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We establish Talagrand’s T1 and T2 inequalities for the law of the solution of a stochastic differential
equation driven by a fractional Brownian motion with Hurst parameter H > 1/2. We use the L2 metric and
the uniform metric on the path space of continuous functions on [0, T ]. These results are applied to study
small-time and large-time asymptotics for the solutions of such equations by means of a Hoeffding-type
inequality.
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1. Introduction

Suppose that BH = (BH
t )t∈[0,T ] is an m-dimensional fractional Brownian motion (fBm) with

Hurst parameter H defined on a complete filtered probability space (�, F , (Ft )t∈[0,T ],P). By
this, we mean that the components BH,j , j = 1, . . . ,m, are independent centered Gaussian pro-
cesses with the covariance function

RH (s, t) = 1
2 (t2H + s2H − |t − s|2H ).

If H = 1/2, then BH is clearly a Brownian motion. Since for any p ≥ 1, E|BH,j
t − B

H,j
s |p =

cp|t − s|pH , the processes BH,j have α-Hölder continuous paths for all α ∈ (0,H) (see [24] for
further information about fBm).

In this article we fix 1/2 < H < 1 and are interested in the solution (Xt )t∈[0,T ] of the stochastic
differential equation

Xi
t = xi +

m∑
j=1

∫ t

0
σ i,j (Xs)dB

H,j
s +

∫ t

0
bi(Xs)ds, t ∈ [0,T ], (1)

i = 1, . . . , d , where x ∈ Rd is the initial value of the process X.
Under suitable assumptions on σ , the processes σ(X) and BH have trajectories which are

Hölder continuous of order strictly larger than 1/2, so we can use the integral introduced by
Young in [34]. The stochastic integral in (1) is then a pathwise Riemann–Stieltjes integral. A first
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result on the existence and uniqueness of a solution of such an equation was obtained in [21] us-
ing the notion of p-variation. The theory of rough paths introduced by Lyons in [21] was used by
Coutin and Qian in order to prove an existence and uniqueness result for the equation 1 (see [6]).
The Riemann–Stieltjes integral appearing in equation (1) can be expressed as a Lebesgue integral
using a fractional integration by parts formula (see Zähle [35]). Using this formula, Nualart and
Răşcanu have established in [25] the existence of a unique solution for a class of general differ-
ential equations that includes (1). Regularity (in the sense of Malliavin calculus) and absolute
continuity of the law of the random variables Xt have since been investigated in [2,19,23,26].

This work is strongly motivated by the study of the small-time and large-time behaviors of the
solution of (1). To the best of our knowledge, little seems to be known on this subject. In [18] the
author investigates the ergodicity of the solution when σ is constant, as well as the convergence
rate toward the stationary solution; see also [22] for infinite-dimensional evolution equations
driven by an fBm in an additive way. We will be able to state small-time and large-time asymp-
totic properties as consequences of stronger properties: the concentration inequalities on the path
space of continuous functions.

For several years, the transportation cost-information inequalities and their applications to
diffusion processes have been widely studied. In this paper we apply recent results on fractional
differential equations in order to obtain Talagrand’s inequalities. Let us now consider the kinds
of inequalities we will deal with. To measure distances between probability measures, we use
transportation distances, also called Wasserstein distances. Let (E,d) be a metric space equipped
with a σ -field B such that the distance d is B ⊗ B-measurable. Given p ∈ [1,+∞] and two
probability measures μ and ν on E, the Wasserstein distance is defined by

Wd
p (μ, ν) = inf

(∫ ∫
d(x, y)p dπ(x, y)

)1/p

,

where the infimum is taken over all the probability measures π on E × E with marginal distri-
butions μ and ν. The relative entropy of ν with respect to μ is defined as

H(ν/μ) =
{∫

log
dν

dμ
dν, if ν � μ,

+∞, otherwise.

The probability measure μ satisfies the Lp transportation inequality on (E,d) if there exists
a constant C ≥ 0 such that for any probability measure ν,

Wd
p (μ, ν) ≤ √

2CH(ν/μ).

As usual, we write μ ∈ Tp(C) for this relation. The properties T1(C) and T2(C) are of particular
interest. The phenomenon of measure concentration is related to T1(C) (see the monograph of
Ledoux [20]).

The property T2(C) is stronger than T1(C) but is not so well characterized. It was first estab-
lished by Talagrand [30] for the Gaussian measure and generalized in [11] to the framework of
an abstract Wiener space; see [3,27] for the relationship between T2(C) and other properties such
as the Poincaré inequality and Hamilton–Jacobi equations. The logarithmic Sobolev inequality
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introduced by Gross [17] plays a particular role in this theory since it implies T2(C) (see [3,27,
32]).

With regard to the paths of diffusion processes, the T2 transportation inequality with respect
to the Cameron–Martin metric was proven in [8] by means of the Girsanov transform. The au-
thors also provided a direct proof of the T1 transportation inequality with respect to the uniform
metric using the Gaussian tail criterion (see Section 6 for more details). Later, in [33], T2(C)

was established with respect to the uniform metric. Finally, Gourcy and Wu [15] established the
log-Sobolev inequality for the Brownian motion with drift in the L2 metric instead of the usual
Cameron–Martin metric. As a consequence, they derived the T2(C) property with respect to this
metric and a concentration inequality (of correct order for large time) for some functionals of
the process. In [31], the T2(C) property with respect to the L2 metric was established for elliptic
diffusions on a Riemannian manifold.

In this paper, we investigate the properties T1(C) and T2(C) for the law Px of the solution
(Xt )0≤t≤T of the equation (1) in various situations. We work on the space of continuous func-
tions endowed with the uniform metric or the L2 metric. T2(C) will hold for a multidimensional
equation when σ = Id and d = m, and for a one-dimensional equation when the diffusion coef-
ficient σ is non-constant. It will also be established with respect to the uniform distance rather
than the L2 metric. The use of this second metric will be of particular interest when dealing
with large-time asymptotics. The T1(C) property will be proven for a multidimensional equation
with a diffusion matrix σ that is only a time-dependent function. In the one-dimensional case, the
function σ may depend on the space variable. This property is proved with respect to the uniform
metric for small-time horizon T . This restriction to small time is discussed after Theorem 2 and
this result is of great interest when we apply it to small-time asymptotics.

The paper is organized as follows. Section 2 is devoted to the statement of our results. In Sec-
tion 3, we review the usual consequences of transportation inequalities for large- and small-time
behavior. Section 4 contains the estimation of the difference of the solutions of two determinis-
tic differential equations driven by Hölder continuous functions of order greater than 1/2. The
method we develop to prove our main results in Section 5 is the counterpart of the usual case:
the Gaussian integrability condition for T1(C), Girsanov’s formula and an explicit control for
a specific coupling of two paths of the solution of the stochastic differential equation. In the
framework of fractional Brownian motion, this control is new, to the best of our knowledge. In
Section 6 we make a quite surprising remark about the link between the constant C in a property
T1(C) and a Gaussian tail. A priori this remark is independent of the rest of this work, but it
can be helpful when trying to prove T1(C) via an exponential moment. Finally, a Fernique-type
lemma is proved in the Appendix.

2. Main results

We consider a complete probability space (�, F ,P) on which an m-dimensional Brownian mo-
tion (Wt)t∈[0,T ] is defined. We denote by Ft = σ(Ws, s ≤ t) the σ -field generated by W and
completed with respect to P. Finally, BH = (BH

t )t∈[0,T ] is the m-dimensional fBm defined on
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(�, F ,P) transferred from W . This means that BH can be expressed as

B
H,i
t =

∫ t

0
KH (t, s)dWi

s , i = 1, . . . ,m, (2)

where the square-integrable deterministic kernel KH is defined by

KH (t, s) = cH s1/2−H

∫ t

s

(u − s)H−3/2uH−1/2 du (3)

with cH = (
H(2H−1)

β(2−2H,H−1/2)
)1/2 for s < t (β denotes the beta function). We set KH (t, s) = 0 if

s ≥ t . The process BH is Ft -adapted.
We will also need some notation. For 0 < λ ≤ 1 and 0 ≤ a < b ≤ T , we denote by Cλ(a, b;Rd)

the space of λ-Hölder continuous functions f : [a,b] → Rd , equipped with the norm

‖f ‖λ := ‖f ‖a,b,∞ + ‖f ‖a,b,λ,

where

‖f ‖a,b,∞ = sup
a≤r≤b

|f (r)| and ‖f ‖a,b,λ = sup
a≤r≤s≤b

|f (s) − f (r)|
|s − r|λ .

We simply write Cλ(a, b) when d = 1.
We consider various forms of the stochastic differential equation (1). We begin with the equa-

tion on Rd

Xi
t = xi +

∫ t

0
bi(Xs)ds +

m∑
j=1

∫ t

0
σ i,j (s)dB

H,j
s , t ∈ [0,T ], i = 1, . . . , d (4)

and make the following assumptions on the coefficients:

H1(a) there exists some Lb such that for any i = 1, . . . , d and any z, z′ ∈ Rd ,

|b(z) − b(z′)| ≤ Lb|z − z′|;
H1(b) there exists some β > 1 − H such that σ ∈ Cβ(0, T ;Rd×m).

It has been proven in [25] that under the above assumptions, there exists a unique adapted
stochastic process solution to equation (1) whose trajectories are Hölder continuous of order
H − ε for any ε > 0.

For this kind of equation, we have the following result.

Theorem 1. Assume that the assumptions (H1) are satisfied. Then, for each 0 < T ≤
(2Lb)

−1 ∧ 1, there exists a universal constant K, independent of the initial point x, such that the
law Px of the solution of equation (4) satisfies the property T1(K‖σ‖βT 2H ) on C(0, T ;Rd), the
space of Rd -valued continuous functions on [0, T ] equipped with the metric d∞ defined by

d∞(γ1, γ2) = sup
0≤t≤T

|γ1(t) − γ2(t)|.
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Of course, this result will be useful for small-time asymptotics of the process X. In the one-
dimensional case, we will be able, via a Lamperti transform, to deduce a result for the nonlinear
equation

Xt = x +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dBH

s , (5)

where the coefficients satisfy:

H2(a) the function b is bounded by B := supx∈R |b(x)| and there exists some Lb such that for
any z, z′ ∈ R,

|b(z) − b(z′)| ≤ Lb|z − z′|;
H2(b) there exist some σ2 > σ1 > 0 such that for any x ∈ R,

σ1 ≤ σ(x) ≤ σ2;
H2(c) there exists a constant Lσ such that for any z, z′ ∈ R,

|σ(z) − σ(z′)| ≤ Lσ |z − z′|.

Theorem 2. Assume that the hypotheses (H2) are satisfied. There exists a universal constant K,

independent of the initial point x, such that the law Px of the solution of equation (5) satisfies

the property T1(Kσ 2
2 T 2H ) on C(0, T ;R), provided that T ≤ 1 ∧ σ 2

1
2σ2(Lbσ2+Lσ B)

.

Before stating the T2 inequalities, we will explain why the restriction to small time in the
statements of the above theorems is in fact quite natural. Imagine the case where b = 0 and
d = m = 1. The processes X and BH are then equals. It is known (see ([8], Theorem 2.3) or
Section 6) that T1(C) is then equivalent to the fact that there exists some δ > 0 such that

C(δ) = E(exp{δ‖BH − B̃H ‖2
0,T ,∞}) < ∞,

where BH and B̃H are two independent fractional Brownian motions. For f, f̃ ∈ Cβ(0, T ) with
f (0) = f̃ (0), we have ‖f − f̃ ‖0,T ,∞ ≤ T β‖f − f̃ ‖0,T ,β . Then,

C(δ) ≤ E(exp{δT 2β‖BH − B̃H ‖2
0,T ,β})

and with (22) from Lemma 8 in the Appendix, the above exponential moment will be finite as
soon as δT 2β × 128(2T )2(H−β) ≤ 1, which implies that T must be small.

We now return to the statements concerning T2 transportation inequalities. We consider the
solution of the stochastic differential equation (4) and make the following additional stability
assumption on the coefficient b:

(H3) There exists some B ∈ R such that for any x, y ∈ Rd ,

〈x − y, b(x) − b(y)〉Rd ≤ B|x − y|2.
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Theorem 3. We consider Px , the law of the solution of the stochastic differential equation (4).
We assume that (H1) and (H3) are fulfilled. The probability measure Px satisfies T2(C) on the
metric space C(0, T ;Rd) with:

(a) C = (2/|B|)HT 2H−1(1 ∨ e(2B+|B|)×T )‖σ‖2
0,T ,∞ with the metric d∞;

(b) C = (2/B2)HT 2H−1‖σ‖2
0,T ,∞cB,T with

cB,T :=
⎧⎨
⎩

e3BT − 1

3
, if B > 0,

1 − eBT , if B < 0,

when using the metric

d2(γ1, γ2) =
(∫ T

0
|γ1(t) − γ2(t)|2 dt

)1/2

.

A result for one-dimensional equations with non-constant diffusion coefficients can be de-
duced from Theorem 3. We assume that d = m = 1 and consider the solution of the stochastic
differential equation (5). We make the following assumptions on the coefficients:

H4(a) there exists some Lb such that for any z, z′ ∈ R,

|b(z) − b(z′)| ≤ Lb|z − z′|;
H4(b) there exist some σ2 > σ1 > 0 such that for any x′ ∈ R,

σ1 ≤ σ(x) ≤ σ2;
H4(c) b and σ are differentiable, and there exists some B ∈ R such that for any x ∈ R,

b′(x)σ (x) − σ ′(x)b(x) ≤ B.

Theorem 4. Let d = m = 1 and assume that the assumptions (H4) hold. The law Px of the
solution of the stochastic differential equation (5) then satisfies the property T2(C) on the metric
space C(0, T ;R) where:

(a) C = (2σ1σ
2
2 /|B|)HT 2H−1(1 ∨ e(2B+|B|)×T/σ1) with the metric d∞;

(b) C = (2σ 2
1 σ 2

2 /B2)HT 2H−1cB,T with

cB,T :=
⎧⎨
⎩

e3BT/σ1 − 1

3
, if B > 0,

1 − eBT/σ1 , if B < 0,

when one uses the metric d2.

We note that (H4) implies (H3) when d = m = 1 and σ is identically equal to 1.
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The constants C in the above theorems are sharp, in the sense that when H = 1/2, we get
exactly the same constant as in the inequality (5.5) of [8] with the metric d2. For the T1 inequality,
the sharpness will be discussed in the next section, where we will apply the above results to
study small-time and large-time asymptotics of the solution of a fractional stochastic differential
equation (SDE).

3. Small-time and large-time asymptotics of the solution of a
fractional SDE

The concentration inequalities on the path space of continuous functions are very well adapted to
investigate small- and large-time asymptotics of processes. The link between the concentration
inequalities and the L1 transportation inequality is proved in [4]. We recall that a measure μ

on the metric space (E,d) satisfies the property T1(C) if and only if for any Lipschitzian func-
tion F : (E,d) → R, F is μ-integrable and for all λ ∈ R, we have the Gaussian concentration
inequality ∫

E

exp

(
λ

(
F −

∫
E

F dμ

))
dμ ≤ exp

(
C‖F‖Lip

λ2

2

)
,

where

‖F‖Lip = sup
x �=y

|F(x) − F(y)|
d(x, y)

.

By Chebyshev’s inequality and an optimization argument, we obtain the following Hoeffding-
type inequality:

μ

(
F −

∫
E

F dμ > r

)
≤ exp

(
− r2

2C‖F‖2
Lip

)
∀r > 0. (6)

We present Hoeffding-type inequalities for the solution X of (1) on the metric space of continu-
ous functions associated with the metrics d∞ and d2.

Let V :Rd → R be a function such that ‖V ‖Lip ≤ α. We consider F and F∞ defined on
C(0, T ;Rd) by

F(γ ) = 1

T

∫ T

0
V (γ (t))dt,

F∞(γ ) = sup
t∈[0,T ]

|γ (t) − γ (0)|.

The function F is α-Lipschitzian with respect to d∞ and α/
√

T -Lipschitzian with respect to the
metric d2. As for F∞, it is 1-Lipschitzian with respect to the metric d∞. The following properties
are consequences of (6).
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Small-time asymptotics

There exists a constant C (depending only on H and σ ) such that if we assume (H1) (resp.,
(H2)), then the solution of (4) (resp., (5)) satisfies, for all r > 0 and small T ,

Px

(
1

T

∫ T

0
[V (Xt ) − EV (Xt)]dt > r

)
≤ exp

(
− r2

Cα2T 2H

)
, (7)

and using (6) with the functional F∞ yields that there exists some C such that

Px

([
sup

t∈[0,T ]
|Xt − x| − E

(
sup

t∈[0,T ]
|Xt − x|

)]
> r

)
≤ exp

(
− r2

2CT 2H

)
. (8)

Large-time asymptotics

In the framework of Theorem 3 (resp., Theorem 4), we assume that (H3) (resp., H4(c)) is satisfied
for B < 0. The solution of equation (4) (resp., equation (5)) satisfies the following: for any r > 0,

Px

(
1

T

∫ T

0
[V (Xt) − EV (Xt)]dt > r

)
≤ exp

(
− r2B2T 2−2H

4α2H‖σ‖2
0,T ,∞(1 − eBT )

)
(9)

(resp.,

≤ exp

(
− r2B2T 2−2H

4α2Hσ 2
1 σ 2

2 (1 − eBT/σ1)

)
). (10)

Remark.

(i) When H = 1/2, the inequality (8) gives the correct order when T → 0+ (see [8], Remark
5.12(b)). This justifies that the constants C in the T1(C) properties established in our work
are of correct order and are sharp in some sense.

(ii) The estimates (9) and (10) are well adapted to the study of large-time asymptotics of
the solutions of (4) and (5). These estimates are sharp, in the sense that when we put
H = 1/2 into the formula, we obtain the same Hoeffding-type estimate as given in [8]
(see Corollary 5.11).

4. Deterministic differential equations driven by rough
functions

This section deals with deterministic differential equations driven by Hölder continuous func-
tions. These equations are the ones satisfied by the trajectories of the solution of equation (4).
Our aim is to prove an estimate with respect to the metric d∞ for the difference of two solutions
of deterministic differential equations driven by two different Hölder continuous functions. This
is clearly the first step if we want to use a Gaussian tail criterion.
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Suppose that f ∈ Cλ(a, b) and g ∈ Cμ(a, b) with λ+μ > 1. From [34], the Riemann–Stieltjes
integral

∫ b

a
f dg exists. In [35], the author provides an explicit expression for the integral

∫ b

a
f dg

in terms of fractional derivatives. Let α be such that λ > α and β > 1 − α. Supposing that the
following limit exists and is finite, we define gb−(t) = g(t) − limε↓0 g(b − ε). The Riemann–
Stieltjes integral can then be expressed as

∫ b

a

ft dgt = (−1)α
∫ b

a

(Dα
a+f )(t)(D1−α

b− gb−)(t)dt, (11)

where

Dα
a+f (t) = 1


(1 − α)

(
f (t)

(t − a)α
+ α

∫ t

a

f (t) − f (s)

(t − s)α+1
ds

)

and

Dα
b−gb−(t) = (−1)α


(1 − α)

(
g(t) − g(b)

(b − t)α
+ α

∫ b

t

g(t) − g(s)

(s − t)α+1
ds

)
.

We refer to [28] for further details on fractional operators. We first state the following useful
lemma concerning the estimation of integrals like (11). The proof is identical to the one proposed
in [19] and so we only highlight some constants.

Lemma 5. For 0 < β < 1 and f,g in Cβ(0, T ;Rd), there exists a constant κ such that for any
0 ≤ a < b ≤ T ,∣∣∣∣

∫ b

a

ft dgt

∣∣∣∣ ≤ κ

β − 1/2
‖g‖0,T ,β [‖f ‖a,b,∞(b − a)β + ‖f ‖a,b,β(b − a)2β ]. (12)

Proof. We choose α such that 1 − β < α < 1/2 and use (11) to write that for all 0 ≤ s, t ≤ T ,∣∣∣∣
∫ t

s

fr dgr

∣∣∣∣ ≤
∫ t

s

|Dα
s+frD

1−α
t− gt−(r)|dr.

We have

|D1−α
t− gt−(r)| ≤ β

(α + β − 1)
(α)
‖g‖0,T ,β |t − r|α+β−1 and

|Dα
s+fr | ≤ ‖f ‖s,t,∞


(1 − α)
(r − s)−α + α‖f ‖s,r,β

(β − α)
(1 − α)
(r − s)β−α.

It follows that∣∣∣∣
∫ t

s

fr dgr

∣∣∣∣ ≤ β‖f ‖s,t,∞‖g‖0,T ,β

(α + β − 1)
(α)
(1 − α)

∫ t

s

(r − s)−α(t − r)α+β−1 dr

+ βα‖f ‖s,t,β‖g‖0,T ,β

(β − α)(α + β − 1)
(α)
(1 − α)

∫ t

s

(r − s)β−α(t − r)α+β−1 dr.
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We use the change of variables r = (t − s)ξ + s and, recalling that the beta function is defined
by B(a, b) = ∫ 1

0 (1 − ξ)a−1ξb−1 dξ = 
(a)
(b)

(a+b)

, we get

∣∣∣∣
∫ t

s

fr dgr

∣∣∣∣ ≤ kα,β‖g‖0,T ,β [‖f ‖s,t,∞(t − s)β + ‖f ‖s,t,β(t − s)2β ]

with

kα,β = βB(α + β,1 − α)

(α + β − 1)
(α)
(1 − α)
+ αβB(α + β,1 + β − α)

(α + β − 1)(β − α)
(α)
(1 − α)

≤ κ

β − 1/2
:= cβ.

The fact that kα,β ≤ κ/(β − 1/2), where κ is a universal constant independent of α and β , is
proved in [29]. �

Set 1/2 < β < 1 and let g, g̃ ∈ Cβ(0, T ;Rm). We shall work with two deterministic differen-
tial equations on Rd :

xi
t = xi

0 +
∫ t

0
bi(xs)ds +

m∑
j=1

∫ t

0
σ i,j (s)dg

j
s , t ∈ [0,T ],

x̃i
t = xi

0 +
∫ t

0
bi(x̃s)ds +

m∑
j=1

∫ t

0
σ i,j (s)dg̃

j
s , t ∈ [0,T ],

i = 1, . . . , d , x0 ∈ Rd .
It is proved in [25], Theorem 5.1 that if 1 −β < α < 1/2, then each of the above equations has

a unique (1 − α)-Hölder continuous solution. The estimates on the solution (xt )t∈[0,T ] obtained
in [25] were improved in [19], Theorem 3.3. Unfortunately, these estimates are unusable in our
context. Nevertheless, since the matrix σ does not depend on the solution, our framework is more
simple, and we quickly prove the estimate we need in the following proposition.

Proposition 6. Let g and g̃ be Hölder continuous of order 1/2 < β < 1. Under the assump-
tions (H1), we define � = (2Lb)

−1 ∧ 1. For all T ≤ �, there exists a universal constant K such
that

‖x − x̃‖0,T ,∞ ≤ K‖σ‖β‖g − g̃‖0,T ,βT β.

Proof. We restrict ourselves to the case d = m = 1 for simplicity. We write

xt − x̃t =
∫ t

0
[b(xr) − b(x̃r )]dr +

∫ t

0
σ(r)d[gr − g̃r ].

Using (12), we may write

|xt − x̃t | ≤ tLb‖x − x̃‖0,t,∞ + cβ‖g − g̃‖0,t,β‖σ‖β [tβ + t2β ],
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where cβ = κ/(β − 1/2), and consequently

‖x − x̃‖0,t,∞ ≤ tLb‖x − x̃‖0,t,∞ + cβ‖g − g̃‖0,t,β‖σ‖β [tβ + t2β ].
Therefore the result is proved when t ≤ �. �

5. Proofs of the main results

5.1. T1(C) for paths of SDE’s driven by an fBm

To prove Theorem 1, we use a sufficient condition that is present in the proof of [8], Theorem 2.3.
This is recalled in the following lemma whose proof is entirely contained in the aforementioned
proof.

Lemma 7. Let μ a probability measure on a metric space (E,d). Let ξ and ξ ′ be two inde-
pendent random variables valued in E with law μ defined on some probability space (�, F ,P).
If

C := 2 sup
k≥1

(
k!E(d(ξ, ξ ′))2k

(2k)!
)1/k

is finite, then μ satisfies the transportation inequality T1(C) on (E,d).

We now turn to the proof of Theorem 1 itself.

Proof of Theorem 1. Let (BH
t )t∈[0,T ] and (B̃H

t )t∈[0,T ] be two independent fractional Brownian
motions defined on the filtered probability space (�, F , (Ft )t∈[0,T ],P). We denote by (Xt )t∈[0,T ]
and (X̃t )t∈[0,T ] the strong solutions of (4) driven by B and B̃ , respectively. The T1(C) property
will be implied by the finiteness of

C = 2 sup
k≥1

(
k!E(d2k∞ (X, X̃))

(2k)!
)1/k

.

Let 1/2 < β < H < 1 and T ≤ �. Proposition 6 implies that

d2k∞(X, X̃) ≤ K2k‖σ‖2k
β ‖BH − B̃H ‖2k

0,T ,βT 2kβ .

In the following, the constant K is universal, but may vary from line to line. Taking expectation
and using (23) from Lemma 8, we obtain

C ≤ 2 sup
k≥1

(
k!K2k‖σ‖2k

β T 2kβT 2k(H−β)(2k)!
k!(2k)!

)1/k

≤ K‖σ‖βT 2H ,

and the result is proved. �
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Proof of Theorem 2. If we set

F(y) =
∫ y

0

dz

σ (z)
,

then we can use the change-of-variables formula [35], Theorem 4.3.1 to obtain that (Xt )t∈[0,T ]
is the unique solution of

Xt = x +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dBH

s , 0 ≤ t ≤ T ,

if and only if the process (Yt )t∈[0,T ] defined by Yt = F(Xt) is the unique solution of

Yt = F(x) +
∫ t

0

b(F−1(Ys))

σ (F−1(Ys))
ds + BH

t , 0 ≤ t ≤ T . (13)

Our result will follow from the stability of the transportation inequalities under a Lipschitzian
map (see [8], Lemma 2.1). We consider the map � from the metric space (C(0, T ), d∞) into
itself defined by �(γ ) = F−1 ◦ γ . We have, for γ1, γ2 ∈ C(0, T ),

d∞
(
�(γ1) − �(γ2)

) ≤ ‖� ′‖∞d∞(γ1, γ2)

and, clearly, � ′ = (F−1)′ = σ . Thus, the map � is α-Lipschitzian with α = σ2. If PX
x (resp.,

PY
F(x)) denotes the law of the process X (resp., Y ), then

PX
x = PY

F(x) ◦ F = PY
F(x) ◦ �−1.

We denote by L
b̃

the Lipschitz constant of the function b̃ = b ◦ F−1/σ ◦ F−1. It is easy to check
that

L
b̃
≤ σ2

σ 2
1

(Lbσ2 + Lσ B).

By Theorem 1, PY
F(x) ∈ T1(KT 2H ) for T ≤ (2L

b̃
)−1 ∧ 1, so we have that PX

x ∈ T1(Kσ 2
2 T 2H ) for

T ≤ τ with

τ = 1 ∧ σ 2
1

2σ2(Lbσ2 + Lσ B)
. �

5.2. T2(C) for paths of SDE’s driven by an fBm

In this subsection, we prove Theorems 3 and 4. First, we briefly recall some basic facts about
stochastic integration with respect to fBm. We refer to [24] for a more detailed treatment.
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Preliminaries

Let H be the Hilbert space defined as the closure of E (the set of step functions on [0,T ] with
values in Rm) with respect to the scalar product

〈(
1[0,t1], . . . ,1[0,tm]

)
,
(
1[0,s1], . . . ,1[0,sm]

)〉
H =

m∑
i=1

RH (ti, si).

The mapping (1[0,t1], . . . ,1[0,tm]) �→ ∑m
i=1 B

H,i
ti

is extended to an isometry between H and the
Gaussian space H1(B

H ) associated with BH . We denote this isometry by ϕ �→ B(ϕ). Using the
kernel K defined in (3), we introduce the operator K∗

H : H → L2(0, T ;Rm):

(K∗
H ϕ)(s) =

∫ T

s

ϕ(r)
∂KH

∂r
(r, s)dr. (14)

We have K∗
H ((1[0,t1], . . . ,1[0,tm])) = (KH (t1, ·), . . . ,KH (tm, ·)) and, for ϕ,ψ ∈ E ,

〈ϕ,ψ〉H = 〈K∗
H ϕ, K∗

H ψ〉L2(0,T ;Rm) = E(BH (ϕ)BH (ψ)).

K∗
H then provides an isometry between the Hilbert space H and a closed subspace of

L2(0, T ;Rm).
We have already mentioned the transfer principle (see (2)) when BH is written as an integral

of the underlying Brownian motion W . More precisely, the transfer principle means that for any
ϕ ∈ H, BH (ϕ) = W(K∗

H ϕ).
We define KH :L2(0, T ;Rm) → HH := KH (L2(0, T ;Rm)), the operator defined by KH h =

(KH h1, . . . , KH hm) with

(KH hi)(t) :=
∫ t

0
KH (t, s)hi(s)ds, i = 1, . . . ,m.

We will use of the following property [7], Lemma 3.2: for h ∈ L2(0, T ;Rm),

|(KH h)(t) − (KH h)(s)| ≤ c|t − s|H ‖h‖L2(0,T ;Rm). (15)

Using Fubini’s theorem and the fact that ∂KH

∂u
(u, s) = cH (u

s
)H−1/2(u − s)H−3/2, we obtain that

if f ∈ Cλ(0, T ) with λ + H > 1 and ρ ∈ L2(0, T ), then it holds that

∫ T

0
f (r)d(KH ρ)r =

∫ T

0
f (r)

(∫ r

0

∂KH

∂r
(r, t)ρ(t)dt

)
dr. (16)

The integral on the left-hand side of (16) is a Riemann–Stieltjes integral for Hölder functions
(see Section 4).
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Finally, if ϕ,ψ ∈ L2(0, T ;Rm), then the scalar product on H has the integral form

〈ϕ,ψ〉 = H(2H − 1)

∫ T

0

∫ T

0
|s − t |2H−2〈ϕ(s),ψ(t)〉Rm ds dt

and, consequently, for ϕ ∈ L2(0, T ;Rm), we have

‖ϕ‖2
H ≤ 2HT 2H−1‖ϕ‖2

L2(0,T ;Rm)
. (17)

Proof of Theorem 3. We recall that a classical m-dimensional Brownian motion (Wt )t∈[0,T ]
is defined on (�, F ,P) and BH = (BH

t )t∈[0,T ] is an m-dimensional fBm defined on (�, F ,P)

transferred from W . Let Q be a probability measure on C(0, T ;Rd) such that Q � Px . We can
assume that H(Q|Px) < ∞, otherwise there is nothing to prove.

The first part of the proof follows the arguments of [8]. The idea is to express the finiteness
of the entropy by means of the energy of the drift arising from the Girsanov transform of a well-
chosen probability measure. This method also appears in [10] and was well known for a long
time. The relationship between the finite entropy condition and the finite energy condition on
the Girsanov drift appeared in [12,13] for the first time (to the best of our knowledge) in the
particular case of Brownian motion with drift.

We consider

Q̃ = dQ

dPx

(X)P.

Clearly, Q̃ is a probability measure on (�, F ) and

H(Q̃|P) =
∫

�

ln

(
dQ̃

dP

)
dQ̃

=
∫

�

ln

(
dQ

dPx

(X)

)
dQ

dPx

(X)dP

=
∫

C(0,T ;Rd )

ln

(
dQ

dPx

)
dQ

dPx

dPx = H(Q|Px).

Following [8], there exists a predictable process ρ = (ρ1(t), . . . , ρm(t))0≤t≤T such that

H(Q|Px) = H(Q̃|P) = 1

2
E

Q̃

∫ T

0
|ρ(t)|2 dt

and, by Girsanov’s theorem, the process (B̃t )t∈[0,T ] defined by

B̃t = Wt −
∫ t

0
ρ(s)ds
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is a Brownian motion under Q̃ and is associated (thanks to the transfer principle) with the Q̃-
fractional Brownian motion (B̃H )t∈[0,T ] defined by

B̃H
t =

∫ t

0
KH (t, s)dB̃s =

∫ t

0
KH (t, s)dWs − (KH ρ)(t) = BH

t − (KH ρ)(t).

Consequently, under Q̃, X verifies{
dXt = b(Xt )dt + σ(t)dB̃H

t + σ(t)d(KH ρ)(t),

X0 = x.
(18)

We now consider the solution Y (under Q̃) of the following equation:{
dYt = b(Yt )dt + σ(t)dB̃H

t

Y0 = x.
(19)

Under Q̃, the law of the process (Yt )t∈[0,T ] is exactly Px . Then, (X,Y ) under Q̃ is a coupling of
(Q,Px) and it follows that

[Wd2
2 (Q,Px)]2 ≤ E

Q̃
(|d2(X,Y )|2) = E

Q̃

(∫ T

0
|Xt − Yt |2 dt

)
,

[Wd∞
2 (Q,Px)]2 ≤ E

Q̃
(|d∞(X,Y )|2) = E

Q̃

(
sup

0≤t≤T

|Xt − Yt |2
)
.

We now estimate the distance on C(0, T ;Rm) between X and Y with respect to the distances d2
and d∞. We note that equations (18) and (19) can be considered as pathwise integral equations
driven by β-Hölder functions with β < H . Indeed, the Hölder regularity is straightforward for
the driving function B̃ since it is a fractional Brownian motion under Q̃ (and so it has almost
surely β-Hölder trajectories for any β < H ). Moreover, since

∫ T

0 |ρ(s)|2 ds < +∞ almost surely,
KH ρ ∈ CH (0, T ) almost surely by (15).

We write

Xt − Yt =
∫ t

0

(
b(Xs) − b(Ys)

)
ds +

∫ t

0
σ(s)d(KH ρ)(s).

We use the change of variables formula for a β-Hölder continuous function (see [35], Theo-
rem 4.3.1) and the stability assumption (H2) to obtain

|Xt − Yt |2 = 2
d∑

i=1

m∑
j=1

∫ t

0
(Xi

s − Y i
s )σ

i,j (s)d(KH ρ)j (s)

+ 2
∫ t

0
〈Xs − Ys, b(Xs) − b(Ys)〉Rd ds (20)

≤ 2
d∑

i=1

m∑
j=1

∫ t

0
(Xi

s − Y i
s )σ

i,j (s)d(KH ρj )(s) + 2B

∫ t

0
|Xs − Ys |2 ds.
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Since X − Y ∈ Cβ(0, T ;Rd) and ρ ∈ L2(0, T ;Rm), we use (14) and (16) to obtain∫ t

0
(Xi

s − Y i
s )σ

i,j (s)d(KH ρj )(s)

=
∫ t

0
(Xi

s − Y i
s )σ

i,j (s)

(∫ s

0

∂KH

∂s
(s, r)ρj (r)dr

)
ds

=
∫ t

0

(∫ t

r

(Xi
s − Y i

s )σ
i,j (s)

∂KH

∂s
(s, r)ds

)
ρj (r)dr

=
∫ t

0
K∗

H

(
(Xi − Y i)σ i,j 1[0,t]

)
(r)ρj (r)dr.

We denote by σ ∗ the transpose matrix of σ and we use the inequality (17) to obtain

2
d∑

i=1

m∑
j=1

∫ t

0
(Xi

s − Y i
s )σ

i,j (s)d(KH ρ)j (s)

= 2
∫ t

0

〈
K∗

H

(
σ ∗(X − Y)1[0,t]

)
(r),ρ(r)

〉
Rm dr

≤ 2
∥∥K∗

H

(
σ ∗(X − Y)1[0,t]

)∥∥
L2(0,T )

‖ρ‖L2(0,t)

≤ 2‖σ ∗(X − Y)1[0,t]‖H‖ρ‖L2(0,t)

≤ 2(2H)1/2T H−1/2
∥∥σ ∗(X − Y)1[0,t]

∥∥
L2(0,T )

‖ρ‖L2(0,t)

≤ 2(2H)1/2T H−1/2‖σ‖0,T ,∞‖X − Y‖L2(0,t)‖ρ‖L2(0,t).

We report this estimate in (20), and using the inequality 4εab ≤ 4ε2a2 + b2 with ε =
(HT 2H−1‖σ‖2

0,T ,∞/(2|B|))1/2, we obtain

|Xt − Yt |2 ≤ 2(2H)1/2T H−1/2‖σ‖0,T ,∞‖X − Y‖L2(0,t)‖ρ‖L2(0,t)

+ 2B

∫ t

0
|Xs − Ys |2 ds

≤ (2/|B|)HT 2H−1‖σ‖2
0,T ,∞

∫ t

0
|ρ(s)|2 ds

+ (2B + |B|)
∫ t

0
|Xs − Ys |2 ds.

Gronwall’s lemma implies that for any t > 0,

|Xt − Yt |2 ≤ (2/|B|)HT 2H−1‖σ‖2
0,T ,∞

∫ t

0
e(2B+|B|)×(t−s)|ρ(s)|2 ds.
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Hence, we may write that

d2∞(X,Y ) ≤ (2H/|B|)T 2H−1‖σ‖2
0,T ,∞

(
1 ∨ e(2B+|B|)×T

)∫ T

0
|ρ(s)|2 ds

and

[Wd∞
2 (Q,Px)]2 ≤ 2CT,H H(Q|Px)

with CT,H = 2HT 2H−1(1 ∨ e(2B+|B|)×T )‖σ‖2
0,T ,∞/|B|.

Analogously for the metric d2, we have

[Wd2
2 (Q,Px)]2 ≤ E

Q̃

∫ T

0
|Xt − Yt |2 dt

≤ (2/|B|)HT 2H−1‖σ‖2
0,T ,∞

× E
Q̃

∫ T

0
|ρ(s)|2

(∫ T

s

e(2B+|B|)×(t−s) dt

)
ds.

Since

∫ T

s

e(2B+|B|)×(t−s) dt ≤

⎧⎪⎪⎨
⎪⎪⎩

e3BT − 1

3B
, if B > 0,

−1 − eBT

B
, if B < 0,

we define

cB,T :=
⎧⎨
⎩

e3BT − 1

3
, if B > 0,

1 − eBT , if B < 0

and it follows that

[Wd2
2 (Q,Px)]2 ≤ 4(H/B2)T 2H−1‖σ‖2

0,T ,∞cB,T

(
1

2
E

Q̃

∫ T

0
|ρ(s)|2 ds

)
≤ 2CT,H H(Q|Px)

with CT,H = (2/B2)HT 2H−1‖σ‖2
0,T ,∞cB,T . �

Proof of Theorem 4. We use the same change-of-variables as in the proof of Theorem 2 and
consider the map � from the metric space (C(0, T ), d2) into itself defined by �(γ ) = F−1 ◦ γ .
We have, for γ1, γ2 ∈ C(0, T ),

d2
(
�(γ1) − �(γ2)

) =
(∫ T

0
|�(γ1(s)) − �(γ2(s))|2 ds

)1/2

≤ ‖� ′‖∞d2(γ1, γ2),
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thus the map � is σ2-Lipschitzian. If PX
x (resp., PY

F(x)) denotes the law of the process X

(resp., Y ), then

PX
x = PY

F(x) ◦ F = PY
F(x) ◦ �−1.

Since PY
F(x) ∈ T2(C), we have that PX

x ∈ T2(σ
2
2 C). It remains to prove that the stability assump-

tion (H3) is true for the function b̃ = b ◦ F−1/σ ◦ F−1. Writing b̃′ = (b′ ◦ F−1σ ◦ F−1 − b ◦
F−1σ ′ ◦ F−1)/σ ◦ F−1, it easy to see that under the assumptions (H4), we have(

x − y,
(b ◦ F−1)(x)

(σ ◦ F−1)(x)
− (b ◦ F−1)(y)

(σ ◦ F−1)(y)

)
≤ B

σ1
|x − y|2.

We can then apply Theorem 3 to equation (13) and thus the result (b) is proved. A similar rea-
soning is true for the metric d∞. �

6. A remark on the link between the exponential moment
and T1(C)

It has been proven in [4,5,8] that μ ∈ T1(C) if and only if we have, for some δ > 0, the Gaussian
tail ∫

E

∫
E

eδd2(x,y)μ(dx)μ(dy) < +∞.

The link between the constant C and the exponential moment is described in the following re-
mark.

Remark. Let μ a probability measure on a metric space (E,d). Assume that there exists some
δ > 0 such that the following Gaussian tail holds:

C(δ) :=
∫

E

∫
E

eδd2(x,y)μ(dx)μ(dy) < +∞.

Then, μ satisfies the transportation inequality T1(C) on (E,d). In [8], the authors have linked C

with the above exponential moment in the following way:

C ≤ 2

δ
sup
k≥1

(
(k!)2

(2k)!
∫

E

∫
E

eδd2(x,y)μ(dx)μ(dy)

)1/k

. (21)

By an optimization argument, the supremum in the formula (21) is achieved for k = 1 and con-
sequently C ≤ C(δ)/δ.

In [5] (see also [16], page 69), the authors have proven that the constant C is in fact controlled
by a better constant, but it is not tractable to study short-time and long-time asymptotic behavior.

In our context, if we use the above remark and the exponential estimate (22) from Lemma 8,
then we can easily prove that the law Px of the solution of equation (4) satisfies the property
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T1(C) with C = K‖σ‖βT 2H−ε for small time T and a small ε > 0. Nevertheless, the power of
T is not the correct order when one applies this result to small-time asymptotics.

We believe that it remains an interesting open problem to give a simple link between the
exponential moment and the constant C in T1(C).

Proof of the estimate C ≤ C(δ)/δ. We use an optimization argument involving the gamma
function 
. We denote, for x ≥ 1,

�(x) = exp

(
1

x
ln

(
C(δ)


2(x + 1)


(2x + 1)

))
.

We remark that the right-hand side of (21) is equal to (2/δ)�(k). Our result will then be a
consequence of supx≥1 �(x) = �(1) = C(δ)/2. We denote by � the function (ln
)′ = 
′/


(usually called the digamma function). We write �′(x) = h(x)�(x)/x2, where the function h is
defined for x ≥ 1 by

h(x) = − ln

(
C(δ)


2(x + 1)


(2x + 1)

)
+ 2x

(
�(x + 1) − �(2x + 1)

)
.

Obviously, �′ and h have the same sign. Since � ′(x) = ∑∞
k=0

1
(x+k)2 (see [1], page 13), we

deduce that

� ′(x + 1) − 2� ′(2x + 1)

=
∞∑

k=0

1

(x + 1 + k)2
− 1

2(x + (k + 1)/2)2

= 1

2

∞∑
k=0

1

(x + 1 + k)2
+ 1

2

∞∑
k=0

1

(x + 1 + k)2
− 1

(x + (k + 1)/2)2

= 1

2

{ ∞∑
k=0

1

(x + 1 + k)2
+

∞∑
j=0

− 1

(x + (2j + 1)/2)2

}

= 1

2

{ ∞∑
k=0

1

(x + 1 + k)2
+

∞∑
k=0

− 1

(x + k + 1/2)2

}

= 1

2
{� ′(x + 1) − � ′(x + 1/2)}.

Since � ′′(x) = −2
∑∞

k=0(x + k)−3, � ′ is a decreasing function and then

� ′(x + 1) − 2� ′(2x + 1) ≤ 0.

This yields h′(x) = 2x(� ′(x + 1) − 2� ′(2x + 1)) ≤ 0. So, for any x ≥ 1,

h(x) ≤ h(1) = − ln
(
C(δ)
2(2)/
(3)

) + 2
(
�(2) − �(3)

)
.
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In [1], the following identity is stated for n ≥ 1:

�(x + n) =
n−1∑
k=0

1

x + k
+ �(x),

so �(2) − �(3) = −1/2. Finally, h(1) = − ln(C(δ)/2) − 1 ≤ 0 because C(δ) ≥ 1. Thus, h(x) ≤
0 for any x ≥ 1, and � is decreasing. Its maximum is achieved for x = 1. �

Appendix: Fernique-type lemma

Lemma 8. Let T > 0, 1/2 < β < H < 1. Then, for any α < 1/(128(2T )2(H−β)),

E[exp(α‖BH ‖2
0,T ,β)] ≤ (

1 − 128α(2T )2(H−β)
)−1/2

. (22)

Moreover, we have the following moment estimate for any k ≥ 1:

E(‖BH ‖2k
0,T ,β) ≤ 32k(2T )2k(H−β) (2k)!

k! . (23)

Proof. First, we prove that

|BH,i
t − BH,i

s | ≤ ξβ |t − s|β, i = 1, . . . ,m, (24)

where ξβ is a positive random variable such that

E(ξ
2p
β ) ≤ 32p(2T )2p(H−β) (2p)!

p! . (25)

Although the proofs of (24) and (25) are classical, we include them for the convenience of the
reader. With ψ(u) = u2/(H−β) and p(u) = uH in Lemma 1.1 of [14], the Garsia–Rodemich–
Rumsey inequality reads as follows:

|BH,i
t − BH,i

s | ≤ 8
∫ |t−s|

0

(
4�

u2

)(H−β)/2

HuH−1 du,

where the random variable � is

� =
∫ T

0

∫ T

0

|BH,i
t − B

H,i
s |2/(H−β)

|t − s|2H/(H−β)
dt ds.

We have

|BH,i
t − BH,i

s | ≤ 8(4�)(H−β)/2
∫ |t−s|

0
Huβ−1 du ≤ 8(4�)(H−β)/2 H

β
|t − s|β

≤ 8(4�)(H−β)/2|t − s|β.
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We let ξβ = 8(4�)(H−β)/2 and for p ≥ 1/(H − β), we have

Eξ
2p
β ≤ 82p4p(H−β)E

(∫ T

0

∫ T

0

|BH,i
t − B

H,i
s |2/(H−β)

|t − s|2H/(H−β)
dt ds

)p(H−β)

≤ 82p(2T )2p(H−β)

∫ T

0

∫ T

0

E|BH,i
t − B

H,i
s |2p

|t − s|2pH

dt ds

T 2

≤ 82p(2T )2p(H−β) (2p)!
2pp! ≤ 32p(2T )2p(H−β) (2p)!

p! .

Thus, (24) and (25) are proved. What remains to be shown can be tediously deduced from [9],
Theorem 1.3.2. We can also make the following direct computations. Using (24) and (25), we
have

E(exp(α‖BH ‖2
β)) ≤ E(exp(αξ2

β)) ≤ E

( ∞∑
p=0

αpξ
2p
β

p!

)

≤
∞∑

p=0

(32α)p(2T )2p(H−β) (2p)!
(p!)2

≤ (
1 − 128α(2T )2(H−β)

)−1/2
,

where we have used the identity
∑∞

p=0 ap (2p)!
(p!)2 = (1 − 4a)−1/2 for a < 1/4. Thus, the lemma is

proved. �
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