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Given a random word of size n whose letters are drawn independently from an ordered alphabet of size m,
the fluctuations of the shape of the random RSK Young tableaux are investigated, when n and m converge
together to infinity. If m does not grow too fast and if the draws are uniform, then the limiting shape is the
same as the limiting spectrum of the GUE. In the non-uniform case, a control of both highest probabilities
will ensure the convergence of the first row of the tableau toward the Tracy–Widom distribution.

Keywords: GUE; longest increasing subsequence; random words; strong approximation; Tracy–Widom
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1. Introduction and results

Let Am = {α1 < α2 < · · · < αm} be an ordered alphabet of size m and let a word be made
of the random letters Xm

1 , . . . ,Xm
n (independently) drawn from Am. Recall that the Robinson–

Schensted–Knuth (RSK) correspondence associates to a (random) word a pair of (random) Young
tableaux of the same shape, having at most m rows (see, e.g., [8] or [21]). It is then well known
that the length, V1(n,m), of the top row of these tableaux coincides with the length of the longest
(weakly) increasing subsequence of Xm

1 , . . . ,Xm
n . The behavior of V1(n,m) when n and/or m go

to +∞ and its connections to various areas of mathematics (e.g., random matrices, queueing
theory, percolation theory) have been investigated in numerous papers ([1,2,4,9,15–17,25], . . .).
For instance, appropriately renormalized and for uniform draws, V1(n,m) converges in law, as n

goes to infinity and m is fixed, to the largest eigenvalue of an m × m matrix from the traceless
Gaussian Unitary Ensemble (GUE). More generally (see [17]), when n → +∞ (and m is fixed),
the shape of the whole Young tableaux associated to a uniform random word converges, after
renormalization, to the law of the spectrum of an m × m traceless GUE matrix. For different
random words, such as non-uniform or Markovian ones, the situation is more involved ([6,13–
16]).

For independently and uniformly drawn random words, the following result holds, where,
below and in the sequel, “⇒” stands for convergence in distribution.
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Theorem 1. Let Vk(n,m) = ∑k
i=1 Ri

n be the sum of the lengths Ri
n of the first k rows of the

Young tableau. Then

(
Vk(n,m) − kn/m√

n

)
1≤k≤m

⇒
√

m − 1

m

(
max
t∈Ik,m

k∑
j=1

m−k+j∑
l=j

(
B̂l(tj,l) − B̂l(tj,l−1)

))
1≤k≤m

, (1)

where (B̂1, . . . , B̂m) is a multidimensional Brownian motion with covariance matrix having dia-
gonal terms equal to 1 and off-diagonal terms equal to −1/(m − 1), and where Ik,m is defined
by

Ik,m = {t = (tj,l : 1 ≤ j ≤ k,0 ≤ l ≤ m) : tj,j−1 = 0, tj,m−k+j = 1,1 ≤ j ≤ k,

tj,l−1 ≤ tj,l ,1 ≤ j ≤ k,1 ≤ l ≤ m − 1; tj,l ≤ tj−1,l ,2 ≤ j ≤ k,1 ≤ l ≤ m − 1}.

Here, and in the sequel, the rows beyond the height of the tableau are considered to be of length
zero. If we let �k : Rk → R

k be defined via (�k(x))j = ∑j

i=1 xi , 1 ≤ j ≤ k, then the shape of
the Young tableau is given by �−1

m ((V1(n,m), . . . , Vm(n,m))t ) = (R1
n, . . . ,R

m
n )t . Moreover, let

(λ
1,0
GUE,m, λ

2,0
GUE,m, . . . , λ

m,0
GUE,m) be the spectrum, written in non-increasing order, of an m × m

traceless element of the GUE, where the GUE is equipped with the measure

1

Cm

∏
1≤i<j≤m

(xi − xj )
2

m∏
j=1

e−x2
j /2

and Cm = (2π)m/2 ∏m
j=1 j ! (see [19]). An important fact (see [3,5,7,10,13,20]) asserts that

√
m − 1√

m
�−1

m

((
max
t∈Ik,m

k∑
j=1

m−k+j∑
l=j

(
B̂l(tj,l) − B̂l(tj,l−1)

))
1≤k≤m

)
(2)

L= (λ
1,0
GUE,m, λ

2,0
GUE,m, . . . , λ

m,0
GUE,m).

In fact, if (λ1
GUE,m, λ2

GUE,m, . . . , λm
GUE,m) is the (ordered) spectrum of an m × m element of the

GUE, then

(λ1
GUE,m, λ2

GUE,m, . . . , λm
GUE,m)

L= (λ
1,0
GUE,m, λ

2,0
GUE,m, . . . , λ

m,0
GUE,m) + Zmem, (3)

where Zm is a centered Gaussian random variable with variance 1/m, independent of the vector
(λ

1,0
GUE,m, λ

2,0
GUE,m, . . . , λ

m,0
GUE,m), and where em = (1,1, . . . ,1); see [14] for simple proofs of (2)

and (3).
Finally, recall that, as m → +∞, the asymptotic behavior of the spectrum of the GUE has

been obtained by Tracy and Widom (see [23], [24] and also Theorem 1.4 in [17], with a slight
change of the notation).
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Theorem 2. For each r ≥ 1, there is a distribution Fr on R
r such that(

m1/6(λk
GUE,m − 2

√
m

))
1≤k≤r

⇒ Fr , m → +∞. (4)

Remark 3. The distribution Fr is explicitly known (see (3.48) in [17]) and its first marginal
coincides with the Tracy–Widom distribution.

Since Zmm1/6 ⇒ 0 as m → +∞, taking successively the limits in n and then in m, (1)–(4)
entail, for each r ≥ 1, that

lim
m→+∞ lim

n→+∞

(
Vk(n,m) − kn/m − 2k

√
n√

n
× m2/3

)
1≤k≤r

= Fr�
−1
r . (5)

Following universality argument in percolation models developed by Bodineau and Martin ([4]),
we show below that the limits in n and m in (5) can be explicitly taken simultaneously when the
size m of the alphabet does not grow too fast with respect to n. Doing so, we are dealing with
growing ordered alphabets and, at each step, the n letters Xm

i , 1 ≤ i ≤ n, are redrawn (and not
just the nth letter as in the case with the model studied in [12]). In a way, we are thus giving the
fluctuations of the shape of the Young tableau of a random word when the alphabets are growing
and are reshuffled. In the sequel, m will be a function m(n) of n. However, in order to simplify
the notation, we shall still write m instead of m(n). A main result of this note is the following.

Theorem 4. Let m tend to infinity as n → +∞ in such a way that m = o(n3/10(logn)−3/5).
Then, for each r ≥ 1,(

Vk(n,m) − kn/m − 2k
√

n

n1/2m−2/3

)
1≤k≤r

⇒ Fr�
−1
r , n → +∞.

Remark 8, below, briefly discusses the growth conditions on m. Since, again, the length of the
first row of the Young tableau is the length V1(n,m) of the longest increasing subsequence and
since the first marginal of Fr is the Tracy–Widom distribution FTW, we have the following result.

Corollary 5. Let m tend to infinity as n → +∞ in such a way that m = o(n3/10(logn)−3/5).
Then

V1(n,m) − (n/m) − 2n1/2

n1/2m−2/3
⇒ FTW, n → +∞.

When the independent random letters are no longer uniformly drawn, a similar asymptotic
behavior continues to hold for V1(n,m), as explained next. Let the Xm

i , 1 ≤ i ≤ n, be indepen-
dently and identically distributed with P(Xm

1 = αj ) = pm
j , let pm

max = max1≤j≤m pm
j and also

let J (m) = {j :pm
j = pm

max} = {j1, . . . , jk(m)} with k(m) = card (J (m)). Now, from [11] and as
n → +∞, the behavior of the first row of the Young tableau in this non-uniform setting is given
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by

V1(n,m) − pm
maxn√

pm
maxn

⇒
√

1 − k(m)pm
max − 1

k(m)

k(m)∑
j=1

Bj (1)

(6)

+ max
0=t0≤t1≤···

≤tk(m)−1≤tk(m)=1

k(m)∑
l=1

(
Bl(tl) − Bl(tl−1)

)
,

where (B1, . . . ,Bk(m)) is a standard k(m)-dimensional Brownian motion. For the limiting be-
havior in m of the right-hand side of (6), as explained next, two cases can arise, depending on
the number of most probable letters in Am. Setting

Zk = 1

k

k∑
j=1

Bj (1) and Dk = max
0=t0≤t1≤···
≤tk−1≤tk=1

k∑
l=1

(
Bl(tl) − Bl(tl−1)

)
,

and combining (2), (3) and (4), as well as Remark 3, when k = 1, and since, clearly, Zk ∼
N (0,1/k), we have

k1/6(Dk − 2
√

k
) ⇒ FTW, k → +∞. (7)

First, let k(m) be bounded. Eventually extracting a subsequence, we can assume that k(m) is
equal to a fixed k ∈ N \ {0} and since pm

max ∈ [0,1], we can also assume that pm
max → pmax. In

this case, taking the limit first in n and next in m yields

V1(n,m) − pm
maxn√

pm
maxn

⇒ (√
1 − kpmax − 1

)
Zk + Dk. (8)

The limiting distribution on the right-hand side of (8) depends on k. For instance, for k = 1,
we recover a Gaussian distribution, while for k > 1 and specific choice of the pm

max for which
limm→+∞ pm

max = 0, we recover (8) without the Gaussian term. Thus, in general, when k(m) is
bounded, there is no global asymptotics, but only convergence (to different distributions) along
subsequences.

Next, let k(m) → +∞. In this case, in (6), the Gaussian contribution is negligible. Indeed,
since (

√
1 − k(m)pm

max − 1)2k(m)−2/3 ≤ (k(m)pm
max)

2k(m)−2/3 ≤ k(m)−2/3 → 0, when m →
+∞, (√

1 − k(m)pm
max − 1

)
Zk(m)k(m)1/6 ∼ N

(
0,

(√
1 − k(m)pm

max − 1
)2

k(m)−2/3) ⇒ 0.

Hence, plugging the convergence result (7) into (6) leads to

V1(n,m) − pm
maxn − 2

√
k(m)pm

maxn√
k(m)pm

maxn
k(m)2/3 ⇒ FTW, (9)
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where the limit is first taken as n → +∞ and then as m → +∞. In this non-uniform setting, we
have the following counterpart to Corollary 5 with an additional control on the second largest
probability for the letters of Am. More precisely, let pm

2nd = max(pm
j < pm

max : 1 ≤ j ≤ m).

Theorem 6. Let the size m of the alphabets vary with n and assume that k(m(n)), the number
of most probable letters in Am, goes to infinity when n → +∞, in such a way that k(m(n)) =
o(n3/10(logn)−3/5). Assume, moreover, that

(
p

m(n)
2nd

)2 n11/10

(logn)1/5
= o

(
pm(n)

max

)
. (10)

Then

V1(n,m(n)) − p
m(n)
max n − 2

√
k(m(n))p

m(n)
max n√

k(m(n))p
m(n)
max n

k(m(n))2/3 ⇒ FTW. (11)

Let us again stress the fact that in the previous result, m is a function of n, with the only
requirement being that k(m(n)) = o(n3/10(logn)−3/5). Note that in the uniform case, k(m) = m

and pm
max = 1/m and that, in general, 1/m ≤ pm

max ≤ 1/k(m).
Let us now put our results in context, relate them to the current literature and also describe the

main steps in the arguments developed below.
Bodineau and Martin [4] showed that the fluctuations of the last-passage directed percolation

model with Gaussian i.i.d. weights actually extend to i.i.d. weights with finite (2 + r)th moment,
r > 0. Their arguments rely, in part, on a KMT approximation which was already used by Glynn
and Whitt [9] in a related queueing model.

Here, we closely follow [4] and take advantage of the representation (2) of the spectrum of
a matrix in the GUE. Using Brownian scaling in those Brownian functionals, we can mix to-
gether n and m in the corresponding limit (4) (see (14) below). Then, exhibiting an expression
similar to (2), but with dependent Bernoulli random variables, for the shape of the Young tableau
(see (17)), we show via a Gaussian approximation that the Bernoulli functionals stay close to the
Brownian functionals (see (19)), so as to share the same asymptotics.

Since we apply a Gaussian approximation to Bernoulli random variables with a strong integra-
bility property, the strong approximation can be made more precise than in [4]. However, this is
not enough to obtain the fluctuations for m of larger order. Actually, the Gaussian approximation
is responsible for the condition m = o(n3/10(logn)−3/5), which falls short of the corresponding
polynomial order condition m = o(n3/7) obtained in [4]. However, in contrast to [4], the stronger
integrability property of the Bernoulli random variables and the stronger condition on m are re-
quired to control the constants appearing in the Gaussian approximation applied to a triangular
scheme of different distributions.

Using Skorokhod embedding, Baik and Suidan [2] derived, independently of [4], similar con-
vergence results (see Theorem 2 in [2]), under the condition m = o(n3/14). See also [22] for
related results (under m = o(n1/7)) in percolation models using functional methods in the CLT.

Finally, note that [2,4,22] deal with percolation models with i.i.d. random variables under
enough polynomial integrability. In our setting, the lengths of the rows of the Young tableaux
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associated to random words are expressed in terms of dependent (exchangeable in the uniform
case) Bernoulli random variables. We are thus working with much more specific random vari-
ables, but without complete independence.

The paper is organized as follows: Section 2 is devoted to the proof of Theorem 4, while we
sketch the changes needed to prove Theorem 6 in Section 3. We conclude in Section 4 with some
remarks on the convergence of whole shape of Young tableaux when the draws are non-uniform.

2. Proof of Theorem 4

Brownian scaling. Let (Bl(s))s≥0, 1 ≤ l ≤ m, be independent standard Brownian motions. For
s > 0, m ≥ 1 and k ≥ 1, let

Lk(s,m) = sup
t∈Ik,m(s)

k∑
j=1

m−k+j∑
l=j

(
Bl(tj,l) − Bl(tj,l−1)

)
, (12)

where Ik,m(s) = {st, t ∈ Ik,m}. For k = 1, L1(s,m) coincides with the Brownian percolation

model used in [4]; see also [9] for a related queueing model. For s = 1,
√

m−1
m

�−1
m ((Lk(1,

m))1≤k≤m) has the same law as the spectrum of an m × m GUE matrix; see [7] and [14].
Since (L1(·,m), . . . ,Lm(·,m)) is a continuous function of B1, . . . ,Bm, which are indepen-

dent, Brownian scaling entails that

(L1(s,m), . . . ,Lm(s,m))
L= √

s(L1(1,m), . . . ,Lm(1,m)). (13)

Plugging (13) into (4) yields(
Lk(n,m) − 2k

√
nm

n1/2m−1/6

)
1≤k≤r

⇒ Fr�
−1
r . (14)

Combinatorics. Let

Xm
i,j =

{
1, if Xm

i = αj ,

0, otherwise,

be Bernoulli random variables with parameter P(Xm
i = αj ) = 1/m and variance σ 2

m = (1/m)(1−
1/m). For a fixed 1 ≤ j ≤ m, the Xm

i,j s are independent and identically distributed, while for
j 
= j ′, (Xm

1,j , . . . ,X
m
n,j ) and (Xm

1,j ′ , . . . ,Xm
n,j ′) are identically distributed, but no longer inde-

pendent.
Again, recall that the length of the first row of the Young tableau of a random word is the

length of the longest (weakly) increasing subsequence of Xm
1 , . . . ,Xm

n .

Let S
m,j
k = ∑k

i=1 Xm
i,j be the number of occurrences of αj among (Xm

i )1≤i≤k . An increasing
subsequence of (Xm

i )1≤i≤k consists of successive blocks, each one made of an identical letter,
with the sequence of letters representing each block being strictly increasing. Since, for 1 ≤ k <
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l ≤ n the number of occurrences of αj among (Xm
i )k≤i≤l is S

m,j
l − S

m,j
k , it follows that

V1(n,m) = max
0=l0≤l1≤···
≤lm−1≤lm=n

[(Sm,1
l1

− S
m,1
0 ) + (S

m,2
l2

− S
m,2
l1

) + · · · + (Sm,m
n − S

m,m
lm−1

)], (15)

with the convention that S
m,1
0 = 0. More involved combinatorial arguments yield the following

expression for Vk(n,m) (see Theorem 5.1 in [13]):

Vk(n,m) = max
k∈Jk,m(n)

k∑
j=1

m−k+j∑
l=j

(S
m,l
kj,l

− S
m,l
kj,l−1

), (16)

where

Jr,m(n) = {k = (kj,l : 1 ≤ j ≤ r,0 ≤ l ≤ m) :kj,j−1 = 0, kj,m−r+j = n,1 ≤ j ≤ r,

kj,l−1 ≤ kj,l,1 ≤ j ≤ r,1 ≤ l ≤ m − 1; kj,l ≤ kj−1,l ,2 ≤ j ≤ r,1 ≤ l ≤ m − 1}.

For t ∈ Ir,m(n), set [t] = ([tj,l] : 1 ≤ j ≤ n,0 ≤ l ≤ m) ∈ Jr,m(n) and thus

Vk(n,m) = sup
t∈Ik,m(n)

k∑
j=1

m−k+j∑
l=j

(
S

m,l
[tj,l ] − S

m,l
[tj,l−1]

)
, (17)

which is to be compared with (12) for Brownian functionals.
Centering and reducing. Let X̃m

i,j = (Xm
i,j − 1/m)/σm and S̃

m,l
k = ∑k

i=1 X̃m
i,l , and, replac-

ing Xm
i,j by X̃m

i,j , similarly define Ṽk(n,m). Clearly, Vk(n,m) = σmṼk(n,m) + kn/m, hence,

Vk(n,m) − kn/m − 2k
√

n√
n

× m2/3

= σmṼk(n,m) − 2k
√

n√
n

× m2/3

= Ṽk(n,m) − 2k
√

nσ−1
m√

n
× (σmm2/3)

= Ṽk(n,m) − 2k
√

nm + 2k
√

n(σ−1
m − m1/2)

n1/2m−1/6
× (m1/2σm).

Note that σ−1
m −m1/2 ∼ 1/

√
m, and that m1/6m1/2σm ∼ m1/6, and so the limit under study is the

same as that of

Ṽk(n,m) − 2k
√

nm

n1/2m−1/6
. (18)
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Bound. Next, and as in [4], we bound the difference between Ṽk(n,m) and Lk(n,m). This
bound holds true for any Brownian motions (B

m,j
t )t≥0, but it will only be correctly controlled

for a special choice of the Brownian motions and for copies of the random variables X̃m
i,j given

by a coupling (using a strong approximation result, see Proposition 7 below).

|Ṽk(n,m) − Lk(n,m)|

=
∣∣∣∣∣ sup
t∈Ik,m(n)

k∑
j=1

m−k+j∑
l=j

(
S

m,l
[tj,l ] − S

m,l
[tj,l−1]

) − sup
t∈Ik,m(n)

k∑
j=1

m−k+j∑
l=j

(
Bl(tj,l) − Bl(tj,l−1)

)∣∣∣∣∣
≤ sup

t∈Ik,m(n)

∣∣∣∣∣
k∑

j=1

m−k+j∑
l=j

(
S

m,l
[tj,l ] − S

m,l
[tj,l−1]

) −
k∑

j=1

m−k+j∑
l=j

(
Bl(tj,l) − Bl(tj,l−1)

)∣∣∣∣∣
= sup

t∈Ik,m(n)

∣∣∣∣∣
k∑

j=1

m−k+j∑
l=j

(
S

m,l
[tj,l ] − Bl(tj,l)

) −
k∑

j=1

m−k+j∑
l=j

(
S

m,l
[tj,l−1] − Bl(tj,l−1)

)∣∣∣∣∣
= sup

t∈Ik,m(n)

∣∣∣∣∣
k∑

j=1

m−k+j∑
l=j

((
S

m,l
[tj,l ] − Bl([tj,l])

) + (
Bl([tj,l]) − Bl(tj,l)

)
(19)

− (
S

m,l
[tj,l−1] − Bl([tj,l−1])

) − (
Bl([tj,l−1]) − Bl(tj,l−1)

))∣∣∣∣∣
≤ sup

t∈Ik,m(n)

{
k∑

j=1

m−k+j∑
l=j

(∣∣Sm,l
[tj,l ] − Bl([tj,l])

∣∣ + |Bl([tj,l]) − Bl(tj,l)|

+ ∣∣Sm,l
[tj,l−1] − Bl([tj,l−1])

∣∣ + |Bl([tj,l−1]) − Bl(tj,l−1)|
)}

≤ 2k

m∑
l=1

(Ym,l
n + Wl

n),

where we set

Ym,l
n = max

1≤i≤n
|Sm,l

i − Bl(i)| and Wl
n = sup

0≤s,t≤n

|s−t |≤1

|Bl(s) − Bl(t)|.

Gaussian approximation. From now on, we assume that for each n and l ∈ [1,m] (recall that
m = m(n)), the random variables X̃m

i,l , 1 ≤ i ≤ n, and the Brownian motion (Bl(s))s∈[0,n+1]
appearing in Y

m,l
n and Wl

n (rewritten as (Bm,l(s))s∈[0,n+1]), are given by the following result,
which is a compilation of strong approximation results of Komlós, Major and Tusnády and of
Sakhanenko, and for which we refer to [18] (Theorem 2.1, Corollary 3.2) and the references
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therein. In the sequel, we write Bm,l and W
m,l
n , instead of Bl and Wl

n, to insist on the dependence
in m of the random variables given by the following proposition.

Proposition 7. Let (Xn)n≥1 be a sequence of i.i.d. random variables with common distribu-
tion F having finite exponential moments. Then, on a common probability space and for every N ,
one can construct a sequence (X̃n)1≤n≤N having the same law as (Xn)1≤n≤N , and independent
Gaussian variables (Yn)1≤n≤N having the same expectations and variances as (Xn)1≤n≤N , such
that for every x > 0,

P

(
max

1≤k≤N

∣∣∣∣∣
k∑

j=1

X̃j −
k∑

j=1

Yj

∣∣∣∣∣ ≥ x

)
≤ (

1 + c2(F )N1/2) exp(−c1(F )x),

where c1(F ) and c2(F ) are positive constants (depending on F ). Moreover, c1(F ) = c3λ(F ) and
c2(F ) = λ(F )Var(X1)

1/2, where c3 is an absolute constant and λ(F ) is given by

λ(F ) = sup
{
λ > 0 :λE

[|X1 − E[X1]|3 exp(λ|X1 − E[X1]|)
] ≤ E

[|X1 − E[X1]|2
]}

.

The strong approximation entails the following bound for the tail of Y
m,l
n :

P(Ym,l
n ≥ x) ≤ (

1 + c2(m)n1/2) exp(−c1(m)x), (20)

where c1(m) = c3λ(X̃m
1,1) and c2(m) = λ(X̃m

1,1)Var(X̃m
1,1)

1/2. Observe that λ(X̃m
1,1) = σm ×

λ(Xm
1,1 − E[Xm

1,1]) and note that λ(Xm
1,1) ∈ [2−1,2]. Indeed, for λ ≥ 2,

E[|Xm
1,1 − E[Xm

1,1]|2] = 1

m

(
1 − 1

m

)
≤ 1

m

(
1 − 1

m

)
λ

2

≤ 1

m

(
1 − 1

m

)(
1 − 2

m
+ 2

m2

)
λ

= λE[|X̃m
1,1 − E[Xm

1,1]|3]
≤ λE[|Xm

1,1 − E[Xm
1,1]|3 exp(λ|X̃m

1,1 − E[Xm
1,1]|)],

while, since |Xm
1,1 − E[Xm

1,1]| ≤ 1,

1
2E

[|Xm
1,1 − E[Xm

1,1]|3 exp
( 1

2 |Xm
1,1 − E[Xm

1,1]|
)] ≤ 1

2 exp
( 1

2

)
E

[|Xm
1,1 − E[Xm

1,1]|2
]

≤ E
[|Xm

1,1 − E[Xm
1,1]|2

]
.

Thus, c1(m) and c2(m) behave like 1/
√

m. Also, note that the bound in (20) is non-trivial for
x ≥ ãn := log(1 + c2(m)n1/2)/c1(m).
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Approximating sets. Let An
1 = {maxl≤m Y

m,l
n > an}, for some an = Cc1(m)−1(logn)2) ≥ ãn,

where C is some finite constant. We have

P(An
1) = P

(⋃
l≤m

{Ym,l
n > an}

)
≤

∑
l≤m

P(Ym,l
n > an)

≤ me−c1(m)an
(
1 + c2(m)n1/2)

∼ √
mne−c1(m)an

= √
mne−(c3C(logn)2)/2 → 0, n → +∞.

Let An
2 = {max1≤l≤m W

m,l
n > bn}, for bn = logn. Standard estimates (including reflection prin-

ciple, Brownian scaling and Gaussian tail estimates) lead to

P(An
2) = P

(⋃
l≤m

{Wm,l
n > bn}

)
≤

∑
l≤m

P(Wm,l
n > bn)

≤ mP(Wm,1
n > bn)

= mP

(
sup

0≤s,t≤n

|s−t |≤1

|Bm,1
s − B

m,1
t | > bn

)
.

However,

sup
0≤s,t≤n

|s−t |≤1

|Bm,1
s − B

m,1
t | ≤ sup

0≤i≤n−2
sup

i≤s,t≤i+2
|Bm,1

s − B
m,1
t |

≤ sup
0≤i≤n−2

(
sup

i≤t≤i+2
B

m,1
t − inf

i≤s≤i+2
Bm,1

s

)
and so

P(An
2) ≤ mP

(
sup

0≤i≤n−2

(
sup

i≤t≤i+2
B

m,1
t − inf

i≤s≤i+2
Bm,1

s

)
> bn

)
≤ mnP

(
sup

t∈[0,2]
B

m,1
t − inf

s∈[0,2]B
m,1
s > bn

)
≤ mn

(
P

(
sup

t∈[0,2]
B

m,1
t > bn/2

)
+ P

(
sup

s∈[0,2]
Bm,1

s > bn/2
))

(21)

≤ 2mnP(|Bm,1
2 | > bn/2)

≤ 4mn exp(−b2
n/16) → 0, n → +∞.
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Final bound. From (14), the approximation of (Ṽk(n,m))1≤k≤r by (Lk(n,m))1≤k≤r will imply
the theorem if

P

(
r∑

k=1

|Ṽk(n,m) − Lk(n,m)| ≥ cn

)
→ 0, n → +∞, (22)

for some

cn = o(n1/2m−1/6). (23)

Since limn→+∞(P(An
1) + P(An

2)) = 0, it is enough to prove that

lim
n→+∞ P

({
r∑

k=1

|Ṽk(n,m) − Lk(n,m)| ≥ cn

}
∩ (An

1)c ∩ (An
2)c

)
= 0. (24)

But

E

[
r∑

k=1

|Ṽk(n,m) − Lk(n,m)|1(An
1)c∩(An

2)c

]

≤
k∑

k=1

2rmE
[
(Ym,1

n + Wm,1
n )1(An

1)c∩(An
2)c

]
≤ 2r2m(E[Ym,1

n 1
Y

m,1
n ≤an

] + bn)

≤ 2r2m(E[Ym,1
n − ãn1

Y
m,1
n ≤an

] + ãn + bn)

≤ 2r2m(E[Ym,1
n − ãn1

ãn≤Y
m,1
n ≤an

] + ãn + bn)

≤ 2r2m

(∫ an

ãn

P(Ym,1
n ≥ x)dx + ãn + bn

)
≤ 2r2m

(∫ an

ãn

e−c1(m)x
(
1 + c2(m)n

)
dx + ãn + bn

)
≤ 2r2m

(
1 + c2(m)n

c1(m)
e−c1(m)ãn + ãn + bn

)
≤ 2r2m

(
1

c1(m)
+ ãn + bn

)
≤ 2r2m3/2

(
2(1 + log(1 + c2(m)n1/2))

c3
+ bn

)
.
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Finally,

P

({
r∑

k=1

|Ṽk(n,m) − Lk(n,m)| ≥ cn

}
∩ (An

1)c ∩ (An
2)c

)
(25)

≤ 2r2m3/2

cn

(
2(1 + log(1 + c2(m)n1/2))

c3
+ logn

)
= O

(
m3/2 logn

cn

)
.

A choice of cn ensuring that the bound in (25) goes to zero as n → +∞ and also compati-
ble with (23) is possible when m logn = o(n1/2m−1/6), that is, when m = o(n3/10(logn)−3/5).
Finally, (22) and (24) hold true, completing the proof of Theorem 4.

Remark 8.

• In the above proof, the condition m = o(n3/10(logn)−3/5) is needed only once, to ensure the
compatibility of (23) with the bound (25). However, this is essential to make the Gaussian
approximation work.

• When m = [na], the growth condition m = o(n3/10(logn)−3/5) can be rewritten as a < 3/10
and this growth condition remains true, in particular, when m is of subpolynomial order. The
condition a < 3/10 is stronger than its counterpart a < 3/7 in [4] and this seems to be due
to the fact that we work with a triangular array of random variables.

• For the top line of the tableau, our result falls short of a result of Johansson in [17], which
asserts the convergence of V1(n,na) (properly scaled and normalized) toward the Tracy–
Widom distribution. More precisely, setting an 
 bn for an = o(bn), Theorem 1.7 in [17]
actually gives, in our notation, for

√
n 
 m,

V1(n,m) − n/m − 2
√

n

n1/6
⇒ FTW,

for (logn)2/3 
 m 
 √
n,

V1(n,m) − n/m − 2
√

n

n1/2m−2/3
⇒ FTW

and, for
√

n/m → l,

V1(n,m) − n/m − 2
√

n

(1 + l)2/3n1/6
⇒ FTW.

In the middle limit above, [17], Theorem 1.7, requires (logn)2/3 = o(m), while we do not
require a lower bound condition on m. Besides, our Theorem 4 applies to the shape of the
whole Young tableau.
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3. Proof of Theorem 6

In this section, we sketch the changes needed in the previous arguments in order to prove Theo-
rem 6. Note that in the uniform setting, the representation (16) for Vk(n,m) is a maximum taken
over the most probable letters. This is trivially true since, in this case, all the letters have the same
probability. But this property, which appears to be fundamental when we center and normalize
the Xm

i,j , is no longer true in the non-uniform setting. However, we shall approximate V1(n,m)

below by a random variable V ′
1(n,m) defined as a maximum taken over only the most proba-

ble letters, as in (16); see (28). Part of the remaining work is then to show that we can suitably
control this approximation, and this is done in Lemma 9. This control is at the root of the extra
condition (10) in Theorem 6.

Let us revise our notation for the non-uniform setting. In this section, Xm
i , 1 ≤ i ≤ n, are

independently and identically distributed with P(Xm
1 = αj ) = pm

j . Set pm
max = max1≤j≤m pm

j

and J (m) = {j :pm
j = pm

max} = {j1, . . . , jk(m)}, with k(m) = card (J (m)), and also set σ 2
m =

pm
max(1 − pm

max). Finally, note that since k(m(n))pm
max ≤ 1 and k(m(n)) → +∞, it follows that

p
m(n)
max → 0 as n → +∞.
Brownian scaling. Let (Bl(s))s≥0, 1 ≤ l ≤ k(m), be independent standard Brownian motions.

For s > 0, m ≥ 1 and k ≥ 1, let

L1(s, k(m)) = sup
t∈Ik(m)(s)

k(m)∑
l=1

(
Bl(tl) − Bl(tl−1)

)
, (26)

where Ik(m)(s) = {t : 0 ≤ t1 ≤ · · · ≤ tl−1 ≤ tl ≤ · · · ≤ tk(m) = s}. Recall that L1(1, k(m)) has the
same law as the largest eigenvalue of a k(m) × k(m) GUE matrix (see (2), (3), (4) and Remark 3
for k = 1) and so

k1/6(L(1, k) − 2
√

k
) ⇒ FTW.

By Brownian scaling, L1(s,m)
L= √

sL1(1,m), so that when n → +∞,

L1(n, k(m(n))) − 2
√

nk(m(n))

n1/2k(m(n))−1/6
⇒ FTW. (27)

Combinatorics revisited. Let

Xm
i,j =

{
1, when Xm

i = αj ,

0, otherwise,

be Bernoulli random variables with parameter P(Xm
i = αj ) = pm

j and variance (σm
j )2 = pm

j (1 −
pm

j ). For a fixed 1 ≤ j ≤ m, the Xm
i,j s are independent and identically distributed. Since the

expression (15) has a purely combinatorial nature, we still have

V1(n,m) = max
0=l0≤l1≤···
≤lm−1≤lm=n

(
m∑

j=1

lj∑
i=lj−1+1

Xm
i,j

)
,
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with the convention that
∑lj

i=lj−1+1 Xm
i,j = 0 whenever lj−1 = lj .

In fact, for most draws, the maximum in V1 is attained on the sums
∑

j∈J (m)

∑lj
i=lj−1+1 Xm

i,j

corresponding to the most probable letters, that is, letting

V ′
1(n,m) = max

0=l0≤l1≤···
≤lm−1≤lm=n

lj−1=lj for j /∈J (m)

(
n∑

j=1

lj∑
i=lj−1+1

Xm
i,j

)
, (28)

we have, with large probability, V1(n,m) = V ′
1(n,m). However, it is not always true that

V1(n,m) = V ′
1(n,m), for instance, in the case where the n letters drawn are letters with as-

sociated probability strictly less than pm
max, V ′

1(n,m) = 0 while there is an l = (lj )j=0,...,m

with 0 = l0 ≤ l1 ≤ · · · ≤ lm−1 ≤ lm = n such that
∑m

j=1
∑lj

i=lj−1+1 Xm
i,j > 0, ensuring that

V1(n,m) > 0. In the sequel, we prove Theorem 6 by first showing that the statement of the
theorem is true for V ′

1(n,m) instead of V1(n,m) and then by controlling the error made when
V ′

1(n,m) is replaced by V1(n,m).
Centering and reducing. Let X̃m

i,j = (Xm
i,j − pm

j )/σm
j be the corresponding centered and nor-

malized scaled Bernoulli random variables and let S̃
m,j
l = ∑l

i=1 X̃m
i,j . Also, let

Ṽ ′
1(n,m) = max

0=l0≤lj1≤···
≤ljk(m)−1≤ljk(m)

=n

( ∑
j∈J (m)

lj∑
i=lj−1+1

X̃m
i,j

)
= max

0=l0≤lj1≤···
≤ljk(m)−1≤ljk(m)

=n

( ∑
j∈J (m)

(S̃
m,j
lj

− S̃
m,j
lj−1

)

)

= sup
t∈Ik(m(n))(n)

k(m(n))∑
δ=1

(
S̃

m,jδ

[tj,l ] − S̃
m,jδ

[tj,l−1]
)
,

which is to be compared to (26). Since V ′
1(n,m) − npm

max = σmṼ ′
1(n,m), we have

k(m)1/6 V ′
1(n,m) − npm

max − 2
√

nk(m)σ 2
m√

pm
maxn

√
pm

max

σm

= k(m)1/6 Ṽ1(n,m) − 2
√

nk(m)√
n

.

Since σm ∼ √
pm

max and

2
√

k(m)npm
max − 2

√
k(m)nσ 2

m√
nσ 2

m

= 2
√

k(m)

σm

pm
max − σ 2

m√
pm

max + √
σ 2

m

∼ 2
√

k(m)√
pm

max

(pm
max)

2√
pm

max
≤ 2

√
pm

max → 0,

n → +∞,

it remains to show that

k(m)1/6 Ṽ ′
1(n,m) − 2

√
nk(m)√

n
⇒ FTW, (29)
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for which we shall use (27).
Sketch of proof of (29). Roughly speaking, the proof of (29) follows along the same lines as

the corresponding proof of the convergence of (18), changing only m to k(m). We show that if
k(m(n)) = o(n3/10(logn)−3/5), then for some Brownian motions given via strong approxima-
tion, we have

|Ṽ ′
1(n,m) − L1(n, k(m(n)))| ≤

k(m(n))∑
l=1

(Ym,l
n + Wm,l

n ),

where

Ym,l
n = max

1≤i≤n
|Sm,l

i − Bm,l(i)| and Wm,l
n = sup

0≤s,t≤n

|s−t |≤1

|Bm,l(s) − Bm,l(t)|.

Indeed, setting An
1 = {maxl≤k(m(n)) Y

m,l
n > an} for some an = O(c1(k(m(n)))−1(logn)2) ≥

ãn := log(1 + c2(k(m(n)))n1/2)/c1(k(m(n))) and setting An
2 = {max1≤l≤k(m(n)) W

m,l
n > bn} for

some bn = O(logn), we show that

P(An
1) → 0, P(An

2) → 0, when n → +∞.

From (27), the approximation of Ṽ1(n, k(m(n))) by L1(n, k(m(n)))) will imply the theorem if

P
(|Ṽ ′

1(n, k(m(n))) − L1(n, k(m(n)))| ≥ cn

) → 0, n → +∞, (30)

for some

cn = o(n1/2k(m(n))−1/6). (31)

Since limn→+∞(P(An
1) + P(An

2)) = 0 and

P
({|Ṽ ′

1(n, k(m(n))) − L1(n, k(m(n)))| ≥ cn} ∩ (An
1)c ∩ (An

2)c
)

(32)

≤ 2k(m(n))3/2

cn

(
2(1 + log(1 + c2(k(m(n)))n1/2))

c3
+ logn

)
,

a choice of cn, ensuring that the bound in (32) goes to zero and is compatible with (31), is
possible since k(m(n)) = o(n3/10(logn)−3/5). This proves (29) and thus the statement (11) of
Theorem 6, but for V ′

1(n,m) instead of V1(n,m).
Control of the error V1(n,m) − V ′

1(n,m). Clearly, V1(n,m) − V ′
1(n,m) ≥ 0 and is, in fact,

zero with a large probability, so that we expect E[V1(n,m)−V ′
1(n,m)] to be small. Actually, we

show the following.

Lemma 9. For some absolute constant C > 0, we have

E[|V1(n,m) − V ′
1(n,m)|] ≤ Cnpm

2nd, (33)

where pm
2nd stands for the second largest probability for the letters of Am.
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The conclusion in (11) holds true when

lim
n→+∞

(
E[|V1(n,m) − V ′

1(n,m)|] × k(m(n))2/3√
k(m(n))p

m(n)
max n

)
= 0. (34)

However, with the help of (33), the conclusion in (34) is then valid when limn→+∞ p
m(n)
2nd ×

k(m(n))1/6n1/2/(p
m(n)
max )1/2 = 0 and, since k(m(n)) = o(n3/10(logn)−3/5), this will follow

from (10).
It remains to prove Lemma 9, that is, to give an explicit bound on E[|V1(n,m)−V ′

1(n,m)|]. To
do so, rewrite V1(n,m) = maxl∈I (m) Z(l) and V ′

1(n,m) = maxl∈I∗(m) Z(l), where I (m) = {l =
(lj )1≤j≤m : lj−1 ≤ lj , l0 = 0, lm = n}, I ∗(m) = {l ∈ I (m) : lj−1 = lj for j /∈ J (m)} and

Z(l) =
m∑

j=1

Yj (l), Yj (l) =
lj∑

i=lj−1+1

Xm
i,j .

Clearly, since I ∗(m) ⊂ I (m), we have V ′
1(n,m) ≤ V1(n,m). Moreover, since the Xm

i,j are
Bernoulli random variables with parameter pm

j and since the Xi ’s are independent, we have
Yj (l) ∼ B(lj − lj−1,pj ) and

∑
j∈J (m) Yj (l) ∼ B(

∑
j∈J (m) lj − lj−1,p

m
max), where B(n,p)

stands for the binomial distribution with parameters n and p.
If l ∈ I ∗(m), Z(l) = ∑

j∈J (m) Yj (l) ∼ B(n,pm
max), since, in this case, n = ∑m

j=1(lj − lj−1) =∑
j∈J (m)(lj − lj−1). If l /∈ I ∗(m), we rewrite Z(l) as

Z(l) = Z(l̃) + R(l),

where l̃ ∈ I∗(m) and R(l) is an error term. Indeed, let Jl = {j /∈ J (m) : lj−1 < lj } and for j ∈ Jl ,
define

θ(j) =
{

maxAj , if Aj 
= ∅,

minBj , otherwise,

where Aj = {k ∈ J (m) :k ≤ j} and where Bj = {k ∈ J (m) :k ≥ j}. Now,

Z(l) =
∑

j∈J (m)

lj∑
i=lj−1+1

Xm
i,j +

∑
j∈Jl

lj∑
i=lj−1+1

Xm
i,j

=
∑

j∈J (m)

lj∑
i=lj−1+1

Xm
i,j +

∑
j∈Jl

lj∑
i=lj−1+1

Xm
i,θ(j) (35)

+
∑
j∈Jl

lj∑
i=lj−1+1

(
Xm

i,j − Xm
i,θ(j)

)
. (36)
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Define l̃ ∈ I ∗(m) by l̃j = l̃j−1 if j /∈ J (m) and l̃j = lk−1 for j ∈ J (m), where k = min{l > j : l ∈
J (m)}, with the conventions that min ∅ = m + 1 and that l̃j0−1 = 0 for j0 = minJ (m). We then
have

∑
j∈J (m)

lj∑
i=lj−1+1

Xm
i,j +

∑
j∈Jl

lj∑
i=lj−1+1

Xm
i,θ(j) = Z(l̃).

Let αm
i,j := Xm

i,j −Xm
i,θ(j) be the random variables taking the values −1,0 and +1 with respective

probabilities pm
max,1 −pm

max −pm
j and pm

j . Independently, let εm
i,j be Bernoulli random variables

with parameter qm
j = (pm

2nd −pm
j )/(1−pm

max −pm
j ) ∈ (0,1), where pm

2nd = max(pm
j < pm

max : 1 ≤
j ≤ m), and define

βm
i,j =

⎧⎨⎩
−1, αm

i,j = −1,

0, αm
i,j = 0 and εm

i,j = 0,

+1, αm
i,j = +1 or αm

i,j = 0 and εm
i,j = 1.

Note that P(βm
i,j = +1) = pm

2nd and that αm
i,j ≤ βm

i,j , so that

R(l) ≤ R̃(l) =
∑
j∈Jl

lj∑
i=lj−1+1

βm
i,j .

Since Z(l) ≤ Z(l̃) + R̃(l), we have

max
l∈I (m)

Z(l) ≤ max
l∈I (m)

Z(l̃) + max
l∈I (m)

R̃(l)

≤ max
l∈I∗(m)

Z(l) + max
l∈I (m)

R̃(l).

Next, observe that for l ∈ I ∗(m), R̃(l) = 0. However, since the event {R̃(l) < 0,∀l /∈ I ∗(m)} is
non-negligible, we cannot change maxl∈I (m) R̃(l) into maxl /∈I∗(m) R̃(l). We obtain

0 ≤ max
l∈I (m)

Z(l) − max
l∈I∗(m)

Z(l) ≤ max
l∈I (m)

R̃(l).

The random variable R̃(l) is the sum of
∑

j∈Jl
(lj − lj−1) i.i.d. random variables so that

maxl∈I (m) R̃(l) is distributed according to (max1≤k≤n

∑k
i=1 βm

i )+, where (βm
i )i are i.i.d. with

P(βm
1 = −1) = pm

max, P(βm
1 = 0) = 1 − pm

max − pm
2nd, P(βm

1 = +1) = pm
2nd. (37)

We are now interested in bounding E[(max1≤k≤n

∑k
i=1 βm

i )+].
Let (εm

i )i be i.i.d. Bernoulli random variables with parameter pm
max + pm

2nd and let, indepen-
dently, (Ym

i )i be i.i.d. Rademacher random variables with parameter pm
2nd/(p

m
2nd + pm

max) (i.e.,
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P(Ym
i = 1) = 1 − P(Ym

i = −1) = pm
2nd/(p

m
2nd + pm

max)). Then βm
i and εm

i Ym
i have the same dis-

tribution and we have

E

[(
max

1≤k≤n

k∑
i=1

βm
i

)+]
= E

[(
max

1≤k≤n

k∑
i=1

εm
i Ym

i

)+]

= E

[
E

[(
max

1≤k≤n

k∑
i=1

εm
i Ym

i

)+∣∣∣Gn

]]
,

where Gn = σ(εm
i : 1 ≤ i ≤ n). However, since (εm

i )i is independent of (Ym
i )i , we have

E

[(
max

1≤k≤n

k∑
i=1

εm
i Ym

i

)+∣∣∣Gn

]
= E

[(
max

1≤k≤


k∑
i=1

Ym
i

)+∣∣∣Gn

]
,

where 
 = ∑n
i=1 εm

i has a B(n,pm
max + pm

2nd) distribution. But

E

[(
max

1≤k≤


k∑
i=1

Ym
i

)+∣∣∣Gn

]
=

+∞∑
k=1

(
P

((
max

1≤j≤


j∑
i=1

Ym
i

)+
≥ k

))

=
+∞∑
k=0

(
1 − P

(
max

1≤j≤


j∑
i=1

Ym
i ≤ k

))

=

−1∑
k=0

(
1 − P

(
max

1≤j≤


j∑
i=1

Ym
i ≤ k

))
= 
 − U
,

where U
 = ∑
−1
k=0 u
,k and u
,k = P(max1≤j≤


∑j

i=1 Ym
i ≤ k). With the latest notation, we are

now investigating γn = E[
 − U
]. For simplicity, in the sequel, we set p∗,m := pm
2nd/(p

m
2nd +

pm
max) and q∗,m := 1 − p∗,m.
The elements of the sequence (u
,k)1≤k≤
−1 satisfy the following induction relations:

u
,k = q∗,mu
−1,k+1 + p∗,mu
−1,k−1, k ≥ 1, u
,0 = q∗,mu
−1,1,

and u
,k = 1 for k ≥ 
. From these, we derive U
 = 2q∗,m − q∗,mu
−1,0 + U
−1 and, since
U1 = u1,0 = q∗,m, U
 = (2
 − 1)q∗,m − q∗,m

∑
−1
k=1 uk,0.

In order to compute
∑
−1

k=1 uk,0, we introduce the hitting time τm
1 = min(k ≥ 1 :

∑k
i=1 Ym

i = 1)

of the random walk (
∑

i≤j Ym
i )j . We then have

P(τm
1 ≤ k) = P

(
max
i≤k

i∑
j=1

Ym
j ≥ 1

)
= 1 − P

(
max
i≤k

i∑
j=1

Ym
j ≤ 0

)
= 1 − uk,0



Asymptotics for the shape of random Young tableaux 489

so that
∑
−1

k=1 uk,0 = ∑
−1
k=1 P(τm

1 ≥ k + 1) = ∑

k=2 P(τm

1 ≥ k) = −1 + ∑

k=1 P(τm

1 ≥ k) and

U
 = 2
q∗,m − q∗,m


∑
k=1

P(τm
1 ≥ k)

= 2
q∗,m − q∗,m

+∞∑
i=1

(i ∧ 
)P(τm
1 = i)

= 2
q∗,m − q∗,mE[τm
1 ∧ 
|Gn].

Next,

E

[(
max
i≤k≤


k∑
i=1

Ym
i

)+∣∣∣Gn

]
= 
(1 − 2q∗,m) + q∗,mE[τm

1 ∧ 
|Gn]

and we have

γn := E[
 − U
]
= E

[

(1 − 2q∗,m) + q∗,mE[τm

1 ∧ 
|Gn]
]

≤ (1 − 2q∗,m + q∗,m)E[
]
= npm

2nd .

This completes the proof of Lemma 9.

4. Concluding remarks

A natural question to consider next would be to derive a result similar to Theorem 4 for non-
uniformly distributed letters. The special case of the longest increasing subsequence (i.e., r = 1)
is dealt with in Theorem 6. Let us investigate what happens for the whole shape of the Young
tableau.

First, let us slightly expand our notation. In this section, Xm
i , 1 ≤ i ≤ n, are independently

and identically distributed with P(Xm
1 = αj ) = pm

j . In order to simplify the notation, we as-
sume (without loss of generality) that the ordered letters αm

1 < · · · < αm
m have, moreover, non-

increasing probabilities (i.e., pm
1 ≥ pm

2 ≥ · · · ≥ pm
m). Let dm

i = card {j :pm
j = pm

i } be the mul-
tiplicity of pm

i and let mm
r = max{i :pm

i > pm
r } be the number of letters (strictly) more proba-

ble than αm
r . Let Jr(m) = {i :pm

i = pm
r } = {mr + 1, . . . ,mr + dm

r } be the indices of the letters
with the same probability pm

r . We recover our previous notation, r = 1, with k(m) = dm
1 and

J (m) = J1(m). Since the expression (16) has a purely combinatorial nature, it still holds true
that

Vr(n,m) = max
k∈Jr,m(n)

(
r∑

j=1

m−r+j∑
l=j

kj,l∑
i=kj,l−1+1

Xm
i,l

)
.
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Let νm
k = ∑k

i=1 pm
i . Note that, from Theorem 5.2 in [13], when m is fixed and n → +∞, we

have for each 1 ≤ r ≤ m that(
Vk(n,m) − νm

k n√
n

)
1≤k≤r

�⇒ (V k∞)1≤k≤r , (38)

where the limit is given in Section 6 of [13] by V r∞ = Z(m, r)+√
pm

r Dr−mm
r ,dm

r
, with Z(m, r) ∼

N (0, vm
r ) for vm

r = νm
mm

r
(1 − νm

mm
r
) + (pm

r (r − mm
r ))2, and

Dr,m = max
t∈Ir,m

(
r∑

j=1

(m−r+j)∑
l=j

(
Bl(tj,l) − Bl(tj,l−1)

))

for

Ir,m = {t = (tj,l ,1 ≤ j ≤ r, 0 ≤ l ≤ m): tj,j−1 = 0, tj,m−r+j = 1,1 ≤ j ≤ r,

tj,l−1 ≤ tj,l ,1 ≤ j ≤ r,1 ≤ l ≤ m − 1, tj,l ≤ tj−1,l ,2 ≤ j ≤ r,1 ≤ l ≤ m − 1}.

Note that Dr,m is a natural generalization of the Brownian functional L1(s, k) used in Section 3
(see also, in a queuing context, [9] and [3]). In particular, Dr,m is equal in distribution to the sum
of the r largest eigenvalues of an m × m matrix from the GUE and Theorem 2 can be rewritten
as (

m1/6(Dk,m − k
√

m
))

1≤k≤r
⇒ Fr�

−1
r , m → +∞. (39)

Arguing as in the previous sections, we would like to derive the fluctuations of (Vk(n,m))1≤k≤r

with respect to n and m simultaneously from (38) and (39). However, in the non-uniform case,
this is not that transparent since, for each r ≥ 1, the behavior of mm

r and of dm
r , with re-

spect to m, is not that clear cut. In particular, r − mm
r may not be stationary and (39) can no

longer be used for Dr−mm
r ,dm

r
. Besides, the random fluctuations of

√
pm

r Dr−mm
r ,dm

r
in V r∞ are

of order (pm
r )1/2(dm

r )1/6, which, in general, does not dominate those of Z(m, r) ∼ N (0, vm
r ).

Thus, for general non-uniform alphabets, we cannot infer which part of the law of V r∞ =
Z(m, r) + √

pm
r Dr−mm

r ,dm
r

will drive the fluctuations. We can imagine that, taking simultane-
ous limits in n and m, the fluctuations of Vr(n,m(n)), properly centered and normalized, are
either Gaussian, or driven by Fr (as in Theorem 4) or given by an interpolation between these
distributions, depending on the alphabets considered.
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