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We consider a strictly stationary sequence of random vectors whose finite-dimensional distributions are
jointly regularly varying with some positive index. This class of processes includes, among others, ARMA
processes with regularly varying noise, GARCH processes with normally or Student-distributed noise and
stochastic volatility models with regularly varying multiplicative noise. We define an analog of the auto-
correlation function, the extremogram, which depends only on the extreme values in the sequence. We also
propose a natural estimator for the extremogram and study its asymptotic properties under α-mixing. We
show asymptotic normality, calculate the extremogram for various examples and consider spectral analysis
related to the extremogram.
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1. Measures of extremal dependence in a strictly
stationary sequence

The motivation for this research comes from the problem of choosing between two popular and
commonly used families of models, the generalized autoregressive conditional heteroscedastic
(GARCH) process and the heavy-tailed stochastic volatility (SV) process, for modeling a partic-
ular financial time series. Both GARCH and SV models possess the stylized features exhibited
by log-returns of financial assets. Specifically, these time series have heavy-tailed marginal dis-
tributions, are dependent but uncorrelated and display stochastic volatility. The latter property is
manifested via the often slow decay of the sample autocorrelation function (ACF) of the absolute
values and squares of the time series. Since both GARCH and SV models can be chosen to have
virtually identical behavior in the tails of the marginal distribution and in the ACF of the squares
of the process, it is difficult for a given time series of returns to decide between the two models
on the basis of routine time series diagnostic tools.

The problem of finding probabilistically reasonable and statistically estimable measures of
extremal dependence in a strictly stationary sequence is, to some extent, an open one. In classical
time series analysis, which mostly deals with second order structure of stationary sequences, the
ACF is a well-accepted object for describing meaningful information about serial dependence.
The ACF is sometimes overvalued as a tool for measuring dependence, especially if one is only
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interested in extremes. It does, of course, determine the distribution of a stationary Gaussian
sequence, but for non-Gaussian and nonlinear time series, the ACF often provides little insight
into the dependence structure of the process. This is particularly the case when one considers
heavy-tailed nonlinear time series such as the GARCH model. In this case, the estimation of
the ACF via the sample ACF is also rather imprecise and even misleading since the asymptotic
confidence bands are typically larger than the estimated autocorrelations; see, for example, the
results in Basrak et al. [1] for bilinear processes, Davis and Mikosch [11], Mikosch and Stărică
[26] and Basrak et al. [2] for ARCH and GARCH processes and Resnick [32] for teletraffic
models.

1.1. The extremal index

The asymptotic behavior of the extremes leads to one clear difference between GARCH and
SV processes. It was shown in Davis and Mikosch [11], Basrak et al. [2], Davis and Mikosch
[12] (see also Breidt and Davis [6] for the light-tailed SV case) that GARCH processes exhibit
extremal clustering (that is, clustering of extremes), while SV processes lack this form of clus-
tering. Associated with most stationary time series is a parameter θ ∈ (0,1], called the extremal
index (see Leadbetter et al. [24]), which is a measure of clustering in the extremes. For exam-
ple, the extremal index θ is less than 1 for a GARCH process, which is indicative of extremal
clustering, while θ = 1 for SV processes, indicating no clustering. The parameter θ can also be
interpreted as the reciprocal of the expected cluster size in the limiting compound Poisson process
of the weakly converging point processes of exceedances of (Xt ); see, for example, Leadbetter
et al. [24] or Embrechts et al. [15], Section 8.1.

In this paper, we take a different tack and study the extremal dependence structure of general
strictly stationary vector-valued time series (Xt ). Certainly, the cluster distribution of the limiting
compound Poisson process contains more useful information about the clustering behavior of ex-
tremes than the extremal index. Although explicit formulae for the extremal index and the cluster
distribution exist for some specific time series models (including certain ARMA and GARCH
models and some Markov processes), these expressions are, in general, very complicated to com-
pute and even difficult to simulate. They are also rather difficult objects to estimate and do not
always yield satisfactory results, even for moderate sample sizes.

1.2. Regularly varying time series

In this paper, we focus on strictly stationary sequences whose finite-dimensional distributions
have power law tails in some generalized sense. In particular, we will assume that the finite-
dimensional distributions of the d-dimensional process (Xt ) have regularly varying distribu-
tions with a positive tail index α. This means that for any h ≥ 1, the lagged vector Yh =
vec(X1, . . . ,Xh) satisfies the relation

P(x−1Yh ∈ ·)
P (|Yh| > x)

v→ μh(·) (1.1)
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for some non-null Radon measure μh on R
hd

0 = R
hd \ {0}, R = R∪{±∞}, with the property that

μh(tC) = t−αμh(C), t > 0, for any Borel set C ⊂ R
hd

0 . Here,
v→ denotes vague convergence; see

Kallenberg [22], Daley and Vere-Jones [9] and Resnick [30,31,33] for this notion and Resnick
[30,31,33] and Hult and Lindskog [21] for the notion of multivariate regular variation. We call
such a sequence (Xt ) regularly varying with index α > 0.

Various time series models of interest are regularly varying. These include infinite variance
stable processes, ARMA processes with i.i.d. regularly varying noise, GARCH processes with
i.i.d. noise with infinite support (including normally and Student-distributed noise) and stochas-
tic volatility models with i.i.d. regularly varying noise. In Section 2, we will be more precise
about the regular variation of the aforementioned sequences. It follows from general multivariate
extreme value theory (e.g., Resnick [31]) that any strictly stationary time series whose finite-
dimensional distributions are in the maximum domain of attraction of a multivariate extreme
value distribution can be transformed to a regularly varying strictly stationary time series. This
can be simply achieved by a monotone transformation of the marginal distribution. Hence, the
results of this paper apply in a more general framework than that of regularly varying sequences.

For our purposes, it will be convenient to use a sequential definition of a regularly varying
sequence (Xt ) which is equivalent to the definition above. Consider a sequence an ↑ ∞ such
that P(|X| > an) ∼ n−1. Then, (1.1) holds if and only if there exist constants ch > 0 such
that

nP (a−1
n Yh ∈ ·) v→ chμh(·) = νh(·), (1.2)

where μh is defined in (1.1). Alternatively, for each h ≥ 1, one can replace (an) in (1.2) by a
sequence (a

(h)
n ) such that P(|Yh| > a

(h)
n ) ∼ n−1 and then ch = 1 in (1.2). However, for each

h ≥ 1, an/a
(h)
n → dh as n → ∞ for some positive constants dh.

1.3. The upper tail dependence coefficient

As a starting point for the definition of a measure of extremal dependence in a strictly stationary
sequence, we consider the (upper) tail dependence coefficient. It is defined for a two-dimensional

vector (X,Y ) with X
d= Y as the limit (provided it exists)

λ(X,Y ) = lim
x→∞P(X > x|Y > x).

Of course, λ ∈ [0,1], and λ = 0 when X and Y are independent or asymptotically independent.
The larger the λ, the larger the extremal dependence in the vector (X,Y ). We refer, for exam-
ple, to the discussions in Ledford and Tawn [25] and Beirlant et al. [3] on the tail dependence
coefficient.

The tail dependence coefficient can also be applied to the pairs (X0,Xh) of a one-dimensional
strictly stationary time series. The collection of values λ(X0,Xh) contains useful information
about the serial extremal dependence in the sequence (Xt ). If one considers a real-valued, reg-
ularly varying sequence (Xt ) with index α > 0, the definition of regular variation immediately
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ensures the existence of the quantities

λ(X0,Xh) = lim
x→∞

P(x−1(X0, . . . ,Xh) ∈ (1,∞) × (0,∞)h−1 × (1,∞))

P (x−1(X0, . . . ,Xh) ∈ (1,∞) × (0,∞)h)

= μh+1((1,∞) × (0,∞)h−1 × (1,∞))

μh+1((1,∞) × (0,∞)h)
.

1.4. The extremogram

Now, let (Xt ) be a strictly stationary, regularly varying sequence of R
d -valued random vectors.

Consider two Borel sets A,B in R
d

such that C = A × R
d(h−1) × B is bounded away from zero

and νh+1(∂C) = 0. According to (1.2), the following limit exists:

nP (a−1
n X0 ∈ A,a−1

n Xh ∈ B) → νh+1
(
A × R

d(h−1)

0 × B
)= γAB(h).

Note that if both A and B are bounded away from zero, then

n cov
(
I{a−1

n X0∈A}, I{a−1
n Xh∈B}

) = n[P(a−1
n X0 ∈ A,a−1

n Xh ∈ B) − P(a−1
n X ∈ A)P (a−1

n X ∈ B)]
∼ nP (a−1

n X0 ∈ A,a−1
n Xh ∈ B) ∼ γAB(h).

Also, note that the strictly stationary bivariate time series (I{a−1
n Xt∈A}, I{a−1

n Xt∈B}) has limiting
covariance matrix function given by

�(h) =
[

γAA(h) γAB(h)

γBA(h) γBB(h)

]
,

which has all non-negative components. Since �(h) is the limit of a sequence of covariance
matrix functions, it must also be a covariance matrix function and hence a non-negative definite
matrix-valued function; see Brockwell and Davis [8]. In particular, both (γAA(h)) and (γBB(h))

are non-negative definite functions and (γAB(h)) is a cross-covariance function and need not be
symmetric in A and B .

Alternatively, for A and A×B bounded away from zero and with ν1(A) > 0, one may consider

P(a−1
n Xh ∈ B|a−1

n X0 ∈ A) = P(a−1
n X0 ∈ A,a−1

n Xh ∈ B)

P (a−1
n X ∈ A)

→ γAB(h)

ν1(A)
= ρAB(h).

Then, since

cov(I{a−1
n X0∈A}, I{a−1

n Xh∈A})
var(I{a−1

n X∈A})
∼ ρAA(h),

(ρAA(h)) is the correlation function of a stationary process. With the exception of A = B ,
(ρAB(h)) and the correlation function (with ν1(A)ν1(B) > 0)

corr
(
I{a−1

n X0∈A}, I{a−1
n Xh∈B}

) ∼ γAB(h)√
ν1(A)ν1(B)

, h ∈ Z,
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are, in general, different functions. However, for fixed A, all of these quantities are proportional
to each other. In what follows, we refer to any one of these limiting quantities, considered as
a function of h, as the extremogram of the sequence (Xt ). Since A,B are arbitrary, there exist
infinitely many extremograms. The sequence of the tail dependence coefficients of a regularly
varying one-dimensional strictly stationary sequence (Xt ) is a special case of the extremogram.
Indeed,

λ(X0,Xh) = ρ(1,∞),(1,∞)(h).

As mentioned above, it can be interpreted as a particular ACF.
Since γAA can be interpreted as an autocovariance function, one can translate various notions

from classical time series analysis to the extremogram. For example, one can introduce the analog
of the spectral distribution corresponding to γAA. In particular, if γAA is summable, then there
exists a spectral density and one may speak of short range dependence in the time series context.
Alternatively, if γAA is not summable, then one can talk of long range dependence.

The bivariate extremal dependence measure γAB introduced above can be extended in such a
way that any finite number of events A1, . . . ,Ah is involved. Provided the set C = A1 ×· · ·×Ah

is bounded away from zero in R
dh

0 and νh(∂C) = 0, one can define the limiting dependence
measure

nP (a−1
n X1 ∈ A1, . . . , a

−1
n Xh ∈ Ah) → νh(A1 × · · · × Ah).

Such quantities can be of interest, for example, when considering the limits of conditional prob-
abilities of the form

P(a−1
n X2 ∈ A2, . . . , a

−1
n Xh ∈ Ah|a−1

n X1 ∈ A1), (1.3)

where A1 is bounded away from zero. Probabilities of this form and their limits appear as the
extremal index and the cluster probability distribution of strictly stationary sequences; see also
Fasen et al. [16] who consider a generalization of the tail dependence coefficient. In this paper, we
focus on the two-dimensional case, that is, the extremogram, but, in a sense, the extremogram
also covers this more general case. Indeed, if we define the strictly stationary process Yh =
vec(X1, . . . ,Xh), then (1.3) can be written in the form

P
(
a−1
n Yh ∈ R

d × A2 × · · · × Ah|Y1 ∈ R
d(h−1) × A1

)
whose limit is an extremogram.

The paper is organized as follows. In Section 2, we consider some well-known time series
models, including the GARCH and SV models, and discuss conditions under which they con-
stitute a regularly varying sequence. The extremograms are also computed for these models.
In Section 3, we study estimators of the extremogram. Assuming that the sequence (Xt ) meets
certain dependence conditions such as α-mixing with a suitable rate, we show that these esti-
mators are asymptotically unbiased and satisfy a central limit theorem. In Section 4, we apply
the asymptotic results to GARCH and SV models. The Fourier transform of the extremogram
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can be viewed as the analog of the spectral density of a correlogram. The periodogram is simi-
larly defined as the Fourier transform of the estimated extremogram. In Section 5, we show that
the periodogram is asymptotically unbiased for the spectral density. A lag window estimate of
the spectral density is also formulated and shown to be asymptotically unbiased and consistent.
The proof of the main theorem in Section 3 is provided in Section 6.

2. Examples of extremograms

2.1. Preliminaries on regular variation

We will often make use of a multivariate version of a result of Breiman [7] which can be found
in Basrak et al. [2]. Assume that the d-dimensional vector X is regularly varying with index α

and limiting measure μ, that is, Yh and μh in (1.1) are replaced by X and μ, respectively. Let A
be a random k × d matrix that is independent of X with E‖A‖α+ε < ∞ for some ε > 0. Then,

P(x−1AX ∈ ·)
P (|X| > x)

v→ Eμ({x ∈ R
d

0 : Ax ∈ ·}), x → ∞, (2.1)

where
v→ refers to vague convergence in R

k

0.

2.2. The stochastic volatility model

We consider a stochastic volatility model

Xt = σtZt ,

where the volatility sequence (σt ) constitutes a strictly stationary sequence of non-negative ran-
dom variables, independent of the i.i.d. sequence (Zt ). We further assume that Z is regularly
varying with index α > 0, that is, the limits

p = lim
x→∞

P(Z > x)

P (|Z| > x)
and q = lim

x→∞
P(Z ≤ −x)

P (|Z| > x)

exist for some p,q ≥ 0 with p + q = 1 and P(|Z| > x) = x−αL(x) for some slowly varying
function L. If we also assume that E(σα+ε) < ∞ for some ε > 0, then (Xt ) is regularly varying
with index α. This follows from Breiman’s result (2.1); see Davis and Mikosch [12]. Hence,
the finite-dimensional distributions of (Xt ) are regularly varying with index α and the limiting
measures νh in (1.2) are concentrated at the axes, as in the case of an i.i.d. sequence. Equivalently,
the corresponding spectral measures are concentrated at the intersection of the unit sphere with
the axes. To be precise (see [12]),

νh+1(dx0, . . . , dxh) =
h∑

i=0

λα(dxi)
∏
i 
=j

ε0(dxj ),
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where λα(x,∞] = px−α and λα[−∞,−x] = qx−α , x > 0, and εy denotes Dirac measure at y.

In particular, if h ≥ 1 and C = A × R
h−1 × B is bounded away from zero with νh+1(∂C) = 0,

then

γAB(h) =
⎧⎨⎩

λα(A), if 0 ∈ B, A is bounded away from zero,

λα(B), if 0 ∈ A, B is bounded away from zero,

0, if A and B are both bounded away from zero.

This means that γAB(h) is zero unless either A or B contains zero. Moreover, ρAB(h) = 1 if
0 ∈ B and ρAB(h) = 0 otherwise. In particular, γAB(h) does not depend on h for h ≥ 1. If both

A and B contain 0, then the set A × R
h−1
0 × B is not bounded away from zero.

2.3. GARCH process

The regular variation of a GARCH(p, q) process was shown in Basrak et al. [2] under general
conditions. Here, we focus on a GARCH(1,1) process because the calculations can be made
explicit; this is not possible for a general GARCH process. A GARCH(1,1) process is given by
the equations

Xt = σtZt , t ∈ Z,

where (Zt ) is an i.i.d. sequence with EZ = 0 and var(Z) = 1, and

σ 2
t = α0 + α1X

2
t−1 + β1σ

2
t−1 = α0 + σ 2

t−1Ct−1, Ct = α1Z
2
t + β1. (2.2)

The parameters α0, α1, β1 > 0 are chosen such that (Xt ) is strictly stationary and the unique
positive solution to the equation

ECα/2 = 1 (2.3)

exists. Then, under regularity conditions such as the existence of a positive density of Z on R,
the sequences (σt ) and (Xt ) are regularly varying with index α. This follows from theory devel-
oped by Kesten [23]. Equation (2.3) has a positive solution if Z is standard normal or Student
distributed. We refer to Mikosch and Stărică [26], Theorem 2.6, for details in the GARCH(1,1)

case.
We now calculate the extremogram γAB for the sets A = (a,∞), B = (b,∞) for positive a, b.

For more general sets, the calculations become less tractable. We will make repeated use of the
following auxiliary result whose proof can be found in Mikosch and Stărică [26] and Basrak et
al. [2].

Lemma 2.1. Assume that the strictly stationary GARCH(1,1) process (Xt ) satisfies the con-
ditions of Theorem 2.6 in Mikosch and Stărică [26]. Then, (Xt ) is regularly varying with index
α > 0 given as the solution to (2.3) and the following relations hold for any h ≥ 2:

(σ 2
1 , . . . , σ 2

h ) = σ 2
0 (C0,C1C0, . . . ,Ch−1 · · ·C0) + R1, (2.4)

(X2
1, . . . ,X

2
h) = σ 2

1 (Z2
1,Z2

2C1, . . . ,Z
2
hCh−1 · · ·C1) + R2, (2.5)
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where, for any ε > 0, nP (n−2/α|Ri | > ε) → 0, i = 1,2.

It follows from Lemma 2.1 and Breiman’s result (2.1) that

P(x−1X2
0 ∈ A,x−1X2

h ∈ B)

P (x−1X2 ∈ A)
∼ P(x−1σ 2

0 Z2
0/a > 1, x−1σ 2

0 C0 · · ·Ch−1Z
2
h/b > 1)

P (X2/a > x)

∼ E(min(Z2
0/a,C0 · · ·Ch−1Z

2
h/b))α/2

E(Z2/a)α/2
= ρAB(h).

It is, in general, not possible to obtain more explicit expressions for ρAB . In the ARCH(1) case,
that is, when β1 = 0, we can use (2.3) to obtain

ρAB(h) = E(min(C0,C0 · · ·Cha/b))α/2

ECα/2
= E

(
min(1,C0 · · ·Ch−1a/b)

)α/2
.

The right-hand side decays to zero at an exponential rate. This can also be seen from the following
calculations in the GARCH(1,1) case. There exists some constant c > 0 such that

ρAB(h) ≤ cE
(
min
(
α1Z

2
0,C0 · · ·Ch−1(α1Z

2
h)
))α/2

≤ cE
(
min(C0,C0 · · ·Ch)

)α/2

= cE
(
min(1,C0 · · ·Ch−1)

)α/2

= cP (C0 · · ·Ch−1 ≥ 1) + E(C0 · · ·Ch−1)
α/2I{C0···Ch−1<1}.

Choose κ ∈ (0, α/2). Since the function r → ECr is convex and (2.3) holds, ECκ < 1. Then, by
Markov’s inequality, P(C0 · · ·Ch−1 ≥ 1) ≤ (ECκ)h and

E
(
(C0 · · ·Ch−1)

α/2I{C0···Ch−1<1}
)≤ E(C0 · · ·Ch−1)

κ = (ECκ)h.

Hence, ρAB(h) ≤ c(ECκ)h, which implies that ρAB(h) decays to zero exponentially fast. In [13],
we give some further examples of extremograms for a GARCH(1,1) process.

2.4. Symmetric α-stable processes

Let (Xt ) be a strictly stationary symmetric α-stable (sαs) sequence with integral representation

Xt =
∫

E

ft dM, t ∈ Z, (2.6)

where (ft ) is a sequence of deterministic functions such that ft ∈ Lα(E, E ,m) for some α ∈
(0,2), E is a σ -field on E and m is a measure on E . The measure m is the control measure of
the sαs random measure M on E. For the definition of α-stable integrals of type (2.6), we refer
to Samorodnitsky and Taqqu [37]. Conditions for stationarity of the sequence (Xt ) were given
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by Rosiński [34]. By the definition of an sαs integral and stationarity of (Xt ), for some constant
Cα > 0, the tail of the marginal distribution satisfies

P(Xt > x) ∼ Cαx−α

∫
E

|ft |α dm = Cαx−α

∫
E

|f0|α dm.

The next result follows from Samorodnitsky [36]; also see Theorem 3.5.6 in Samorodnitsky and
Taqqu [37] or Theorem 8.8.18 in Embrechts et al. [15]. We have, for A = (a,∞), B = (b,∞),
a, b > 0,

P(x−1Xh > b,x−1X0 > a)

P (x−1X > a)
∼ P(x−1 min(X0/a,Xh/b) > 1)

P (x−1X > a)

∼
∫
E
[(min(f +

0 , f +
h (a/b)))α + (min(f −

0 , f −
h (a/b)))α]dm∫

E
|f0|α dm

= ρAB(h).

If we choose E = R, m to be Lebesgue measure on R and

ft (x) = e−λ(t−x)I(−∞,t](x),

then the corresponding process (Xt )t∈Z is the discrete version of an sαs Ornstein–Uhlenbeck
process and

ρAB(h) =
∫ 0
−∞ eλαx min(1, e−λαh(a/b)α)dx∫ 0

−∞ eλαx dx
= min

(
1, e−λαh(a/b)α

)
, h ≥ 0.

For α = 2 and a/b = 1, this autocorrelation function coincides with the autocorrelation function
of a Gaussian AR(1) process.

If we assume that

ft (x) = f (t − x), x ∈ R, t ∈ Z,

and f is constant on the intervals (n − 1, n] for all n ∈ Z, then (Xt ) is a linear process with
i.i.d. sαs noise. In this case,

ρAB(h) =
∞∑

n=−∞

((
min
([f (n)]+, [f (h + n)]+(a/b)

))α
+ (min

([f (n)]−, [f (h + n)]−(a/b)
))α)/ ∞∑

n=−∞
|f (n)|α.
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2.5. ARMA process

The extremogram for an ARMA process generated by heavy-tailed noise can be derived directly
from the previous example. Suppose that (Xt ) satisfies the ARMA(p, q) recursions

Xt = φ1Xt−1 + · · · + φpXt−P + Zt + θ1Zt−1 + · · · + θqZt−q,

where the autoregressive polynomial φ(z) = 1 − φ1z − · · · − φpzp has no zeros inside or on the
unit circle and (Zt ) is an i.i.d. sequence of symmetric and regularly varying random variables.
Then, (Xt ) has the causal representation

Xt =
∞∑

j=0

ψjZt−j ,

where the coefficients ψj are found from the relation φ(z)
∑∞

j=0 ψjz
j = (1 + θ1z + · · · + θqzq)

(see Brockwell and Davis [8]). From the previous example with the same sets A and B , the
extremogram is given by

ρAB(h) =
∑∞

j=0((min(ψ+
j ,ψ+

j+h(a/b)))α + (min(ψ−
j ,ψ−

j+h(a/b)))α)∑∞
n=0 |ψj |α , h ≥ 0.

In particular, if (Xt ) is an AR(1) process with φ1 ∈ (0,1), then ψj = φ
j

1 and

ρAB(h) = min
(
1, φαh

1 (a/b)α
)
.

Regardless of the values of a and b, the extremogram eventually decays at a geometric rate. It
is worth noting that for the case a > b, the extremogram may be equal to one for several lags
before beginning its exponential descent. If we assume that a = b = 1 and φ ∈ (−1,0), then we
get

ρAA(2h + 1) = 0 and ρAA(2h) = |φ|α2h.

This means that an AR(1) process with a negative coefficient has as an alternating extremogram
ρAA that is zero for all odd lags and decays geometrically for even lags. In this case, the ex-
tremogram coincides with the ACF of an AR(2) process with lag-1 coefficient equal to 0 and
lag-2 coefficient equal to |φ|α2. Based on the empirical estimate of the extremogram, AR-type
behavior with a negative parameter φ can be observed for foreign exchange rate high frequency
data. See Figure 1 for an illustration.

3. Consistency and a central limit theory for the empirical
extremogram

The aim of this section is to derive relevant asymptotics for the empirical extremogram. In Sec-
tions 3.1 and 3.2, we establish key large-sample properties for the empirical estimator of μ(C).
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Figure 1. The empirical extremogram with A = B = (1,∞) ∪ (∞,−1) (upper-left) and A = B = (1,∞)

(upper-right) of a sample of five-minute return data of the foreign exchange rate USD-DEM. The middle
consists of the extremogram of the residuals from a fitted AR(18) model and from the residuals of a GARCH
fitted to the residuals A = B = (1,∞). The bottom shows the extremogram of a simulated AR-GARCH
model. See Section 3.4 for more details.

Based on these results, the asymptotic normality for the empirical extremogram is established in
Section 3.3.
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Throughout this section, it is assumed that (Xt ) is a strictly stationary, regularly varying se-
quence with index α > 0. The vector X = X0 assumes values in R

d and has limiting measure μ.
This means that we replace Yh with X and μh with μ in the definition of (1.1).

The empirical extremogram, defined in Section 3.3, can be viewed as a ratio of estimates of
μ(A) and μ(B) for two suitably chosen sets A and B . We first consider estimates of μ(C), where

C is a generic subset of R
d

0 , bounded away from zero and with μ(∂C) = 0. Then, in particular,

there exists ε > 0 such that C ⊂ {x ∈ R
d
: |x| > ε}. (3.1)

A natural estimator of μ(C) is given by

P̂m(C) = mn

n

n∑
t=1

I{Xt /am∈C},

where (an) is chosen such that P(|X| > an) ∼ n−1, m = mn → ∞ and mn/n = o(1). These
conditions on (mn) ensure consistency of P̂m(C); see Theorem 3.1. The estimator P̂m(C) is
closely related to the tail empirical process. We refer to the recent monographs de Haan and
Ferreira [19], Resnick [33] and the references cited therein.

We will work under the following mixing/dependence conditions on the sequence (Xt ):

(M) The sequence (Xt ) is α-mixing with rate function (αt ). Moreover, there exist mn,

rn → ∞ with mn/n → 0 and rn/mn → 0 such that

lim
n→∞mn

∞∑
h=rn

αh = 0 (3.2)

and, for all ε > 0,

lim
k→∞ lim sup

n→∞
mn

rn∑
h=k

P (|Xh| > εam, |X0| > εam) = 0. (3.3)

Condition (3.3) is similar in spirit to condition (2.8) used in Davis and Hsing [10] for estab-
lishing convergence of a sequence of point processes to a limiting cluster point process. It is
much weaker than the anti-clustering condition D′(εan) of Leadbetter, which is well known in
the extreme value literature; see Leadbetter et al. [24] or Embrechts et al. [15]. Condition (3.3)
is equivalent to

lim
k→∞ lim sup

n→∞

rn∑
h=k

P (|Xh| > εam||X0| > εam) = 0. (3.4)

There are various time series models that are α-mixing with geometric rate and for which (3.2)
and (3.3) are easily verified. These include GARCH, stochastic volatility and ARMA models
under suitable conditions on the noise; see the discussion in Sections 4.1 and 4.2 for GARCH
and SV models.
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3.1. Asymptotic mean and variance

In this section, we calculate the asymptotic mean and variance of P̂m(C) under condition (M).

Theorem 3.1. Assume that (Xt ) is a regularly varying, strictly stationary R
d -valued sequence

with index α > 0 in the sense of (1.1). Moreover, let C and C × R
d(h−1)

0 × C ⊂ R
(h+1)d

0 be
continuity sets with respect to μ and μh+1 for h ≥ 1, respectively, and let C be bounded away
from zero. If condition (M) holds, then

EP̂m(C) → μ(C), (3.5)

var(P̂m(C)) ∼ mn

n

[
μ(C) + 2

∞∑
h=1

τh(C)

]
, (3.6)

where τh(C) = μh+1(C × R
d(h−1)

0 × C). If μ(C) = 0, then (3.6) is interpreted as var(P̂m(C)) =
o(mn/n). In particular, we have P̂m(C)

P→ μ(C).

Proof. In what follows, it will be convenient to write

Pm(C) = mP(X/am ∈ C) = mp0 and pst = P(Xs/am ∈ C,Xt /am ∈ C).

Regular variation of X and strict stationarity of (Xt ) imply that

EP̂m(C) = Pm(C) → μ(C) as n → ∞.

This proves (3.5).
Turning to (3.6), we first note that

var(P̂m(C)) =
(

mn

n

)2

nvar
(
I{X/am∈C}

)+ 2

(
mn

n

)2 n−1∑
h=1

(n − h) cov
(
I{X0/am∈C}, I{Xh/am∈C}

)
= I1 + I2.

By regular variation of X,

I1 = mn

n
[Pm(C)(1 − p0)] ∼ mn

n
μ(C). (3.7)

We have, for k ≥ 1 fixed,

n

2mn

I2 = mn

(
k∑

h=1

+
rn∑

h=k+1

+
n−1∑

h=rn+1

)
(1 − h/n)[p0h − p2

0]

= I21 + I22 + I23.
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The regular variation of (Xt ) implies that I21 →∑k
i=1 τh(C), so it suffices to show that

lim
k→∞ lim sup

n→∞
(|I22| + |I23|) = 0. (3.8)

Since C is bounded away from zero, (3.1) holds. Then, since rn = o(mn),

I22 = mn

rn∑
h=k+1

p0h + o(1)

≤ mn

rn∑
h=k+1

P(|Xh| > εam, |X0| > εam) + o(1).

We conclude from (3.3) that limk→∞ lim supn→∞ I22 = 0. Finally, since (Xt ) is α-mixing and
condition (3.2) holds,

lim
n→∞|I23| ≤ lim

n→∞mn

∞∑
h=rn+1

αh = 0,

which completes the proof of the theorem. �

3.2. A central limit theorem for ̂Pm(C) and the empirical extremogram

The following central limit theorem is the main result of this paper.

Theorem 3.2. Assume that the conditions of Theorem 3.1 hold with kn = n/mn, mn and rn
satisfying knαrn → 0, and mn = o(n1/3). Then, the central limit theorem

Sn =
(

n

mn

)1/2

[P̂m(C) − mnP (a−1
m X ∈ C)]

=
(

mn

n

)1/2 n∑
i=1

(
I{Xt /am∈C} − P(a−1

m X ∈ C)
) d→ N(0, σ 2(C))

holds, where

σ 2(C) = μ(C) + 2
∞∑

h=1

τh(C). (3.9)

The condition mn = o(n1/3) can be replaced by the condition

m4
n

n

mn∑
j=rn

αj → 0 and
mnr

3
n

n
→ 0, (3.10)

which is often much weaker.
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The proof of the theorem is given in Section 6. It is based on a standard big-block/small-
block argument. Proofs in a similar vein in an extreme value theory context can be found in the
literature; see, for example, Rootzén et al. [35]. In Section 6, we also propose an estimator of the
asymptotic variance σ 2(C).

For many examples considered in financial time series and elsewhere, the α-mixing rate func-
tion αj decays at an exponential rate. In these cases, one can take mn ∼ n1/2−δ for some small
δ > 0 and rn ∼ n1/8. The choice rn ∼ c logn for some c > 0 also fulfills (3.10).

A slight adaptation of the proofs given in Theorems 3.1 and 3.2, in combination with the
central limit theorem in Utev [38], shows that these results hold if condition (M) is replaced by
the assumption that the process is φ-mixing with a summable rate function (φt ).

A related paper on the pre-asymptotic behavior of the empirical extremogram in the case
A = (x,∞) and B = (y,∞) is Hill [20]; see, in particular, his Theorem 5.4. In contrast to
the present paper, he does “not require a model for the bivariate joint tail nor any assumptions
concerning the joint tail” (his Remark 15).

3.3. Extremogram estimation

In order to derive the limiting distribution of the extremogram estimator, we first consider the
large-sample behavior of the ratio estimator of

R(C,D) := μ(D)

μ(C)

given by

R̂m(C,D) = P̂m(D)

P̂m(C)
,

where C and D are sets of the type described in Theorem 3.1 with μ(C) > 0. Under the condi-
tions of this theorem, R̂m(C,D) is a consistent estimator of R(C,D). In what follows, we study
the central limit theorem for this ratio estimator.

Observe that

R̂m(C,D) − R(C,D)

= P̂m(D)μ(C) − P̂m(C)μ(D)

μ(C)P̂m(C)
(3.11)

= 1 + oP (1)

[μ(C)]2

[(
μ(C)

(
P̂m(D) − EP̂m(D)

)− μ(D)
(
P̂m(C) − EP̂m(C)

))
+ (μ(C)EP̂m(D) − μ(D)EP̂m(C)

)]
.

The decomposition (3.11) indicates how we have to proceed. First, we must prove a central limit
theorem for the first term on the right-hand side. This problem is similar to Theorem 3.2 and
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requires proving a joint central limit theorem for (P̂m(C), P̂m(D)). For the second term in (3.11),
we have, by (3.5),

μ(C)EP̂m(D) − μ(D)EP̂m(C)
(3.12)

= mn[μ(D)P (a−1
m X ∈ C) − μ(C)P (a−1

m X ∈ D)] = o(1).

However, for a central limit theorem for (n/mn)
1/2(R̂m(C,D) − R(C,D)), one needs to know

the rate of convergence of (3.12) to zero. This is, in general, a difficult problem which can some-
times be solved when one deals with a specific time series model; see, for example, Section 4.2
in the case of a stochastic volatility model. Alternatively, one could assume conditions on the
rate of convergence in the relations Pm(D) → μ(D) and Pm(C) → μ(C). Such conditions are
common in extreme value theory.

We formulate the central limit theorem for the finite-dimensional distributions of the ratio
estimator in the following corollary.

Corollary 3.3. Assume the conditions of Theorems 3.1 and 3.2 hold for the sets1 D1, . . . ,Dh,C

and the sequence (Xt ). Moreover, let μ(C) > 0. Then,(
n

mn

)1/2

[R̂m(C,Di) − Rm(C,Di)]i=1,...,h
d→ N(0, (μ(C))−4F′�F),

where

Rm(C,Di) = P(a−1
m X ∈ Di)

P (a−1
m X ∈ C)

and where � and F are defined in (3.15) and (3.18), respectively. If, in addition,

lim
n→∞

√
nmn[μ(Di)P (a−1

m X ∈ C) − μ(C)P (a−1
m X ∈ Di)] = 0, i = 1, . . . , h, (3.13)

then (
n

mn

)1/2

[R̂m(C,Di) − R(C,Di)]i=1,...,h
d→ N(0, (μ(C))−4F′�F).

Proof. In order to ease notation, we set Dh+1 = C. We show the central limit theorem

Sn =
(

mn

n

)1/2 n∑
t=1

⎛⎜⎝ ID1(Xt /am) − P(a−1
m X ∈ D1)

...

IDh+1(Xt /am) − P(a−1
m X ∈ Dh+1)

⎞⎟⎠ d→ N(0,�), (3.14)

1This means that the set C in Theorems 3.1 and 3.2 has to be replaced by the Di ’s.
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where

� =
⎛⎜⎝ σ 2(D1) rD1,D2 rD1,D3 · · · rD1,Dh+1

...
...

...
. . .

...

rD1,Dh+1 rD2,Dh+1 rD3,Dh+1 · · · σ 2(Dh+1)

⎞⎟⎠ (3.15)

and, for i 
= j ,

rDi,Dj
= μ(Di ∩ Dj) + 2

∞∑
h=1

μh+1
(
Di × (R

d

0)h−2 × Dj

)
. (3.16)

By the Cramér–Wold device, it suffices to show the central limit theorem for any linear combi-
nation

z′Sn
d→ N(0, z′�z), z ∈ R

h+1.

The same ideas as in the proof of Theorem 3.2 show that it suffices to prove the central limit
theorem for kn i.i.d. copies of

Tn(z) = (mn/n)1/2
mn∑
t=1

h+1∑
i=1

zi

(
IDi

(Xt /am) − P(a−1
m X ∈ Di)

)
.

By the central limit theorem for triangular arrays, one needs to verify that for every ε > 0,

knE
(
T 2

n (z)I{|Tn(z)|>ε}
)→ 0. (3.17)

This follows from Markov’s inequality and (6.4) when mn = o(n1/3):

knET 2
n (z)I{|Tn(z)|>ε} ≤ cm2

nP
(|Tn(z)| > ε

)≤ cm2
nk

−1
n = o(1).

If the conditions (3.10) are met, then the argument at the end of the proof given in Section 6 can
be used to establish (3.17). This proves the central limit theorem (3.14).

We observe that

R̂m(Dh+1,Di) − Rm(Dh+1,Di)

= 1 + oP (1)

[μ(Dh+1)]2

((
P̂m(Di) − Pm(Di)

)
μ(Dh+1) − (P̂m(Dh+1) − Pm(Dh+1)

)
μ(Di)

)
.

Hence,(
n

mn

)1/2

[R̂m(Dh+1,D1) − Rm(Dh+1,D1)]i=1,...,h = 1 + oP (1)

(μ(Dh+1))2
FSn

d→ N(0, (μ(Dh+1))
−4F′�F),
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where

F =

⎛⎜⎜⎜⎝
μ(Dh+1) 0 0 · · · 0 −μ(D1)

0 μ(Dh+1) 0 · · · 0 −μ(D2)

...
...

...
. . .

...
...

0 0 0 · · · μ(Dh+1) −μ(Dh)

⎞⎟⎟⎟⎠ . (3.18)

This proves the result. �

Recall that, for subsets A and B of R
d

0 that are bounded away from zero and μ(∂A) =
μ(∂B) = 0, μ(A) > 0, the extremogram at lag h is defined by

ρAB(h) = lim
n→∞

P(a−1
n X0 ∈ A,a−1

n Xh ∈ B)

P (a−1
n X0 ∈ A)

.

A natural estimator of ρAB is the empirical extremogram defined by

ρ̂AB(i) =
∑n−i

t=1 I{a−1
m Xt∈A,a−1

m Xt+i∈B}∑n
t=1 I{a−1

m Xt∈A}
, i = 0,1, . . . .

This estimate can be recast as a ratio estimator by introducing the vector process

Yt = vec(Xt , . . . ,Xt+h)

consisting of stacking h + 1 consecutive values of the time series (Xt ). Now, the sets C and

D0, . . . ,Dh specified in Corollary 3.3 are defined via the relations C = A × R
dh

0 , D0 = A ∩ B ×
R

dh

0 and Di = A × R
d(i−1)

0 × B × R
d(h−i)

0 for i ≥ 1. With this conversion, Corollary 3.3 can be
applied to the (Yt ) sequence directly to show that ρ̂AB(i), centered by the pre-asymptotic value
of the extremogram defined by

ρAB,m(i) = P(a−1
m X0 ∈ A,a−1

m Xi ∈ B)

P (a−1
m X ∈ A)

, (3.19)

is asymptotically normal. On the other hand, if the bias condition (3.13) is met, then one can
center the empirical extremogram by its true value and still retain the asymptotic normality. For
completeness, we record these results as the following corollary.

Corollary 3.4. Assume that the conditions of Corollary 3.3 are satisfied for the sequence (Yt ).
Then, (

n

mn

)1/2

[ρ̂AB(i) − ρAB,m(i)]i=0,1,...,h
d→ N(0, (μ(A))−4F′�F). (3.20)

Moreover, if (3.13) is satisfied, then (3.20) holds with ρAB,m(i) replaced by ρAB(i).
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3.4. An empirical example

For illustrative purposes, we compute the extremogram for the high-frequency financial time se-
ries consisting of 35135 five minute returns of the foreign exchange rate USD-DEM. The data,
which was provided in processed form by Olsen and Associates (Zürich) at their Second Confer-
ence on High Frequency Financial Data in 1995, was one of the first widely disseminated high
frequency data sets. Aside from the choice of A and B , the most problematic issue in computing
the extremogram is the selection of a suitable threshold am. The choice of threshold is always a
thorny issue in extreme value theory, from estimating the tail index of regular variation to fitting
a generalized Pareto distribution. We tried several different choices of threshold based on various
empirical quantiles of the absolute values of the data. Of course, there is the typical bias-variance
trade-off in this selection with a large m corresponding to a smaller bias, but larger variance, and
vice versa for a moderate value of m. In the upper-left panel of Figure 1, we plot the sample ex-
tremogram for lags 1–100 using A = B = (−∞,−1) ∪ (1,∞) with several choices of threshold
am starting with the 0.97 empirical quantile of the absolute values (solid line) and continuing
with the 0.98, 0.99, 0.995 and 0.999 quantiles (dotted and dashed lines). With the exception of
the 0.995 and 0.999 quantiles, the extremogram has roughly the same value for all lags. The ex-
tremogram based on the 0.995 quantile is also similar, at least for the first 38 lags, and drops off
to zero due to a lack of pairs of lagged observations that exceed this large quantile. In view of
this robustness of the plots for this range of thresholds, we will choose am to be the 0.98 quantile
in all of the remaining extremogram plots.

The extremogram of the returns with A = B = (1,∞) is displayed in the upper-right panel
of Figure 1. Note that the extremogram alternates between large values at even lags and smaller
values at odd lags. Like many high frequency data sets, the autocorrelation function for this
time series alternates between positive and negative values. To further investigate this alternating
behavior of the extremogram, which may be due, in part, to an artifact of the processing of
the data by Olsen, we fitted an AR model to the data. The best fitting AR model, based on
minimizing the AICC, is of order 18. We then refined this model by selecting the best subset
model which ended up having significant non-zero coefficients at lags 1, 2, 3, 5, 6, 7, 11, 13, 14,
16 and 18. The lag-1 coefficient, which was much larger than the other lags, was –0.6465. So,
this alternating character of the extremogram is consistent with the extremogram of an AR(1)
process with negative coefficient described in Section 2.5. In the middle-left panel, we plot the
extremogram of the residuals from the subset AR(18) model fit with A = B = (1,∞). As a
baseline, we have also plotted the horizontal line that one would expect for the extremogram if
the data were in fact independent and the threshold was the 0.98 quantile of the absolute values.
Note that the values are now significantly smaller than those for the returns. Some extremal
dependence still remains in the residuals, at least for small lags. This behavior is an indication
of the presence of nonlinearity in the data. In fact, the ACFs of the absolute values and squares
of the residuals are highly significant. We were moderately successful in eliminating part of this
nonlinearity by fitting a GARCH(1,1) model with t -noise to the residuals. The extremogram
of the GARCH residuals, which still exhibits some ACF in the absolute values but none in the
squares, is displayed in the middle-right panel of Figure 1. Based on this extremogram, there is
little remaining extremal dependence in the GARCH residuals. As a last check on this modeling
exercise, we simulated a realization of the time series based on the fitted model. In other words,
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Figure 2. The empirical extremogram (left) of a sample of five-minute return data of the foreign exchange
rate USD-DEM and the residuals (right) from a fitted AR(18) model with A = (1,∞), B = (−∞,−1); see
Section 3.4 for more information.

we generated a time series from the GARCH model and then passed it through the fitted AR
filter. The extremogram of this simulated series is displayed at the bottom of Figure 1. It displays
similar features to the original extremogram (top-right panel of Figure 1), but the dependence is
not quite as strong or persistent as for the original data.

In Figure 2, we chose A = (1,∞) and B = (−∞,−1) for computing the extremograms for
the return data (left) and the residuals from the AR(18) fit (right). For the return data, the ex-
tremogram at the first lag has a large positive value and alternates at the odd and even lags. On
the other hand, for the residuals, there is a real difference in shape of the extremogram from that
displayed in Figure 1.

4. Application to GARCH and SV models

4.1. The GARCH process

Assume the conditions of Section 2.3 hold for a regularly varying, strictly stationary GARCH(1,

1) process with index α > 0. The GARCH process is β-mixing, hence α-mixing, with geomet-
ric rate under general conditions on the noise; see Boussama [5] and Mokkadem [27]. In the
GARCH(1,1) case, these conditions hold provided the density of the noise variables Zt is posi-
tive in some neighborhood of the origin.

In what follows, we assume that (Xt ) is α-mixing with a geometric rate function αt ≤ cat for
some a ∈ (0,1), c > 0. First, recall that the κ chosen in Section 2.3 satisfies κ ∈ (0, α/2) and
ECκ < 1, where C = α1Z

2
1 + β1. Second, the normalizing constants an are chosen such that

P(|X| > an) ∼ n−1. In particular, an ∼ cn1/α . Now, select mn = nδ (δ ∈ (0,1)) and rn = nγ for
γ < min((1− δ)/3, δ(2κ/α)). With these choices of mn, rn, we verify conditions (M) and (3.10).
The mixing condition (3.2) is straightforward to check since (Xt ) is α-mixing with geometric
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rate. To check (3.3), it suffices to show (3.4). Using the recursion in (2.2), we have

σ 2
t = Ct · · ·C1σ

2
0 + α0

t∑
i=1

Ct · · ·Ci+1, t ≥ 0. (4.1)

If we assume, for the sake of simplicity, that ε = 1, then (4.1) and Markov’s inequality imply that

P(|Xh| > am||X0| > am)

≤ P(Z2
hCh · · ·C1σ

2
0 > a2

m/2||X0| > am) + P

(
Z2

hα0

h∑
i=1

Ch · · ·Ci+1 > a2
m/2

)

≤ P(Z2
hCh · · ·C1σ

2
0 > a2

m/2)

P (|X0| > am)
+ c(a2

m/2)−κE|Z|2κ
h∑

i=1

(ECκ)h−i

= I1(h) + I2(h).

With the prescribed choices of rn and mn, we have

rn∑
h=k+1

I2(h) ≤ crna
−2κ
m → 0, n → ∞.

By again applying Markov’s inequality and Karamata’s theorem (see Bingham et al. [4]),

rn∑
h=k+1

I1(h) =
rn∑

h=k+1

P(Ch · · ·C1X
2
0 > a2

m/2)

P (|X| > am)

≤ c
E|X|κI{|X|>am}
aκ
mP (|X| > am)

rn∑
h=k+1

(ECκ)h

≤ cE(Cκ)k.

Appropriately combining the above facts shows that (3.3) is satisfied.
Finally, it is straightforward to check (3.10) from the choices of δ and γ . Hence, the conclu-

sions of Theorems 3.1 and 3.2 apply to the GARCH(1,1) process. To date, we have not been
able to verify the bias condition (3.13) of Corollary 3.4. One needs a more precise estimate than
is currently known for the tail distribution of σ 2

t ; see Goldie [18] for results in this direction.

4.2. The stochastic volatility process

The stochastic volatility process (Xt ) has regularly varying finite-dimensional distributions with
index α if the multiplicative noise (Zt ) is regularly varying with index α and the volatility σt has
a moment of order α + ε, ε > 0. In fact, for the following argument, we will assume that σt has
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a finite 4αth moment. In addition, we assume that the mixing condition (3.2) is satisfied for (σt ).
If the sequence (σt ) is α-mixing with rate function (αh), then (Xt ) has rate function (4αh), and
hence (Xt ) also satisfies (3.2).

We next dispense with condition (3.3) with ε = 1; the general case ε > 0 is completely analo-
gous. Using the independence of (Zt ) and (σt ), an application of Markov’s inequality for p < α

yields

mn

rn∑
h=k

P (a−1
m |X0| > 1, a−1

m |Xh| > 1)

≤ mn

rn∑
h=k

P
(
max(σ0, σ1, σh, σh+1)min(|Z0|, |Z1|, |Zh|, |Zh+1|) > am

)
= mn

rn∑
h=k

E
[
P
(
max(σ0, σ1, σh, σh+1)Z > am|(σt )

)]4
≤ cmnrn(Eσp)4a

−4p
m .

Since rn = o(mn), the right-hand side vanishes if p is chosen close to α.
We now turn to the problem of verifying the bias condition (3.13) so that we can apply the

limit theory of Corollaries 3.3 and 3.4 to the empirical extremogram. To this end, we assume,
for convenience, that logσt is a stationary Gaussian sequence with mean zero and unit variance.
Choose mn = nγ for some γ ∈ (1/3,1) and suppose the mixing function decays sufficiently fast
so that (3.10) holds. For example, if αt decays geometrically, one could take rn = (1 − γ )/4.
If we choose the sets A = (1,∞) × (0,∞)h−1 and B = (1,∞) × (0,∞)h−2 × (1,∞), then
μh(A) > 0 and μh(B) = 0. Set sn = nδ for some 0 < δ < (3γ − 1)/(4α) and note that

P(a−1
m X0 > 1, a−1

m Xh > 1) ≤ P
(
max(σ0, σh)min(Z0,Z1) > am

)
≤ P

(
max(σ0, σh) > sn

)+ P
(
min(Z0,Z1) > am/sn

)
.

Since (mnn)1/2 = n0.5(1+γ ), an application of Markov’s inequality yields that for any k > 0,

(mnn)1/2P
(
max(σ0, σh) > sn

) ≤ n0.5(1+γ )2E(σk)s−k
n .

The right-hand side converges to zero for k sufficiently large. On the other hand, for any ε > 0,

(mnn)1/2[P(Z > am/sn)]2 ≤ n0.5(1+γ )
(
nγ/α/nδ

)−2α+ε
.

The right-hand side converges to zero for small ε. This shows that (3.13) is satisfied for a sto-
chastic volatility model and sets A,B as specified. Applying Corollary 3.4, we conclude that

(n/mn)
1/2[ρ̂AB(1) − ρAB(1)] d→ N(0, σ 2(B)μ−2(A)),

where, of course, ρAB(1) = 0 in this case and σ 2(B) = 0. Therefore, we get a degenerate limit
for this choice of A and B .
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As a second example, let A = (1,∞) × (0,∞) and B = {(x1, x2): L < x1 − x2 < U,

x1 ≥ 0, x2 ≥ 0}, where L < 1 < U . With Xt = (Xt ,Xt+1), a straightforward calculation shows
that μ(A) = 1 and μ(B) = L−α − U−α . Since the measure μ only concentrates on the two co-
ordinate axes, A ∩ B intersects the x2-axis in the empty set and intersects the x1-axis in the
interval [1,U ]. Hence, γAB(0) = 1 − U−α . Since the limiting measure of (X0,X1,Xh,Xh+1)

concentrates on the four coordinate axes,

nP (a−1
n X0 ∈ A,a−1

n Xh ∈ B) → γAB(h) = 0

for h ≥ 1. On the other hand, {(x1, x2, x3): (x1, x2) ∈ B and (x2, x3) ∈ B} has empty intersection
with the three coordinate axes and hence γBB(1) = 0. More generally, we have

γBB(0) = L−α − U−α, γBB(h) = γAA(h) = 0 for h > 0.

Using Corollary 3.3, we have

(n/mn)
1/2(ρ̂AB(0) − ρAB,m(0)

) d→ N(0,1 − U−α).

5. Some spectral analysis

The extremogram γCC = (τh(C)) with τh(C) = τ−h and τ0(C) = μ(C) as defined in Theo-
rem 3.1 is an asymptotic covariance function. If it is summable, then the function

f (λ) =
∑
h∈Z

τh(C)eihλ = μ(C) + 2
∞∑

h=1

cos(λh)τh(C), λ ∈ [0,π],

defines the corresponding spectral density which, in turn, determines γCC . The sample version
of the spectral density f is given by the periodogram

InC(λ) = mn

n

∣∣∣∣∣
n∑

t=1

Ĩte
itλ

∣∣∣∣∣
2

= γ̂n(0) + 2
n−1∑
h=1

cos(λh)γ̂n(h), λ ∈ [0,π],

where

p0 = P(Xt /am ∈ C), It = I{Xt /am∈C} and Ĩt = It − EIt = It − p0,

and

γ̂n(h) = mn

n

n−h∑
t=1

Ĩt Ĩt+h, γ̃n(h) = mn

n

n−h∑
t=1

It It+h, h ≥ 0,

are analogs of the sample autocovariance function of a stationary sequence. Since it is com-
mon to evaluate the quantities InC(λ) at the Fourier frequencies λ = λk = 2πk/n ∈ (0,π) and
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t=1 eitλk = 0, one can define InC(λk) with the Ĩt ’s replaced by the It ’s which do not contain

the unknown probability p0. However, for the calculations which involve mixing conditions, it
is crucial to use the given definition of InC(λ) with the centered quantities Ĩt .

In what follows, we will mostly deal with the lag-window estimator (see Brockwell and Davis
[8]) or the truncated periodogram f̂nC(λ) defined by

f̂nC(λ) = γ̂n(0) + 2
rn∑

h=1

cos(λh)γ̃n(h), λ ∈ [0,π],

where rn → ∞ and rn/mn → 0 as n → ∞ has the same interpretation as in the previous sections.
Truncated estimators of the form f̂nC are commonly used in the spectral analysis of stationary
time series; see, for example, Brockwell and Davis [8] and Priestley [29]. A major reason for
this is that, unlike the periodogram of a stationary time series, the truncated periodogram f̂nC

is a consistent estimator of the spectral density. In our setting, we show below that f̂nC remains
a consistent estimator of f (λ). Based on background calculations, it appears that InC(λ) is not
consistent.

Theorem 5.1. Assume the mixing condition (M) for the regularly varying, strictly stationary

sequence (Xt ) with index α > 0 and that the products Ck ⊂ R
dk

0 are continuity sets with re-
spect to the limiting measures μk , k = 1,2, . . . , occurring in the definition of regular variation.
Then,

lim
n→∞EInC(λ) = lim

n→∞ f̂nC(λ) = f (λ), λ ∈ (0,π). (5.1)

In addition, if mnr
2
n = O(n), then we also have

lim
n→∞E

[(
f̂nC(λ) − f (λ)

)2]= 0, λ ∈ (0,π). (5.2)

This means that the estimator f̂nC(λ) of the spectral density f (λ) is asymptotically unbiased
and mean-square consistent.

The rate of convergence in (5.2) cannot be derived unless one assumes conditions similar to
(3.13).

Proof. In what follows, it will be convenient to use the notation

p0 = P(X/am ∈ C), pst = P(Xs/am ∈ C,Xt /am ∈ C), . . . ,

Ĩst = Ĩs Ĩt , . . . , p̃st = EĨst , . . . .

We will exploit the following auxiliary result. The proof is completely analogous to the proof of
Theorem 3.1 and is therefore omitted.
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Lemma 5.2. Under the conditions of Theorem 5.1,

Eγ̂n(h) ∼ γ̃n(h) → τh(C),

var(γ̂n(h)) ∼ var(γ̃n(h)) ∼ mn

n

[
τh(C) + 2

∞∑
t=1

τ0ht,t+h(C)

]
, h ≥ 0,

where, for h ≥ 0 and t ≥ 0, τ0ht,t+h(C) = limn→∞ mp0ht,t+h.

We start by considering the expectation of the periodogram. We have, for fixed k ≥ 1,

EInC(λ) = mnp0 + 2mn

n−1∑
h=1

(1 − n−1h) cos(λh)p̃0h

= mnp0 + 2mn

n−1∑
h=1

(1 − n−1h) cos(λh)[p0h − p2
0]

= μ(C) + 2
k∑

h=1

cos(λh)τh(C)

+ 2mn

(
rn∑

h=k+1

+
n−1∑

h=rn+1

)
(1 − n−1h) cos(hλ)[p0h − p2

0] + o(1).

Using condition (M),

lim
k→∞ lim sup

n→∞
mn

∣∣∣∣∣
rn∑

h=k+1

(1 − n−1h) cos(hλ)[p0h − p2
0]
∣∣∣∣∣ ≤ lim

k→∞ lim sup
n→∞

mn

rn∑
h=k+1

p0h = 0,

lim
n→∞mn

∣∣∣∣∣
n−1∑

h=rn+1

(1 − n−1h) cos(hλ)[p0h − p2
0]
∣∣∣∣∣ ≤ lim sup

n→∞
mn

∞∑
h=rn+1

αh = 0.

The relation limn→∞ Ef̂nC(λ) = f (λ) is derived in the same way.
We conclude from Lemma 5.2 that for any k ≥ 1,

var

((
γ̃n(0) − μ(C)

)+ 2
k∑

h=1

cos(λh)
(
γ̃n(h) − τh(C)

))→ 0.

Therefore, it suffices for (5.2) to show that

lim
k→∞ lim sup

n→∞
var

(
rn∑

h=k

cos(λh)γ̃n(h)

)
= 0.
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It suffices to bound the expression

I =
rn∑

h=k

rn∑
l=k

| cov(γ̃n(h), γ̃n(l))| ≤ m2
n

n2

rn∑
h=k

rn∑
l=k

n−h∑
t=1

n−l∑
s=1

| cov(It,t+h, Is,s+l)|.

We have

I ≤ 2
m2

n

n

rn∑
h=k

rn∑
l=k

n∑
r=0

| cov(I0h, Ir,r+l)|

≤ 2
m2

n

n

rn∑
h=k

rn∑
l=k

2rn−1∑
r=0

√
var(I0h)var(I0l ) + 2

m2
n

n

rn∑
h=k

rn∑
l=k

∞∑
r=2rn

αr−h

≤ 4
m2

nrn

n

rn∑
h=k

rn∑
l=k

[p0h + p0l + 2p3
0] + 2

mnr
2
n

n

[
mn

∞∑
r=rn

αr

]

≤ 8
mnrn

n

[
mn

rn∑
h=k

p0h

]
+ 8(mnp0)

2p0
r3
n

n
+ 2

mnr
2
n

n

[
mn

∞∑
r=mn−rn

αr

]
.

Condition (M) and the growth restrictions mnr
2
n = O(n) yield the desired result

lim
k→∞ lim sup

n→∞
I = 0. �

6. Proof of Theorem 3.2

Proof. We use the same notation as in Section 5 and write

Ynt = (mn/n)1/2(I{Xt /am∈C} − p0
)= (mn/n)1/2Ĩt , t = 1, . . . , n.

In order to prove the result, we will use the technique of small/large blocks which is well known
in the asymptotic theory for sums of dependent random variables. For simplicity, we will assume
that n/mn = kn is an integer. The non-integer case does not present any additional difficulties,
but requires additional bookkeeping. We introduce the index sets

Ini = {(i − 1)mn + 1, . . . , imn}, i = 1, . . . , kn.

By Ĩni , we denote the index set which consists of all elements of Ini but the first rn elements and
we also write Jni = Ini \ Ĩni . Since rn/mn → 0 and mn → ∞, the sets Ĩni are non-empty for
large n. For any index set B of the integers, we write

Sn(B) =
∑
j∈B

Ynj .
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We first show that

var

(
kn∑
l=1

Sn(Jnl)

)
→ 0. (6.1)

We have

var

(
kn∑
l=1

Sn(Jnl)

)
≤ kn var(Sn(Jn1)) + 2kn

kn−1∑
h=1

| cov(Sn(Jn1), Sn(Jn,h+1))|

= P1 + P2.

We observe that, by (3.3) and since rn/mn → 0,

P1 ∼
[
rnp0 + 2

rn−1∑
h=1

(rn − h)p0h

]
− (rnp0)

2

≤ 2(rn/mn)mn

rn−1∑
h=k+1

p0h + o(1) = o(1).

Moreover, for positive constants c,

P2 =
kn−1∑
h=1

∣∣∣∣ ∑
t∈Jn1

∑
s∈Jn,h+1

cov(It , Is)

∣∣∣∣≤ kn−1∑
h=1

∑
t∈Jn1

∑
s∈Jn,h+1

αs−t

≤ crn

∞∑
h=mn−rn+1

αh ≤ cmn

∞∑
h=rn+1

αh = o(1).

This proves (6.1).
Condition (6.1) implies that Sn and

∑kn

i=1 Sn(Ĩni) have the same limit distribution, provided
such a limit exists. Let S̃n(Ĩni), i = 1, . . . , kn, be i.i.d. copies of Sn(Ĩn1). In what follows, we
use a classical idea due to Bernstein dating back to the 1920s. Iterated use of the definition of
α-mixing and standard results for strong mixing sequences (see Doukhan [14]) yield, for any
t ∈ R, ∣∣∣∣∣E

kn∏
l=1

eitSn(Ĩnl ) − E

kn∏
l=1

eit S̃n(Ĩnl )

∣∣∣∣∣
=
∣∣∣∣∣

kn∑
l=1

E

l−1∏
s=1

eitSn(Ĩns )
(
eitSn(Ĩnl ) − eit S̃n(Ĩnl )

) kn∏
s=l+1

eit S̃n(Ĩns )

∣∣∣∣∣ (6.2)

≤
kn∑
l=1

∣∣∣∣∣E
l−1∏
s=1

eitSn(Ĩns )
(
eitSn(Ĩnl ) − eit S̃n(Ĩnl )

) kn∏
s=l+1

eit S̃n(Ĩns )

∣∣∣∣∣≤ kn4αrn.



1004 R.A. Davis and T. Mikosch

By assumption, the right-hand side converges to zero as n → ∞. Hence,
∑kn

l=1 Sn(Ĩnl) and∑kn

l=1 S̃n(Ĩnl) have the same limits in distribution (provided these limits exist). Let S̃n(Ini),
i = 1, . . . , kn, be an i.i.d sequence with the same distribution as Sn(In1). A similar relation as
(6.1) ensures that it suffices to prove that

kn∑
i=1

S̃n(Ini)
d→ N(0, σ 2(C)). (6.3)

We first verify that

var

(
kn∑

i=1

S̃n(Ini)

)
= kn var(S̃n(In1)) → σ 2(C). (6.4)

We have

kn var(S̃n(In1)) = var

(
mn∑
i=1

It

)

= mn var(I0) + 2
mn−1∑
h=1

(mn − h) cov(I0, Ih).

By regular variation,

mn var
(
I{Xt /am∈C}

)→ μ(C). (6.5)

Fix k ≥ 1. Then,(
k∑

h=1

+
rn∑

h=k+1

+
mn−1∑

h=rn+1

)
(mn − h) cov(I0, Ih) = R1 + R2 + R3. (6.6)

By the same argument as for (6.5), R1 →∑k
h=1 τh(C) and similar arguments as those for I22

and I23 in the proof of Theorem 3.1 show that (6.4) holds.
We apply the central limit theorem for the triangular array of i.i.d. mean-zero random vari-

ables S̃n(Ini), i = 1, . . . , kn. By Gnedenko and Kolmogorov [17], Theorem 3, page 101, or The-
orem 4.1 in Petrov [28], and since (6.4) holds, one needs to verify the following condition for
any ε > 0:

knE
[
(S̃n(In1))

2I{|S̃n(In1)|>ε}
]= E

(
mn∑
t=1

Ĩt

)2

I{|S̃n(In1)|>ε} → 0. (6.7)

A trivial estimate of the right-hand side is given by

cm2
nP
(|S̃n(In1)| > ε

)≤ cε−2m2
n var(S̃n(In1)) = O(m3

n/n) = o(1). (6.8)
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Next, we show that (6.7) holds under the conditions (3.10). We have, by the Cauchy–Schwarz
and Chebyshev inequalities and (6.4), with Jm =∑mn

t=1 Ĩt , for constants c > 0,(
EJ 2

mI{|S̃n(In1)|>ε}
)2 ≤ EJ 4

mP
(|S̃n(In1)| > ε

)≤ cEJ 4
m var(S̃n(In1)) = EJ 4

mO(mn/n). (6.9)

We focus on the fourth moment of the partial sum Jm, which can be written as

EJ 4
m =

mn∑
s,t,u,v=1

EĨstuv

=
mn∑
s=1

EĨ 4
s + c1

mn∑
s 
=t

E(Ĩs Ĩ
3
t ) + c2

mn∑
s<t

E(Ĩ 2
s Ĩ 2

t ) + c3

∑
s<t<u<v

EĨstuv + o(1)

= A1 + c1A2 + c2A3 + c3A4 + o(1).

Now,

EA1 = mnEĨ 4
1 ≤ mnE|Ĩ1| ≤ 2mnp0 = O(1).

Since Ĩt has mean 0, we have

|A2| =
∣∣∣∣( ∑

|s−t |≤rn

+
∑

|s−t |>rn

)
E(Ĩs Ĩ

3
t )

∣∣∣∣
≤ 2mnrnp0 +

∑
|s−t |>rn

|E(Ĩs Ĩ
3
t ) − EĨsEĨ 3

t )|

≤ 2mnrnp0 + 4mn

mn∑
j=rn

αj = O(rn).

The third term can be dealt with as follows:

A3 =
( ∑

|s−t |≤rn

+
∑

|s−t |>rn

)
E(Ĩ 2

s Ĩ 2
t )

≤ 2mnrnp0 +
∑

|s−t |>rn

(|E(Ĩ 2
s Ĩ 2

t ) − EĨ 2
s EĨ 2

t | + EĨ 2
s EĨ 2

t

)

≤ 2mnrnp0 + 4mn

mn∑
j=rn

αj + 4m2
np

2
0 = O(rn).

We decompose the index set of the fourth term into four disjoint sets:

K1 = {(s, t, u, v): 1 ≤ s < t < u < v ≤ mn,v − u > rn};
K2 = {(s, t, u, v): 1 ≤ s < t < u < v ≤ mn,v − u ≤ rn, u − t > rn};



1006 R.A. Davis and T. Mikosch

K3 = {(s, t, u, v): 1 ≤ s < t < u < v ≤ mn,v − u ≤ rn, u − t ≤ rn, t − s > rn};
K4 = {(s, t, u, v): 1 ≤ s < t < u < v ≤ mn,v − u ≤ rn, u − t ≤ rn, t − s ≤ rn}.

We then obtain

|A4| =
∣∣∣∣(∑

K1

+
∑
K2

+
∑
K3

+
∑
K4

)
EĨstuv

∣∣∣∣
≤ m3

n

mn∑
j=rn

αj +
(

cm2
nrn

mn∑
j=rn

αj + O(r2
n)

)
+ mnr

3
n

mn∑
j=rn

αj + O(r3
n)

≤ cm3
n

mn∑
j=rn

αj + mnr
3
n

mn∑
j=rn

αj + O(r3
n),

where the bounds for the sums in the penultimate line follow in the spirit of the arguments used
to derive the orders for A2 and A3.

Combining the bounds above with the bound (6.9), the conditions in (3.10) ensure that (6.7) is
satisfied. This completes the proof. �

Relation (6.4) suggests the following estimator for σ 2(C):

σ̂ 2
n (C) = k−1

n

kn∑
i=1

[∑
t∈Ini

I{Xt /am∈C} − mn

kn

n∑
t=1

I{Xt /am∈C}

]2

.

It is a consistent estimator of σ 2(C), as the following calculations show. We have

σ̂ 2
n (C) =

kn∑
i=1

S2
n(Ini) − k−1

n S2
n.

Since k−1
n S2

n = oP (1), it suffices to show that

σ̃ 2
n (C) =

kn∑
i=1

S2
n(Ini)

P→ σ 2(C).

As for (6.2), we observe that for s ≥ 0,∣∣∣∣∣E
kn∏
l=1

e−sS2
n(Ĩnl ) − E

kn∏
l=1

e−sS̃2
n(Ĩnl )

∣∣∣∣∣ ≤ 4knαrn → 0. (6.10)
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On the other hand, we have proven that
∑kn

l=1 S̃n(Ĩnl)
d→ N(0, σ 2(C)). By Raikov’s theorem,

this is equivalent to

kn∑
l=1

S̃2
n(Ĩnl)

P→ σ 2(C).

Therefore, from (6.10),

kn∑
l=1

S2
n(Ĩnl)

P→ σ 2(C). (6.11)

Let (Wi) be an i.i.d. standard normal sequence, independent of (Xt ). Then, (6.11) holds if and
only if

W 2
1

kn∑
l=1

S2
n(Ĩnl)

P→ W 2
1 σ 2(C).

On the other hand,

W 2
1

kn∑
l=1

S2
n(Ĩnl)

d=
(

kn∑
l=1

WiSn(Ĩnl)

)2

(6.12)

=
(

kn∑
l=1

WiSn(Inl) −
kn∑
l=1

WiSn(Jni)

)2

.

By virtue of (6.1) ,

kn∑
l=1

WiSn(Jni)
d= W1

(
kn∑

i=1

S2
n(Jni)

)1/2
P→ 0

and from (6.12), we conclude(
kn∑
l=1

WiSn(Inl)

)2
d= W 2

1 σ̃ 2
n (C)

P→ W 2
1 σ 2(C),

which proves that σ̃ 2
n (C)

P→ σ 2(C).
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