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We define the local empirical process, based on n i.i.d. random vectors in dimension d, in the neighborhood
of the boundary of a fixed set. Under natural conditions on the shrinking neighborhood, we show that, for
these local empirical processes, indexed by classes of sets that vary with n and satisfy certain conditions, an
appropriately defined uniform central limit theorem holds. The concept of differentiation of sets in measure
is very convenient for developing the results. Some examples and statistical applications are also presented.
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1. Introduction

Let X1, . . . ,Xn be independent and identically distributed (i.i.d.) random vectors in R
d (d ∈ N),

distributed according to an absolutely continuous probability measure P . Denote the correspond-
ing density by p. For a Borel measurable subset D of R

d , write

�n(D) =
n∑

i=1

1D(Xi).

The process �n(D),D ∈ D (D being the class of Borel sets), is, by definition, a binomial process
on R

d ; �n/n is the empirical measure corresponding to X1, . . . ,Xn. Clearly, E�n(D) = nP (D).
Let K be a convex body in R

d . The set K will be fixed throughout. Denote its boundary by
∂K . It is the aim of this paper to study the behavior of �n in the neighborhood of ∂K . Write
‖z − ∂K‖ = minx∈∂K ‖z − x‖ and let

Vε(∂K) = {z ∈ R
d :‖z − ∂K‖ ≤ ε}, ε > 0,

denote this neighborhood. Set a = P(Vε(∂K)). For a Borel set A ⊂ Vε(∂K), define

zn(A) = 1√
na

[�n(A) − nP (A)].

If ε → 0, then all sets A will “shrink toward” ∂K . If, however, n → ∞ at the same time,
the random variables zn(A) do not have to converge to 0 and, if nε → ∞, they should typically
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converge to Gaussian random variables. However, where would these Gaussian random variables
“live”? Would they form some set-parametric process? These are the questions we seek to address
in this paper. We will do this using the concept of differentiability of set-valued functions, as was
recently developed in [24].

One cannot prove a sufficiently interesting Gaussian limit theorem for zn which is defined
on all Borel subsets of Vε(∂K). Instead, one needs to consider smaller classes of sets. Let ε =
εn → 0 as n → ∞ and let Aεn be a class of measurable subsets of Vεn(∂K). The canonical
example of Aεn is constructed as follows. Let K be a fixed class of Borel sets in R

d and define
A = {K ′�K :K ′ ∈ K}, where � denotes “symmetric difference”. Now, take Aεn = {A ∈ A :A ⊂
Vεn(∂K)}. Particular cases can be found in Examples 1 and 2 below.

Our main result is the central limit theorem for the local empirical process near ∂K and
indexed by Aεn ,

{zn(A),A ∈ Aεn}. (1)

Denoting the conditional probability distribution on Vε(∂K) by Pε(A) = P(A)/a, we can also
write

zn(A) = 1√
na

[�n(A) − naPε(A)].

This reflects the fact that, on average, the effective sample size is equal to na, not n. We therefore
assume, in addition to εn → 0, that

nεn → ∞ as n → ∞.

This will imply that na → ∞ and ensure that the sets in Aεn contain enough observations to
obtain Gaussian limit behavior.

Although very natural here, it is, in general, unusual that an empirical process is defined on
a class of sets that depends on n. We will show that its limiting process should be defined on a
class of subsets not of the “same” R

d , but of the cylinder ∂K × [−1,1]. The subsets in this class
are properly defined derivatives of sequences of sets, with the nth set an element of Aεn .

Poisson limit behavior of �n on Vεn(∂K) has been studied in [26]. The main limit result
there had a somewhat unusual property: it contained a functional limit theorem, but not a one-
dimensional limit theorem for �n. Indeed, although it showed weak convergence and, moreover,
convergence in total variation, for the process �n given on all Borel subsets of Vεn(∂K), for
a particular sequence of subsets Aεn , it remained unspecified which random variable from the
limiting process the sequence �n(Aεn) would converge to. This happened because the notion of
derivative sets had not been developed at the time Khmaladze and Weil [26] was accepted for
publication. In this paper, the situation is different – extracting the one-dimensional limit theorem
from Theorem 1 gives the following statement: if the set-valued function Aε is differentiable in
ε at ε = 0 and dAε/dε is its derivative (see Section 3 or [24]), then

zn(Aεn)
d→ W(dAε/dε),

where W is the set-parametric Brownian motion defined just before Lemma 1, Section 4.
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The local empirical process for one-dimensional Xi , that is, the empirical process in the neigh-
borhood of a point c ∈ R ∪ {−∞,∞}, is a classical object in probability theory, one which
has proven to be very valuable in statistics; see, for example, [5,9,10,12,14,23,29], the book by
Csörgő and Horváth [5] and Khmaladze [23]. The one-dimensional local empirical process has
been extended to the multivariate set-up, but, typically, only the neighborhood of a point c ∈ R

d

or the region outside a large sphere are considered; see, for example, [8,11,13,30,34]. Perhaps the
closest to the present paper are [18] and [15]. For a local empirical process for function-valued
random elements, see [16].

The paper is organized as follows. In the next section, we present statistical applications. In
Section 3, we introduce the necessary geometry and the appropriate concept of differentiation
of sets. In Section 4, the main results, central limit theorems for zn, and some examples will be
presented. Proofs are collected in Section 5.

2. Statistical motivation

Although the local empirical process near the boundary of a set is an interesting probabilistic
object in its own right, the study of this type of process was mostly motivated by problems in
spatial statistics. Consider a family of distributions, indexed by some parameter θ , and denote
by Ln(θ, θ ′) the log-likelihood ratio. If the parameter were a vector, as in parametric problems
(see, e.g., [22]), the local analysis of Ln(θ, θ ′) (or any other process which the inference is based
upon), in θ ′ from the neighborhood of the true value θ , is a crucial step in asymptotic statistical
theory. It forms, for example, the basis of contiguity theory. The situation is similar when the
parameter is a function (see, e.g., [4,40]). However, it has thus far not been known how to carry
out such a local analysis when the parameter is a set.

Examples of set-parametric problems are provided by the class of spatial change point prob-
lems or change set problems (see, e.g., [25]). In these problems, the observation is usually a
(marked) point process in R

d and the model assumption is that there is a set, or an image, K ,
such that outside K , the distribution of the point process (e.g., the distribution of the marks)
sharply changes. One can think of K as, for example, an ore deposit site, a pollution site or a site
with different magnetic properties. The literature on this problem is very broad; see, for example,
[6,19,28,32].

In most of the particular formulations of the change set problem, the log-likelihood ratio
Ln(K,K ′) is some form or another of the local empirical process (1), where K plays the role
of the true value of the change set, while the sets K ′ are small deviations from it. To be more
precise, let (X1, Y1), . . . , (Xn,Yn) be independent random vectors, with Xi being (as before)
a d-dimensional location and Yi being a “mark”, not necessarily one-dimensional. Write K(ε)

instead of K ′ in order to explicitly express the dependence on ε > 0. Let P1 and P2 be the
distributions of Yi outside K and on K , respectively. The log-likelihood ratio then has the form

Ln(K,K(ε)) =
n∑

i=1

[
1K(ε)\K(Xi) − 1K\K(ε)(Xi)

]
ξ(Yi),
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where ξ(Yi) = log dP2
dP1

(Yi). We focus on

n∑
i=1

1K(ε)\K(Xi) and
n∑

i=1

1K\K(ε)(Xi); (2)

a discussion of the behavior of the ξ(Yi) is of secondary importance here. Let K̃ be a class of
set-valued functions K(·) all converging to the same K , that is, K(ε)�K shrinks toward the
boundary ∂K when ε → 0. These sets describe the deviations from the hypothetical change set
K . Let us consider the processes in (2) given on these deviations and investigate their joint limit
in distribution when n → ∞ and ε = εn → 0: the larger the number of observations, the smaller,
or narrower, the sets we consider. In the appropriate formulation of “local alternatives”, where
not only K(ε) tends to K , but also P2 tends to P1, when n → ∞, the convergence to a Gaussian
limiting process – as shown in this paper – is of fundamental importance. Indeed, although there
is a rich literature on statistical estimation of sets, we know very few results on testing hypotheses
about sets and no results for testing against local alternatives.

To illustrate another class of statistical problems where the parameter is a set, consider two
prominent examples: the excess mass approach (cf. [31,33]), and the shorth [2,20]) and its gen-
eralization [17]. Let K be a fixed subset of D, as in the canonical example. One could choose,
for instance, K to be the class of all ellipsoids. Define the excess mass set K for level λ > 0 by

K = arg max
K ′∈K

{P(K ′) − λμd(K ′)},

where μd denotes d-dimensional Lebesgue measure. Similarly, the generalized shorth or mini-
mum volume set K for probability α ∈ (0,1) is given by

K = arg min
K ′∈K

{μd(K ′) :P(K ′) ≥ α};

see [7,35] when K is the class of all ellipsoids. It turns out that both of these sets K and their
M-estimators can be analyzed somewhat similarly. Therefore, we confine ourselves to the excess
mass set.

The obvious non-parametric estimator for this set is obtained by replacing P by �n/n:

Kn = arg max
K ′∈K

{�n(K
′)/n − λμd(K ′)}

= arg max
K ′∈K

n2/3{�n(K
′)/n − λμd(K ′) − (

�n(K)/n − λμd(K)
)}

.

Let εn be such that a = n−1/3 (cf. the “cube root asymptotics” of [27]). Under certain conditions,
it can be shown that for large T > 0, with high probability, Kn�K ∈ AT εn . Observe that in that
case,

Kn = arg max
K ′ : K ′�K∈AT εn

{
zn(K

′) − zn(K) + n2/3[P(K ′) − P(K) − λ
(
μd(K ′) − μd(K)

)]}
.
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Now, a central limit theorem for zn makes it possible to show that, asymptotically, Kn�K can be
described as a deterministic function depending on n (actually, on τ−1

εn
; see Section 4) evaluated

at a random variable that does not depend on n. This random variable is the arg max of some
Brownian motion with drift. Such a result is very useful for a refined analysis of Kn. See [3] for
a study of the behavior of such Kn’s along these lines.

3. Some geometry and differentiability of sets

In this section, we first briefly review some relevant notation and facts from geometry. We then
recall the concept of “differentiation of sets in measure”, as given in [24]. In that paper and the
references therein (in particular [36]), more details about the required geometry can be found.
We also refer to the recent monograph [37].

Let K ∈ D be our convex body, that is, a closed, bounded convex set that has interior points.
Denote by �(z) the metric projection of z ∈ R

d on ∂K , that is, �(z) is a nearest point to z

on ∂K . The set of z-values for which such a nearest point is not unique is a subset SK of K

called the skeleton of K . Let μd denote d-dimensional Lebesgue measure. It is then known that
μd(SK) = 0. A unit vector u is called an outer normal of K at x ∈ ∂K if there is some z ∈ R

d\K
such that x = �(z) and u = (z − �(z))/‖z − �(z)‖. Let Br(z) denote the closed ball with
center z and radius r . For x ∈ ∂K , we define the local interior reach

r(x) = max{r :x ∈ Br(z) ⊂ K}.
If r(x) > 0, then the outer normal u at x ∈ ∂K is unique. In this case, the unit vector −u is the
unique inner normal. In general, at each x ∈ ∂K , we denote the set of outer normals by N(x) and
the normal bundle of K is defined as

Nor(K) = {(x,u) :x ∈ ∂K,u ∈ N(x)}.
The cylinder � = Nor(K) × [−1,1] will be important for describing our limiting processes.
Note, however, that it will eventually be possible to work with the cylinder ∂K × [−1,1], which
is much easier to visualize.

We also need the so-called local magnification map τε; see [24]. Any point z ∈ R
d\SK can be

written as z = �(z) + ds(z)u, where ds(z) is the signed (“+” outside) distance between z and
�(z) and u an outer normal at �(z) that satisfies the equality. Now, define

τε(z) =
(

�(z),u,
ds(z)

ε

)
, z ∈ R

d\SK, ε > 0.

Observe that τε maps Vε(∂K)\SK into �.
We are now prepared to introduce the aforementioned differentiation of sets. Consider the first

support measure ϑd−1 on Nor(K); see [36]. It attributes measure 0 to the set of all points (x,u),
where, at x, there is more than one outer normal u. Hence, we can map it to ∂K in a one-to-one
way. On ∂K , this map coincides with Hausdorff measure ν and if, for a Borel set H ⊂ Nor(K),
we write

H0 = {x ∈ ∂K : (x,u) ∈ H },
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then

ϑd−1(H) = ν(H0). (3)

On �, define the measure M = ϑd−1 × μ (μ being one-dimensional Lebesgue measure).
Consider a (Borel) set-valued function K(ε), ε ∈ [0,1], such that K(0) = K , with K as be-
fore; write A(ε) = K(ε)�K and assume that A(ε) ⊂ Vε(∂K). The set-valued function A(ε),
ε ∈ [0,1], is called differentiable at ∂K and ε = 0 if there exists a Borel set B ⊂ � such that
M(τεA(ε)�B) → 0 as ε → 0 (where τεA = {τε(z) : z ∈ A}). The set B is called the derivative
of A(ε) at ∂K . In this case, we also say that K(ε), ε ∈ [0,1], is differentiable with the same
derivative and write

d

dε
K(ε)

∣∣∣∣
ε=0

= d

dε
A(ε)

∣∣∣∣
ε=0

= B.

Note that B is not unique, but can be changed on a set of M-measure 0.
Let P now be as in Section 1. We require that the density p can be approximated in the

neighborhood of ∂K by a function depending only on �(z) and on whether or not z ∈ K . This
latter possibility is easy to imagine in the change set problems: the limit of p(z) from inside K

can indeed be different from that from outside if K is the change set. More formally, we require
the existence of two functions, p+ and p−, on ∂K such that, as ε → 0,

1

ε

∫
Vε(∂K)\K

|p(z) − p+(�(z))|dμd(z) → 0, (4)

1

ε

∫
Vε(∂K)∩K

|p(z) − p−(�(z))|dμd(z) → 0. (5)

Now, define a measure Mp on � as follows:

dMp(x,u, s) = p+(x)dϑd−1(x,u) × ds for s > 0,

dMp(x,u, s) = p−(x)dϑd−1(x,u) × ds for s ≤ 0.

For convenience, assume that p+ and p− are bounded (although a weaker, integrability, condi-
tion would suffice). An easy, but practically interesting, situation occurs when p+(x) = c+ and
p−(x) = c− for all x ∈ ∂K , where c+, c− ≥ 0 are two constants.

The following key result from [24] shows the “differentiability of sets in measure”: if A(ε) is
differentiable at ∂K , then

d

dε
P (A(ε))

∣∣∣∣
ε=0

= Mp

(
d

dε
A(ε)

∣∣∣∣
ε=0

)
. (6)

4. Main results

Let Aεn be as in Section 1 and assume Mp(�) > 0. Writing an = P(Vεn(∂K)), it easily follows,
using (6), that an/εn → Mp(�). Hence, we have, just as for εn,

an → 0 and nan → ∞.
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Denote by B the class of all possible derivatives at ε = 0 corresponding to Aεn , which, by def-
inition, means that B ∈ B if and only if there exists a sequence of sets (An)

∞
n=1 with An ∈ Aεn

and M(τεnAn�B) → 0. (Observe that for a thus converging sequence of Borel subsets of �,
the limit set is not well defined. This limit “set” is actually an equivalence class of sets, defined
by the property that for any two sets B1,B2 in the class, M(B1�B2) = 0. Out of every such an
equivalence class, we choose one limit (Borel) set B , say. Whether or not the conditions of our
results are satisfied will depend on the choices of these B’s. In applications/examples, we should
choose natural or appropriate B’s to make the theorems work.)

Consider the local empirical process (1) from Section 1. To establish its limit in distribution,
we need the following steps. Write τ−1

ε C = {z ∈ Vε(∂K) : τε(z) ∈ C} for a Borel set C ⊂ �.
First, using the local magnification map, induce the point process �n and the distribution Qn on
� :�n(C) = �n(τ

−1
εn

C) and Qn(C) = Pεn(τ
−1
εn

C). Thus, for any Borel set C ⊂ �, we can define

vn(C) := 1√
nan

[�n(C) − nanQn(C)]
(7)

= 1√
nan

[�n(τ
−1
εn

C) − nanPεn(τ
−1
εn

C)] = zn(τ
−1
εn

C).

Hence, we can define the local empirical processes on two classes of sets: on Bn := {τεnA :A ∈
Aεn}, which changes with n, and on B, the class of its limits, or derivative sets, which is fixed.
We denote these processes by

vn,Bn
:= {vn(B) :B ∈ Bn} and vn,B := {vn(B) :B ∈ B}.

(Local empirical processes of the latter type – i.e. for a fixed B – have been studied in, e.g.,
[15,18]. Here, however, our main object is vn,Bn

; vn,B is an auxiliary process, a bridge between
vn,Bn

and its limiting process.) Second, we show that the distribution Qn, which “governs” these
processes, converges to the distribution Q(C) = Mp(C)/Mp(�) and the processes vn,Bn

can
be approximated by the processes vn,B . Next, we verify that vn,B converges in distribution to a
set-parametric Brownian motion WB and, finally, we note that one can switch from WB , given
on subsets of �, to its isometric image, given on the “easier” cylinder ∂K × [−1,1].

Below, we write C− = {(x,u, s) ∈ C : (x,u) ∈ Nor(K), s ≤ 0} and C+ = C\C−. Note that in
the case p+(x) = c+ and p−(x) = c− for all x ∈ ∂K , we have

Q(C) = c+M(C+) + c−M(C−)

(c+ + c−)ν(∂K)
.

When, for example, 0 = c− < c+, we obtain Q(C) = Q(C+) = M(C+)/ν(∂K).
For Borel sets C,C′ ⊂ �, define d(C,C′) = (Q(C�C′))1/2. Throughout, we will assume that

(B, d) is totally bounded and that

sup
A∈Aεn

inf
B∈B

d(τεnA,B) → 0. (8)



552 J.H.J. Einmahl and E.V. Khmaladze

In particular, every sequence (An)
∞
n=1 with An ∈ Aεn has a subsequence (Ank

)∞k=1 such that for
some B ∈ B, d(τεnk

Ank
,B) → 0. Assumption (8) can be written as

sup
Bn∈Bn

inf
B∈B

d(Bn,B) → 0.

From the definition of B and the assumption that (B, d) is totally bounded, it follows that

sup
B∈B

inf
Bn∈Bn

d(Bn,B) → 0.

Thus, the Hausdorff distance between the classes Bn and B tends to 0:

γn := max
(

sup
Bn∈Bn

inf
B∈B

d(Bn,B), sup
B∈B

inf
Bn∈Bn

d(Bn,B)
)

→ 0. (9)

Recall that it is the aim of this paper to present a central limit theorem for zn,Aεn
, or, equiva-

lently, vn,Bn
. By “central limit theorem for zn,Aεn

” we mean:

(a) sup
Bn∈Bn,B∈B;d(Bn,B)≤γn

|vn(Bn) − vn(B)| P→ 0;

and

(b) vn,B
d→ WB := {W(B),B ∈ B}.

Here, WB is set-parametric Brownian motion: a bounded, uniformly d-continuous Gaussian
process with mean 0 and covariance structure EW(B)W(B ′) = Q(B ∩ B ′). We view vn and
W as processes taking values in �∞(B) endowed with the uniform distance and understand weak
convergence in the sense of van der Vaart and Wellner [39]. (We assume, for convenience, that
our classes of sets are such that the various “suprema” are measurable, i.e., that they are random
variables.) The following fact is very useful for proving this central limit theorem.

Lemma 1. From (4) and (5), it follows that Qn converges to Q in total variation:

sup|Qn(C) − Q(C)| → 0,

with the sup taken over all Borel sets C ⊂ �.

Define dn(A,A′) := (Pεn(A�A′))1/2 = (P (A�A′)/an)
1/2; observe that dn(A,A′) =

(Qn(τεnA�τεnA
′))1/2. Assume, for any δ > 0, that there exists a finite collection of pairs (brack-

ets) [A(δ),A(δ)] of Borel sets in Vεn(∂K) with dn(A(δ),A(δ)) ≤ δ, such that any set A ∈ Aεn

can be placed in a bracket from this collection: A(δ) ⊂ A ⊂ A(δ). Consider such a class of brack-
ets with minimal cardinality; denote this cardinality (the bracketing number) by N[],n(δ) and let
N[],n(δ) be the set of A(δ)’s in this class. We assume the same for τ−1

εn
B := {τ−1

εn
B :B ∈ B} and
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use the notation Ñ[],n(δ) and Ñ[],n(δ). We will require

lim
δ↓0

lim sup
n→∞

∫ δ

0

√
logN[],n(x)dx = 0, (10)

lim
δ↓0

lim sup
n→∞

∫ δ

0

√
log Ñ[],n(x)dx = 0. (11)

Theorem 1. Under the aforementioned assumptions, in particular, the growth conditions on εn,
the approximation of p by p+ or p− in (4) and (5), the relation between Aεn and B specified in
(8) and the entropy conditions (10) and (11), the central limit theorem for zn,Aεn

holds, that is,
statements (a) and (b) hold true.

We also present a version of Theorem 1 without assuming bracketing conditions. To be more
precise, we will assume that our classes of sets near ∂K are Vapnik–Chervonenkis (VC) classes
(see, e.g., [39], Section 2.6, for definition and properties).

Theorem 2. Let Aεn be a VC class with index tn ≤ t for some t ∈ N; also, assume that B is a VC
class. If we assume that εn → 0, nεn → ∞ and (4), (5) and (8), then the central limit theorem
for zn,Aεn

holds, that is, statements (a) and (b) hold true.

Remark 1. Consider the canonical example of Section 1 and let K be a VC class. Then A is also
a VC class, with index t , say. Since Aεn ⊂ A, the index tn of Aεn indeed satisfies tn ≤ t .

Remark 2. Similar to the discussions in [24,26], we note that Theorems 1 and 2, as well as
the whole construction, can be carried over to the case where K is a finite union of convex
bodies and, even more easily, to the case where K is closed and bounded and has a boundary of
positive reach (intuitively, K has a “smooth” boundary). Indeed, the key objects, such as the local
magnification map τε (uniquely defined almost everywhere on R

d ), the local Steiner formula, the
notion of derivative sets and Lemma 1, are all valid for such a K . Moreover, the existence of the
local Steiner formula for a very general K has been demonstrated in [21]. This offers perspectives
for considering such a general K in the statements of our results.

The limiting process WB is defined on subsets of the cylinder � = Nor(K) × [−1,1]. This
cylinder is not easy to visualize. However, since the support measure ϑd−1 depends on H only
through H0 (cf. (3)), we have a similar result for the measure Q. That is, if we write, for a Borel
set C ⊂ �,

C0 = {(x, s) ∈ ∂K × [−1,1] : (x,u, s) ∈ C}
and we use the same letter Q for the measure

dQ(x, s) = p±(x)dν(x) × ds∫
∂K

(p+(x) + p−(x))dν(x)
for s ≷ 0,
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which lives on ∂K × [−1,1], then

Q(C0) = Q(C).

Therefore, if convenient, we will replace � by � = ∂K × [−1,1] and replace WB with the
process WB0 defined on B0 = {B0 :B ∈ B}, a class of subsets of �. However, we could not do
this with vn,Bn

.
Weak convergence in function spaces is important because of its statistical application, the

continuous mapping theorem, which states that continuous functionals, or statistics, of the ran-
dom elements involved inherit the weak convergence. We now formulate a continuous mapping
theorem in our unusual setting, where the domain of the functions depends on n. Let �∞(Bn)

and �∞(B) be the spaces of bounded functions on Bn and B, respectively; let xn ∈ �∞(Bn),
x ∈ �∞(B) and assume that x is d-continuous. Also, assume the functionals ϕn :�∞(Bn) → R

and ϕ :�∞(B) → R are such that (with γn as in (9))

sup
Bn∈Bn,B∈B;d(Bn,B)≤γn

|xn(Bn) − x(B)| → 0 (12)

implies

ϕn(xn) → ϕ(x).

We then have

ϕn(vn,Bn
)

d→ ϕ(WB). (13)

As an example, we see that

sup
Bn∈Bn

|vn(Bn)| d→ sup
B∈B

|W(B)|.

For the proof of (13), we only mention that a Skorokhod almost sure representation theorem

yields the existence of ṽn,B
d= vn,B and W̃B

d= WB such that

sup
B∈B

|ṽn(B) − W̃ (B)| → 0 a.s.

If we extend ṽn,B to Bn, we obtain, from (a),

sup
Bn∈Bn,B∈B;d(Bn,B)≤γn

|ṽn(Bn) − W̃ (B)|

≤ sup
Bn∈Bn,B∈B;d(Bn,B)≤γn

|ṽn(Bn) − ṽn(B)|

+ sup
B∈B

|ṽn(B) − W̃ (B)| P→ 0.

Now, compare this with (12). The rest of the proof is elementary.
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Example 1. Let K = {(x, y) ∈ R
2 :x2 + y2 ≤ 1} be the unit disc, so ∂K = {(x, y) ∈ R

2 :x2 +
y2 = 1} is the unit circle. We have SK = {(0,0)} and r(x) = 1 for all x ∈ ∂K . Also, Vε(∂K) =
{(x, y) ∈ R

2 : (1 − ε)2 ≤ x2 + y2 ≤ (1 + ε)2}.
(a) Let E be the VC class of all closed ellipses (with interior) in R

2. This E is an example of
the general K in the canonical example in Section 1. Thus, A = {E�K :E ∈ E } and Aεn = {A ∈
A :A ⊂ Vεn(∂K)}. By Remark 2, Aεn is a VC class with uniformly bounded index.

We parametrize ∂K with the angle θ ∈ [0,2π) and re-express the cylinder � = ∂K × [−1,1]
as [0,2π) × [−1,1]. Consider the functions fα,a,b,c,d : [0,2π) → [−1,1], defined by

fα,a,b,c,d (θ) = f (θ) = a + b sin2(θ − α) + c sin(θ − α) + d cos(θ − α),

with α ∈ [0,π/2) and a, b, c, d ∈ R such that sup0≤θ<2π |f0,a,b,c,d (θ)| ≤ 1. Denote the class of
all such functions by F E . A tedious calculation shows that

B0 = {{(θ, y) ∈ [0,2π) × [−1,1] : 0 < y ≤ f (θ) or f (θ) < y ≤ 0} :f ∈ F E
}
.

Since B0 is a limit class, it can be shown, directly using the definition of a VC class, that B0 is also
a VC class. For B ∈ B0, note that for every θ ∈ [0,2π), the intersection of B with {(θ, y) :y ∈
[−1,1]} is convex (an interval). Part (b) shows that this need not be the case in general.

(b) Consider, for the same K , the very simple class

Aεn = {{z ∈ R
2 :‖z − ∂K‖/εn ∈ [a, b] ∪ [c, d]} :−1 ≤ a ≤ b ≤ c ≤ d ≤ 1

}
.

Now,

B0 = {{(θ, y) ∈ [0,2π) × [−1,1] :y ∈ [a, b] ∪ [c, d]} :−1 ≤ a ≤ b ≤ c ≤ d ≤ 1
}
.

Here, Bn = B.

Example 2. Let K = {(x, y) ∈ R
2 : 0 ≤ x, y ≤ 1} be the unit square with boundary ∂K . We

obtain SK = {(x, x) : 0 < x < 1} ∪ {(x,1 − x) : 0 < x < 1} and for, for example, {(x,0) : 0 ≤
x ≤ 1} ⊂ ∂K , we see that r((x,0)) = min(x,1 − x). It is notationally somewhat cumbersome
to describe Vε(∂K) explicitly, but it is trivial to see that it is the difference of a set which is a
“square with circular corners” and a smaller square.

(a) Let Q be the VC class of all closed quadrangles in R
2. Set A = {Q�K :Q ∈ Q} and

Aεn = {A ∈ A :A ⊂ Vεn(∂K)}. Again by Remark 2, Aεn is a VC class with uniformly bounded
index. The present example is somewhat similar to Example 1, but there is a substantial difference
since a square is less smooth than a disc.

We parametrize ∂K with θ ∈ [0,4), the counterclockwise “distance” from the origin, and re-
express the cylinder � as [0,4) × [−1,1]. Consider the functions fa,b : [0,4) → [−1,1], with
a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3), defined by

fa,b(θ) = f (θ) = am(θ − m) + bm for m ≤ θ < m + 1,m = 0,1,2,3,
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with a, b such that am ∈ [−2,2] and sup0≤θ<4 |fa,b(θ)| ≤ 1. Denote the class of all such func-
tions by F Q. Note that f ∈ F Q is typically discontinuous, in contrast to an f ∈ F E of Example 1.
It can be shown that

B0 = {{(θ, y) ∈ [0,4) × [−1,1] : 0 < y ≤ f (θ) or f (θ) < y ≤ 0} :f ∈ F Q
}
.

It readily follows that B0 is a VC class.
(b) Consider (for the same K) a larger class than Q, namely C , the class of all convex bodies

in R
2. For convenience, let P be the uniform distribution on [−1,2]2. The class C is again an

example of the general K in the canonical example in Section 1, but it is not a VC class. We have
A = {C�K :C ∈ C} and Aεn = {A ∈ A :A ⊂ Vεn(∂K)}.

Consider the functions f : [0,4) → [−1,1] defined by

f (θ) = fm(θ − m) for m ≤ θ < m + 1,m = 0,1,2,3,

with fm : [0,1) → [−1,1] a concave function. Denote the class of all such functions by F C . It
can be shown that

B0 = {{(θ, y) ∈ [0,4) × [−1,1] : 0 < y ≤ f (θ) or f (θ) < y ≤ 0} :f ∈ F C
}
.

The conditions of Theorem 1 are satisfied. In particular, using [39], Corollary 2.7.9, it can be
deduced that (10) and (11) hold true.

5. Proofs

Proof of Lemma 1. Based on the local Steiner formula, in the proof of Theorem 2 of [26], it is
shown that the measure P(τ−1

εn
·)/εn converges in total variation to the measure Mp . This implies

that P(Vεn(∂K))/εn → Mp(�) and hence that Qn = P(τ−1
εn

·))/P (Vεn(∂K)) converges in total
variation to Q = Mp/Mp(�). �

Proof of Theorem 1. First, we prove statement (a):

sup
Bn∈Bn,B∈B;d(Bn,B)≤γn

|vn(Bn) − vn(B)| P→ 0.

From relation (7), Lemma 1 and the Markov inequality, it follows that it is sufficient to show that

lim
δ↓0

lim sup
n→∞

E sup
A∈Aεn ,Ã∈τ−1

εn B
dn(A,Ã)<δ

|zn(A) − zn(Ã)| = 0. (14)

We use [38], Lemma 19.34, page 286, for the proof of (14); in that lemma, we choose the
indexing functions to be 1A − 1

Ã
. We then obtain, taking the δ there to be equal to δ

√
an, that
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for some constant c,

E sup
A∈Aεn ,Ã∈τ−1

εn B
dn(A,Ã)<δ

|zn(A) − zn(Ã)|

≤ c

(
1√
an

∫ δ
√

an

0

√
log

(
N[],n

(
ε√
an

)
Ñ[],n

(
ε√
an

))
dε

+
√

n√
an

∫
Vεn (∂K)

1{
√

log(N[],n(δ)Ñ[],n(δ))>δ
√

nan} dP

)
.

Using nan → ∞ and (10), (11), we see that the second term on the right is equal to 0 for small δ

and large n. The first term is easily seen to be bounded by

c

∫ δ

0

√
logN[],n(x)dx + c

∫ δ

0

√
log Ñ[],n(x)dx.

Hence, (14) follows using (10) and (11).
For a proof of statement (b), we need weak convergence of the finite-dimensional distributions

and tightness of vn,B . The weak convergence of the finite-dimensional distributions follows eas-
ily from Lemma 1 and an appropriate version of the multivariate central limit theorem.

To prove tightness, we use [39], Theorem 2.11.9, a general bracketing central limit theorem.
We will choose d for the semimetric ρ on B which is required in that theorem. For tightness,
three conditions have to be fulfilled. The first one holds trivially since �n is a sum of indicators.
The third one follows readily since it is essentially our condition (11). It remains to show the
second condition:

sn := sup
B,B ′∈B

d(B,B ′)<δn

n∑
i=1

E

(
1√
nan

1
τ−1
εn B

(Xi) − 1√
nan

1
τ−1
εn B ′(Xi)

)2

→ 0 for every δn ↓ 0.

However,

sn = 1

nan

sup
d(B,B ′)<δn

n∑
i=1

E1
τ−1
εn B�τ−1

εn B ′(Xi)

= 1

an

sup
d(B,B ′)<δn

P (τ−1
εn

(B�B ′)) = sup
Q(B�B ′)<δ2

n

Qn(B�B ′).

Lemma 1 now immediately yields sn → 0. �
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Proof of Theorem 2. Again, we first prove statement (a) and note that it suffices to show, for
any η > 0, that for δ > 0 small enough and then for large n,

P

(
sup

A∈Aεn ,Ã∈τ−1
εn B

dn(A,Ã)≤√
δ

|zn(A) − zn(Ã)| > 2η
)

≤ 2η. (15)

We have, for n large enough,

P

(
sup

A∈Aεn ,Ã∈τ−1
εn B

dn(A,Ã)≤√
δ

|zn(A) − zn(Ã)| > 2η
)

= P

(
sup

A∈Aεn ,Ã∈τ−1
εn B

P(A�Ã)≤δan

|zn(A) − zn(Ã)| > 2η
)

= P

(
sup

A∈Aεn ,Ã∈τ−1
εn B

P(A�Ã)≤δan

|zn(A\Ã) − zn(Ã\A)| > 2η
)

(16)
≤ P

(
sup

A∈Aεn ,Ã∈τ−1
εn B

P(A�Ã)≤δan

|zn(A\Ã)| > η
)

+ P

(
sup

A∈Aεn ,Ã∈τ−1
εn B

P(A�Ã)≤δan

|zn(Ã\A)| > η
)

≤ 2P

(
sup

C∈Cn,P (C)≤δan

|zn(C)| > η
)
,

where Cn = {A\Ã :A ∈ Aεn, Ã ∈ τ−1
εn

B} ∪ {Ã\A :A ∈ Aεn , Ã ∈ τ−1
εn

B}. It can be shown (see,
e.g., [39], page 147), using A1\A2 = A1 ∩ Ac

2, that Cn is a VC class. Also, the index wn of this
VC class is bounded: maxn∈N wn < ∞.

We have, writing N = �n(Vεn(∂K)) and k = nan, that

P

(
sup

C∈Cn,P (C)≤δan

|zn(C)| > η
)

=
n∑

m=0

P

(
sup

C∈Cn,P (C)≤δan

|zn(C)| > η
∣∣N = m

)
P(N = m)

=
n∑

m=0

P

(
sup

C∈Cn,P (C)≤δan

∣∣∣∣ 1√
k
[�n(C) − nP (C)]

∣∣∣∣ > η

∣∣∣N = m

)
P(N = m)
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≤
m=�k+Cη

√
k�∑

m=�k−Cη

√
k�

P

(
sup

C∈Cn,P (C)≤δan

∣∣∣∣ 1√
k
[�n(C) − nP (C)]

∣∣∣∣ > η

∣∣∣N = m

)
P(N = m)

+ P
(|N − k| ≥ Cη

√
k
)
,

where Cη is chosen such that the latter probability concerning the binomial(n, k/n) random
variable N is bounded by η/2 for large n. Hence, for large n,

P

(
sup

C∈Cn,P (C)≤δan

|zn(C)| > η
)

≤
m=�k+Cη

√
k�∑

m=�k−Cη

√
k�

P

(
sup

C∈Cn,Pεn (C)≤δ

∣∣∣∣∣ 1√
m

[
m∑

j=1

1C(Yj ) − mPεn(C)

]∣∣∣∣∣ >
η

3

)
P(N = m) (17)

+
m=�k+Cη

√
k�∑

m=�k−Cη

√
k�

P

(
sup

C∈Cn,Pεn (C)≤δ

1√
k
|m − k|Pεn(C) >

η

2

)
P(N = m) + η

2
,

where the Yj are i.i.d. random vectors on Vεn(∂K) distributed according to Pεn . Note that in the
first probability of the second sum, no randomness is involved and that this sum is equal to 0
for δ small enough. For the first sum, we need a good bound for exceedance probabilities for
the supremum of the empirical process on a VC class. We will use [1], Corollary 2.9. Using
maxn∈N wn < ∞, this leads to the following upper bound for the left-hand side of (17):

m=�k+Cη

√
k�∑

m=�k−Cη

√
k�

16 exp
(−η2/(36δ)

)
P(N = m) + η

2
≤ 16 exp

(−η2/(36δ)
) + η

2
≤ η

for small enough δ. So, because of (16), we have proven (15) and hence (a).
For a proof of (b), we only need to show tightness of vn,B since the weak convergence of the

finite-dimensional distributions follows as in the proof of Theorem 1.
For proving tightness, we need that, for any η > 0,

lim
δ↓0

lim sup
n→∞

P

(
sup

B,B ′∈B
d(B,B ′)≤δ

|vn(B) − vn(B
′)| > η

)
= 0

(see, e.g., [39], Theorem 1.5.7). Again, from (7) and Lemma 1, it suffices to show that

lim
δ↓0

lim sup
n→∞

P

(
sup

A,A′∈τ−1
εn B

dn(A,A′)≤2δ

|zn(A) − zn(A
′)| > η

)
= 0. (18)

The proof of (18) can be given along the same lines as the proof of (15). �
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