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Convergence of some random functionals of
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In this paper, we study the asymptotic behavior of sums of functions of the increments of a given semi-
martingale, taken along a regular grid whose mesh goes to 0. The function of the ith increment may depend
on the current time, and also on the past of the semimartingale before this time. We study the convergence
in probability of two types of such sums, and we also give associated central limit theorems. This extends
known results when the summands are a function depending only on the increments, and this is motivated
mainly by statistical applications.
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1. Introduction

In many practical situations, one observes a random process X at discrete times and one wants
to deduce from these observations, some properties on X. Take for example the specific case of
a 1-dimensional diffusion-type process X = Xθ depending on a real-valued parameter θ , that is:

dXs = σ(θ, s)dWs + a(θ, s)ds, (1.1)

where σ and a are (known) predictable functions on �×R+, and where W is a Brownian motion.
We observe the values of X at times i�, i = 0,1,2, . . . , n�, and the aim is to estimate θ . There
are two cases: in the first one the observation window is arbitrarily large. In the second case
(which is our concern here), the observation window is fixed, and so � = �n goes to 0 and
T = n�n is fixed.

Most known methods rely upon minimizing some contrast functions, like minus the log-
likelihood, and those are typically expressed as “functionals” of the form:

n∑
i=1

gn

(
σ
(
θ ′, (i − 1)�n

)
,Xθ

(i−1)�n
,Xθ

i�n
− Xθ

(i−1)�n

)
, (1.2)

with gn possibly depending on n, see, for example, [5]. In other words, the asymptotic behav-
ior (convergence, and if possible associated central limit theorems) of functionals like (1.2) is
very important. This is why, for a function f :� × R+ × R

d × R
d → R and a d-dimensional
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semimartingale X, we study the asymptotic behavior of the following two sequences of process

V n(f,X)t =
[t/�n]∑
i=1

f
(
ω, (i − 1)�n,X(i−1)�n,Xi�n − X(i−1)�n

)
,

V ′n(f,X)t = �n

[t/�n]∑
i=1

f

(
ω, (i − 1)�n,X(i−1)�n,

Xi�n − X(i−1)�n√
�n

)
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(1.3)

when �n → 0. So, providing some basic tools for statistical problems is our main aim in this
paper, although we do not study any specific statistical problem.

Another motivation for studying functionals like (1.3) is that they appear naturally in numerical
approximations of stochastic differential equations like the Euler scheme or more sophisticated
discretization schemes.

Let us now make two comments on the third argument of f in the processes in (1.3), namely
X(i−1)�n :

1. The functionals (1.3) are not changed if we replace f by g(ω, t, x) = f (ω, t,Xt−(ω), x),
so apparently one could dispense with the dependency of f upon its third argument. How-
ever, we will need some Hölder continuity of t �→ g(ω, t, x) which is not satisfied by g

defined as just above: so it is more convenient to single out the third argument.
2. One could replace X(i−1)�n by Y(i−1)�n for another semimartingale Y , say d ′-dimensional.

But those apparently more general functionals are like (1.3) with the (d + d ′)-dimensional
pair Z = (Y,X) instead of X.

When f (ω, s, z, x) ≡ f (x) (f is “deterministic”), (1.3) becomes:

V n(f,X) =
[t/�n]∑
i=1

f
(
Xi�n − X(i−1)�n

)
,

V ′n(f,X) = �n

[t/�n]∑
i=1

f

(
Xi�n − X(i−1)�n√

�n

)
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(1.4)

If further f (x) = |x|r , the processes V n(f,X) are known as the realized power variations, and
of course V ′n(f,X) = �

1−r/2
n V n(f,X).

The convergence of power variations is not new, see, for example, [10] an old paper by Lépin-
gle. Recently, they have been the object of a large number of papers, due to their applications
in finance. Those applications are essentially the estimation of the volatility and tests for the
presence or absence of jumps.

An early paper is Barndorff-Nielsen and Shephard [2], when X is a continuous Itô’s semi-
martingale. Afterwards, many authors studied these type of processes: Mancini [11] studied the
case where X is discontinuous with Lévy type jumps, in [6] Jacod studied the general case of a
Lévy process, Corcuera, Nualart and Woerner in [3] studied the case of a fractional process, . . . ,
the list is far from exhaustive. The results appear in their most general form for a continuous
semimartingale in [1] and a discontinuous one in [7].
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To give an idea of the expected results, let us mention that when X is a 1-dimensional Itô’s
semimartingale with diffusion coefficient σ and when f is continuous and “not too large near
infinity” (depending on whether X is continuous or not) we have

V ′n(f,X)t
P−→

∫ t

0
ρσs (f )ds

(see, e.g., [1]), where ρx is the law of the normal variable N (0, x2) and ρx(f ) is the integral of
f with respect to ρx .

In [2], Barndorff-Nielsen and Shephard give a central limit theorem for V ′n(f,X), using a
result of Jacod and Protter about a central limit theorem (or: CLT) for the Euler scheme for
stochastic differential equations, see [8]. This CLT has been generalized in many papers, like [1]
when X is continuous. If X is discontinuous, Jacod (in [7]) gives a CLT when the Blumenthal–
Getoor index p of X is smaller than 1, and no CLT is known when p > 1.

Concerning V n(f,X), in the uni-dimensional case, Jacod extends some old results of Lépingle
in [10]. In particular, if f (x) ∼ |x|r near the origin and is continuous and X is an arbitrary
semimartingale, then

V n(f,X)
P−→ D(f,X), (1.5)

with

D(f,X)t =

⎧⎪⎪⎨⎪⎪⎩
∑
s≤t

f (�Xs) if r > 2, or if r ∈ (1,2) and 〈Xc,Xc〉 ≡ 0,∑
s≤t

f (�Xs) + 〈Xc,Xc〉t , if r = 2,

where �Xs is the jump of X at time s, and Xc denotes the continuous martingale part of X.
Moreover, Jacod gives a central limit theorem for V n(f,X), first for Lévy processes in [6],
second for semimartingales in [7].

The difficulty of the extended setting in the present paper is due to the fact that f is not any
more deterministic and depends on all the variables (ω, s, z, x), as we have seen in the statistical
problem. We want to know to which extent the earlier results remain valid in this setting, and
especially the CLTs. Our concern is to exhibit reasonably general conditions on the test function
f which ensure that the previously known results extend. Note also that for the CLT concerning
V ′n(f,X), and contrary to the existing literature, we do not always assume that f (ω, t, z, x) is
even in x, although most applications concern the even case. The reader will also observe that in
some cases there are additional terms due to the parameter z in f (ω, t, z, x).

The paper is organized as follows: in Sections 2 and 3 we state the Laws of large numbers and
the CLT respectively, and in Sections 4 and 5 we give the proofs.
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2. Laws of large numbers

2.1. General notation

The basic process X is a d-dimensional semimartingale on a fixed filtered probability space
(�, F , (Ft )t≥0,P). We denote by �Xs = Xs − Xs− the jump of X at time s, and by I the set

I =
{
r ≥ 0:

∑
s≤t

‖�Xs‖r < ∞ a.s. for all t

}
.

Note that the set I always contains the interval [2,∞).
The optional and predictable σ -fields on � × R+ are denoted by O and P , and if g is a

function on � × R+ × R
l we call it optional (resp., predictable) if it is O ⊗ Rl-measurable

(resp., P ⊗ Rl-measurable), where Rl is the Borel σ -field on R
l .

The function f (unless otherwise stated) denotes a function from �×R+ ×R
d ×R

d into R
q ,

for some q ≥ 1. When f (ω, t, z, x) admits partial derivatives in z or x, we denote by ∇zf or
∇xf the corresponding gradients.

If M is a matrix, its transpose is Mt . The set of all p × q matrices is M(p, q), and T (p, q, r)

is the set of all p × q × r-arrays.
For any σ ∈ M(d,m), we denote by ρσ the normal law N (0, σσ t ), and by ρσ (f (ω, s, z, ·))

the integral of the function x �→ f (ω, s, z, x) with respect to ρσ .
We denote by B the set of all functions φ : Rd → R+ bounded on compact.
A sequence (Zn

t ) of processes is said to converge u.c.p. (for: uniformly on compact sets and

in probability) to Zt , and written Zn u.c.p.→ Z or Zn
t

u.c.p.→ Zt , if P(sups≤t ‖Zn
s − Zs‖ > ε) → 0 for

all ε, t > 0.

We write Zn L−(s)→ Z or Zn
t

L−(s)→ Zt , if the process Zn converge stably in law to Z, as processes
(see [9] for details on the stable convergence).

We gather some important properties of f in the following definition.

Definition 2.1. (a) We say that f is of (random) polynomial growth if there exist a locally
bounded process 
 (meaning: sups≤Tn


s ≤ n for a sequence Tn of stopping times increasing
a.s. to ∞), a function φ ∈ B, and a real p ≥ 0 such that

‖f (ω, s, z, x)‖ ≤ 
s(ω)φ(z)(1 + ‖x‖p). (2.1)

If we want to specify p, we say that f is at most of p-polynomial growth.
(b) we say that f is locally equicontinuous in x (resp., (z, x)) if for all ω, all T > 0, and

all compacts K,K ′ in R
d , the family of functions (x �→ f (ω, s, z, x))s≤T ,z∈K′ (resp., ((z, x) �→

f (ω, s, z, x))s≤T ) is equicontinuous on K (resp., K × K′).

2.2. Assumptions

Let us start with the assumptions on X. For V n(f,X) we only need X to be an arbitrary semi-
martingale. For V ′n(f ) we need X to be an Itô semimartingale and a little more. Recall first that
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the property of X to be an Itô semimartingale is equivalent to the following: there are, possibly
on an extension of the original probability space, an m-dimensional Brownian motion W (we
may always take m = d) and a Poisson random measure μ on R+ × R with intensity measure
ν(ds,dy) = F(dy)ds with F is a σ -finite measure on R, such that X can be written as

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs− dWs +

∫ t

0

∫
R

h(δ(s, y))(μ − ν)(ds,dy)

(2.2)

+
∫ t

0

∫
R

h′(δ(s, y))μ(ds,dy)

for suitable “coefficients” b (predictable d-dimensional), σ (optional d × m-dimensional), δ

(predictable d-dimensional function on � × R+ × R) and h is a truncation function from R
d

into itself (continuous with compact support, equal to the identity on a neighborhood of 0), and
h′(x) := x − h(x).

Then we set:

Hypothesis (N0). The process X is an Itô’s semimartingale, and its coefficients in (2.2) satisfy
the following: b and

∫
R
(1 ∧ ‖δ(ω, s, y)‖2)F (dy) are locally bounded, and σ is càdlàg.

For the test function f , we introduce the following, where A is an arbitrary subset of R
d :

Hypothesis (K[A]). f (ω, t, z, x) is continuous in (z, x) on R
d ×A and if (tn, zn, xn) → (t, z, x)

with x ∈ A and tn < t , then f (ω, tn, zn, xn) converges to a limit denoted by f (ω, t−, z, x).

2.3. Results

The first two theorems concern the processes V n(f ).

Theorem 2.2. Let X be an arbitrary semimartingale, and let f satisfies (K[Rd ]). Suppose there
exists a neighborhood V of 0 on R

d , a real p > 2, and for any K > 0, a locally bounded process

K such that:

‖z‖ ≤ K,x ∈ V ⇒ ‖f (ω, s, z, x)‖ ≤ 
K
s (ω)‖x‖p. (2.3)

Then V n(f ) converges a.s. for the Skorokhod topology to the process

D(f )t =
∑
s≤t

f (s−,Xs−,�Xs). (2.4)

Remark 2.3. This is one of the rare situations where one has almost sure convergence; see Sec-
tion 3.1 of [4] for some other ones.

Theorem 2.4. Let X be an arbitrary semimartingale, and let f be optional, satisfying (K[Rd ])
and f (ω, s, z,0) = 0, and be C2 in x on some neighborhood V of 0. Assume also that
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• For any j, k ∈ {1, . . . , d}, the functions ∂f
∂xj

(ω, s, x, z) and ∂2f
∂xj ∂xk

(ω, s, x, z) defined on �×
R+ × R

d × V satisfy (K[V ]).
• There is φ ∈ B and a locally bounded process 
 such that

d∑
j=1

(∥∥∥∥ ∂f

∂xj

(s, z,0)

∥∥∥∥+
d∑

k=1

(
sup
x∈V

∥∥∥∥ ∂2f

∂xj ∂xk

(s, z, x)

∥∥∥∥)
)

≤ 
sφ(z).

Then V n(f ) converges in probability, in the Skorokhod sense, to the process

D(f )t =
d∑

j=1

∫ t

0

∂f

∂xj

(s−,Xs−,0)dXs + 1

2

d∑
j,k=1

∫ t

0

∂2f

∂xj ∂xk

(s−,Xs−,0)d〈Xj,c,Xk,c〉s
(2.5)

+
∑

0<s≤t

(
f (s−,Xs−,�Xs) −

d∑
j=1

�X
j
s

∂f

∂xj

(s−,Xs−,0)

)
,

where Xc is the continuous martingale part of X.

The two versions (2.4) and (2.5) of D(f ) agree when f satisfies the hypotheses of Theo-
rem 2.2, so Theorem 2.4 extends Theorem 2.2 and gives the results in a more complete form.
This result was not known even in the case where f only depends on x.

Remark 2.5. Both theorems remain valid if the discretization grid is not regular, provided the
successive discretization times are stopping times and the mesh goes to 0 (see Sections 3.5 and
4.5 of [4] for results of this type).

Now we state the result about V ′n(f ).

Theorem 2.6. Let f be optional, satisfying (K[Rd ]), be locally equicontinuous in x and with
p-polynomial growth. Assume further that one of the following two conditions is satisfied:

1. X satisfies (N0) and p < 2.
2. X satisfies (N0) and is continuous.

Then

V ′n(f )
u.c.p.−→

∫ t

0
ρσs−(f (s−,Xs−, ·))ds. (2.6)

Remark 2.7. Comparing with [1] or [7], we see that there is no additional term due to the third
argument z in f (ω, s, z, x).

In the discontinuous case (1 of Theorem 2.6), the condition p < 2 simplifies the computations
but is not optimal. The result remains true valid if there exist φ,φ′ ∈ B such that:

φ′(x) → 0, when ‖x‖ → ∞, and ‖f (ω, s, z, x)‖ ≤ 
s(ω)φ(z)‖x‖2φ′(x).



1194 A. Diop

2.4. Some examples

Statisticians recognize it, do not wait for this article to investigate in specific cases the con-
vergence of the types of function studied here. Let us give some examples (the list is far from
exhaustive).

1. Consider the following stochastic differential equation: dZt = φ(Zt )dXt , where X is a
Levy process, and φ is such that this equation has a nonexploding solution. The associated
Euler scheme is written as follows:

Zn
0 = z; Zn

i�n
− Zn

(i−1)�n
= φ

(
Zn

(i−1)�n

)
�n

i X,

hence the last quantity is of the form f (Zn
(i−1)�n

,�n
i X), where f (ω, s, z, x) = φ(z)x (even

if Z depends on n here).
If we take the more general case where:

f (ω, s, z, x) = γs(ω)φ(z)g(x), (2.7)

where γ is an adapted, càdlàg process, φ and g are continuous functions.
(a) We can then apply Theorem 2.2 as soon as g(x) = O(‖x‖p) where p > 2, in a neigh-

borhood of 0.
(b) We can apply Theorem 2.4 if g(0) = 0 and g is C2 in a neighborhood of 0.
(c) At last, we can apply Theorem 2.6 if ‖g(x)‖ ≤ C(1 + ‖x‖p), with p < 2 if X is dis-

continuous.
2. Let us take now the example of the following model, studied in [5]:

dXθ
t = a(t,Xt )dt + σ(θ, t,Xt )dWt, (2.8)

where a is a function: R+ × R
d → R

d , and σ :� × R+ × R
d → Rd × R

m, and where �

is a compact set of R
q , and at last W is a m-dimensional Brownian motion.

The goal is to estimate the unknown parameter θ from the observations: Xi�n, i =
0,1, . . . , [t/�n].

We suppose the hypothesis (H1) of [5] satisfied, which in particular implies that (2.8)
has a unique weak solution (taken on the canonical space) that we denote by P

θ .
Define

c(θ, s, x) := σ(θ, s, z)σ (θ, s, z)t , (2.9)

and if S +
d denote the set of all symmetric nonnegative d × d matrix, we set S := {G ∈

S +
d ,detG �= 0}. Clearly S = ⋃

l∈R� Sl , where Sl = {G ∈ S +
d ,‖G‖ ≤ l, 1

l
≤ detG ≤ l}.

Assume further that

lim
l→∞ P

θ
(
c(θ ′, t,Xt ) ∈ Sl ,∀θ ′, t

)= 1

for all θ , then for each θ , the function

f θ (s, z, x) = log(det c(θ, s, z)) + xtσ (θ, s, z)σ (θ, s, z)t x (2.10)
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(see [5] for details on the choice of this function), satisfies the hypothesis of Theorem 2.6.
In particular,

V ′n(f θ ′
)

u.c.p.−→ U(θ, θ ′)

under P
θ , where

U(θ, θ ′)t =
∫ t

0
ρσ(θ,s,Xθ

s )(f
θ ′

(s,Xθ
s , ·))ds.

Moreover, the convergence takes place uniformly in θ ′ here (because of Hypothesis 1
in [5]).

If further we have an identifiability hypothesis of the model (see (H4) of [5]), then the
minimum contrast estimator θn := argminθ ′ V ′n(f θ ′

) (where argmin is the argument of
the minimum and which exists because the application θ ′ → V ′n(f θ ′

) is continuous on the
compact �) converges in probability under P

θ to θ . Hence, the consistency of the estimator.

3. Central limit theorems

In the framework of the CLT, one needs some additional assumptions both on X and on f , which
depend on the problem at hand.

3.1. Assumptions on X

Hypothesis (N1). (N0) is satisfied, and there exist a sequence (Sk) of stopping times increasing
to ∞ and deterministic Borel functions (γk) such that:

‖δ(ω, s, y)‖ ≤ γk(y) if s ≤ Sk(ω) and
∫

R

(
1 ∧ γk(y)2)F(dy) < ∞.

The next assumption depends on a real s ∈ [0,2]:

Hypothesis (N2(s)). (N1) is satisfied, the mapping t �→ δ(ω, t, y) is càglàd, and
∫

R
(1 ∧

γk(y)s)F (dy) < ∞. Moreover, the process σ in (2.2) satisfies:

σt = σ0 +
∫ t

0
b̃u du +

∫ t

0
σ̃u dWu + Mt +

∑
u≤t

�σu1{‖�σu‖≥1}, (3.1)

where

• b̃ is predictable and locally bounded.
• σ̃ is càdlàg, adapted with values in T (d,m,m).
• M is an M(d,m)-valued local martingale, orthogonal to W and satisfying ‖�Mt‖ ≤ 1

for all t . Its predictable quadratic covariation is 〈M,M〉t = ∫ t

0 au du, where a is locally
bounded.
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• The predictable compensator of
∑

u≤t 1{‖�σu‖≥1} is
∫ t

0 ãu du, where ã is locally bounded.

Clearly, (N2(s)) ⇒ (N2(s
′)), if s < s′.

Remark 3.1. It is well known that the assumptions on σ in (N2(s)) may be replaced by the
following one (up to modifying the Poisson measure μ):

σt = σ0 +
∫ t

0
b̃u ds +

∫ t

0
σ̃u dWu +

∫ t

0
ṽu dVs +

∫
R

∫ t

0
k(̃δ(u, y)) � (μ − ν)(du,dy)

(3.2)

+
∫

R

∫ t

0
k′(̃δ(u, y)) � μ(du,dy),

where b̃ and σ̃ are like in (N2(s)) and

• V is a l-dimensional Brownian motion independent of W .
• ṽ takes its values in T (d,m, l), is progressively measurable and locally bounded.
• k(x) is a truncation function on R

d × R
m and k′(x) := x − k(x).

• δ̃ :� × R+ × R → M(d,m) is predictable and is such that:
∫

R
(1 ∧ ‖̃δ(u, y)‖2)F (dy) is

locally bounded.

Of course, a, ã, ṽ and δ̃ are related, for example if k(x) = x1{‖x‖<1}, one has ṽ2
u +∫

{‖̃δ(u,y)‖≤1} δ̃
2(u, y)F (dy) = a2

u and ãu = ∫
{‖̃δ(u,y)‖>1} F(dy).

3.2. Assumptions on the test function f

Hypothesis (M1). f is optional and there exists a neighborhood V of 0 such that f (ω, s, z, x)

is C1 in (z, x), the functions ∇xf , ∇zf are C1 in x on V , and

f (ω, s, z,0) = ∇xf (ω, s, z,0) ≡ 0.

Moreover, there are a locally bounded process 
, a real α > 1
2 , and some functions φ, ε and θ

belonging to B, with ε(x) → 0 as ‖x‖ → 0 and θ(x) ≤ ‖x‖2 in the neighborhood of 0, such that:

d∑
j,j ′=1

(∥∥∥∥ ∂2f

∂xj ∂xj ′
(ω, s, z, x)

∥∥∥∥+
∥∥∥∥ ∂2f

∂xj ∂zj ′
(ω, s, z, x)

∥∥∥∥)≤ 
s(ω)φ(z)‖x‖ε(x),

and for all T > 0 and s, t ∈ [0, T ],
‖f (ω, t, z, x) − f (ω, s, z, x)‖ ≤ 
T (ω)φ(z)|t − s|αθ(x). (3.3)

Hypothesis (M2). f (ω, t, z, x) is optional, C1 in (z, x), with ∇xf and ∇zf of (random) poly-
nomial growth and locally equicontinuous in (z, x), and there are 
, φ, α as in (M1) and some
p > 0 such that for all T > 0 and s, t ∈ [0, T ],

‖f (ω, s, z, x) − f (ω, t, z, x)‖ ≤ 
T (ω)φ(z)|t − s|α(1 + ‖x‖p). (3.4)
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Hypothesis (M ′
2). (M2) is satisfied and moreover

‖f (ω, s, z, x)‖ + ‖∇xf (ω, s, z, x)‖ ≤ φ(z)
s(ω).

Remark 3.2. The previous assumptions are fulfilled by most of the test functions used in statistic.
For illustration, let us come back to the examples of Section 2.4.

(a) If f is written as in (2.7) where, γ is adapted and Hölderian in s with index α > 1/2, where

the function φ is C1, while g is C2 and satisfies g(0) = ∇xg(0) = 0 and ∂2g

∂x2
j

(x) = o(‖x‖)
when x → 0 for any j = 1, . . . , d . Then (M1) is satisfied.

(b) If now f satisfies the same conditions as in (a), except we just need here the function g to
be C1 and ∇xg to be at polynomial growth. Then f satisfies (M2).

(c) Under the hypothesis of example (3) of Section 2.4, if further c defined in (2.9) takes its
values in S l for some real l > 0, then for each θ , the function f θ defined in (2.10) satisfies
(M2).

3.3. The results

In order to define the limiting processes, we need to expand the original space (�, F , (Ft )t≥0,P),
what we do as follows:

Consider an auxiliary space (�′, F ′,P
′), which supports a q-dimensional Brownian motion

W and some sequences {(Uk
p)1≤k≤m; (U ′k

p )1≤k≤m; (κp)}p≥1 of random variables, where the Uk
p

and U ′k
p are normal N (0,1) and the (κp) are uniform on (0,1). We suppose all these variables

and processes mutually independent.
Now set:

�̃ = � × �′, F̃ = F ⊗ F ′, P̃ = P ⊗ P
′.

We then extend the variables and processes defined on � or �′ on the space �̃, in the usual way.
Let (Tp) be an arbitrary sequence of stopping times exhausting the jumps of X (meaning: they

are stopping times such that for all (ω, s) with �Xs(ω) �= 0, there exists a unique p such that
Tp(ω) = s). We define on �̃ the filtration (F̃t ) which is the smallest one satisfying the following
conditions:

• (F̃t ) is right continuous, and Ft ⊂ F̃t ,
• W is adapted on (F̃t ),
• the variables Uk

p,U ′k
p and κp are F̃Tp measurable.

Now we are ready to give the results. We start with V n(f ):

Theorem 3.3. Suppose that X satisfies (N1) and f satisfies (M1), then

1√
�n

(
V n(f ) − D(f )[t/�n]�n

) L−→ Ft ,
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where the process F is

Ft =
∑

p:Tp≤t

d∑
j=1

m∑
k=1

((√
κpσ

j,k
Tp−Uk

p +√
1 − κpσ

j,k
Tp

U ′k
p

) ∂f

∂xj

(Tp−,XTp−,�XTp)

(3.5)

− √
κpσ

j,k
Tp−Uk

p

∂f

∂zj

(Tp−,XTp−,�XTp)

)
.

Remark 3.4. The last term in (3.5) is due to the third argument of f , and does not appear in [7].
One could show that the theorem remains valid if, in the formula (3.3), θ(x) ≤ ‖x‖p near the
origin for some p ∈ [0,2] ∩ I .

It is useful to give some properties of the process F above. For this, under (M1) and (N1), one
defines an M(q, q)-valued process C(f ) as follows:

C(f )t = 1

2

∑
p:Tp≤t

d∑
j,j ′=1

m∑
k=1

{
(σ

j,k
Tp−σ

j ′,k
Tp− + σ

j,k
Tp

σ
j ′,k
Tp

)

×
(

∂f

∂xj

)(
∂f

∂xj ′

)t

◦ (Tp−,XTp−,�XTp)

− σ
j,k
Tp−σ

j ′,k
Tp−

((
∂f

∂xj

)(
∂f

∂zj ′

)t

+
(

∂f

∂zj

)(
∂f

∂xj ′

)t)
(3.6)

◦ (Tp−,XTp−,�XTp)

+ σ
j,k
Tp−σ

j ′,k
Tp−

(
∂f

∂zj

)(
∂f

∂zj ′

)t

◦ (Tp−,XTp−,�XTp)

}
.

The following lemma is given without proof, since it is an immediate generalization of
Lemma 5.10 of [7].

Lemma 3.5. If (M1) and (N1) are satisfied, then C(f ) is well defined and F is a semimartingale
on the extended space (�̃, F̃ , P̃). If further C(f ) is locally integrable, then F is a locally square-
integrable martingale.

Conditionally on F , the process F is a square integrable centered martingale with independent
increments, its conditional variance is C(f )t = Ẽ{F 2

t |F }, its law is completely characterized by
X and σσ t and does not depend on the choice of the sequence (Tp).

Now we turn to V ′n(f ). Under (M2) or (M3(r)), one defines a process a taking its value in
M(q, q) and satisfying for any j, k ∈ {1, . . . , q}:

q∑
l=1

a
j,l
t a

l,k
t = ρσt ((f

jf k)(t,Xt , ·)) − ρσt (f
j (t,Xt , ·))ρσt (f

k(t,Xt , ·)). (3.7)



Convergence of some random functionals of discretized semimartingales 1199

The process a, which may be chosen (Ft )-adapted, is the square-root of the symmetric semi-
definite positive element of M(m,m) whose components are given by the right side of (3.7).

Theorem 3.6. Suppose f (ω, s, z, x) even in x, and assume that one of the following hypotheses
is satisfied:

• X is continuous and satisfies (N2(2)) and f satisfies (M2).
• one has (N2(s)) for some s ≤ 1 and (M ′

2).

Then

1√
�n

(
V ′n(f )t −

∫ t

0
ρσs f (s,Xs, ·)ds

)
L−(s)−→ L(f )t ,

where

L(f )t =
∫ t

0
as dWs. (3.8)

Remark 3.7. Some times, one wants to apply the theorem for functions of the type f (ω, s, z,

x) = g(ω, s, z)‖x‖r , which are not any more C1 in x on R
d when r ∈ (0,1]. Specifically, con-

sider the following hypothesis.

Hypothesis (M3(r)). f (ω, s, z, x) is optional and there is a closed subset B of R
d with Lebesgue

measure 0 such that the application x → f (ω, t, z, x) is C1 on Bc . Moreover, there are p ≥ 0
and α, φ and 
 as in (M1) such that for all T > 0 and s, t ∈ [0, T ],

‖f (ω, s, z, x1 + x2) − f (ω, s, z, x1)‖ ≤ 
T (ω)φ(z)(1 + ‖x1‖p)‖x2‖r ,

‖f (ω, s, z, x) − f (ω, t, z, x)‖ ≤ 
T (ω)φ(z)|t − s|α(1 + ‖x‖p).

}
(3.9)

Moreover,

• if r = 1 then ∇xf defined on � × R+ × R
d × Bc is locally equicontinuous in (z, x) and is

at most with polynomial growth.
• if r �= 1, then for any element C ∈ M(d, d) which is positive definite and any N (0,C)-

random vector U , the distance from U to B has a density ψC on R+, satisfying
supx∈R+,‖C‖+‖C−1‖<K ψC(x) < ∞ for all K < ∞. For any x1 ∈ Bc,

‖∇xf (ω, s, z, x1)‖ ≤ 
s(ω)φ(z)(1 + ‖x1‖p)

d(x1,B)1−r
, (3.10)

and if ‖x2‖ <
d(x1,B)

2 , we have

‖∇xf (ω, s, z, x1 + x2) − ∇xf (ω, s, z, x1)‖ ≤ 
s(ω)φ(z)(1 + ‖x1‖p)‖x2‖
d(x1,B)2−r

. (3.11)

Then we can show that the results of Theorem 3.6 remain valid if f satisfies (M3(r)) for some
r ∈ (0,1] and X satisfies (N2(2)) with σσ t everywhere invertible, if further one of the following
condition is satisfied:
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• f satisfies (M3(r)) and X is continuous,
• f satisfies (M3(r)) and the real p in (3.9), (3.10) and (3.11) is always equal 0, while X

satisfies (N2(s)) and either s ∈ [0, 2
3 ) and r ∈ (0,1) or s ∈ ( 2

3 ,1) and r ∈ (
1−

√
3s2−8s+5
2−s

,1).

Our next objective is to generalize the CLT for V ′n(f ) in the case where f is not even. For
this, we need some additional notation.

Let U be an N (0, Idm) random vector, where Idm is the identity matrix of order m (recall that
m is the dimension of the Brownian motion W in (N2(s))). We then denote by ρ′, the law of U

and by ρ′(g1(·)) the integral of any function g1 : Rm → R
q with respect to ρ′ if it exists. If now

g2 : R
d → R

q and x ∈ M(d,m), we set: ρ′(g2(x·)) = E{g2(xU)}.
For any j ∈ {1, . . . ,m}, we define the projection Pj on R

m by:

Pj (u) := uj if u = (u1, . . . , um).

Under (M2), we define w(1) and w(2), two adapted processes taking their values respectively in
the spaces M(q,m) and M(q, q), and such that for all j, k ∈ {1, . . . , q} and j ′ ∈ {1, . . . ,m} we
have

w(1)
j,j ′
s = ρ′(f j (s,Xs, σs.)Pj ′(·)),

q∑
l=1

w(2)
j,l
t w(2)

l,k
t = ρ′((f jf k)(s,Xs, σs.))

− ρ′(f j (s,Xs, σs.))ρ
′(f k(s,Xs, σs.)) −

m∑
l′=1

w(1)
j,l′
t w(1)

l′,k
t .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.12)

The process w(2) is the square-root of the matrix whose components are given by the right side
of the second equality in (3.12). Finally, under (N2(2)) set

b′ = b −
∫

R

h(δ(s, y))F (dy). (3.13)

Theorem 3.8. Assume either one of the following two assumptions:

• X satisfies (N2(2)) and is continuous and f satisfies (M2).
• We have (N2(s)) for some s ≤ 1 and f satisfies (M ′

2).

If further b′ ≡ 0 and σ̃ ≡ 0, we have

1√
�n

(
V ′n(f )t −

∫ t

0
ρ′f (s,Xs, σs.)ds

)
L−(s)−→ L(f )t ,

where

L(f )t :=
∫ t

0
w(1)s dWs +

∫ t

0
w(2)s dWs. (3.14)
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Remark 3.9. Clearly, when f is even in x, the two versions of the process L(f ) in Theorems 3.6
and 3.8, agree. If X satisfies (N2(s)) with s ≤ 1, the hypotheses b′ = 0 and σ̃ = 0 yield that X

has the form:

Xt = X0 +
∫ t

0
σs dWs +

∑
s≤t

�Xs. (3.15)

4. Proof of the laws of large numbers

4.1. Theorems 2.2 and 2.4

We start by stating two important lemmas, without proof. The first one is a (trivial) extension
of what is done in Section 3.1 of [7], and the Hypothesis (K[R]) plays a crucial role. The sec-
ond one is a generalization of Itô’s formula, and its proof can be found for example in [4] (see
Lemma 3.4.2).

Lemma 4.1. Let X be an arbitrary semimartingale, and f be a function satisfying (K[R]) and
such that f (s, z, x) = 0 if ‖x‖ ≤ ε for some ε > 0. Then

V n(f )t −
∑

s≤[t/�n]�n

f (s−,Xs−,�Xs)

converges in variation to 0 when n → ∞, for each ω ∈ �.

Lemma 4.2. Let X be a semimartingale and f (ω,u, z, x) be an optional function, C2 in x. Then
for any u, for almost all ω and for any t ≥ u, one has:

f (u,Xu,Xt ) = f (u,Xu,Xu) +
d∑

j=1

∫ t

u+
∂f

∂xj

(u,Xu,Xs−)dXs

+
d∑

j,j ′=1

1

2

∫ t

u+
∂2f

∂xj ∂xj ′
(u,Xu,Xs−)d〈Xj,c,Xj ′,c〉s

+
∑

u<s≤t

(
f (u,Xu,Xs) − f (u,Xu,Xs−) −

d∑
j=1

�X
j
s

∂f

∂xj

(u,Xu,Xs−)

)
.

Now we are ready to prove the two theorems about V n(f ).

Proof of Theorem 2.2. We have:

V n(f )t = Zn(f )t +
∑

s≤[t/�n]�n

f (s−,Xs−,�Xs),
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where

Zn(f )t =
[t/�n]∑
i=1

f
(
(i − 1)�n,X(i−1)�n,�

n
i X

)−
∑

s≤[t/�n]�n

f (s−,Xs−,�Xs). (4.1)

It is well known that ∑
s≤[t/�n]�n

f (s−,Xs−,�Xs) −→
∑
s≤t

f (s−,Xs−,�Xs)

for the Skorokhod Topology. Thus, in order to prove the theorem, it is sufficient to prove that the
processes Zn(f ) converge for the Skorokhod Topology to 0. We go to show something stronger,
that is Zn(f ) converge uniformly on compact sets to 0.

We suppose first that ‖Xt‖ ≤ C identically for some constant C. According to Theorem 4 of
[10], one has:

[t/�n]∑
i=1

|�n
i X

j |p + ∣∣Xj
t − X

j
[t/�n]�n

∣∣p −→
∑
s≤t

|�X
j
s |p a.s.

for any j ∈ {1, . . . , d}, where Xj is the j th component of X and �n
i X

j , the increment X
j
i�n

−
X

j

(i−1)�n
.

Since the mappings t �→ ∑
s≤t |�X

j
s | and t �→ ∑[t/�n]

i=1 |�n
i X

j |p are increasing, we deduce
that for almost all ω and for any real t > 0,

lim sup
n

[t/�n]∑
i=1

‖�n
i X‖p ≤ dp−1

d∑
j=1

∑
s≤t

|�X
j
s |p. (4.2)

Let now ψ : R → R be a C∞ function such that 1[−1,1](y) ≤ ψ(y) ≤ 1[−2,2](y). For any y ∈ R

and x = (x1, . . . , xd) ∈ R
d , we set:

ψε(y) =

⎧⎪⎨⎪⎩ψ

(
y

ε

)
, if ε < ∞,

1, if ε = ∞,

�ε(x) =
d∏

j=1

ψε(xj ), (4.3)

then

�ε(x) =
{

1, if ‖x‖ ≤ ε,

0, if ‖x‖ > 2dε.

Next

Zn(f ) = Zn(f �ε) + Zn
(
f (1 − �ε)

)
, (4.4)

hence

lim sup
n

sup
t≤T

‖Zn(f )t‖ ≤ lim sup
n

sup
t≤T

‖Zn(f �ε)t‖ + lim sup
n

sup
t≤T

∥∥Zn
(
f (1 − �ε)

)
t

∥∥ (4.5)
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for any T > 0. By Lemma 4.1, one has

lim
ε→0

lim sup
n

sup
t≤T

∥∥Zn
(
f (1 − �ε)

)
t

∥∥= 0. (4.6)

Otherwise by (2.3), (4.2) and since ‖X‖ ≤ C, one has if q ∈ (2,p) and ε small enough:

lim sup
n

sup
s≤t

‖Zn(f �ε)t‖

≤ lim sup
n

(2dε)p−q
2C
t

([t/�n]∑
i=1

‖�n
i X‖q +

∑
s≤t

‖�Xs‖q

)

≤ 2dp−1(2dε)p−q
2C
t

d∑
j=1

∑
s≤t

|�X
j
s |q .

Since
∑

s≤t |�X
j
s |q < ∞, by letting ε → 0 we conclude

lim sup
n

sup
s≤t

‖Zn(f �ε)s‖ = 0,

which ends the proof in the case where X is bounded.
The general case is deduced by a classical method of “localization,” for which we refer to

Section 3 of [1] for details. �

Proof of Theorem 2.4. We use the previous notation, with Zn(f ) as in (4.1) and D(f ) as
in (2.5). Since (2.4) and (2.5) give the same process D(f (1 − �ε)), we still have (4.6). This,
combined with the first part of the proof of Theorem 2.2 implies that it is enough here to prove
the following:

Zn(f �ε)
u.c.p.−→ 0. (4.7)

Set fε := f �ε . By the hypotheses on f , the function fε is C2 in x as soon as ε small enough.
We then apply Lemma 4.2 to each fε((i − 1)�n,X(i−1)�n,�

n
i X), which gives Zn(fε)t =∑3

l=1 Zn(fε, l)t , where with the notation Yn
s = Xs − X(i−1)�n and φn(s) := (i − 1)�n for

s ∈ ((i − 1)�n, i�n], we have

Zn(fε,1)t =
d∑

j=1

∫ [t/�n]�n

0

(
∂fε

∂xj

(
φn(s),Xφn(s), Y

n
s

)− ∂fε

∂xj
(s−,Xs−,0)

)
dX

j
s ,

Zn(fε,2)t = 1

2

d∑
j,k=1

∫ [t/�n]�n

0

(
∂2fε

∂xj ∂xk

(
φn(s),Xφn(s), Y

n
s

)
− ∂2fε

∂xj ∂xk
(s−,Zs−,0)

)
d〈Xc,j ,Xc,k〉s ,
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Zn(f,3)t =
∑
s≤t

(
fε

(
φn(s),Xφn(s), Y

n
s

)− fε(s−,Xs−,�Xs) − fε

(
φn(s),Xφn(s), Y

n
s−
)

−
d∑

j=1

�X
j
s

(
∂fε

∂xj

(
φn(s),Xφn(s), Y

n
s−
)− ∂fε

∂xj
(s−,Xs−,0)

))
.

Observe now that ∂fε

∂xj (φn(s),Zφn(s), Y
n
s−) → ∂fε

∂xj (s−,Zs−,0) when n → ∞. Since ∂fε

∂xj is dom-
inated by a locally bounded processes, Lebesgue’s theorem gives:

Zn(fε,1)
u.c.p.→ 0.

The proof of Zn(fε, j)
u.c.p.→ 0 for j = 2,3 is similar, and we thus have (4.7). �

4.2. Proof of Theorem 2.6

Let us start by strengthening the hypothesis (N0):

Hypothesis (LN0). (N0) is satisfied, and the processes bs, σs,
∫

R
(1 ∧ ‖δ(ω, s, y)‖2)F (dy) and

Xs are bounded by a constant.

We also suppose that the process 
 which intervenes in (2.1) is uniformly bounded. Below,
we denote all constants by K . Set

βn
i = σ(i−1)�n

�n
i W√
�n

. (4.8)

Lemma 4.3. Suppose (LN0) satisfied and f optional, satisfying (K[R]) and at most with poly-
nomial growth. Then

�n

[t/�n]∑
i=1

E
{
f
(
(i − 1)�n,X(i−1)�n, β

n
i

)|F(i−1)�n

} u.c.p.−→
∫ t

0
Hs− ds, (4.9)

when n → ∞, where Hs = ρσs (f (s,Xs, ·)).

Proof. The left side of (4.9) is almost surely equal to �n

∑[t/�n]
i=1 H(i−1)�n . This is a Riemann

sum which therefore converges to
∫ t

0 Hs− ds locally uniformly in t , because H is a càdlàg pro-
cess. �

Lemma 4.4. Let f be optional, locally equicontinuous in x and with at most p-polynomial
growth. Assume further that X satisfies (LN0) and either is continuous or p < 2. Then

�n

[t/�n]∑
i=1

E

(∥∥∥∥f((i − 1)�n,X(i−1)�n,
�n

i X√
�n

)
− f

(
(i − 1)�n,X(i−1)�n, β

n
i

)∥∥∥∥)→ 0.
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Proof. We reproduce the proof of Lemma 4.4(2) of [4] with some relevant changes. For any
A,T , ε > 0, we define the variables

GT (ε,A) = sup
s≤T ;‖x‖≤A;‖z‖≤K;‖y‖≤ε

‖f (s, z, x + y) − f (s, z, x)‖,

ζ n
i =

∥∥∥∥f((i − 1)�n,X(i−1)�n,
�n

i X√
�n

)
− f

(
(i − 1)�n,X(i−1)�n, β

n
i

)∥∥∥∥.
Then

‖ζ n
i ‖ ≤ Gt(ε,A) + ‖ζ n

i ‖(1{‖βn
i ‖>A} + 1{‖�n

i X/
√

�n−βn
i ‖>ε}

)
. (4.10)

Let q be a real such that q > p if X is continuous and q = 2 if not. Then (2.1) (with 
 a
constant here) yields, for all B > 1:

‖f (ω, s, z, x)‖ ≤ Kφ(z)(Bp−q‖x‖q + Bp).

Also under (LN0) one knows that:

E
{∥∥�n

i X/
√

�n − βn
i

∥∥q + ‖βn
i ‖q

}≤ K.

Hence, by (4.10):

‖ζ n
i ‖ ≤ Gt(ε,A) + KBp

(
1{‖βn

i ‖>A} + 1{‖�Xn
i /

√
�n−βn

i ‖>ε}
)

+ KBp−q
(‖βn

i ‖q + ∥∥�n
i X/

√
�n − βn

i

∥∥q)
.

It follows that

�n

[t/�n]∑
i=1

E{‖ζ n
i ‖} ≤ t

(
E{Gt(ε,A)} + KBp

A
+ KBp−q

)
(4.11)

+ KBpε−2�n

[t/�n]∑
i=1

E
{
1 ∧ ∥∥�n

i X/
√

�n − βn
i

∥∥2}
.

Next by Lemma 4-1 of [7]

�n

[t/�n]∑
i=1

E
{
1 ∧ ∥∥�n

i X/
√

�n − βn
i

∥∥2}−→ 0.

Then coming back to (4.11) and letting successively n → ∞, ε → 0,A → ∞ and B → ∞, we
obtain the result. �
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Proof of Theorem 2.6. We first prove the theorem under the stronger assumptions (LN0) and

t in (2.1) bounded. Set

U ′n
t := �n

[t/�n]∑
i=1

f

(
(i − 1)�n,X(i−1)�n,

�n
i X√
�n

)
−
∫ t

0
ρσs (f (s−,Xs, ·))ds.

Then U ′n
t =∑3

j=1 U ′n
t (j), where

U ′n
t (1) = �n

[t/�n]∑
i=1

(
f

(
(i − 1)�n,X(i−1)�n,

�n
i X√
�n

)
− f

(
(i − 1)�n,X(i−1)�n, β

n
i

))
,

U ′n
t (2) = �n

[t/�n]∑
i=1

(
f
(
(i − 1)�n,X(i−1)�n, β

n
i

)
− E

{
f
(
(i − 1)�n,X(i−1)�n, β

n
i

)|F(i−1)�n

})
,

U ′n
t (3) = �n

[t/�n]∑
i=1

E
{
f
(
(i − 1)�n,X(i−1)�n, β

n
i

)|F(i−1)�n

}−
∫ t

0
ρσs (f (s−,Xs, ·))ds.

Observe first that U ′n
t (2) is a martingale with respect to the filtration (F[t/�n]�n)t≥0, and its

predictable quadratic variation is given by:

〈U ′n(2)〉t = �2
n

[t/�n]∑
i=1

(
E
{
f
(
(i − 1)�n,X(i−1)�n, β

n
i

)2|F(i−1)�n

}
− (

E
{
f
(
(i − 1)�n,X(i−1)�n, β

n
i

)|F(i−1)�n

})2)
,

which satisfies 〈U ′n(2)〉t ≤ Kt�n. It follows by Doob’s inequality, that U ′n
t (2)

u.c.p.→ 0. We have
the same results for U ′n

t (1) and U ′n
t (3), respectively, by Lemmas 4.4 and 4.3.

At this stage, the theorem is proved under the stronger assumptions announced at the beginning
of the proof, and as said in Theorem 2.2, the general case ensues by a classical localization
method. �

5. Proof of the central limit theorems

5.1. Proof of Theorem 3.3

We start again by strengthening our hypotheses:

Hypothesis (LN1). (N1) is satisfied, and the processes b, σ and X are bounded. The functions
γk = γ do not depend on k and are bounded.
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Hypothesis (LM1). We have (M1) and the process 
 is bounded.

Under (LN1), we have:

Xt = X0 +
∫ t

0
b′
s ds +

∫ t

0
σs dWs +

∫ t

0

∫
R

δ(s, y)(μ − ν)(ds,dy), (5.1)

where

b′
s := bs +

∫
R

h′(δ(s, y))F (dy). (5.2)

For ε > 0, set:

E = {y ∈ R, γ (y) > ε} and Nt = 1E � μ
t
, (5.3)

and let T ′
1, . . . , T

′
p, · · · be the successive jump times of N .

We state two important lemmas, the first of which is due to Jacod and Protter (Lemma 5.6 of
[8]), and the second one is Lemma 5.9 of [7].

Lemma 5.1. Suppose (LN1) satisfied, and for each T ′
p , denote by inp the integer such that (inp −

1)�n < T ′
p ≤ inp�n. Then the sequence of random variables

1√
�n

(
σ(inp−1)�n

(
WT ′

p
− W(inp−1)�n

)
, σT ′

p
(Winp�n − WT ′

p
)
)
p≥1

converges stably in law to (√
κpσT ′

p−Up,
√

1 − κpσT ′
p
U ′

p

)
p≥1,

where Up is such that Ut
p = (U1

p, . . . ,Um
p ) and U ′t

p = (U ′1
p , . . . ,U ′m

p ).

Lemma 5.2. Under the assumptions of Lemma 5.1, one has:

1√
�n

(
Xinp�n − XT ′

p
− σT ′

p
(Winp�n − WT ′

p
)
) P−→ 0,

and

1√
�n

(
XT ′

p− − X(inp−1)�n − σ(inp−1)�n

(
WT ′

p
− W(inp−1)�n

)) P−→ 0.

We are now ready to give the proof of the theorem.
The processes

Wn(f ) = 1√
�n

(
V n(f )t −

∑
s≤[t/�n]�n

f (s−,Xs−,�Xs)

)
(5.4)



1208 A. Diop

satisfy Wn(f ) = Wn(f,1) + Wn(f,2), where with φn(s) as in the proof of Theorem 2.4:

Wn(f,1)t = 1√
�n

(
V n(f )t −

∑
s≤[t/�n]�n

f (φn(s),Xs−,�Xs)

)
,

Wn(f,2)t = 1√
�n

∑
s≤[t/�n]�n

(
f (φn(s),Xs−,�Xs) − f (s−,Xs−,�Xs)

)
.

Now (3.3) yields that Wn(f,2)
u.c.p.−→ 0 and for all ε > 0, we have

Wn(f,1) = Wn
(
f (1 − �ε),1

)+ Wn(f �ε,1), (5.5)

where �ε is as in (4.3). Then the rest of the proof of Theorem 3.3 is divided in three steps.
Step 1: Here we study the convergence of the process Wn(f (1 − �ε),1). By Section 3.1 of

[7], for n large enough one has:

Wn
(
f (1 − �ε)

)
= 1√

�n

∑
p:T ′

p≤[t/�n]�n

(
f (1 − �ε)

(
(inp − 1)�n,X(inp−1)�n,�

n
i X

)
− f (1 − �ε)

(
(inp − 1)�n,XT ′

p−,�XT ′
p

))
= 1√

�n

∑
p:T ′

p≤[t/�n]�n

(
d∑

j=1

(�n
inp

Xj − �X
j

T ′
p
)
∂f (1 − �ε)

∂xj

(
(inp − 1)�n,X

′n
p ,X

n

p

)

+
d∑

j=1

(
X

j

(inp−1)�n
− X

j

T ′
p−
)∂f (1 − �ε)

∂zj

(
(inp − 1)�n,X

′n
p ,X

n

p

))
,

where (X
′n
p ,X

n

p) is between (X(inp−1)�n,�
n
i X) and (XT ′

p−,�XT ′
p
). Then by Lemma 5.2 and 5.1,

Wn(f (1 − �ε)) converge stably in law to the process

F ′(f (1 − �ε)
)
t

:=
∑

p:T ′
p≤t

d∑
j=1

m∑
k=1

((√
κpσ

j,k

T ′
p−Uk

p +√
1 − κpσ

j,k

T ′
p

U ′k
p

)∂f (1 − �ε)

∂xj

(T ′
p−,XT ′

p−,�XT ′
p
)

− √
κpσ

j,k

T ′
p−Uk

p

∂f (1 − �ε)

∂zj

(T ′
p−,XT ′

p−,�XT ′
p
)

)
,

which has the same F -conditional law than the process F(f (1 − �ε)) associated with the func-
tion f (1 − �ε) by (3.5).

Step 2: Here we show that

F
(
f (1 − �ε)

) u.c.p.−→ F(f ) as ε → 0. (5.6)
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Recall the process C(f ) defined in (3.6), and set f �ε = fε . Under (LN1) there exists a process
A such that:

∀T > 0, C(fε)T ≤ AT , and E(At ) < ∞.

Since C(fε)T → 0 when ε → 0, by Lebesgue’s convergence theorem we have E(C(fε)T ) → 0.
Furthermore by Lemma 3.5, the process F(fε)t is a locally square integrable martingale and
Doob’s inequality yields that:

P̃

(
sup
t≤T

‖F(fε)‖ > η
)

≤ 4

η
Ẽ(F (fε)

2
t ) = 4

η
E(C(fε)T )

hence, F(f �ε)
u.c.p.−→ 0 when ε → 0. Since F(f ) = F(f (1 − �ε)) + F(f �ε), this implies (5.6).

Step 3: In this last step, we show that

lim
ε→0

lim sup
n

P

{
sup
t≤T

‖Wn(f �ε,1)‖ > η
}

= 0 ∀η,T > 0. (5.7)

Using Itô’s formula of Lemma 4.2, in a similar way than in the proof of Theorem 2.4 (and
keeping the same notation for Yn

s and φn(s)), we have Wn(fε,1) =∑5
l=1 Wn(fε,1, l), where:

Wn(fε,1,1) = 1√
�n

d∑
j=1

∫ [t/�n]�n

0
b′j

s

∂fε

∂xj

(
φn(s),Xφn(s), Y

n
s−
)

ds,

Wn(fε,1,2)t = 1

2
√

�n

d∑
j,j ′=1

m∑
k=1

∫ [t/�n]�n

0
σ

j,k
s σ

j ′,k
s

∂2fε

∂xj ∂xj ′

(
φn(s),Xφn(s), Y

n
s−
)

ds,

Wn(fε,2,3)t = 1√
�n

d∑
j=1

m∑
k=1

∫ [t/�n]�n

0
σ

j,k
s

∂fε

∂xj

(
φn(s),Xφn(s), Y

n
s−
)

dWk
s ,

Wn(fε,1,4)t = 1√
�n

d∑
j=1

∫ [t/�n]�n

0

∫
R

0
δj (s, y)

∂fε

∂xj

(
φn(s),Xφn(s), Y

n
s−
)
(μ − ν)(ds,dy),

Wn(fε,1,5)t = 1√
�n

∫ [t/�n]�n

0

∫
R

0

(
fε

(
φn(s),Xφn(s), Y

n
s− + δ(s, y)

)
− fε

(
φn(s),Xφn(s), Y

n
s−
)

−
d∑

j=1

δj (s, y)
∂fε

∂xj

(
φn(s),Xφn(s), Y

n
s−
)

− fε(φ
n(s),Xs−, δ(s, y))

)
μ(ds,dy).
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Under (LN1) and (LM1), we have:

E(‖Xt − Xs‖p) ≤ K|t − s|p/2 ∀p ∈ [0,2],
d∑

j=1

∥∥∥∥ ∂fε

∂zj

(s, z, x)

∥∥∥∥ ≤ αε

(‖x‖ ∧ (2dε)
)2

,

d∑
j=1

d∑
j ′=1

∥∥∥∥ ∂2fε

∂xj ∂zj ′
(s, z, x)

∥∥∥∥ ≤ αε

(‖x‖ ∧ (2dε)
)
,

d∑
j=1

d∑
j ′=1

∥∥∥∥ ∂k1+k2fε

∂x
k1
j ∂x

k2
j ′

(s, z, x)

∥∥∥∥ ≤ αε

(‖x‖ ∧ (2dε)
)3−(k1+k2),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.8)

where αε → 0 when ε → 0, k1 + k2 ∈ {0,1,2}, and ∂0(fε)

∂x0
j

= fε . We also have

∂fε

∂xj

(
φn(s),Xφn(s), Y

n
s−
)=

d∑
j ′=1

Y
n,j ′
s−

∂2fε

∂xj ∂xj ′

(
φn(s),Xφn(s), Y

n

s

)
,

where Y
n

s belongs to the segment joining Yn
s− and 0, thus

∫ [t/�n]�n

0
E

{∥∥∥∥ b̂
j
s Y

n,j ′
s−√
�n

∂2fε

∂xj ∂xj ′

(
Xφn(s), Y

n

s

)∥∥∥∥}ds

≤ K

∫ t

0

[(
E

{‖Yn,j ′
s− ‖2

�n

})1/2(
E

{∥∥∥∥ ∂2fε

∂xj ∂xj ′

(
φn(s),Zφn(s), Y

n

s

)∥∥∥∥2})1/2]
ds (5.9)

≤ K

∫ t

0

(
E

{∥∥∥∥ ∂2fε

∂xj ∂xj ′

(
φn(s),Zφn(s), Y

n

s

)∥∥∥∥2})1/2

ds.

Since ∂2fε

∂xj ∂xj ′ (ω, s, z,0) = 0, and ∂2fε

∂xj ∂xj ′ (ω, s, z, x) satisfies (K[V ]), one deduces by Lebesgue’s

theorem that (5.9) converge to 0, and thus

Wn(fε,2,1)
u.c.p.−→ 0.

Similarly, we show that

Wn(fε,2,2)
u.c.p.−→ 0.

Next, the processes

1√
�n

∫ [t/�n]�n

0

∂fε

∂xj

(
φn(s),Xφn(s), Y

n
s−
)
σ

j,k
s dWk

s
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are martingale with respect to the filtration (F[t/�n]�n), hence by Doob’s inequality and (5.8)
one has:

P

{
sup
t≤T

∥∥∥∥ 1√
�n

∫ [t/�n]�n

0

∂fε

∂xj

(
φn(s),Xφn(s), Y

n
s−
)
σ

j,k
s dWk

s

∥∥∥∥> η

}

≤ 1

η2�n

∫ T

0
E

{∥∥∥∥∂fε

∂x

(
φn(s),Xφn(s), Y

n
s−
)
σ

j,k
s

∥∥∥∥2}
ds ≤ KT α2

ε

η2
,

and

lim
ε→0

lim sup
n

P

{
sup
t≤T

‖Wn(fε,1,3)t‖ > η
}

= 0.

Similarly, we have:

lim
ε→0

lim sup
n

P

{
sup
t≤T

‖Wn(fε,1,4)t‖ > η
}

= 0.

Now under (LM1), separating the cases where ‖x‖ ≤ ‖x′‖ and ‖x′‖ ≤ ‖x‖, one shows that:∥∥∥∥∥fε(ω, s, z1, x + x′) − fε(s, z1, x
′) −

d∑
j=1

xj

∂fε

∂xj

(ω, s, z1, x
′) − fε(ω, s, z2, x)

∥∥∥∥∥
≤ Kαε‖x‖2(‖z1 − z2‖ + ‖x′‖).

Then P(supt≤T |Wn(fε,1,5)t | > η) is smaller than

1

η
E

{∫ [t/�n]�n

0

∫
R

∥∥∥∥fε

(
φn(s),Xφn(s), Y

n
s− + δ(s, y)

)
− fε

(
φn(s),Xφn(s), δ(s, y)

)− fε

(
φn(s),Xφn(s), Y

n
s−
)

− δ(s, y)
∂fε

∂x

(
φn(s),Xφn(s), Y

n
s−
)∥∥∥∥μ(ds,dy)

}
≤ Kαε

(∫ t

0
E

{‖Yn
s−‖ + ‖Zφn(s) − Zs−‖√

�n

}
ds

)
≤ Kαεt

and thus

lim
ε→0

lim sup
n

P

{
sup
t≤T

‖Wn(fε,1,5)t‖ > η
}

= 0.

This ends the proof under the reinforced assumptions (LN1) and (LM1). One finishes the proof
by a classical localization procedure.
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5.2. Proof of Theorems 3.6 and 3.8

As for the previous proofs, we first strengthen the hypotheses, and thanks to Remark 3.1, we
adopt the form (3.2) for σ .

Hypothesis (LN2(s)). We have (N2(s)) and the processes Xt , bt , b̃t , σ̃t , ṽt , �σt ,
∫

R
(1 ∧

‖̃δ(t, y)‖2)F (dy) are bounded. The functions γk = γ do not depend on k and are also bounded.

We denote (LM2) (resp., (LM ′
2)) the hypothesis (M2) (resp., (M ′

2)) with the additional condi-
tion that the process 
 is bounded.

Under (LN2(s)) with s ≤ 1, X can be write as:

Xt = X0 +
∫ t

0
b′
u du +

∫ t

0
σu dWu +

∫
R

∫ t

0
δ(u, y)μ(du,dy), (5.10)

where b′
u = bu − ∫

R
h(δ(u, y))F (dy), and under (LN2(2)) the process σ is written:

σt = σ0 +
∫ t

0
b̃′
u ds +

∫ t

0
σ̃u dWu +

∫ t

0
ṽu dVu +

∫ t

0

∫
R

δ̃(u, y)(du,dy), (5.11)

with b̃′
u = b̃u + ∫

R
k′(̃δ(u, y))F (dy).

Let us now give some useful lemmas.

Lemma 5.3. Suppose (LN2(2)) satisfied and assume that f is optional, locally equicontinuous
in x and at most with p-polynomial growth. If further, either X is continuous or p < 1, then:

�n

[t/�n]∑
i=1

E

(∥∥∥∥f((i − 1)�n,X(i−1)�n,
�n

i X√
�n

)
− f

(
(i − 1)�n,X(i−1)�n, β

n
i

)∥∥∥∥2)
→ 0. (5.12)

Proof. The proof of this lemma is the same as for Lemma 4.4, the condition p < 1 come in
because of the the square in (5.12). �

Set

Un
t := √

�n

[t/�n]∑
i=1

E

{(
f

(
(i − 1)�n,X(i−1)�n,

�n
i X√
�n

)
(5.13)

− f
(
(i − 1)�n,X(i−1)�n, β

n
i

))∣∣F(i−1)�n

}
.

Lemma 5.4. Suppose (LN2(2)) and (M2) satisfied and X continuous. Assume further that one
of the following two conditions is satisfied:

A. The application x �→ f (ω, s, z, x) is even in x.
B. We have b′ = 0 and σ̃ = 0.
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Then Un u.c.p.−→ 0.

Proof. A. Set

Ln
i := f

(
(i − 1)�n,X(i−1)�n,

�n
i X√
�n

)
− f

(
(i − 1)�n,X(i−1)�n, β

n
i

)
. (5.14)

Then Ln
i = L′n

i + L′′n
i , where

L′n
i =

d∑
j=1

(
∂f

∂xj

(
(i − 1)�n,X(i−1)�n, γ̄

n
i

)− ∂f

∂xj

(
(i − 1)�n,X(i−1)�n, β

n
i

))

×
(

�n
i X

j

√
�n

− β
n,j
i

)
,

L′′n
i =

d∑
j=1

(
�n

i X
j

√
�n

− β
n,j
i

)
∂f

∂xj

(
(i − 1)�n,X(i−1)�n, β

n
i

)
for some random variable γ̄ n

i between
�n

i X√
�n

and βn
i . For any ε,A > 0, set

GA
t (ω, ε) = sup

s≤t;‖y‖≤ε;z∈K;‖x‖≤A

{
d∑

j=1

∥∥∥∥∂f

∂x
(ω, s, z, x + y) − ∂f

∂x
(ω, s, z, x)

∥∥∥∥
}

.

Then:

‖L′n
i ‖ ≤ K

(
GA

t (ε) +
(

1 + ‖βn
i ‖p +

∥∥∥∥�n
i X√
�n

− βn
i

∥∥∥∥p)(‖βn
i ‖

A
+ ‖�n

i X/
√

�n − βn
i ‖

ε

))
×
∥∥∥∥�n

i X√
�n

− βn
i

∥∥∥∥.
Next, under the assumption (N2(s)) (in particular the properties of σ ), one shows that for all

q ≥ 2:

E(‖βn
i ‖q) ≤ K; E

{∥∥�n
i X/

√
�n − βn

i

∥∥q}≤ K�n. (5.15)

Thus, by a repeated use of Hölder inequality:

√
�n

[t/�n]∑
i=1

E{‖L′n
i ‖} ≤ Kt

[
(E{(GA

t (ε))2})1/2 + �
1/4
n

ε
+ 1

A

]
. (5.16)

Letting successively n → ∞, then ε → 0 and then A → ∞, we obtain

√
�n

[t/�n]∑
i=1

E{‖L′n
i ‖} −→ 0. (5.17)
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Let us now turn to L′′n
i . Under (LN2(s)) we have:

�n
i X√
�n

− βn
i = ξ̃ n

i + ξ̂ n
i , where

ξ̂ n
i = 1√

�n

(∫ i�n

(i−1)�n

(
b′
s − b′

(i−1)�n

)
ds +

∫ i�n

(i−1)�n

(∫ s

(i−1)�n

b̃′
u du

+
∫ s

(i−1)�n

(
σ̃u − σ̃(i−1)�n

)
dWu

)
dWs

)
,

ξ̃ n
i = √

�nb
′
(i−1)�n

+ 1√
�n

∫ i�n

(i−1)�n

(
σ̃(i−1)�n

(
Ws − W(i−1)�n

)
+
∫ s

(i−1)�n

∫
R

δ̃(u, y)(μ − ν)(du,dy)

+
∫ s

(i−1)�n

ṽu dVu

)
dWs.

(1) Here we show that for any j ∈ {1, . . . , d},

E

{̃
ξ

n,j
i

∂f

∂xj

(
(i − 1)�n,X(i−1)�n, β

n
i

)∣∣F(i−1)�n

}
= 0. (5.18)

Since the function x → ∂f
∂xj

(ω, s, z, x) is odd, one clearly has:

E

{
b′j

(i−1)�n

∂f

∂xj

(
(i − 1)�n,X(i−1)�n, β

n
i

)∣∣F(i−1)�n

}
= 0, (5.19)

and for any k, k′ ∈ {1, . . . ,m}:

E

{
σ̃

j,k,k′
(i−1)�n

(∫ i�n

(i−1)�n

(
Wk′

s − Wk′
(i−1)�n

)
dWk

s

)
(5.20)

× ∂f

∂xj

(
(i − 1)�n,X(i−1)�n, β

n
i

)∣∣F(i−1)�n

}
= 0.

Next, consider the σ -field:

F ′
(i−1)�n

= F(i−1)�n ∨ σ
(
Ws − W(i−1)�n : (i − 1)�n ≤ s ≤ i�n

)
.

Since W is independent of μ and of V , for any j, k as above one has:

E

{(∫ i�n

(i−1)�n

(∫ s

(i−1)�n

∫
R

δ̃j,k(u, y)(μ − ν)(du,dy)

)
dWk

s

)
(5.21)

× ∂f

∂xj

(
(i − 1)�n,X(i−1)�n, β

n
i

)∣∣F(i−1)�n

}
= 0,
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and for any j ′ ∈ {1, . . . , l}:

E

{(∫ i�n

(i−1)�n

(∫ s

(i−1)�n

ṽ
j,k,j ′
u dV

j ′
u

)
dWk

s

)
(5.22)

× ∂f

∂xj

(
(i − 1)�n,X(i−1)�n, β

n
i

)∣∣F(i−1)�n

}
= 0.

From (5.19), (5.20), (5.21) and (5.22) we deduce (5.18).
(2) In this step, we show that for all j ∈ {1, . . . , d},

√
�n

[t/�n]∑
i=1

E

{∥∥∥∥̂ξn,j
i

∂f

∂xj

(
(i − 1)�n,X(i−1)�n, β

n
i

)∥∥∥∥∣∣F(i−1)�n

}
−→ 0. (5.23)

By Hölder and Doob inequalities, we have:

E{‖̂ξn
i ‖2} ≤ K

(
�3

n +
∫ i�n

(i−1)�n

(∥∥b′
s − b′

(i−1)�n

∥∥2 + ∥∥σ̃s − σ̃(i−1)�n

∥∥2)ds

)
.

Since E{‖ ∂f
∂x

((i −1)�n,X(i−1)�n, β
n
i )‖2} ≤ K, it follows from a repeated use of Holdër inequal-

ity that

√
�n

[t/�n]∑
i=1

E

{∥∥∥∥̂ξn,j
i

∂f

∂xj

(
(i − 1)�n,X(i−1)�n, β

n
i

)∥∥∥∥|F(i−1)�n

}

≤ Kt�n + Kt1/2
(

E

{∫ [t/�n]�n

0

(∥∥b′
s − b′[s/�n]�n

∥∥2 + ∥∥σ̃s − σ̃[s/�n]�n

∥∥2)ds

})1/2

.

Since b′ and σ̃ have some continuity properties in s, we deduce by Lebesgue theorem that the
last quantity tends to 0 when n → ∞, hence (5.23).

B. The proof is the same than for A, except that we have (5.19) and (5.20) because
b′ = σ̃ = 0. �

We give now another version of Lemma 5.4, in the case where X is discontinuous.

Lemma 5.5. Suppose X satisfies (LN2(s)) with s ≤ 1 and f satisfies (LM ′
2). Assume further

that either f (ω, t, z, x) is even in x or b′ = σ̃ = 0. Then

Un u.c.p.−→ 0, when n → ∞.

Proof. Recall that under (LN2(s)) with s ≤ 1, X is written as in (5.10). Set

X′
t := X0 +

∫ t

0
b′
u du +

∫ t

0
σu dWu.
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Let (εn) be a sequence such that: εn ∈]0,1] and εn → 0 when n → ∞, and set En = {x ∈
R, γ (x) > εn}. Then

�n
i X√
�n

= �n
i X

′
√

�n

+ 1√
�n

∫ i�n

(i−1)�n

∫
Ec

n

δ(u, x)μ(du,dx)

+ 1√
�n

∫ i�n

(i−1)�n

∫
En

δ(u, x)μ(ds,dx).

Set

ζ n
i (1) := 1√

�n

∫ i�n

(i−1)�n

∫
En

δ(u, y)μ(du,dy),

ζ n
i (2) := 1√

�n

∫ i�n

(i−1)�n

∫
Ec

n

δ(u, y)μ(du,dy).

Then using the notation (5.14), one has Ln
i =∑3

j=1 Ln
i (j), where

Ln
i (1) = f

(
(i − 1)�n,X(i−1)�n,

�n
i X√
�n

)
− f

(
(i − 1)�n,X(i−1)�n,

�n
i X√
�n

− ζ n
i (1)

)
,

Ln
i (2) = f

(
(i − 1)�n,X(i−1)�n,

�n
i X√
�n

− ζ n
i (1)

)
− f

(
(i − 1)�n,X(i−1)�n,

�n
i X

′
√

�n

)
,

Ln
i (3) = f

(
(i − 1)�n,X(i−1)�n,

�n
i X

′
√

�n

)
− f

(
(i − 1)�n,X(i−1)�n, β

n
i

)
.

The hypothesis (LM ′
2) involves the existence of a sequence of reals (Km) such that

‖z‖ ≤ m ⇒ ‖f (ω, s, z, x1) − f (ω, s, z, x1 + x2)‖ ≤ Km(1 ∧ ‖x2‖).
Hence,

√
�n

[t/�n]∑
i=1

E
{‖Ln

i (1)‖|F(i−1)�n

}≤ K
√

�n

[t/�n]∑
i=1

E
{(

1 ∧ ‖ζ n
i (1)‖)|F(i−1)�n

}
.

By the inequality (5.9) of Lemma 5.3 of [7], we deduce:

√
�n

[t/�n]∑
i=1

E{‖Ln
i (1)‖} ≤ Kt�

1/2
n ε−1

n . (5.24)

Next, set θ(y) = ∫
{|γ (x)|≤y} |γ (x)|F(dx), which goes to 0 as y → 0, then

√
�n

[t/�n]∑
i=1

E{‖Ln
i (2)‖} ≤ K

√
�n

[t/�n]∑
i=1

E{‖ζ n
i (2)‖} ≤ Ktθ(εn). (5.25)
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Otherwise, Lemma 5.5 implies:

√
�n

[t/�n]∑
i=1

∥∥E
{
Ln

i (3)|F(i−1)�n

}∥∥ u.c.p.−→ 0, when n → ∞. (5.26)

Combining (5.24), (5.25) and (5.26), we have:

√
�n

[t/�n]∑
i=1

∥∥E
{
Ln

i |F(i−1)�n

}∥∥≤ Kt
(
�

1/2
n ε−1

n + θ(εn)
)+√

�n

[t/�n]∑
i=1

∥∥E
{
Ln

i (3)|F(i−1)�n

}∥∥.
If we choose εn = (1 ∧ �

1/4
n ), we conclude:

√
�n

[t/�n]∑
i=1

∥∥E
{
Ln

i |F(i−1)�n

}∥∥ u.c.p.−→ 0,

what ends the proof. �

Set now

U ′n
t = 1√

�n

(
�n

[t/�n]∑
i=1

E
{
f
(
(i − 1)�n,X(i−1)�n, β

n
i

)|F(i−1)�n

}
(5.27)

−
∫ t

0
ρσs (f (s,Xs, ·))ds

)
.

Lemma 5.6. If X satisfies (LN2(2)) and f satisfies (LM2), we have U ′n u.c.p.−→ 0.

Proof. We can assume without loss of generality that f is 1-dimensional. We also write the proof
when the dimensions of X and σ are 1, since the multidimensional case is more cumbersome but
similar to prove. We have U ′n

t = U ′n
t (1) + U ′n

t (2) + U ′n
t (3), where

U ′n
t (1) = 1√

�n

[t/�n]∑
i=1

∫ i�n

(i−1)�n

(
ρσ(i−1)�n

(
f
(
(i − 1)�n,X(i−1)�n, ·

))
− ρσs

(
f
(
(i − 1)�n,Xs, ·

)))
ds,

U ′n
t (2) = 1√

�n

[t/�n]∑
i=1

∫ i�n

(i−1)�n

(
ρσs

(
f
(
(i − 1)�n,Xs, ·

))− ρσs (f (s,Xs, ·))
)

ds,

U ′n
t (3) = 1√

�n

∫ t

[t/�n]�n

ρσs (f (s,Xs, ·))ds.
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Since f is at most with polynomial growth,

1√
�n

∫ t

[t/�n]�n

|ρσs (f (s,Xs, ·))|ds ≤ K
√

�n,

hence U ′n
t (3)

u.c.p.−→ 0. Otherwise Hypothesis (M2), and in particular (3.4), implies

1√
�n

[t/�n]∑
i=1

∫ i�n

(i−1)�n

∣∣ρσs

(
f
(
(i − 1)�n,Xs, ·

))− ρσs (f (s,Xs, ·))
∣∣ds ≤ Kt�

α−1/2
n ,

hence U ′n
t (2)

u.c.p.−→ 0.

It remains to show that:

U ′n
t (1)

u.c.p.−→ 0. (5.28)

The function (z, x) �→ f (ω, s, z, x) being C1, so is the application (w, z) �→ ρw(f (s, z, ·)).
Set Fn,i(ω,w, z) := ρw(f (ω, (i − 1)�n, z, ·)) and X′′

t = Xt − ∫ t

0 bs ds and σ ′′
t = σt − ∫ t

0 b̃′
s ds.

Then we have U ′n
t (1) = −∑3

j=1 U ′n
t (1, j), where

U ′n
t (1,1) = 1√

�n

[t/�n]∑
i=1

∫ i�n

(i−1)�n

(∫ s

(i−1)�n

(
b̃′
u

∂Fn,i

∂w

(
σ(i−1)�n,X(i−1)�n

)
+ b′

u

∂Fn,i

∂z

(
σ(i−1)�n,X(i−1)�n

))
du

)
ds,

U ′n
t (1,2) = 1√

�n

[t/�n]∑
i=1

∫ i�n

(i−1)�n

((
σ ′′

s − σ ′′
(i−1)�n

)∂Fn,i

∂w

(
σ(i−1)�n,X(i−1)�n

)
+ (

X′′
s − X′′

(i−1)�n

)∂Fn,i

∂z

(
σ(i−1)�n,X(i−1)�n

))
ds,

U ′n
t (1,3) = 1√

�n

[t/�n]∑
i=1

∫ i�n

(i−1)�n

(
Fn,i(σs,Xs) − Fn,i

(
σ(i−1)�n,X(i−1)�n

)
− (

Xs − X(i−1)�n

)∂Fn,i

∂z

(
σ(i−1)�n,X(i−1)�n

)
− (

σs − σ(i−1)�n

)∂Fn,i

∂w

(
σ(i−1)�n,X(i−1)�n

))
ds.

Since b̃′, b′ are bounded we have sups≤t |U ′n
t (1,1)| ≤ Kt�

1/2
n , hence U ′n

t (1,1)
u.c.p.−→ 0.

Next, the process U ′n(1,2) is a martingale with respect to the filtration (F[t/�n]�n) and the
expectation of its predictable bracket is smaller than Kt�n. Hence, Doob’s inequality yields

Un
t (1,2)

u.c.p.−→ 0.
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Finally, if ζ n
i (s) denotes the integrand in the definition of U ′n

t (1,3), we have

ζ n
i (s) := (

σs − σ(i−1)�n

)(∂Fn,i

∂w
(σ (i, n, s),X(i, n, s)) − ∂Fn,i

∂w

(
σ(i−1)�n,X(i−1)�n

))
(5.29)

+ (
Xs − X(i−1)�n

)(∂Fn,i

∂z
(σ (i, n, s),X(i, n, s)) − ∂Fn,i

∂z

(
σ(i−1)�n,X(i−1)�n

))
,

where (σ (i, n, s),X(i, n, s)) in between (σ(i−1)�n,X(i−1)�n) and (σs,Xs). For A,ε > 0, set:

Gt(ε,A) = sup

{∣∣∣∣∂f∂x
(s, z1, x1) − ∂f

∂x
(s, z2, x2)

∣∣∣∣+ ∣∣∣∣∂f∂z
(s, z1, x1) − ∂f

∂z
(s, z2, x2)

∣∣∣∣:
s ≤ t; |x1|, |x2| ≤ A; |x1 − x2| ≤ ε; |z1|, |z2| ≤ K; |z1 − z2| ≤ ε

}
,

then by the properties of f , we have Gt(ε,A) → 0 when ε → 0. Therefore, it follows from (5.29)
that

|ζ n
i (s)| ≤ K

(
(1 + A)Gt(Aε,KA) + |σs − σ(i−1)�n | + |Xs − X(i−1)�n |

ε

+ (
P(|U | > A/K)

)1/2
)

× (∣∣σs − σ(i−1)�n

∣∣+ ∣∣Xs − X(i−1)�n

∣∣),
where U is a N (0,1) Gaussian variable.

Since under (LN2(2)), E{|σt − σs |2 + |Zt − Zs |2} ≤ K|t − s|, we deduce:

1√
�n

[t/�n]∑
i=1

∫ i�n

(i−1)�n

E{|ζ n
i (s)|}ds ≤ Kt

(
(1 + A)(E{Gt(Aε,KA)2})1/2

+ P(|U | > A/K)1/2 +
√

�n

ε

)
.

Letting n → ∞, then ε → 0, and A → ∞, we obtain U ′n
t (1,3)

u.c.p.−→ 0, hence (5.28). �

The next lemmas are very important because they deal with the part of the processes having a
nontrivial limit. We use the notation of Section 3.3. The first one is about the “even case” for f .
Set

U
n

t = √
�n

[t/�n]∑
i=1

(
f
(
(i − 1)�n,X(i−1)�n, β

n
i

)
(5.30)

− E
{
f
(
(i − 1)�n,X(i−1)�n, β

n
i

)|F(i−1)�n

})
.

Lemma 5.7. Suppose (LN2(2)) satisfied and f (ω, s, z, x) even in x with at most polynomial

growth. Then U
n

t

L−(s)−→ L(f )t , where L(f )t = ∫ t

0 as dWs , and a is given by (3.7).
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Proof. Set

ξn
i =√

�n

(
f
(
(i − 1)�n,X(i−1)�n, β

n
i

)− E
{
f
(
(i − 1)�n,X(i−1)�n, β

n
i

)|F(i−1)�n

})
,

then

E
{
ξn
i |F(i−1)�n

}= 0. (5.31)

For any j, k ∈ {1, . . . , q}, we have:

E
{
ξ

n,j
i ξ

n,k
i |F(i−1)�n

} = �n

(
ρσ(i−1)�n

(
(f jf k)

(
(i − 1)�n,X(i−1)�n, ·

))
− ρσ(i−1)�n

(
f j

(
(i − 1)�n,X(i−1)�n, ·

))
× ρσ(i−1)�n

(
f k

(
(i − 1)�n,X(i−1)�n, ·

)))
.

Then as in Lemma 4.3, one shows that:

[t/�n]∑
i=1

E
{
(ξ

n,j
i ξ

n,k
i )|F(i−1)�n

}
converges u.c.p. to the process∫ t

0

(
ρσs ((f

jf k)(s,Xs, ·)) − ρσs (f
j (s,Xs, ·))ρσs (f

k(s,Xs, ·))
)

ds.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.32)

Next for any ε > 0, we have:

[t/�n]∑
i=1

E
{‖ξn

i ‖21{‖ξn
i ‖>ε}|F(i−1)�n

}≤ 1

ε2

[t/�n]∑
i=1

E
{‖ξn

i ‖4|F(i−1)�n

}≤ Kt

ε2
�n. (5.33)

Since f is even in x: ∀j ′ ∈ {1, . . . ,m},

E
{
ξn
i �n

i W
j ′ |F(i−1)�n

}= 0. (5.34)

If now N is a martingale orthogonal to W , by the proof of Proposition 4.1 (see (4.13)) of [1],

E
{
ξn
i �n

i N |F(i−1)�n

}= 0. (5.35)

By (5.31), (5.32), (5.33), (5.34) and (5.35) we can apply Theorem IX-7-28 of [7] which gives
our lemma. �

Remark 5.8. In the previous lemma, the hypothesis on f is more than what we need, having
f (ω, s, z, x) to be optional even in x, satisfying (K[Rd ]) and with at most polynomial growth
would be enough.

Now we deal with the case where f (ω, s, z, x) is not even in x.
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Lemma 5.9. Suppose that X and f satisfy, respectively, (LN2(2)) and (LM2), then

U
n

t

L−(s)−→ L(f )t , where L(f )t =
∫ t

0
w(1)dWs +

∫ t

0
w(2)dWs,

w(1), w(2) given by (3.12).

Proof. The proof goes as for Lemma 5.7, except that (5.34) fails here since f (ω, s, z, x) is not
even in x. However, we have

E
{
ξ

n,j
i �n

i W
k|F(i−1)�n

}=√
�nE

{
f j

(
(i − 1)�n,X(i−1)�n, β

n
i

)
�n

i W
k|F(i−1)�n

}
,

and (as in the proof of Lemma 4.3) one has:

[t/�n]∑
i=1

E
{
ξ

n,j
i �n

i W
k|F(i−1)�n

} u.c.p.−→
∫ t

0
w(1)

j,k
s ds. (5.36)

Then taking account (5.36), and using once more Theorem IX-7-28 of [7], we get this time
Lemma 5.9. �

5.2.1. Proof of Theorems 3.6 and 3.8

We first prove the theorems under the strong hypotheses stated at the beginning of the Section 5.2.
Set

Wn
t :=√

�n

(
V ′n

t −
∫ t

0
ρσs (f (s,Xs, ·))ds

)
.

Then, using the notation (5.13), (5.14), (5.27) and (5.30), we have:

Wn
t =√

�n

[t/�n]∑
i=1

(
Ln

i − E
{
Ln

i |F(i−1)�n

})+ U
n

t + Un
t + U ′n

t .

The process
√

�n

∑[t/�n]
i=1 (Ln

i − E{Lni|F(i−1)�n}) is a martingale with respect to the fil-
tration (F[t/�n]�n), whose predictable bracket is smaller than �nE{‖Ln

i ‖2|F(i−1)�n}. Hence,
Lemma 5.3 and Doob’s inequality yield that

√
�n

[t/�n]∑
i=1

(
Ln

i − E
{
Ln

i |F(i−1)�n

}) u.c.p.−→ 0.

Moreover, Un u.c.p.−→ 0 by Lemmas 5.4 or 5.5, depending on the case. Next, Lemma 5.6 yields

U ′n u.c.p.−→ 0. Finally Lemma 5.7 for Theorem 3.6 and Lemma 5.9 for Theorem 3.8 give that U
n

converges stably in law to the process L(f ) given respectively by (3.8) and (3.14).
At this stage, we have proved the theorems under the strong assumptions mentioned above.

The general case is deduced by a “localization” procedure.
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