
Bernoulli 16(3), 2010, 614–640
DOI: 10.3150/09-BEJ227

Reflected BSDE with a constraint and its
applications in an incomplete market
SHIGE PENG1,3 and MINGYU XU2,3

1School of Mathematics and System Science, Shandong University, 250100, Jinan, China.
E-mail: peng@sdu.edu.cn
2Key Lab of Random Complex Structures and Data Science, Institute of Applied Mathematics, Academy
of Mathematics and Systems Science, CAS, Beijing, 100190, China. E-mail: xumy@amss.ac.cn
3Department of Financial Mathematics and Control Science, School of Mathematical Science, Fudan Uni-
versity, Shanghai, 200433, China
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1. Introduction

A backward stochastic differential equation (BSDE) driven by a d-dimensional Brownian motion
(Bt )t≥0 defined in a probability space (�, F ,P) is of the form

dyt + g(t, yt , zt )dt − zt dBt = 0, t ∈ [0, T ],

where g is a given function called the generator of the BSDE. Here, all processes are assumed
to be square-integrable and progressively measurable with respect to the (Bt )t≥0-filtration. For
a given terminal condition yT = ξ , a solution (yt , zt )t∈[0,T ] is a pair of processes satisfying the
above relation. We often call it a g-solution to specify the generator g. In the case where the
generator g is a Lipschitz function of (y, z), the existence and uniqueness of such a BSDE was
given by [15]. In this paper, we consider 1-dimensional BSDE, that is, g and y are assumed to
be real-valued. We are interested in a new type of BSDE with the following type of singular
generator:

g�(t,ω, y, z) =
{

g(t, y, z), (y, z) ∈ �(t,ω),
+∞, otherwise,

where, for each (t,ω), �(t,ω) is a given closed subset of R × R
d . This type of g�-solution

(yt )t∈[0,T ] is formulated as the smallest g-supersolution constrained in � with a given terminal
condition ξ . This type of BSDE and its application to the problem of option pricing with con-
strained portfolios was studied in Cvitanic and Karatzas [1,2] and Cvitanic, Karatzas and Soner
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[4] for a convex constraint, and by Peng [16] and Peng and Yang [19] for more general situations.
The framework of the present paper is based on [16].

In this paper, we mainly study g�-reflected BSDEs, that is, BSDEs reflected by a lower ob-
stacle (Lt )t∈[0,T ] or an upper obstacle (Ut )t∈[0,T ] with the above singular generator g� . Our
results non-trivially generalize the original paper of El Karoui et al. [6], as well as Hamadene
[8], Hamadene and Lepeltier [10] and Lepeltier and Xu [14], in which the generators are as-
sumed to be Lipschitz functions. Since the obstacles L and U can be very general L2-processes,
our results also generalize Peng and Xu [17].

Recently, the study of reflected BSDEs has been very active since it can be applied to optimal
stopping, optimal switching, American option pricing and the related dynamic risk measures,
stochastic differential controls and games with mixed strategies (e.g., Dynkin games). We refer
to [6], also Cvitanic and Karatzas [3,8,10], Karatzas and Kou [11], Lepeltier and San Martín
[13,14], Peng and Xu [18], as well as [17] for various situations involving reflected BSDEs with
non-singular generators and their applications. In this paper, we also discuss how to apply our
results on g�-reflected BSDEs to American call and put options in an incomplete market with
portfolio constraints.

Observe that a g�-solution of a BSDE reflected by a lower obstacle (Lt )t∈[0,T ] can also be
considered as a BSDE with constraint �t × {y ∈ R :y ≥ Lt }. However, it is theoretically and
practically important to separate the reflecting process Ā from the total increasing process A + Ā

since the related (generalized) Skorokhod reflecting condition plays an important role (see Propo-
sition 3.1). This type of separation is an important feature of our results.

This paper is organized as follows. In the next section, we present the main notation and con-
ditions used throughout the paper. In Section 3, we present results and proofs of the existence
and uniqueness of a reflected BSDE with the singular generator g� . We then discuss some ap-
plications of our main results to the problem of pricing of American options in a market with
portfolio constraints in Section 4. A monotonic limit theorem, its generalization and other results
which are needed in the proofs of this paper are given in the Appendix.

2. g�-solution: the smallest g-supersolution of a BSDE with
constraint �

Let (�, F ,P ) be a probability space and B = (B1,B2, . . . ,Bd)T a d-dimensional Brownian
motion defined on [0,∞). The natural filtration generated by this Brownian motion is denoted
by

Ft = σ
{{Bs;0 ≤ s ≤ t} ∪ N

}
,

where N is the collection of all P -null sets of F . The Euclidean norm of an element x ∈ R
m is

denoted by |x|. We also need the following notation, for p ∈ [1,∞):

• Lp(Ft ;R
m) :={R

m-valued Ft -measurable random variables X such that E[|X|p] < ∞};
• Lp

F (0, t;R
m) :={R

m-valued and Ft -progressively measurable processes ϕ defined on [0, t]
such that E

∫ t

0 |ϕs |p ds < ∞};
• Dp

F (0, t;R
m) :={R

m-valued and RCLL Ft -progressively measurable processes ϕ defined
on [0, t] such that E[sup0≤s≤t |ϕs |p] < ∞};
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• Ap

F (0, t) :={increasing processes A in Dp

F (0, t;R) with A(0) = 0}.

When m = 1, we simply use Lp(Ft ), Lp

F (0, t) and Dp

F (0, t). In this section, we consider BSDE
on the interval [0, T ] with a fixed T > 0.

We consider a function

g(ω, t, y, z) :� × [0, T ] × R × R
d → R

which always plays the role of the generator of our BSDE. It satisfies the following classical
assumptions: there exists a constant μ > 0, such that, for each y, y′ in R and z, z′ in R

d , we have

(i) g(·, y, z) ∈ L2
F (0, T );

(1)
(ii) |g(t,ω, y, z) − g(t,ω, y′, z′)| ≤ μ(|y − y′| + |z − z′|), dP × dt-a.s.

The constraint � of our BSDE is a mapping �(t,ω) :� × [0, T ] → C(R × R
d), where

C(R × R
d) is the collection of all closed subsets of R × R

d . � is assumed to be Ft -adapted,
namely,

(i) (y, z) ∈ �(t,ω) if and only if d�(t,ω)(y, z) = 0, t ∈ [0, T ], a.s.;
(2)

(ii) d�·(y, z) is an Ft -adapted process for each (y, z) ∈ R × R
d,

where d�t (·, ·) is a distance function from (y, z) to �: for t ∈ [0, T ],
d�t (y, z) := inf

(y′,z′)∈�t

(|y − y′|2 + |z − z′|2)1/2 ∧ 1.

d�t (y, z) is a Lipschitz function: for each y, y′ in R and z, z′ in R
d , we always have

|d�t (y, z) − d�t (y
′, z′)| ≤ (|y − y′|2 + |z − z′|2)1/2.

Remark 2.1. The above type of constraint � was first considered in Peng [16]. In fact, Peng’s
constraint is formulated as

�t(ω) = {(y, z) ∈ R
1+d :�(ω, t, y, z) = 0}, (3)

where �(ω, t, y, z) :� × [0, T ] × R × R
d → [0,∞) is a given non-negative function satisfying

similar conditions as (1). In this paper, we always consider the case

�(t, y, z) = d�t (y, z).

In fact, these two definitions are equivalent. In [4], the constraint is assumed to be convex.

We are then within the framework of supersolution and subsolution of BSDEs of the following
type.

Definition 2.1 (g-supersolution, g-subsolution; cf. El Karoui, Peng and Quenez (1997) [7] and
Peng (1999) [16]). A process y ∈ D2

F (0, T ) is called a g-supersolution (resp. g-subsolution)
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if there exist a process z ∈ L2
F (0, T ;R

d) and an increasing RCLL process A ∈ A2
F (0, T )

(resp. K ∈ A2
F (0, T )) such that for t ∈ [0, T ],

yt = yT +
∫ T

t

g(s, ys, zs)ds + AT − At −
∫ T

t

zs dBs

(4)(
resp. yt = yT +

∫ T

t

g(s, ys, zs)ds − (KT − Kt) −
∫ T

t

zs dBs

)
.

Here, z and A (resp. K) are called the martingale representing part and increasing part of y,
respectively. y is called a g-solution if At = Kt = 0, t ∈ [0, T ]. y is called a �-constrained
g-supersolution if y and its corresponding martingale representing part z satisfy

(yt , zt ) ∈ �t

(
or d�t (yt , zt ) = 0

)
, dP × dt-a.s. in � × [0, T ]. (5)

Remark 2.2. We observe that if y ∈ D2
F (0, T ) is a g-supersolution or g-subsolution, then the

pair (z,A) in (4) is uniquely determined since the martingale representing part z is uniquely
determined. Occasionally, we also call the triple (y, z,A) a g-supersolution or g-subsolution.

A �-constrained g-supersolution can also be regarded as a supersolution of the BSDE with a
singular generator g� defined by

g�(t, y, z) = g(t, y, z)1�t (y, z) + (+∞) · 1�C
t
(y, z),

so we define the smallest �-constrained g-supersolution as the g�-solution.

Definition 2.2 (g�-solution). A g-supersolution (yt , zt ,At )0≤t≤T is called a g�-supersolution
on [0, T ] with a given terminal condition X if d�t (yt , zt ) = 0, dP × dt almost surely. The
smallest g�-supersolution (yt , zt ,At )0≤t≤T with a given terminal condition yT = X is called
the g�-solution. Here, “smallest” means that yt ≥ y′

t , t ∈ [0, T ], for any g�-supersolution
(y′

t , z
′
t ,A

′
t )0≤t≤T with y′

T = X.

Remark 2.3. The above definition is meaningful since, by [16] (see Theorem A.2 in the Appen-
dix), if there exists at least one g�-supersolution, then the smallest �-constrained g-supersolution
also exists.

Remark 2.4. By the above definition, if (yt , zt ,At )0≤t≤T is a g�-solution on [0, T ] with termi-
nal condition yT , then for each T1 ≤ T , (yt , zt ,At )0≤t≤T1 is also a g�-solution on [0, T1] with
terminal condition yT1 . The above definition does not imply that the increasing process A is
also the smallest one. In fact, the following example shows that there may exists a different g�-
supersolution (ȳ, z̄, Ā) on [0, T ] with the same terminal condition such that At > Āt for some t .

Example 2.1. Consider the case when [0, T ] = [0,2], X = 0, g = 0 and �t = {(y, z) :y ≥
1[0,1](t)}. The g�-solution of this equation is the solution of the reflected BSDE with the lower
obstacle 1[0,1](t). This g�-solution is expressed as yt = 1[0,1)(t), zt = 0, At = 1[1,2](t) on [0, T ].
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One can also check that ȳt = 1[0,2)(t) with z̄t = 0; Āt = 1{t=2}(t) is also a g�-supersolution with
the same terminal condition ȳT = 0. However, we have At > Āt for t ∈ [1,2).

3. g�-reflected BSDEs

3.1. Existence of g�-reflected BSDEs: definitions and results

In this section, we consider the smallest g�-supersolution with a lower (resp. upper) reflecting
obstacle L (resp. U ). We assume that the two reflected obstacles L and U satisfy

L,U ∈ L2
F (0, T ) and ess sup

0≤t≤T

L+
t , ess sup

0≤t≤T

U−
t ∈ L2(FT ). (6)

We only study the case of the constraint � not depending on y, only on z. In such a case,
�(t,ω) = R×�z(t,ω), where �z(t,ω) is a closed subset of R

d . For more general situations, see
Remarks 3.1 and 3.3.

First, let us introduce the definition of g�-reflected solutions with a lower obstacle.

Definition 3.1. A g�-reflected solution with a lower obstacle L is a quadruple of processes
(y, z,A, Ā) satisfying:

(i) (y, z,A, Ā) ∈ D2
F (0, T ) × L2

F (0, T ;R
d) × (A2

F (0, T ))2 verifies

yt = X +
∫ T

t

g(s, ys, zs)ds + AT − At + ĀT − Āt −
∫ T

t

zs dBs,

(7)
d�t (zt ) = 0,dP × dt a.s.;

(ii) yt ≥ Lt , dP × dt -a.s., and the following generalized Skorokhod reflecting condition is
satisfied: for each L∗ ∈ D2

F (0, T ) such that yt ≥ L∗
t ≥ Lt , dP × dt -a.s., we have

∫ T

0
(ys− − L∗

s−)dĀs = 0 a.s.; (8)

(iii) y is the smallest one, that is, for any quadruple (y∗, z∗,A∗, Ā∗) satisfying (i) and (ii), we
have

yt ≤ y∗
t ∀t ∈ [0, T ],a.s.

In the above formulation, we need to find two increasing processes A and Ā in order to keep
the solution in the constraints yt ≥ Lt and zt ∈ �. In fact, these two increasing processes play
different roles. A is used to keep the process z staying in the constraint �, while Ā is the reflecting
force to keep y above the obstacle L. Actually, each of them has a different meaning in finance.

Our first main result in this paper is the following theorem.
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Theorem 3.1. Suppose that (1), (2) and (6) hold. For a given terminal condition X ∈ L2(FT ),
we assume that there exists a triple (y∗, z∗,A∗) ∈ D2

F (0, T ) × L2
F (0, T ) × A2

F (0, T ) such that
dA∗ ≥ 0 and the following holds:

y∗
t = X +

∫ T

t

g(s, y∗
s , z∗

s )ds + (A∗
T − A∗

t ) −
∫ T

t

z∗
s dBs,

(9)
(y∗

t , z∗
t ) ∈ [Lt ,∞) × �t ,dP × dt-a.s.

There then exists the g�-reflected solution (y, z,A, Ā) with the barrier L of Definition 3.1.

Remark 3.1. This theorem can be generalized to the case where � also depends on y. In fact,
the basic idea of the proof of this theorem is based on a penalization method which still works
for the y-dependence situation (cf. the proof of Theorem 3.1).

Under certain assumptions, condition (9) can be easily verified.

Example 3.1. Assume that there exists a constant C0, large enough such that for ∀y ≥ C0,

g(t, y,0) ≤ C0 + μ|y|, 0 ∈ �t , (10)

and there exists a deterministic process a(t) such that Lt ≤ a(t) on [0, T ]. For X a random
variable in L2+,∞(FT ), that is, X ∈ L2(Ft ), X+ ∈ L∞(Ft ), the triple of processes

(y∗
t , z∗

t ,A
∗
t ) :=

(
y0
t ,0,

∫ t

0
[C0 + μ|y0

s | − g(s, y0
s ,0)]ds + A0

t + A1
t

)

is a solution of (9). Here, (y0
t ,A0

t ) is the solution of the ODE associated with coefficient g(y) =
C0 + μ|y|, barrier a(t) and terminal value (‖X+‖∞ ∨ C0)eμ(T −t) + C0(T − t), and A1

t = (X −
‖X+‖∞ ∨ C0)1{t=T }.

The smallest g�-reflected solution with an upper obstacle U is relatively more complicated
than the case of the lower obstacle.

Definition 3.2. A g�-reflected solution with an upper obstacle U is a quadruple of processes

(y, z,A,K) ∈ D2
F (0, T ) × L2

F (0, T ;R
d) × (A2

F (0, T ))2

satisfying:

(i)

yt = X +
∫ T

t

g(s, ys, zs)ds + AT − At − (KT − Kt) −
∫ T

t

zs dBs,

(11)
d�t (zt ) = 0,dP × dt-a.s. V[0,T ][A − K] = V[0,T ][A + K],

where V[0,T ](ϕ) denotes the total variation of a process ϕ on [0, T ];
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(ii) yt ≤ Ut , dP × dt -a.s., and the generalized Skorokhod reflecting condition is satisfied:

∫ T

0
(U∗

t− − yt−)dKt = 0, a.s., for any U∗ ∈ D2
F (0, T ), s.t. yt ≤ U∗

t ≤ Ut ,dP × dt-a.s.;

(iii) for any other quadruple (y∗, z∗,A∗,K∗) satisfying (i) and (ii), we have

yt ≤ y∗
t , 0 ≤ t ≤ T ,a.s.

Remark 3.2. The relation V[0,T ][A − K] = V[0,T ][A + K] in (11) implies that A and K never
increase at same time. This relation can help us to characterize the solution. Indeed, it is easy to
check that the quadruple (y, z,A + K,2K) satisfies all of the above relations except this one.

We also have the existence of a g�-reflected solution with an upper obstacle U , given by the
following result.

Theorem 3.2. Assume that (1) and (2) hold for g and the constraint �, respectively, and that
U is an Ft -adapted RCLL process satisfying (6). Then, for each given terminal condition X ∈
L2(FT ), there exists a g�-reflected solution (y, z,A,K) with upper obstacle U of Definition 3.2.

Remark 3.3. For the case where � depends on y, satisfying (2), Theorem 3.2 still holds under
the following additional assumption: there exists a quadruple

(y∗, z∗,A∗,K∗) ∈ D2
F (0, T ) × L2

F (0, T ;R
d) × (A2

F (0, T ))2

such that

y∗
t = X +

∫ T

t

g(s, y∗
s , z∗

s )ds + (A∗
T − A∗

t ) − (K∗
T − K∗

t ) −
∫ T

t

z∗
s dBs,

d�t (y
∗
t , z∗

t ) = 0, y∗
t ≤ Ut , a.s. a.e. (12)∫ T

0
(y∗

t− − U∗
t−)dK∗

t = 0 a.s., for any U∗ ∈ D2
F (0, T ), s.t. yt ≤ U∗

t ≤ Ut,dP × dt-a.s.

In general, this assumption is not easy to verify. One typical example is �t = [Lt ,+∞) × R
d .

Indeed, the problem turns out to be a reflected BSDE with two barriers, L and U . By [17], we
know that if there exists a semimartingale X such that L ≤ X ≤ U , dP × dt -a.s., then condition
(12) can be satisfied.
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3.2. Existence of a g�-reflected BSDE with a lower barrier: proof of
Theorem 3.1

The main idea of the proof is a penalization method. We prove Theorem 3.1 by an approximation
procedure. For given m, n ∈ N, we consider the penalization equations

y
m,n
t = X +

∫ T

t

g(s, ym,n
s , zm,n

s )ds + m

∫ T

t

d�s (z
m,n
s )ds

(13)

+ n

∫ T

t

(Ls − ym,n
s )+ ds −

∫ T

t

zm,n
s dBs.

It is a classical BSDE with generator

gm,n(t, y, z) := g(t, y, z) + md�t (z) + n(Lt − y)−,

which is a Lipschitz function. From [15], this equation admits a unique solution (ym,n, zm,n). We
define A

m,n
t := m

∫ t

0 d�s (y
m,n
s , z

m,n
s )ds and Ā

m,n
t := n

∫ t

0 (Ls −y
m,n
s )+ ds. We have the following

estimate.

Lemma 3.1. Under the same assumptions as in Theorem 3.1, there exists a constant C ∈ R

independent of m and n such that

E
[

sup
0≤t≤T

(y
m,n
t )2

]
+ E

∫ T

0
|zm,n

s |2 ds + E[(Am,n
T + Ā

m,n
T )2] ≤ C. (14)

Proof. Setting m = n = 0, we then get a classical BSDE:

y
0,0
t = X +

∫ T

t

g(s, y0,0
s , z0,0

s )ds −
∫ T

t

z0,0
s dBs.

For (y∗, z∗,A∗) given in (9), we have d�s (z
∗
s ) ≡ 0 and (Ls − y∗

s )+ ≡ 0, thus

y∗
t = X +

∫ T

t

g(s, y∗
s , z∗

s )ds + m

∫ T

t

d�s (z
∗
s )ds + n

∫ T

t

(Ls − y∗
s )+ ds

+ (A∗
T − A∗

t ) −
∫ T

t

z∗
s dBs.

By the comparison theorem, it follows that y∗
t ≥ y

m,n
t ≥ y

0,0
t on [0, T ]. Thus, ym,n satisfies the

estimate

E
[

sup
0≤t≤T

(y
m,n
t )2

]
≤ C1 = max

{
E

[
sup

0≤t≤T

(y∗
t )2

]
,E

[
sup

0≤t≤T

(y
0,0
t )2

]}
. (15)

The rest of the proof can be obtained by applying the following lemma. �



622 S. Peng and M. Xu

Lemma 3.2. Let (yα, zα,Aα)α∈A be a family g-supersolution of the form

yα
t = yα

T +
∫ T

t

g(s, yα
s , zα

s )ds + (Aα
T − Aα

t ) −
∫ T

t

zα
s dBs (16)

such that, for each α, yα
t is continuous and such that E[sup0≤t≤T (yα

t )2] ≤ C1, where the con-
stant C1 is independent of α. There then exists a constant C, independent of α, such that

E

∫ T

0
|zα

s |2 ds + E[(Aα
T )2] ≤ C.

Proof. The method is borrowed from [16]. By applying Itô’s formula to |yα
t |2 on [0, T ] and

taking expectations, with the Lipschitz property of g, we get

E[|yα
t |2] + E

[∫ T

t

|zα
s |2 ds

]

≤ E[(yα
T )2] + E

∫ T

t

g2(s,0,0)ds + (2μ + μ2)

∫ T

t

|yα
s |2 ds + 1

2
E

[∫ T

t

|zα
s |2 ds

]

+ 1

β
E

[
sup

0≤t≤T

(yα
t )2

]
+ βE[(Aα

T − Aα
t )2],

in view of 2ab ≤ 1
β
a2 + βb2, where β is a real number to be fixed later. From integrability

assumptions on g(·,0,0) and X, we get

E

∫ T

0
|zα

s |2 ds ≤ C2 + 2βE[(Aα
T )2]. (17)

We then reformulate (16) as

Aα
T = yα

0 − yα
T −

∫ T

0
g(s, yα

s , zα
s )ds +

∫ T

0
zα
s dBs

and take squares and expectations on both sides. With the Lipschitz condition on g, we get

E[(Aα
T )2] ≤ 4E[(yα

0 )2] + 4E[(yα
T )2] + 16T E

∫ T

0
g2(s,0,0)ds

+ 16μ2T E

∫ T

0
|yα

s |2 ds + (16μ2T + 4)E

∫ T

0
|zα

s |2 ds.

It follows from (15), X ∈ L2(FT ) and g(·,0,0) ∈ L2
F (0, T ) that

E[(Aα
T )2] ≤ C + (16μ2T + 4)E

∫ T

0
|zα

s |2 ds. (18)
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Setting β = 1
32μ2T +8

in (17) and substituting (18) into it, we deduce that E
∫ T

0 |zα
s |2 ds ≤ C.

Then, in view of (18), E[(Aα
T )2] ≤ C, and the proof is complete. �

We now give the proof of Theorem 3.1.

Proof of Theorem 3.1. In (13), we fix m ∈ N and set

gm(t, y, z) := g(t, y, z) + md�t (z).

Since gm is a Lipschitz function and the condition (14) is satisfied, it follows from Theorem 4.1
in [17] that as n → ∞, the triple (ym,n, zm,n, Ām,n) converges to (ym, zm, Ām) ∈ D2

F (0, T ) ×
L2

F (0, T ) × A2
F (0, T ), which is the solution of the following reflected BSDE whose coefficient

is gm = g + md�·:

ym
t = X +

∫ T

t

gm(s, ym
s , zm

s )ds + Ām
T − Ām

t −
∫ T

t

zm
s dBs,

ym
t ≥ Lt , a.s. a.e.,

∫ T

0
(ym

t− − L∗
t−)dĀm

t = 0, (19)

for each L∗ ∈ D2
F (0, T ), such that ym ≥ L∗ ≥ L,dP × dt-a.s.

We write Am
t = m

∫ t

0 d�s (z
m
s )ds. By (14), we have the following estimate:

E
[

sup
0≤t≤T

(ym
t )2

]
+ E

∫ T

0
|zm

s |2 ds + E[(Am
T + Ām

T )2] ≤ C.

Then, by (comparison) Theorem A.5 for reflected BSDEs, we have ym
t ≤ ym+1

t , Ām
t ≥ Ām+1

t

and dĀm
t ≥ dĀm+1

t on [0, T ] . Thus, when m → ∞, ym
t ↗ yt , Ām

t ↘ Āt in L2(Ft ), for each
t ∈ [0, T ], and yt ≤ y∗

t . Thanks to Fatou’s lemma, we get E[sup0≤t≤T |yt |2] < ∞ and thus ym →
y in L2

F (0, T ). Since Ām is an RCLL process, we cannot directly apply the monotonic limit
theorem, that is, Theorem A.2 or Theorem 2.1 in [16]. However, using similar techniques as
used in the proof of Theorem 2.1 in [16], we know that the limit y can be written in the form

yt = y0 −
∫ t

0
g0

s ds − At − Āt +
∫ t

0
zs dBs,

where z· and g0· (resp. At ) are the weak limits of zm· and gm
s = g(s, ym

s , zm
s ) (resp. Am

t ) in
L2

F (0, T ) (resp. L2(Ft )). Since Am + Ām is an increasing process, by Lemma 2.2 in [16], we
know that y is RCLL. Applying Itô’s formulae to |ym

t − yt |2 on [σ, τ ], with stopping times
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0 ≤ σ ≤ τ ≤ T , it then follows that

E|ym
σ − yσ |2 + E

∫ τ

σ

|zm
s − zs |2 ds

= E|ym
τ − yτ |2 + E

∑
t∈(σ,τ ]

[(�At)
2 − (Ām

t − Āt )
2] − 2E

∫ τ

σ

(ym
s − ys)(g

m
s − g0

s )ds

+ 2E

∫
(σ,τ ]

(ym
s − ys)dAm

s − 2E

∫
(σ,τ ]

(ym
s − ys)dAs + 2E

∫
(σ,τ ]

(ym
s− − ys−)d(Ām

s − Ās).

Since E
∫
(σ,τ ](y

m
s − ys)dAm

s ≤ 0 and E
∫
(σ,τ ](y

m
s− − ys−)d(Ām

s − Ās) ≤ 0, we get

E

∫ τ

σ

|zm
s − zs |2 ds ≤ E|ym

τ − yτ |2 + E
∑

t∈(σ,τ ]
(�At)

2 + 2E

∫ τ

σ

|ym
s − ys ||gm

s − g0
s |ds

+ 2E

∫
(σ,τ ]

|ym
s − ys |dAs.

We are now in the same situation as in the proof of the monotonic limit theorem (cf. [16], proof
of Theorem 2.1). We can then follow the same approach to get the strong convergence of zm → z

in Lp

F (0, T ) for p < 2.
We pass to the limit on both sides of (19), using the above convergence results of

(ym, zm,Am, Ām). The limit (y, z,A, Ā) satisfies

yt = X +
∫ T

t

g(s, ys, zs)ds + AT − At + ĀT − Āt −
∫ T

t

zs dBs.

The estimate E[(Am
T )2] ≤ C implies that E[(∫ T

0 d�s (z
m
s )ds)2] ≤ C

m2 . When m → +∞, we get

E

[∫ T

0
d�s (zs)ds

]
= 0, thus d�t (zt ) ≡ 0,dP × dt-a.s.

It remains to prove that (y,A) satisfies condition (ii) in Definition 3.1, that is, y ≥ L and∫ T

0
(yt− − L∗

t−)dĀt = 0,

(20)
a.s., for any L∗ ∈ D2

F (0, T ) such that yt ≥ L∗
t ≥ Lt ,dP × dt-a.s.

From ym ≥ L, m ∈ N, we have y ≥ L. Thus, for each L∗ ∈ D2
F (0, T ) such that y ≥ L∗ ≥ L, we

have ∫ T

0
(yt− − ym

t− ∧ L∗
t−)dĀt =

∫ T

0
(yt− − ym

t−)dĀt +
∫ T

0
(ym

t− − ym
t− ∧ L∗

t−)dĀm
t

+
∫ T

0
(ym

t− − ym
t− ∧ L∗

t−)d(At − Ām
t ).
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As m → ∞, the first term on the right-hand side tends to zero due to the Lebesgue dom-
inated convergence theorem. The second term is null because of (19) and the fact that
ym ≥ ym ∧ L∗ ≥ L. For the third term, we have

E

∣∣∣∣
∫ T

0
(ym

t− − ym
t− ∧ L∗

t−)d(At − Ām
t )

∣∣∣∣ ≤ E
[

sup
t∈[0,T ]

|ym
t − ym

t− ∧ L∗
t−|(Am

T − AT )
]

≤ E
[

sup
t∈[0,T ]

|ym
t − ym

t− ∧ L∗
t−|2

]1/2
E[(Am

T − AT )2]1/2,

which also converges also to zero in view of E[(Am
T − AT )2]1/2 ↘ 0 and the boundedness of

E[supt∈[0,T ] |ym
t |2]. This, with ym ∧ L∗ ↗ L∗, yields (20).

For part (iii) of Definition 3.1, we consider a quadruple (y∗, z∗,A∗, Ā∗) which satisfies parts
(i) and (ii) of Definition 3.1. Since d�s (y

∗
s , z∗

s ) ≡ 0, we have, for any m ∈ N,

y∗
t = X +

∫ T

t

g(s, y∗
s , z∗

s )ds + m

∫ T

t

d�s (y
∗
s , z∗

s )ds + A∗
T − A∗

t + Ā∗
T − Ā∗

t −
∫ T

t

zs dBs.

Since dA∗ ≥ 0, by (comparison) Theorem A.5, it follows that y∗ ≥ ym for all m. Thus, (iii)
holds. �

Remark 3.4. If L is continuous or has only positive jumps (Lt− ≤ Lt ), then Ā is a continuous
process. In this case, Ān in (19) are continuous and Ān

t ≥ Ān+1
t , dĀn

t ≥ dĀn+1
t , 0 ≤ t ≤ T , with

E[(Ān
T )2] ≤ C. Thus, Ān

t ↘ Āt , 0 ≤ t ≤ T . Moreover,

0 ≤ Ān
t − Āt ≤ Ān

T − ĀT .

From

E
[

sup
0≤t≤T

(Ān
t − Āt )

2
]

≤ E[(Ān
T − ĀT )2] → 0 as n → ∞,

it follows that Ān
t ↘ Āt uniformly. We can then pass to a limit on both sides of (19) to obtain the

g�-reflected BSDE with the lower obstacle L.

3.3. Comparison of different limits of ym,n to the g�-reflected solution

The g�-reflected BSDE with a lower barrier is a special type of constrained BSDE, in which y

and z are constrained in [Lt ,+∞) and �, respectively. Let us put the two constraints together
and set �̂t = [Lt ,+∞) × �t ⊂ R × R

d . In this case, the penalization equation becomes

y
n,n
t = X +

∫ T

t

g(s, yn,n
s , zn,n

s )ds + n

∫ T

t

d�̂s
(yn,n

s , zn,n
s )ds −

∫ T

t

zn,n
s dBs

= X +
∫ T

t

g(s, yn,n
s , zn,n

s )ds + n

∫ T

t

d�s (z
n,n
s )ds + n

∫ T

t

(Ls − yn,n
s )+ ds (21)

−
∫ T

t

zn,n
s dBs.
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Let Â
n,n
t = n

∫ t

0 d
�̂s

(z
n,n
s )ds. Again from the monotonic limit theorem, Theorem A.2, we know

that (yn,n, zn,n, Ân,n) converges to (ŷ, ẑ, Â) ∈ L2
F (0, T )× L2

F (0, T ;R
d)× A2

F (0, T ) as n → ∞
and that the limit is the g

�̂
-solution, that is, the smallest g-supersolution constrained in �̂:

ŷt = X +
∫ T

t

g(s, ŷs , ẑs)ds + ÂT − Ât −
∫ T

t

ẑs dBs,

with d
�̂t

(ŷt , ẑt ) = 0, a.e. a.s. on [0, T ].
Comparing this result to that of Theorem 3.1 for g�-reflected BSDEs, we have the following.

Proposition 3.1. The above g
�̂

-solution of BSDE (ŷt , ẑt , Ât )t∈[0,T ] coincides with the g�-

reflected solution obtained in Theorem 3.1: (ŷt , ẑt , Ât ) ≡ (yt , zt ,At + Āt ).

Proof. For m ≤ n, by the comparison theorem for (13) and (21), we have

y
m,m
t ≤ y

m,n
t ≤ y

n,n
t .

Letting n → ∞ yields

y
m,m
t ≤ ym

t ≤ ŷt ,

then m → ∞ yields

ŷt ≤ yt ≤ ŷt .

Thus, the two g-supersolutions coincide with each other. �

Let us consider another limit of ym,n by first letting m → ∞. We have

y
m,m
t ≥ y

m,n
t ≥ y

n,n
t .

Once again from the monotonic limit theorem, Theorem A.2, when m → ∞, the triple
(ym,n, zm,n,Am,n) converges to (ỹn, z̃n, Ãn) ∈ D2

F (0, T ) × L2
F (0, T ;R

d) × A2
F (0, T ), which

is the solution of the following gn
�-supersolution of BSDE with gn = g + n(Lt − y)+, or

ỹn
t = X +

∫ T

t

g(s, ỹn
s , z̃n

s )ds + Ãn
T − Ãn

t + n

∫ T

t

(Ls − ỹn
s )+ ds −

∫ T

ts

z̃s dBs,

(22)
(z̃n

t ) ∈ �t ,dP × dt-a.s., dAn ≥ 0,

and we have

ŷt ≥ ỹn
t ≥ y

n,n
t .

By letting n → ∞, we see that ỹn
t ↑ ŷt = yt .

Remark 3.5. The proposition also holds for a general constraint �(y, z) in R × R
d .
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3.4. Existence of a g�-reflected solution with an upper barrier: proof of
Theorem 3.2

The main idea is still based on the penalization method, but with more technicalities.
For each n ∈ N, we consider the solution (yn, zn,Kn) ∈ D2

F (0, T )×L2
F (0, T ;R

d)×A2
F (0, T )

of the following reflected BSDE with the coefficient gn(t, y, z) = g(t, y, z) + nd�t (z) and the
upper reflecting obstacle U :

yn
t = X +

∫ T

t

gn(s, yn
s , zn

s )ds − (Kn
T − Kn

t ) −
∫ T

t

zn
s dBs,

yn ≤ U,dP × dt-a.s., dK ≥ 0, and
∫ T

0
(U∗

t− − yn
t−)dKn

t = 0, (23)

∀U∗ ∈ D2
F (0, T ), such that yn ≤ U∗ ≤ U dP × dt-a.s.

Since gn(t, y, z) is Lipschitz with respect to (y, z), from the existence theorem of [17]
for reflected BSDEs with L2-obstacle, this equation has a unique solution. We write An

t =
n

∫ t

0 d�s (z
n
s )ds.

In order to get an a priori estimate for (yn, zn,An,Kn), we need the following lemma.

Lemma 3.3. For any X ∈ L2(FT ), there exists a quadruple of processes (y∗, z∗,A∗,K∗) ∈
D2

F (0, T ) × L2
F (0, T ;R

d) × (A2
F (0, T ))2 satisfying

y∗
t = X +

∫ T

t

g(s, y∗
s , z∗

s )ds + (A∗
T − A∗

t ) − (K∗
T − K∗

t ) −
∫ T

t

z∗
s dBs,

d�t (z
∗
t ) = 0 and y∗

t ≤ Ut,dP × dt-a.s., with
∫ T

0
(y∗

t− − U∗
t−)dK∗

t = 0, a.s. (24)

∀U∗ ∈ D2
F (0, T ), such that y∗ ≤ U∗ ≤ U dP × dt-a.s.

Proof. Fix a process σt ∈ L2
F (0, T ;R

d) satisfying σt ∈ �t , t ∈ [0, T ]. We consider a forward
SDE with the upper obstacle Ut . For 0 ≤ t ≤ T ,

dxt = −g(t, xt , σt )dt − dĀt + σt dBt ,

x0 = 1 ∧ U0, with xt ≤ Ut, a.s. a.e.

Since g(t, x, σt ) is a Lipschitz function in x and g(t, x, σt ) ∈ L2
F (0, T ) with ess sup0≤t≤T U−

t ∈
L2(FT ), this equation admits a solution (xt , Āt ) in D2

F (0, T ) × A2
F (0, T ). Set

y∗
t = xt , z∗

t = σt ,

A∗
t = Āt + (xT − X)+1{t=T }, K∗

t = (xT − X)+1{t=T }.

This quadruple is then exactly what we need. �
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We have the following estimate.

Lemma 3.4. There exists a constant C > 0, independent of n, such that

E
[

sup
0≤t≤T

(yn
t )2

]
+ E

∫ T

0
|zn

s |2 ds + E[(An
T )2] + E[(Kn

T )2] ≤ C. (25)

Proof. Consider the following reflected BSDE:

y0
t = X +

∫ T

t

g(s, y0
s , z0

s )ds − (K0
T − K0

t ) −
∫ T

t

z0
s dBs, t ∈ [0, T ],

y0
t ≤ Ut,dK0

t ≥ 0,

∫ T

0
(y0

t− − U∗
t−)dK0

t = 0

∀U∗ ∈ D2
F (0, T ), such that y0 ≤ U∗ ≤ UdP × dt-a.s.

This equation has a unique solution, (y0, z0,K0) ∈ D2
F (0, T ) × L2

F (0, T ;R
d) × A2

F (0, T ). By
the comparison theorem of reflected BSDEs, we have yn

t ≥ y0
t on [0, T ].

On the other hand, the quadruple (y∗, z∗,A∗,K∗) that we get from Lemma 3.3 satisfies

y∗
t = X +

∫ T

t

(g + nd�s )(s, y
∗
s , z∗

s )ds + (A∗
T − A∗

t ) − (K∗
T − K∗

t ) −
∫ T

t

z∗
s dBs,

y∗
t ≤ Ut , a.e. a.s.

∫ T

0
(y∗

t− − Ut−)dK∗
t = 0, a.s.

It follows from the comparison Theorem A.5 for reflected BSDEs that yn
t ≤ y∗

t , Kn
t ≤ K∗

t and
dKn

t ≤ dK∗
t for each n ∈ N, t ∈ [0, T ]. Thus, there exists a constant C > 0, independent of n,

such that

E
[

sup
0≤t≤T

(yn
t )2

]
≤ E

[
sup

0≤t≤T

{(y0
t )2 + (y∗

t )2}
]

≤ C (26)

and

E[(Kn
T )2] ≤ E[(K∗

T )2] ≤ C. (27)

To estimate (zn,An), we just need to rewrite (23)

yn
t − Kn

t = X − Kn
T +

∫ T

t

g(s, yn
s , zn

s )ds + An
T − An

t −
∫ T

t

zn
s dBs

and it is easy to check that Lemma 3.2 can be applied for the triple (yn
t − Kn

t , zn
t ,A

n
T ) to get the

estimates. �

We are now ready to prove Theorem 3.2.
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Proof of Theorem 3.2. In (23), since gn(t, y, z) ≤ gn+1(t, y, z), by (comparison) Theorem A.5
for reflected BSDEs, y0

t ≤ yn
t ≤ yn+1

t ≤ y∗
t . Thus, {yn

t }∞n=1 increasingly converges to yt as n →
∞ and

E
[

sup
0≤t≤T

(yt )
2
]

≤ E
[

sup
0≤t≤T

{(y0
t )2 + (y∗

t )2}
]

≤ C.

It follows from the dominated convergence theorem that

lim
n→∞E

[∫ T

0
|yn

t − yt |2 dt

]
= 0.

We can also get from Theorem A.5 that Kn
t ≤ Kn+1

t ≤ K∗
t and dKn

t ≤ dKn+1
t ≤ dK∗

t , 0 ≤ t ≤ T .
It follows that {Kn}nn=1 increasingly converges to an increasing process K ∈ A2

F (0, T ) with
E[(KT )2] ≤ C. Meanwhile, An are continuous increasing processes satisfying E[(An

T )2 +∫ T

0 |zn
s |2 ds] ≤ C and there exists a process z ∈ L2

F (0, T ;R
d) such that zn → z weakly in

L2
F (0, T ;R

d).
The conditions of the generalized monotonic limit theorem, Theorem A.1 or Theorem 3.1 in

[17], are now satisfied. Therefore, we have zn → z strongly in Lp

F (0, T ;R
d) for p < 2. With the

Lipschitz condition on g, the limit y ∈ D2(0, T ) can be written as

yt = X +
∫ T

t

g(s, ys, zs)ds + (AT − At) − (KT − Kt) −
∫ T

t

zs dBs,

where, for each t, An
t → At weakly in L2(Ft ), Kn

t → Kt strongly in L2(Ft ) and A,K ∈
A2

F (0, T ) are increasing processes.

From E[(An
T )2] = E[(n ∫ T

0 d�s (z
n
s )ds)2] ≤ C, it follows that

E

[(∫ T

0
d�s (z

n
s )ds

)2]
≤ C

n2
.

While d�s (z
n
s ) ≥ 0, we get that

∫ T

0 d�s (z
n
s )ds → 0 as n → ∞. With the Lipschitz property of

d�t (z) and the convergence of zn, we deduce that

d�t (zt ) = 0 dP × dt-a.s.

We now prove that the quadruple (y, z,A,K) satisfies part (ii) of Definition 3.2. We have
y ≤ U from yn ≤ U . Now, for each U∗ ∈ D2

F (0, T ) such that U ≥ U∗ ≥ y ≥ yn, since
∫ T

0 (yn
t− −

U∗
t−)dKn

t = 0, it follows that
∫ T

0 (yt− − U∗
t−)dKn

t = 0. Moreover, we have dKn
t ≤ dKt and

Kn
T ↗ KT in L2(FT ). It then follows that

0 ≤
∫ T

0
(U∗

t− − yt−)d(Kt − Kn
t ) ≤ sup

t∈[0,T ]
(U∗

t − yt ) · [KT − Kn
T ].

With this, (6) and the estimate of y, it follows that part (ii) of Definition 3.2 holds.



630 S. Peng and M. Xu

We now prove that part (iii) in Definition 3.2 holds true for the quadruple. In fact, for any other
quadruple (ȳ, z̄, Ā, K̄) ∈ D2

F (0, T ) × L2
F (0, T ;R

d) × (A2(0, T ))2 satisfying

ȳt = X +
∫ T

t

g(s, ȳs , z̄s)ds + ĀT − Āt − (K̄T − K̄t ) −
∫ T

t

z̄s dBs,

d�t (z̄t ) = 0,dP × dt-a.s.,dĀ ≥ 0,dK̄ ≥ 0, (28)

ȳt ≤ Ut,dP × dt-a.s.,
∫ T

0
(U∗

t− − ȳt−)dK̄t = 0, a.s.,

for any U∗ ∈ D2
F (0, T ) such that ȳ ≤ U∗ ≤ U dP × dt -a.s. It then also satisfies, for all n ∈ N,

ȳt = X +
∫ T

t

g(s, ȳs , z̄s)ds + n

∫ T

t

d�s (z̄s)ds + ĀT − Āt − (K̄T − K̄t ) −
∫ T

t

z̄s dBs.

Compare this to (23): since dĀt ≥ 0, we have ȳ ≥ yn, and K̄ ≥ Kn. Letting n → ∞, it follows
that

ȳt ≥ yt , K̄t ≥ Kt, ∀t ∈ [0, T ], a.s. (29)

Therefore, y is the smallest process satisfying Definition 3.2(i) and (ii).
It remains to prove the relation V[0,T ](A + K) = V[0,T ](A + K) in (11), namely, that A and K

is the Jordan decomposition of A − K . For this, we set Ṽt = V[0,t](A − K) and define the Jordan
decomposition of A − K by

Ãt = 1
2 (Ṽt + At − Kt), K̃t = 1

2 (Ṽt − At + Kt).

We have dK̃t = 1
2 d(Ṽt − At + Kt) ≤ dKt and, thus, for each U∗ ∈ D2

F (0, T ) with U ≥ U∗ ≥ y,
dP × dt -a.s.,

0 ≤
∫ T

0
(yt− − U∗

t−)dK̃t ≤
∫ T

0
(yt− − U∗

t−)dKt = 0.

Therefore, the quadruple (y, z, Ã, K̃) also satisfies (28). It then follows from the second inequal-
ity of (29) that K̃ ≥ K . This, together with K̃ ≤ K , yields K̃ ≡ K and thus A and K are indeed
the Jordan decomposition of A − K . �

Remark 3.6. Since y − K is the smallest process satisfying the BSDE associated with X, gK

and constraint �, it is the (gK)�-solution with terminal condition X − KT , where

gK(t, y, z) = g(t, y + Kt, z).

Remark 3.7. If U is continuous (or satisfies Ut− ≥ Ut ), then K is a continuous process. In fact,
by [6], the solution yn of (23) and the reflecting process K are continuous. This, together with
Kn ≤ Kn+1 and dKn ≤ dK , yields

0 ≤ Kt − Kn
t ≤ KT − Kn

T
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and thus

E
[

sup
0≤t≤T

(Kt − Kn
t )2

]
≤ E[(KT − Kn

T )2] → 0.

The continuity of K then follows from the uniform convergence of Kn to K .

4. Applications of g�-reflected BSDEs: American option pricing
in an incomplete market

We follow the idea in El Karoui et al. [7]. In a financial market, we consider the wealth strat-
egy and portfolio (Yt ,πt ) of an investor which is a pair of adapted processes in L2

F (0, T ) ×
L2

F (0, T ;R
d). This pair solves the following BSDE:

−dYt = g(t, Yt ,π
τ
t σt )dt − πτ

t σt dBt ,

where g is a convex function of (y,π) satisfying the same Lipschitz condition given in (1).
We suppose that the volatility matrix σt is invertible and that σt , (σt )

−1 are bounded. We are
concerned with the problem of pricing an American contingent claim.

Let S be a continuous process satisfying E[supt (S
+
t )2] < ∞, which is a given continuous-time

pay-off during [t, T ), and ξ be a given terminal pay-off at T . For a given t ≥ 0, let Tt be the set
of stopping times valued in [t, T ]. The corresponding total pay-off at time s ∈ [t, T ] is

S̃s = ξ1{s=T } + Ss1{s<T }.

According to [7], in a complete market, that is, a market without constraints on (Y,π), the price
of the American contingent claim (S̃s)0≤s≤T at time t is given by

Yt = ess sup
τ∈Tt

Yt (τ, S̃τ ).

Here, Yt (τ, S̃τ ) is the solution of the BSDE with terminal time τ and terminal condition S̃τ . In
fact, the price (Yt )0≤t≤T is the unique solution of the reflected BSDE associated with the terminal
condition ξ and the obstacle S: there exists (πt ) ∈ L2

F (0, T ;R
d) and an increasing continuous

process (At ) with A0 = 0 such that

−dYt = g(s,Yt ,π
τ
t σt )ds + dAt − πτ

t σt dBt , YT = ξ,

Yt ≥ St ,0 ≤ t ≤ T ,

∫ T

0
(Yt − St )dAt = 0.

Furthermore, the stopping time Dt = inf(t ≤ s ≤ T | dAs > 0) ∧ T is the biggest optimal time
after t and

Yt = Yt (Dt , S̃Dt ).
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Our problem is to price the American contingent claim (S̃s,0 ≤ s ≤ T ) for an incomplete
market where the portfolios πt are constrained in �t , which is a closed subset of R

d . This problem
can be solved as follows. We set �1

t = {z ∈ R
d : zτ σ−1

t ∈ �t }.

Theorem 4.1. We assume that ξ is attainable, that is, there exists a g-supersolution (Y ′, z′,A′)
on [t, T ] with z′

t ∈ �1
t , t -a.e. and with the terminal condition ξ . Then the solution (Y, z,A, Ā) of

the g�1 -reflected BSDE with lower obstacle S exists and Y is the price process of the American
option in the incomplete market. The quadruple (Y, z,A, Ā) solves

Yt = ξ +
∫ T

t

g(s, Ys,π
τ
s σs)ds + AT − At + ĀT − Āt −

∫ T

t

πτ
s σs dBs,

(30)

Yt ≥ St ,0 ≤ t ≤ T , zτ σ−1
t ∈ �1

t ,

∫ T

0
(Yt − St )dĀt = 0.

Furthermore, Ā is continuous and D0 = inf(0 ≤ s ≤ T | dĀs > 0) ∧ T is the corresponding
optimal stopping time.

Proof. Let τ ∈ Tt be any given stopping time and let (Ȳ , z̄, Ā) be a g�1 -solution on [0, τ ] with
terminal condition S̃τ . By the comparison theorem, we know that Yn

t ≤ Ȳt on [0, τ ], where Yn is
the solution of the reflected BSDE on [0, T ] associated with (ξ, g +nd�1

t
, S). Since Yn upwardly

converges to Y , we know Yt ≤ Ȳt on [0, τ ]. It follows that Y is the smallest g-supersolution
constrained in �1 among all g�1 -solutions Ȳ defined on [t, τ ] with terminal condition Ȳτ = S̃τ .
Moreover Y is the g�1 -solution defined on [0,D0]. Thus, D0 is the optimal stopping time. �

4.1. Some examples of American call options

We study the American call option, setting St = (Xt − k)+, ξ = (XT − k)+, where X is the price
of underlying stock and k is the strike price. More precisely, X is the solution of

Xt = x0 +
∫ t

0
μsXs ds +

∫ t

0
σsXs dBs. (31)

Correspondingly, in (30), g is a linear function:

g(t, y,π) = −rty − (μt − rt )π
τ σt .

Proposition 4.1. If ξ is attainable, then the maturity time of an American call option in an
incomplete market is still T .

Proof. Consider the price process Y 0 of an American call option, without constraint, which is a
solution of reflected the BSDE

Y 0
t = ξ +

∫ T

t

g(s, Y 0
s , π0

s )ds + Ā0
T − Ā0

t −
∫ T

t

(π0
s )τ σs dBs,
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Y 0
t ≥ St ,

∫ T

0
(Y 0

t − St )dĀ0
t = 0.

Comparing it with (30), we have that Yt ≥ Y 0
t , Āt ≤ Ā0

t , t ∈ [0, T ].
In a complete market, an American call option always exercises at the terminal time T , which

implies that D0
t = T , where D0

t = inf(t ≤ s ≤ T | dA0
s > 0) ∧ T . Therefore, we have Ā0

t = 0 on
[0, T ). It follows that Āt ≤ Ā0

t = 0, t ∈ [0, T ]. Then, by definition, Dt = T . �

From this proposition, we know that the seller’s price process Y in an incomplete market is
possibly greater than in a complete market. However, their exercise times are the same, that
is, at T . So the seller’s price is the same as the seller’s price for the corresponding European
contingent claim.

We now consider an interesting example.

Example 4.1 (No short-selling). In this case, �t = [0,∞) for t ∈ [0, T ]. We set d = 1. By
Proposition 4.1 and Example 7.1 in [2], the price process of the American call option takes the
same value as a European call option. This means that the constraint K = [0,∞) does not make
any difference.

From this example, we know that the constraint �t = [0,∞) does not influence the price
processes of the American contingent claim. In fact, we have a more general result.

Proposition 4.2. Consider the constraint �t = [0,∞) for t ∈ [0, T ]. If ξ = �(XT ), St = l(Xt ),
where �, l : R→R are both increasing in x, and σ satisfies the uniformly elliptic condition, then
the price process Y takes the same value as in a complete market, that is, the constraint � does
not influence the price.

Proof. It is sufficient to prove that π̄t ≥ 0 for the solution (Ȳ , π̄ , Ā) of the following reflected
BSDE:

Ȳt = �(XT ) +
∫ T

t

g(s, Ȳs , π̄s)ds + ĀT − Āt −
∫ T

t

π̄ τ
s σs dBs,

(32)

Ȳt ≥ l(Xt ),

∫ T

0

(
Ȳt − l(Xt )

)
dĀt = 0.

We put (X
t,x
s , Ȳ

t,x
s , π̄

t,x
s , Ā

t,x
s )t≤s≤T under the Markovian framework with (31). If we define

u(t, x) = Ȳ
t,x
t ,

then, by [6], we know that u is the viscosity solution of the PDE with an obstacle l,

min

{
u(t, x) − l(x),−∂u

∂t
− Lu − g(t, x,u,∇uσ)

}
= 0,

u(T , x) = �(x),
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where L = 1
2 (σs)

2 ∂2

∂x ∂x
+ μ ∂

∂x
. Since (π̄

t,x
r )τ σr = ∇u(r,X

t,x
r )σr and σr is uniformly ellip-

tic, we only need to prove that ∇u(t, x) is non-negative. Indeed, this is easy to obtain by the
comparison theorem. For x1, x2 ∈ R, with x1 ≥ x2, we have X

t,x1
s ≥ X

t,x2
s . It follows that

�(X
t,x1
T ) ≥ �(X

t,x2
T ) and l(X

t,x1
s ) ≥ l(X

t,x2
s ), in view of our assumptions. By the comparison

theorem for BSDEs, we get Ȳ
t,x1
t ≥ Ȳ

t,x2
t , which implies that u(t, x1) ≥ u(t, x2). Therefore, u is

increasing in x, that is, ∇u(t, x) ≥ 0, and it follows that π̄
t,x
t ≥ 0. �

4.2. Some examples of American put options

In this case, we set St = (k − Xt)
+, ξ = (k − XT )+, where X is the price of underlying stock

given in (31) and k is the strike price. Parallel to Proposition 4.2, we have the following.

Proposition 4.3. Consider the constraint �t = (−∞,0] for t ∈ [0, T ]. If ξ = �(XT ), St =
l(Xt ), where �, l : R→R are both decreasing functions and σ satisfies the uniformly elliptic
condition, then the price process Y takes the same value as in a complete market, that is, the
constraint � has no influence on price process.

Example 4.2 (No borrowing). �t = (−∞, Yt ]. Obviously, Yt ≥ 0, in view of Yt ≥ St ≥ 0. There-
fore, �t ⊃ (−∞,0], and by Proposition 4.3, we know that the price process Y takes the same
value as in a complete market.

Under the “no short-selling” constraint, we will get a totally different result.

Example 4.3 (No short-selling). �t = [0,∞) for t ∈ [0, T ]. The pricing process Y with hedging
π satisfies

Yt = ξ +
∫ T

t

g(s, Ys,πs)ds + AT − At + ĀT − Āt −
∫ T

t

π∗
s σs dBs,

Yt ≥ St ,0 ≤ t ≤ T ,

∫ T

0
(Yt − St )dĀt = 0,πt ≥ 0, t-a.e.

Note that St = (k − Xt)
+ < k. Hence, the g�-reflected solution of the above equation is

Yt =
{

k, t ∈ [0, T ),
(k − XT )+, t = T ,

πt = 0,

At =

⎧⎪⎪⎨
⎪⎪⎩

k

∫ t

0
rs ds, t ∈ [0, T ),

k

∫ T

0
rs ds + k − (k − XT )+, t = T ,

Āt = 0.
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In particular, the price of an American put option under the “no short-selling” constraint is
Y0 = k.

Appendix

In this appendix, we present the monotonic limit theorem introduced in [16] (a generalized ver-
sion was introduced in [17]). We consider the following sequence of Itô processes:

yi
t = yi

0 +
∫ t

0
gi

s ds − Ai
t + Ki

t +
∫ t

0
zi
s dBs, t ∈ [0, T ], i = 1,2, . . . . (33)

Here, gi ∈ L2
F (0, T ) and Ai , Ki ∈ D2

F (0, T ) are given increasing processes. We assume that:

(i) (yi
t ) increasingly converges to y ∈ L2

F (0, T ) with E
[

sup
0≤t≤T

|yt |2
]

< ∞;

(ii) (gi
t , z

i
t ) weakly converges to (g0, z) in L2

F (0, T ;R × R
d); (34)

(iii) Ai is continuous and increasing with Ai
0 = 0 and E[(Ai

T )2] < ∞.

Furthermore, for Ki , we assume that:

(iv) K
j
t − K

j
s ≥ Ki

t − Ki
s ,∀0 ≤ s ≤ t ≤ T , a.s.,∀i ≤ j ;

(35)
(v) for each t ∈ [0, T ],Kj

t ↗ Kt in j, with E[K2
T ] < ∞.

An easy consequence is that:

(i) E

[
sup

0≤t≤T

|yi
t |2

]
≤ C;

(36)

(ii) E

∫ T

0
|yi

t − yt |2 ds → 0.

The generalized monotonic limit theorem given in [17] is as follows.

Theorem A.1. We assume that (34) and (35) hold. The limit y of the sequence {yi}∞i=1 is then of
the form

yt = y0 +
∫ t

0
g0

s ds − At + Kt +
∫ t

0
zs dBs, (37)

where A, K ∈ A2
F (0, T ) are increasing processes. Here, for each t ∈ [0, T ], At (resp. Kt ) is the

weak (resp. strong) limit of {Ai
t }∞i=1 (resp. {Ki

t }∞i=1) in L2(Ft ). Furthermore, for any p ∈ [0,2),

{zi}∞i=1 strongly converges to z in Lp

F (0, T ;R
d), that is,

lim
i→∞E

∫ T

0
|zi

s − zs |p ds = 0. (38)
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If, moreover, A is a continuous process, then we have

lim
i→∞E

∫ T

0
|zi

s − zs |2 ds = 0. (39)

The monotonic limit theorem was originally obtained in [16]:

yi
t = yi

0 +
∫ t

0
gi

s ds − Ai
t +

∫ t

0
zi
s dBs, t ∈ [0, T ], i = 1,2, . . . . (40)

Since this result is used in this paper, we state it as follows.

Theorem A.2. We suppose that assumption (34) holds. The limit y of the sequence {yi}∞i=1 given
in (40) then has the form

yt = y0 +
∫ t

0
g0

s ds − At +
∫ t

0
zs dBs, 0 ≤ t ≤ T ,

where A ∈ A2
F (0, T ) is an increasing process. Here, for each t ∈ [0, T ], At is the weak limit of

{Ai
t }∞i=1 in L2(Ft ). Furthermore, {zi}∞i=1 strongly converges to z in Lp

F (0, T ,R
d), that is,

lim
i→∞E

∫ T

0
|zi

s − zs |p ds = 0, p ∈ [0,2). (41)

If, furthermore, (At )t∈[0,T ] is continuous, then we have

lim
i→∞E

∫ T

0
|zi

s − zs |2 ds = 0. (42)

The smallest g-supersolution with constraint � was first considered in [16], where � is defined
as

�t(ω) = {(y, z) ∈ R
1+d :�(ω, t, y, z) = 0}.

Here, � is a non-negative, measurable Lipschitz function and �(·, y, z) ∈ L2
F (0, T ) for (y, z) ∈

R × R
d . Under the following assumption, the result of the existence of the smallest solution,

obtained in [16], can be stated as follows.

Theorem A.3. Suppose that the function g satisfies (1) and the constraint � satisfies (2). We
assume that there is at least one �-constrained g-supersolution y′ ∈ D2

F (0, T ):

y′
t = X′ +

∫ T

t

g(s, y′
s , z

′
s)ds + A′

T − A′
t −

∫ T

t

z′
s dBs,

(43)
A′ ∈ A2

F (0, T ), (y′
t , z

′
t ) ∈ �t , t ∈ [0, T ], a.s. a.e.
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Then, for each X ∈ L2(FT ) with X ≤ X′, a.s., there exists the g�-solution y ∈ D2
F (0, T ) with

the terminal condition yT = X (defined in Definition 2.2). Moreover, this g�-solution is the limit
of a sequence of gn-solutions with gn = g + nd� , that is,

yn
t = X +

∫ T

t

(g + nd�)(s, yn
s , zn

s )ds −
∫ T

t

zn
s dBs, (44)

where the convergence is in the following sense:

yn
t ↗ yt , with lim

n→∞E[|yn
t − yt |2] = 0,

(45)

lim
n→∞E

∫ T

0
|zt − zn

t |p dt = 0,p ∈ (0,2),

An
t := n

∫ t

0
d�s (s, y

n
s , zn

s )ds → At weakly in L2(Ft ), (46)

where z and A are the corresponding martingale representing part and increasing part of y,
respectively.

Proof. By the comparison theorem for BSDEs, yn
t ≤ yn+1

t ≤ y′
t . It follows that there exists a

y ≤ y′ such that, for each t ∈ [0, T ],
y1
t ≤ yn

t ↗ yt ≤ y′
t .

Consequently, there exists a constant C > 0, independent of n, such that

E
[

sup
0≤t≤T

(yn
t )2

]
≤ C, so E

[
sup

0≤t≤T

(yt )
2
]

≤ C.

Thanks to the (monotonic limit) Theorem A.2, we can take the limit on both sides of BSDE (44)
and obtain

yt = X +
∫ T

t

g(s, ys, zs)ds + AT − At −
∫ T

t

zs dBs.

On the other hand, by E[(An
T )2] = n2E[(∫ t

0 d�s (y
n
s , zn

s )ds)2] ≤ C, we have

d�t (yt , zt ) ≡ 0, dP × dt-a.s. �

Remark A.1. If the constraint � is of the form �t = (−∞,Ut ] × R
d , where Ut ∈ L2(Ft ), then

the g�-solution with terminal condition yT = X exists, if and only if d�t (Yt ,Zt ) ≡ 0, a.s. a.e.,
where (Y,Z) is the solution of the BSDE

−dYt = g(t, Yt ,Zt )dt − Zt dBt , t ∈ [0, T ], YT = X.

This follows easily by the comparison theorem.
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We also have the following result.

Theorem A.4 (Comparison theorem for g�-solutions). We assume that g1, g2 satisfy (1) and
�1, �2 satisfy (2). Further, we suppose that, for each (t, y, z) ∈ [0, T ] × R × R

d , we have

X1 ≤ X2, g1(t, y, z) ≤ g2(t, y, z), �1
t ⊇ �2

t . (47)

For i = 1,2, let Y i ∈ D2
F (0, T ) be the gi

�i -solution with terminal condition Y i
T = Xi . We then

have

Y 1
t ≤ Y 2

t , for t ∈ [0, T ],a.s.

Proof. Consider the penalization equations for the two constrained BSDEs: for n ∈ N,

y
1,n
t = X1 +

∫ T

t

g1,n(s, y1,n
s , z1,n

s )ds −
∫ T

t

z1,n
s dBs,

(48)

y
2,n
t = X2 +

∫ T

t

g2,n(s, y2,n
s , z2,n

s )ds −
∫ T

t

z2,n
s dBs,

where

g1,n(t, y, z) = g1(t, y, z) + nd�1
t
(y, z),

g2,n(t, y, z) = g2(t, y, z) + nd�2
t
(y, z).

From (47), we have g1,n(t, y, z) ≤ g2,n(t, y, z). It follows from the classical comparison theorem
for BSDEs that y

1,n
t ≤ y

2,n
t . Since, as n → ∞, y

1,n
t ↗ y1

t and y
2,n
t ↗ y2

t , where y1, y2 are the
respective g�-solutions of the BSDEs, it follows that y1

t ≤ y2
t , 0 ≤ t ≤ T . �

The comparison theorem is a powerful tool and useful concept in BSDE theory (cf. [7]). Let
us here recall the main theorem on reflected BSDEs and the related comparison theorem for the
case of lower obstacle L. We do not repeat the case for the upper obstacle since it is essentially
the same. This result, obtained in [17], is a generalized version of [6,8] and [14] for the existence
part, and [9] for the comparison theorem part.

Theorem A.5 (Reflected BSDE and the related comparison theorem). We assume that the
coefficient g satisfies Lipschitz condition (1) and the lower obstacle L satisfies (6). Then, for each
X ∈ L2(FT ) with X ≥ LT there exists a unique triple (y, z,A) ∈ D2

F (0, T ) × L2
F (0, T ;R

d) ×
A2

F (0, T ) such that

yt = X +
∫ T

t

g(s, ys, zs)ds + AT − At −
∫ T

t

zs dBs



Reflected BSDE with a constraint and its applications 639

and the generalized Skorokhod reflecting condition is satisfied: for each L∗ ∈ D2
F (0, T ) such that

yt ≥ L∗
t ≥ Lt , dP × dt -a.s., we have

∫ T

0
(ys− − L∗

s−)dAs = 0 a.s.

Moreover, if a coefficient g′, an obstacle L′ and terminal condition X′ satisfy the same conditions
as g, L and X, respectively, ∀(t, y, z) ∈ [0, T ] × R × R

d , then

X′ ≤ X, g′(t, y, z) ≤ g(t, y, z), L′
t ≤ Lt , dP × dt-a.s.

If the triple (y′, z′,A′) is the corresponding reflected solution, then we have

Y ′
t ≤ Yt , ∀t ∈ [0, T ], a.s.

and if L = L′, then for each 0 ≤ s ≤ t ≤ T ,

A′
t ≥ At, A′

t − A′
s ≥ At − As.
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