2π
≈ −0.25882 and

ν = −Ai′(0)/Ai(0) = 31/3�(2/3)

�(1/3)
= 2π

31/6�(1/3)2
≈ 0.729011 . . . .

Proposition 2.1 is given by Merkes and Salmassi [34]; see their Lemma 1, page 211. This is
also Lemma 1 of Salmassi [41]. Our statement of Proposition 2.1 corrects the constants c1 and
c2 given by Merkes and Salmassi [34]. Figure 1 shows Ai(z) (black) and m term approximations
to Ai(z) based on Proposition 2.1 with m = 25 (green), 125 (magenta), and 500 (blue).

Proposition 2.2. The functions t 
→ gc(t) are in PF∞ ⊂ PF2 for every c > 0. Thus, they are
log-concave. In fact, t 
→ gc(t) is strictly PF∞ for every c > 0.

Proof. By Proposition 2.1,

Ai
((

2c2)−1/3
z
) = Ai(0)e−ν(2c2)−1/3z

∞∏
j=1

(
1 + z

(2c2)1/3aj

)
exp

(
− z

(2c2)1/3aj

)

= Ai(0)eδz

∞∏
j=1

(1 + bj z) exp(−bj z),
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Figure 1. Product approximations of Ai(x).

which is of the form (2.2) required in Schoenberg’s theorem with k = 0,

δ = −(
2c2)−1/3

ν = − (3/2)1/3�(2/3)

c2/3�(1/3)
, (2.3)

C = Ai(0) = 1/
(
32/3�(2/3)

)
and (2.4)

bj = 1

(2c2)1/3aj

, j ≥ 1, (2.5)

where {−aj } are the zeros of the Airy function Ai. Thus, we conclude from Schoenberg’s theo-
rem that gc is PF∞ for each c > 0.

The strict PF∞ property follows from Karlin [28], Theorem 6.1(a), page 357: note that in the
notation of Karlin [28], γ = 0 and Karlin’s ai is our 1/ak with

∑
k(1/ak) = ∞ in view of the

fact that ak ∼ ((3/8)π(4k − 1))2/3 via 9.9.6 and 9.9.18, page 18, Olver et al. [36]. �

Now we are in position to prove Theorem 2.1.

Proof of Theorem 2.1. This follows from Proposition 2.2: note that

− logfZc(x) = − loggc(x) − loggc(−x),

so

w(x) ≡ (− logfZc)
′′(x) = (− loggc)

′′(x) + (− loggc)
′′(−x) ≡ v(x) + v(−x) ≥ 0

since gc ∈ PF∞ ⊂ PF2. �
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Some scaling relations: From the Fourier tranform of gc given above, it follows that

gc(x) = (2/c)1/3

2π

∫ ∞

−∞
e−iux

Ai(i(2c2)−1/3u)
du

= (2/c)1/3(2c2)1/3

2π

∫ ∞

−∞
e−iv(2c2)1/3x

Ai(iv)
dv

≡ 21/6c1/3g2−1/2

((
2c2)1/3

x
)
.

Thus it follows that

(loggc)
′′(x) = (

2c2)2/3 · (logg2−1/2)
′′((2c2)1/3

x
)
,

and, in particular, (
loggc(x)

)′′|x=0 = (
2c2)2/3 · (logg2−1/2)

′′(x)|x=0.

When c = 1, the conversion factor is 22/3. Furthermore we compute

fZc(t) = 1
2gc(t)gc(−t) = 1

2 21/3c2/3g2−1/2

((
2c2)1/3

t
)
g2−1/2

(−(
2c2)1/3

t
)

≡ c2/3f1
(
c2/3t

)
,

where

f1(t) ≡ fZ1(t) = 1
2g1(t)g1(−t)

= 1
2 21/3g2−1/2

(
21/3t

)
g2−1/2

(−21/3t
)
.

Thus we see that

Zc
d= c−2/3Z1

for all c > 0.
Figure 2 gives a plot of fZ ; Figure 3 gives a plot of − logfZ ; and Figure 4 gives a plot of

(− logfZ)′′.
If we use the inverse Fourier transform to represent g via (1.4), and then calculate directly,

some interesting correlation type inequalities involving the Airy kernel emerge. Here is one of
them.

Let h(u) ≡ 1/|Ai(iu)| ∼ 2
√

πu1/4 exp(−(
√

2/3)u3/2) as u → ∞ by Groeneboom [15],
page 95. We also define ϕ(u, x/2) = Re(eiux/2 Ai(iu))h(u) and ψ(u,x/2) = Im(eiux/2 ×
Ai(iu))h(u).

Corollary 2.1. With the above notation,∫ ∞

0
sin2(uy)ϕ(u, x)h(u)du ·

∫ ∞

0
cos2(uy)ϕ(u, x)h(u)du

+
∫ ∞

0
sin(uy) cos(uy)ψ(u, x)h(u)du ≥ 0 for all x, y ∈ R.
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Figure 2. The density fZ .

3. Is Chernoff’s density strongly log-concave?

From Rockafellar and Wets [40] page 565, h: R
d → R is strongly convex if there exists a constant

c > 0 such that

h
(
θx + (1 − θ)y

) ≤ θh(x) + (1 − θ)h(y) − 1
2cθ(1 − θ)‖x − y‖2

Figure 3. − logfZ .
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Figure 4. (− logfZ)′′.

for all x, y ∈ R
d , θ ∈ (0,1). It is not hard to show that this is equivalent to convexity of

h(x) − 1
2c‖x‖2

for some c > 0. This leads (by replacing h by − logf ) to the following definition of strong
log-concavity of a (density) function: f : Rd → R is strongly log-concave if and only if

− logf (x) − 1
2c‖x‖2

is convex for some c > 0. Defining − logg(x) ≡ − logf (x)− (1/2)c‖x‖2, it is easily seen that f

is strongly log-concave if and only if

f (x) = g(x) exp
(−(1/2)c‖x‖2)

for some c > 0 and log-concave function g. Thus if f ∈ C2(Rd), a sufficient condition for strong
log-concavity is: Hess(− logf )(x) ≥ cId for all x ∈ R

d and some c > 0 where Id is the d × d

identity matrix.
Figure 4 provides compelling evidence for the following conjecture concerning strong log-

concavity of Chernoff’s density.

Conjecture 3.1. Let Z1 again be a “standard” Chernoff random variable. Then for σ ≥ σ0 ≈
0.541912 . . . = (−(logfZ1(z))

′′|z=0)
−1/2 the density fZ1 can be written as

fZ1(x) = ρ(x)
1

σ
ϕ(x/σ),
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where ϕ(x) = (2π)−1/2 exp(−x2/2) is the standard normal density and ρ is log-concave. Equiv-
alently, if c ≥ σ

3/2
0 ≈ 0.398927 . . . , then

fZc(x) = ρ̃(x)ϕ(x),

where ρ̃ is log-concave.

Proof. (Partial) Let w ≡ (− logfZc)
′′ and v ≡ (− loggc)

′′. Then

w(t) = v(t) + v(−t) ≥ 2v(0) = w(0) > 0

is implied by convexity of v and strict positivity of w(0). Thus, we want to show that v(2) =
(− loggc)

(4) ≥ 0.
To prove this, we investigate the normalized version of gc given by g̃c(x) = gc(x)Ai(0)/

(2/c)1/3 = gc(x)/
∫

gc(y)dy so that
∫

g̃c(x)dx = 1. Suppose that bi is given in (2.5), and let
Xi ∼ Exp(1/bi) be independent exponential random variables for i = 1,2, . . . . Since

∑∞
i=1 b2

i <

∞, the random variable Y0 = ∑∞
i=1(Xi − bi) is finite almost surely (see, e.g., Shorack [43],

Theorem 9.2, page 241) and the Laplace transform of −(δ + Y0) is given by

ϕ(s) ≡ e−δsEe−sY0 = exp(−δs) · 1∏∞
i=1(1 + bis)e−bi s

= 1

eδs · ∏∞
i=1(1 + bis)e−bi s

,

exactly the form of the Laplace transform of g implicit in the proof of Proposition 2.2, but without
the Gaussian term. Thus, we conclude that g̃c is the density of Y ≡ −δ −Y0 = −δ −∑∞

j=1(Xj −
bj ).

Now let λi = 1/bi for i ≥ 1. Thus, Xi ∼ Exp(λi). A closed form expression for the density of
Ym ≡ ∑m

i=1 Xi has been given by Harrison [24]. From Harrison’s theorem 1, Ym has density

fm(t) =
m∑

j=1

λj exp(−λj t)
∏
i 
=j

λi

λi − λj

. (3.1)

If we could show that vm(t) ≡ (− logfm)′′(t) is convex, then we would be done! Direct calcu-
lation shows that this holds for m = 2, but our attempts at a proof for general m have not (yet)
been successful. On the other hand, we know that for t ≥ 0,

w(t) = v(t) + v(−t) ≥ v(t) ≥ v(0) > 0

if v satisfies v(t) ≥ v(0) for all t ≥ 0, so we would have strong log-concavity with the con-
stant v(0). �
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4. Discussion and open problems

Log-concavity of Chernoff’s density implies that the peakedness results of Proschan [39] and
Olkin and Tong [35] apply. See also Marshall and Olkin [32], page 373, and Marshall, Olkin and
Arnold [33].

Note that the conclusion of Conjecture 3.1 is exactly the form of the hypothesis of the inequal-
ity of Hargé [23] and of Theorem 11, page 559, of Caffarelli [8]; see also Barthe [4], Theorem 2.4,
page 1532. Wellner [47] shows that the class of strongly log-concave densities is closed under
convolution, so in particular if Conjecture 3.1 holds, then the sum of two independent Chernoff
random variables is again strongly log-concave.

Another implication is that a theorem of Caffarelli [8] applies: the transportation map T =
∇ϕ is a contraction. In our particular one-dimensional special case, the transportation map T

satisfying T (X)
d= Z for X ∼ N(0,1) is just the solution of �(z) = FZ(T (z)), or equivalently

T (z) = F−1
Z (�(z)). This function is apparently connected to another question concerning convex

ordering of FZ and �(·) in the sense of van Zwet [46]; see also van Zwet [45]: is T −1(w) =
�−1(FZ(w)) convex for w > 0?

As we have seen above, Chernoff’s density has the symmetric product form (1.2) where g has
Fourier transform given in (1.4). In this case, we know from Section 2 that g ∈ PF∞.

As is shown in the longer technical report version of this paper Balabdaoui and Wellner [3], it
follows from the results of Bondesson [5,6] that the standard normal density φ can be written in
the same structural form as that of Chernoff’s density (1.2); that is:

φ(z) = 1
2g(z)g(−z), (4.1)

where now

g(z) ≡ (2/π)1/4 exp(z) exp

(∫ ∞

0
log

(
es + 1

es + ez

)
ds

)
(4.2)

= (2/π)1/4 exp

(
π2

12
+ z −

∫ ez

0

log(1 + t)

t
dt

)

is log-concave, integrable, and g ∈ log(HM∞), the log-transform (in terms of random variables)
of the Hyperbolically Completely Monotone class of Bondesson [5,6]. Two natural questions are:
(a) Does the function g in (1.2) satisfy g ∈ log(HM∞)? (b) Does the function g in (4.2) satisfy
g ∈ PF∞?

A further question remaining from Section 3: Is Chernoff’s density strongly log-concave?
A whole class of further problems involves replacing the (ordered) convex cone Kn in Sec-

tion 1 by the convex cone K̃n corresponding to a convexity restriction as in Section 2 of Groene-
boom, Jongbloed and Wellner [20]. In this latter case, the limiting distribution depends on an
“invelope” of the integral of a two-sided Brownian motion plus a polynomial drift as follows: it
is the density of the second derivative at zero of the “invelope”. See Groeneboom, Jongbloed and
Wellner [19,20] for further details and Balabdaoui, Rufibach and Wellner [2] for another convex-
ity related shape constraint where this limiting distribution occurs. However, virtually nothing is
known concerning the analytical properties of this distribution.
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