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We consider weak convergence of the rescaled error processes arising from Riemann discretizations of
certain stochastic integrals and relate the Lp-integrability of the weak limit to the fractional smoothness in
the Malliavin sense of the stochastic integral.
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1. Introduction

Quantitative approximation problems for stochastic integrals appear naturally in stochastic fi-
nance. Consider a stochastic integral

g(X1) = Eg(X1) +
∫ 1

0

∂G

∂x
(u,Xu)dXu,

where the diffusion X = (Xt )t∈[0,1] models a price process, g(X1) ∈ L2 is a pay-off of a Euro-
pean type option, and G solves a corresponding parabolic backward partial differential equation
(PDE) with g(x) = G(1, x). We look at the Riemann approximation

n−1∑
i=0

∂G

∂x
(ti ,Xti )(Xti+1 − Xti )

along a deterministic time-net τ = (ti)
n
i=1 and the error process C(τ) = (Ct (τ ))t∈[0,1] given by

Ct(τ ) :=
∫ t

0

∂G

∂x
(u,Xu)dXu −

n−1∑
i=0

∂G

∂x
(ti ,Xti )(Xti+1∧t − Xti∧t ).

The process C(τ) describes the hedging error that occurs when a continuously adjusted portfolio
is replaced by a portfolio that is adjusted only at the time-knots t0, . . . , tn−1. Given a sequence
of time-nets τn = (tni )ni=0, one is interested in the rate of convergence of C(τn) towards zero as
n → ∞. There are (at least) two principal ways to measure the size of C(τn). First, one can use
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strong criteria, like Lp-norms, where one typically looks for estimates of the form

‖C1(τ
n)‖Lp ≤ cn−θ (1)

for some θ > 0. Second, one can investigate the weak convergence of the re-scaled processes√
nC(τn). A priori, in our setting there are no general principles known so far to deduce a cer-

tain strong convergence from a weak limit or to go the other way around. Concepts of weak
convergence are of particular interest in applications because they already provide the needed in-
formation in many cases and promise potentially better approximation rates than obtained under
strong criteria. Results about weak convergence in our context are obtained for example in [22]
(see also [4]) and [13,15,24]. For the general theory the reader is referred to [18] (see also [21]).

Gobet and Temam have shown in [13], Theorems 1 and 3, that for the binary option (i.e.,
g(x) = χ[K,∞)(x) for K > 0 and X being the geometric Brownian motion), in case of equidistant
time-nets τn, the scaling factor for the weak convergence can be taken to be n1/2 whereas the
L2-rate in (1) is θ = 1

4 . Intuitively, one would expect that the scaling exponent 1
2 and θ coincide.

Indeed, for pay-off functions g having some fractional smoothness in the Malliavin sense (like
the binary option with smoothness β ∈ (0, 1

2 ); see Example 2.2), the L2-rate θ = 1
2 can always be

achieved by using appropriate non-equidistant time-nets, see [6,12]. Non-equidistant time-nets
have been also used in other papers like, for example, [14,20].

From this, two questions become natural: Is there a connection between fractional smoothness
and weak convergence? And, do non-equidistant time-nets have a positive effect on the weak
convergence?

The aim of this paper is to answer both questions in the positive at the same time by investi-
gating the Lp-integrability of the weak limit of

√
nC(τn) as n → ∞ for different sequences of

time-nets τn. This has relevance for applications where good tail estimates for the weak limit are
desirable.

The paper is organized as follows:

• After introducing the notation we formulate our basic result, Theorem 3.1, where we char-
acterize the existence of a square integrable weak limit of

√
nC(τn,β) by the condition that

g or g(exp(· − 1
2 )) (depending on the diffusion X) belongs to the Besov space B

β

2,2(γ ). The
parameter β ∈ (0,1] is the fractional smoothness in the Malliavin sense and the time-nets

τn,β := (
1 − (

1 − (i/n)
)1/β)n

i=0

are adapted to the smoothness β . Hence, if g or g(exp(· − 1
2 )) have a non-trivial fractional

smoothness and if we use the right time-nets, then we always get a square-integrable weak
limit. The concept of fractional smoothness allows us to consider at once the large class of
functions

⋃
β∈(0,1] B

β

2,2(γ ), which contains all examples usually studied in the literature in
this context. For the binary option this means that the weak limit for equidistant time-nets
in [13] is not square-integrable but becomes square-integrable for the time-nets τn,β as long
as β ∈ (0, 1

2 ) because of Example 2.2 below.
• The L2-setting of Theorem 3.1 is extended in Section 4 to the Lp-setting, p ∈ [2,∞). Corol-

lary 4.4 gives nearly optimal conditions that the weak limit is Lp-integrable. As an appli-
cation for the binary option we compute in Example 4.7 the best possible Lp-integrability
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of the weak limit provided that the τn,β -nets are used. In particular, this example shows
how the integrability can be improved to any p ∈ [2,∞) by using nets τn,β with a β small
enough or, equivalently, by using nets with a sufficiently high concentration of the time-
knots close to the final time-point t = 1.

• The upper estimate for the Lp-integrability of the weak limit in Example 4.7 for the binary
option has a more general background: in Corollary 4.11 we assume that g has a local
singularity of order η ≥ 0 (measured in terms of a sharp function) and deduce an upper
bound for the Lp-integrability of the weak limit.

• In Section 5 we prove Theorem 3.1. First, we derive the existence of the weak limit on
[0, T ] with T ∈ (0,1). Second, as the main part, we have to deal with a singularity of our
approximation problem at time t = 1 because of the blow-up of the Malliavin derivative of
E(g(X1)|Ft ) as t ↑ 1. The degree of this blow-up is connected to the fractional smooth-
ness β of g. The used time-nets τn,β are essential as they are chosen to compensate this
singularity.

In this paper we restrict ourselves to the case that the driving process of the stochastic integrals
is the Brownian motion or the geometric Brownian motion. This is done to connect weak con-
vergence and Besov spaces as exactly as possible where we use results from [12] proved for this
setting. A setting for Lévy–Itô processes was considered in [23] and a setting under transaction
costs in [5]. Extensions along the line of fractional smoothness and non-homogeneous time-nets
might be investigated in the following directions:

• To consider more general diffusions as driving process X, the setting of [6] seems to be
appropriate for a first step where the scale of Besov spaces was replaced by a scale that has
more appropriate stochastic descriptions and where one imposes quantitative smoothness
assumptions on the parameters of the diffusion. This extension would still result in a setting
where an underlying PDE exists so that the proofs are expected to be parallel to the ones of
this paper. Note that our integrand (∂G/∂x)(u,Xu) is obtained by the PDE (3) below.

• One might also investigate stochastic integrals where the integrands are not obtained via a
PDE. In this case appropriate structural assumptions should be necessary as in the present
paper the blow-up of the integrands at time 1 is essential and the right notion of fractional
smoothness has to be taken.

There are other settings where weak limits are investigated for rescaled processes that have a
similar structure to

√
nC(τn,β). Such a situation is the consideration of weak limits of rescaled

error processes arising in Euler schemes for diffusions, see [17]. It would be of interest to check
further extensions of the present paper using these results and ideas.

2. Notation

Let B = (Bt )t∈[0,1] be a standard Brownian motion defined on a stochastic basis (	, F ,P,

(Ft )t∈[0,1]), where B0 ≡ 0, all paths are assumed to be continuous, (Ft )t∈[0,1] is the augmen-
tation of the natural filtration of B and F = F1. Let X be either the Brownian motion or the
geometric Brownian motion S = (St )t∈[0,1] with

St := eBt−t/2.
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To treat both cases for X simultaneously we let σ(x) ≡ 1 if X = B and σ(x) = x if X = S, so that
dXt = σ(Xt )dBt . Let g :E → R be a Borel function, where E = R if X = B and E = (0,∞) if
X = S, such that Eg(X1)

2 < ∞. Define the function G by setting

G(t, x) := E
(
g(X1)|Xt = x

) =
{

Eg(x + X1−t ), X = B,
Eg(xX1−t ), X = S.

(2)

Then it follows that G ∈ C∞([0,1) × E) and that G satisfies the partial differential equation

∂G

∂t
(t, x) + σ(x)2

2

∂2G

∂x2
(t, x) = 0 (3)

for (t, x) ∈ [0,1) × E with G(1, x) = g(x). By Itô’s formula,

g(X1) = Eg(X1) +
∫ 1

0

∂G

∂x
(u,Xu)dXu a.s.

Our interest is to approximate the stochastic integral
∫ 1

0
∂G
∂x

(u,Xu)dXu by a Riemann approx-
imation. To this end, given a deterministic time-net τ = (ti)

n
i=0 with 0 = t0 < · · · < tn = 1, we

define the error process C(τ) = (Ct (τ ))t∈[0,1] by

Ct(τ ) :=
∫ t

0

∂G

∂x
(u,Xu)dXu −

n−1∑
i=0

∂G

∂x
(ti ,Xti )(Xti+1∧t − Xti∧t )

for t ∈ [0,1], where we can assume that all paths are continuous. For β ∈ (0,1] we introduce the
time-nets τn,β := (t

n,β
i )ni=0 defined by

t
n,β
i := 1 −

(
1 − i

n

)1/β

.

The smaller the β , the higher the concentration of the time-knots is near to one. In particular,

|tn,β

i+1 − u|
(1 − u)1−β

≤ |tn,β

i+1 − t
n,β
i |

(1 − t
n,β
i )1−β

≤ 1

βn
for u ∈ [tn,β

i , t
n,β

i+1) (4)

and all n = 1,2, . . . and i = 0, . . . , n − 1. The Besov spaces we use can be described by Hermite
expansions as follows:

Definition 2.1. Let dγ (x) = (1/
√

2π) exp(−x2/2)dx be the standard Gaussian measure on R

and let (hk)
∞
k=0 ⊂ L2(γ ) be the orthonormal basis consisting of Hermite polynomials obtained

by

hk(x) := (−1)k√
k! ex2/2 dk

dxk
(e−x2/2).
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Given β ∈ (0,1] and f = ∑∞
k=0 αkhk , we let f ∈ B

β

2,2(γ ) provided that

‖f ‖
B

β
2,2(γ )

:=
( ∞∑

k=0

(k + 1)βα2
k

)1/2

< ∞.

The parameter β is the degree of fractional smoothness. In particular, we have that B1
2,2(γ ) is

the Malliavin Sobolev space D1,2(γ ). For β ∈ (0,1) the above Besov spaces can also be obtained
by the real interpolation method as

B
β

2,2(γ ) = (L2(γ ),D1,2(γ ))β,2,

see [2], Theorem 5.6.1. On the other hand, for β ∈ (0,1], f := g if X = B and f (x) := g(ex−1/2)

if X = S, one has that

‖g(X1)‖2
L2

+
∫ 1

0
(1 − u)1−β

E

∣∣∣∣(σ 2 ∂2G

∂x2

)
(u,Xu)

∣∣∣∣2

du < ∞ (5)

if and only if f ∈ B
β

2,2(γ ) and

‖g(X1)‖2
L2

+ sup
t∈[0,1)

(1 − t)1−β

∫ t

0
E

∣∣∣∣(σ 2 ∂2G

∂x2

)
(u,Xu)

∣∣∣∣2

du < ∞ (6)

if and only if f ∈ (L2(γ ),D1,2(γ ))β,∞. The equivalence (5) follows from [12], proof of Theo-
rem 3.2, and the equivalence (6) is implicitly contained in [12] as well (see the preprint version
of [11], proof of Theorem 1.3). Because from the general interpolation theory it is known that

(L2(γ ),D1,2(γ ))β ′,∞ ⊆ B
β

2,2(γ ) ⊆ (L2(γ ),D1,2(γ ))β,∞ (7)

for 0 < β < β ′ < 1 the reader can deduce from relations (5)–(7), and from [6], page 358, explicit
examples of f ∈ B

β

2,2(γ ). For the binary option mentioned in the introduction we have:

Example 2.2. For g(x) = χ[K,∞)(x) with K ∈ R we have that

g ∈ (L2(γ ),D1,2(γ ))1/2,∞ ⊆
⋂

β∈(0,1/2)

B
β

2,2(γ ).

To formulate our results, given β ∈ (0,1] and t ∈ [0,1), we define

νβ(t) := 1

β
(1 − t)1−β,

Aβ(t) := 1

2

∫ t

0
νβ(u)

[(
σ 2 ∂2G

∂x2

)
(u,Xu)

]2

du,

Zβ(t) := WAβ(t),
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where G is obtained from the function g as in (2) and W = (Wt)t≥0 is a standard Brownian
motion starting at zero defined on some auxiliary probability space (M,μ), where we may and
do assume that all paths are continuous. Finally, we extend the process Aβ by

Aβ(1) := lim
t↑1

Aβ(t),

which might be an extended random variable. In the following �⇒C[0,T ] stands for the weak
convergence in C[0, T ] for some T > 0.

3. The basic result

The basic result of the paper is:

Theorem 3.1. Let β ∈ (0,1] and g(X1) ∈ L2. Then, for all T ∈ [0,1),(√
nCt(τ

n,β)
)
t∈[0,T ] �⇒C[0,T ] (Zβ(t))t∈[0,T ] as n → ∞. (8)

Moreover, the following assertions are equivalent:

(i) One has g ∈ B
β

2,2(γ ) for X = B and g(e·−1/2) ∈ B
β

2,2(γ ) for X = S, respectively.
(ii) On some stochastic basis there exists a continuous square-integrable martingale M =

(Mt)t∈[0,1] such that
√

nC(τn,β) �⇒C[0,1] M .
(iii) One has EAβ(1) < ∞ and for Z̃β(t) := WAβ(t)χ{Aβ(1)<∞} with t ∈ [0,1] it holds that

√
nC(τn,β) �⇒C[0,1] (Z̃β(t))t∈[0,1].

It should be noted that we do not assume any a priori smoothness assumptions for g, only the

integrability g(X1) ∈ L2. Moreover, for g ∈ B
β

2,2(γ )\Bβ ′
2,2(γ ) with 0 < β < β ′ ≤ 1 one has that

sup
t∈[0,1)

E|Zβ ′(t)|2 = ∞,

which follows directly from Section 5.1. Hence the L2-boundedness of M and (Z̃β(t))t∈[0,1] in
Theorem 3.1 is due to the proper choice of the time-nets.

As a consequence of Theorem 3.1 we obtain that the weak convergence and the L2-
boundedness of the rescaled error processes

√
nC(τn,β) imply each other:

Corollary 3.2. For β ∈ (0,1] and g(X1) ∈ L2 the following assertions are equivalent:

(i) One has supn≥1
√

n‖C1(τ
n,β)‖L2 < ∞.

(ii) On some stochastic basis there exists a continuous square-integrable martingale M =
(Mt)t∈[0,1] such that

√
nC(τn,β) �⇒C[0,1] M .
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Proof. In [12], Theorem 3.2, it was shown that Theorem 3.1(i) is equivalent to supn≥1
√

n ×
‖C1(τ

n,β)‖L2 < ∞ so that we are done. �

As usual, having a weak convergence like in Theorem 3.1(iii), one obtains the weak conver-
gence of functionals ϕ(

√
nC(τn,β)) whenever ϕ :C[0,1] → R is continuous.

4. Lp-integrability of the weak limit

Let β ∈ (0,1], X = S, and g(e·−1/2) ∈ B
β

2,2(γ ). Assume that

(P × μ)
(∣∣WAβ(1)χ{Aβ (1)<∞}

∣∣ > λ
) ≤ ψ(λ)

for λ > 0, where (M,μ) is the auxiliary probability space on which the independent Brownian
motion W is defined and ψ : [λ0,∞) → (0,1] is a decreasing bijection for some λ0 ∈ [0,∞)

extended to [0, λ0] by ψ(λ) ≡ 1. Then

lim
n

P
(
ψ−1(ε)n−1/2 + C1(τ

n,β) ≤ 0
) ≤ ε for ε ∈ (0,1),

where Theorem 3.1 and the fact (P×μ)(|WAβ(1)χ{Aβ (1)<∞}| = λ) = 0 for λ > 0 guarantee that the
limit exists.

This means that, considering a European option with pay-off g in the discounted Black–
Scholes model, an increase of the initial capital by ψ−1(ε)n−1/2 gives, for large n, approxi-
mately a shortfall probability of at most ε if the portfolio is re-balanced along the time-net τn,β .
Therefore, in order to minimize the increase of the initial capital to reach the pre-given shortfall
probability ε, we have to find functions ψ that decrease as fast as possible. Starting with this mo-
tivation we proceed as follows in this section, where we consider both cases X = B and X = S

if not stated otherwise.
In Corollary 4.4(i) and Proposition 4.5(iii) we give verifiable conditions that the weak limit in

Theorem 3.1 at time T = 1 has a pth moment, p ∈ [2,∞). In our context verifiable means that
Corollary 4.4(i) can be checked by solving the PDE (3) (see [6]) and that Proposition 4.5(iii) fol-
lows for Hölder continuous functions or from general upper bounds for functions h of bounded
variation (see [1], Theorem 2.4). This is connected to fractional smoothness in terms of Besov
spaces, which follows from the equivalences in Proposition 4.5 and Remark 4.6. As an applica-
tion we demonstrate for the pay-off of the binary option in Example 4.7 that the density of the
time-knots of our time-nets τn,β close to maturity directly affects the integrability of the weak
limit. Corollary 4.11 accompanies this statement by showing how local properties of g change
for the worse the behavior of the error processes C(τn,β) by proving an upper bound for the
Lp-integrability of their rescaled weak limit. Finally, in Remark 4.13 we indicate how one can
deal with exponential tail estimates for the weak limit.

We start by a lemma that ensures integrability properties needed in the rest of the paper (some-
times implicitly).
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Lemma 4.1. For a Borel function g : R → R such that g(X1) ∈ Lp with p ∈ [2,∞) and for
k, l ≥ 0, j ∈ {1,2}, and b ∈ [0,1) one has that

E sup
0≤s≤t≤b

|Xt |k|Xs |l
∣∣∣∣∂jG

∂xj
(s,Xs)

∣∣∣∣p < ∞,

where G is given by (2) and 00 := 1.

The lemma is standard and proved in [7], Lemma 2.3, for p = 2 and integers k, l ≥ 0 using the
hyper-contractivity of the Ornstein–Uhlenbeck semigroup. Exactly the same proof works in our
setting.

As before, we let E = R if X = B and E = (0,∞) if X = S. Given a differentiable function
h :E → R we let

(Ah)(x) := (σh′)(x) − (σ ′h)(x).

The main term is the first one; the second one guarantees that the operator (Ag)(x) is constant in
x in the case g(x) = c0x+c1 with c0, c1 ∈ R, where the error process Ct(τ ) of our approximation
problem vanishes a.s. In the following AG(t, x) always means that A acts on the x-variable of
the function G(t, x).

Definition 4.2. For g(X1) ∈ L2, β ∈ (0,1) and t ∈ [0,1) we let

D
X,β
t g(X1) := 1 − β

2

∫ 1

0
(1 − u)−(1+β)/2[AG(u ∧ t,Xu∧t ) − AG(0,X0)]du.

For β = 1 and t ∈ [0,1) we let D
X,1
t g(X1) := AG(t,Xt ) − AG(0,X0).

The process DX,βg(X1) = (D
β
t g(X1))t∈[0,1) is a square-integrable martingale on the half open

time interval [0,1), because ((σ ∂G
∂x

)(u,Xu))u∈[0,1) and (G(u,Xu))u∈[0,1] are square-integrable
martingales (cf. the remarks in the proof of Proposition 5.1). How should we interpret the case
β ∈ (0,1)? Using the Riemann–Liouville operator of partial integration

(Rαh)(t) := 1

�(α)

∫ t

0
(t − u)α−1h(u)du

for (say) continuous h : [0,1] → R and α > 0 we have

D
X,β
t g(X1) = �

(
3 − β

2

)(
R(1−β)/2[AG(· ∧ t,X·∧t ) − AG(0,X0)]

)
(1).

That means that we differentiate once in the state direction by A and integrate path-wise “back”
(1 −β)/2 times in time. Having in mind the parabolic PDE (3) this can be interpreted as integra-
tion in x by an order 1−β , so that we are left with a fractional differentiation of order β in x. The
point of the construction of DX,βg(X1) is that we may have Lp-singularities of (σ ∂G

∂x
)(t,Xt ) as

t ↑ 1 whereas DX,βg(X1) stays Lp-bounded (see Example 4.7).
A first consequence of Theorem 3.1 is:
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Corollary 4.3. For p ∈ [2,∞), β ∈ (0,1] and g(X1) ∈ L2 the following assertions are equiva-
lent:

(i) On some stochastic basis there exists a continuous Lp-integrable martingale M such that√
nC(τn,β) �⇒C[0,1] M .

(ii) The martingale DX,βg(X1) is bounded in Lp .

Proof. Let β ∈ (0,1) and t ∈ [0,1). By Itô’s formula we get that

(1 − t)(1−β)/2
[(

σ
∂G

∂x

)
(t,Xt ) − (σ ′G)(t,Xt )

]
=

[(
σ

∂G

∂x

)
(0,X0) − (σ ′G)(0,X0)

]

+
∫ t

0
(1 − u)(1−β)/2

(
σ 2 ∂2G

∂x2

)
(u,Xu)dBu

− 1 − β

2

∫ t

0
(1 − u)−(1+β)/2

[(
σ

∂G

∂x

)
(u,Xu) − (σ ′G)(u,Xu)

]
du.

By rearranging we arrive at∫ t

0
(1 − u)(1−β)/2

(
σ 2 ∂2G

∂x2

)
(u,Xu)dBu

= −
[(

σ
∂G

∂x

)
(0,X0) − (σ ′G)(0,X0)

]

+ 1 − β

2

∫ 1

0
(1 − u)−(1+β)/2

[(
σ

∂G

∂x

)
(u ∧ t,Xu∧t ) − (σ ′G)(u ∧ t,Xu∧t )

]
du.

Applying the Burkholder–Davis–Gundy inequalities we deduce that(∫ 1

0
(1 − u)1−β

[(
σ 2 ∂2G

∂x2

)
(u,Xu)

]2

du

)1/2

∈ Lp (9)

if and only if Assertion (ii) of our theorem is satisfied. The equivalence of (9) to (i) follows from
Theorem 3.1, (5) and E|WA|p = E|A|p/2

E|W1|p for A := Aβ(1)χ{Aβ(1)<∞}. The case β = 1 can
be treated in a similar way. �

For β = 1 it follows from Corollary 4.3 that supt∈[0,1) ‖AG(t,Xt )‖Lp < ∞ is equivalent to the
existence of a continuous Lp-integrable martingale M such that

√
nC(τn,1) �⇒C[0,1] M . Now

we treat the case β ∈ (0,1).

Corollary 4.4. For g(X1) ∈ L2 and p ∈ [2,∞) one has the following:
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(i) If 0 < β < α ≤ 1 and

sup
t∈[0,1)

(1 − t)(1−α)/2‖AG(t,Xt )‖Lp < ∞,

then on some stochastic basis there exists a continuous Lp-integrable martingale M such
that

√
nC(τn,β) �⇒C[0,1] M .

(ii) If β ∈ (0,1] and if there exists a continuous Lp-integrable martingale M such that√
nC(τn,β) �⇒C[0,1] M , then

sup
t∈[0,1)

(1 − t)(1−β)/2‖AG(t,Xt )‖Lp < ∞.

Proof. (i) There exists a c > 0 such that, for t ∈ [0,1), we have that

‖DX,β
t g(X1)‖Lp

= 1 − β

2

∥∥∥∥∫ 1

0
(1 − u)−(1+β)/2[AG(u ∧ t,Xu∧t ) − AG(0,X0)]du

∥∥∥∥
Lp

≤ 1 − β

2

∫ 1

0
(1 − u)−(1+β)/2‖AG(u,Xu)‖Lp du + |AG(0,X0)|

≤ c
1 − β

2

∫ 1

0
(1 − u)−(1+β)/2(1 − u)(α−1)/2 du + |AG(0,X0)|

< ∞

and can apply Corollary 4.3.

(ii) From Theorem 3.1 we get that

∥∥∥∥(∫ 1

0
(1 − u)1−β

[(
σ 2 ∂2G

∂x2

)
(u,Xu)

]2

du

)1/2∥∥∥∥
Lp

< ∞

and, using the Burkholder–Davis–Gundy inequalities, the existence of a constant c > 0 such that∥∥∥∥∫ t

0

(
σ 2 ∂2G

∂x2

)
(u,Xu)dBu

∥∥∥∥
Lp

≤ c(1 − t)(β−1)/2

for t ∈ [0,1). But the left-hand side can be re-written as AG(t,Xt ) − AG(0,X0) and we are
done. �

Now we extend [6], Lemma 3.6, from p = 2 to p ∈ (2,∞).
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Proposition 4.5. For p ∈ [2,∞), β ∈ (0,1] and g(X1) ∈ Lp the following assertions are equiv-
alent:

(i) supt∈[0,1)(1 − t)(1−β)/2‖AG(t,Xt )‖Lp < ∞.
(ii) supt∈[0,1)(1 − t)−β/2‖g(X1) − E(g(X1)|Ft )‖Lp < ∞.

(iii) There exists a constant c > 0 such that for all two-dimensional Gaussian random vectors
(Y,Z) with Y,Z ∼ N(0,1) one has

E|h(Y ) − h(Z)|p ≤ cE|Y − Z|βp,

where h := g if X = B and h(x) := g(ex−1/2) if X = S.

From (iii) it is clear that Hölder continuous functions h with exponent β satisfy the properties
of Proposition 4.5. But, for example, one also has

E
∣∣χ[K,∞)(Y ) − χ[K,∞)(Z)

∣∣p ≤ cE|Y − Z|βp

for K ∈ R and β = 1
p

, where c > 0 is independent from Y and Z, as shown in Example 4.7
below.

Proof of Proposition 4.5. By g(X1) ∈ Lp it follows that assertion (i) is equivalent to the exis-
tence of a c > 0 such that ∥∥∥∥(

σ
∂G

∂x

)
(t,Xt )

∥∥∥∥
Lp

≤ c(1 − t)(β−1)/2.

(i) �⇒ (ii) is clear as p ∈ [2,∞) an interchange of the Lp- and L2-norm and the Burkholder–
Davis–Gundy inequalities give that

‖g(X1) − E(g(X1)|Ft )‖Lp ≤ cp

(∫ 1

t

∥∥∥∥(
σ

∂G

∂x

)
(s,Xs)

∥∥∥∥2

Lp

ds

)1/2

≤ cpc

(∫ 1

t

(1 − s)β−1 ds

)1/2

≤ cpc√
β

(1 − t)β/2.

(ii) �⇒ (i) Here it is known (see [19] and [9], Lemmas A.1 and A.2) that for t ∈ [0,1), a.s.,(
σ

∂G

∂x

)
(t,Xt ) = E

(
g(X1)

B1 − Bt

1 − t

∣∣∣Ft

)
= E

(
[g(X1) − E(g(X1)|Ft )]B1 − Bt

1 − t

∣∣∣Ft

)
.
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For 1 = 1
p

+ 1
q

and cq := ‖B1‖Lq this implies that, a.s.,∣∣∣∣(σ
∂G

∂x

)
(t,Xt )

∣∣∣∣
≤ (

E
(|g(X1) − E(g(X1)|Ft )|p|Ft

))1/p
(

E

(∣∣∣∣B1 − Bt

1 − t

∣∣∣∣q ∣∣∣Ft

))1/q

= (
E

(|g(X1) − E(g(X1)|Ft )|p|Ft

))1/p
cq(1 − t)−1/2.

By integration the desired inequality follows since∥∥∥∥(
σ

∂G

∂x

)
(t,Xt )

∥∥∥∥
Lp

≤ cq(1 − t)−1/2‖g(X1) − E(g(X1)|Ft )‖Lp

≤ cqc(1 − t)(β−1)/2.

(iii) is a reformulation of (ii) because

‖g(X1) − G(t,Xt )‖Lp

= ‖h(B1) − E(h(B1)|Ft )‖Lp

= ‖h(B1) − Ẽh(Bt + B̃1−t )‖Lp

≤ ‖h(B1) − h(Bt + B̃1−t )‖Lp

≤ ‖h(B1) − E(h(B1)|Ft )‖Lp + ‖E(h(B1)|Ft ) − h(Bt + B̃1−t )‖Lp

= 2‖g(X1) − G(t,Xt )‖Lp ,

where B̃ is a Brownian motion on an auxiliary stochastic basis with expected value Ẽ. For
the computation above we use that (B1,Bt + B̃1−t ) is distributed like a two-dimensional
Gaussian random vector (Y,Z) with Y,Z ∼ N(0,1) and cov(Y,Z) = t , and that ‖Y − Z‖Lβp ∼√

1 − cov(Y,Z) (the same argument was exploited in [12], proof of Corollary 2.3). �

Remark 4.6. Proposition 4.5(iii) gives the direct link to the spaces E α
p considered in [16],

page 428, with

E β
p =

{
g ∈ Lp(γ ) :

∫ ∞

0
t−1−βp/2

E
∣∣g(g1) − g

(
e−t/2g1 +

√
1 − e−t g2

)∣∣p dt < ∞
}
,

where β ∈ (0,1), p ∈ [2,∞), and g1 and g2 are independent standard Gaussian random vari-
ables. There is a slight difference between these spaces and the condition we use: for X = B and
g(x) = χ[K,∞)(x) we have that∥∥∥∥∂G

∂x
(t,Bt )

∥∥∥∥
Lp

∼ (1 − t)1/(2p)−1/2
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as shown in Example 4.7 below. This implies that the conditions of Proposition 4.5 are satisfied
for β = 1

p
. The arguments of the proof of Proposition 4.5 also give

E
∣∣g(g1) − g

(
e−t/2g1 +

√
1 − e−t g2

)∣∣p ∼ (1 − e−t/2)1/2,

so that

χ[K,∞) /∈ E 1/p
p but χ[K,∞) ∈ E β

p whenever 0 < β <
1

p
.

Example 4.7. Let g(x) := χ[K,∞)(x) where K > 0 if X = S and let β ∈ (0, 1
2 ). Then one has

sup
{
p ∈ [2,∞) : the weak limit lim

n

√
nC(τn,β) is Lp-integrable

}
= 1

β
.

Proof. We have only to consider the case X = B: assuming gB(B1) = χ[KB,∞)(B1) =
χ[KS,∞)(S1) = gS(S1), one gets for the solutions of the corresponding backward PDEs, GB

and GS , that ∂GB

∂x
(t,Bt ) = St

∂GS

∂x
(t, St ). Hence, DB,βgB(B1) is bounded in Lp if and only if

DS,βgS(S1) is bounded in Lp . Therefore we may assume that X = B so that

G(t, x) =
∫ ∞

K−x

e−y2/(2(1−t)) dy√
2π(1 − t)

and
∂G

∂x
(t, x) = e−(K−x)2/(2(1−t)) 1√

2π(1 − t)

for t ∈ [0,1). Then for p ∈ [2,∞) and t ∈ [0,1) we get that∥∥∥∥∂G

∂x
(t,Bt )

∥∥∥∥
Lp

∼ (1 − t)1/(2p)−1/2,

which gives the assertion by Corollary 4.4. �

Example 4.8. If g(X1) ∈ ⋂
p∈[2,∞) Lp and if there exist θ ∈ [0,1/2) and q, c ∈ (0,∞) such that∣∣∣∣(σ

∂G

∂x

)
(t, x)

∣∣∣∣ ≤ c
1 + |x|q
(1 − t)θ

,

then

sup
{
p ∈ [2,∞) : the weak limit lim

n

√
nC(τn,β) is Lp-integrable

}
= ∞

for β ∈ (0,1 − 2θ). In particular, it holds for X = S, Hölder continuous g : R → R of exponent
η ∈ (0,1] and θ = 1−η

2 .

Proof. The first part follows by Corollary 4.4 with α := 1 − 2θ . So assume |g(x) − g(y)| ≤
d|x − y|η for some d > 0 and X = S. Then it is known that∣∣∣∣x ∂G

∂x
(t, x)

∣∣∣∣ =
∣∣∣∣Eg(xS1−t )

B1−t

1 − t

∣∣∣∣ =
∣∣∣∣E[g(xS1−t ) − g(x)]B1−t

1 − t

∣∣∣∣
≤ d ′|x|η(E|S1−t − 1|2)η/2(1 − t)−1/2 ≤ d ′′|x|η(1 − t)(η−1)/2. �
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Finally, we exploit Proposition 4.5(iii) to show that local properties of g yield upper bounds for
the integrability of the weak limit from Theorem 3.1. The local properties of g are formulated by
the following version of a sharp function: given p ∈ [1,∞), a locally Lp-integrable g : R → R,
x0 ∈ R and ε > 0, we let

OSCp(g, x0, ε) :=
(

1

4ε2

∫
Q(x0,ε)

|g(y) − g(z)|p dy dz

)1/p

,

where Q(x0, ε) := {(y, z) : |y − x0| ≤ ε, |z − x0| ≤ ε} ⊆ R
2.

Lemma 4.9. For all p ∈ [1,∞) and x0 ∈ R there is a constant c > 0 such that

OSCp

(
g, x0,

√
1 − t

) ≤ c(1 − t)−1/(2p)‖g(Y ) − g(Z)‖Lp

for all t ∈ [0,1), g ∈ Lp(γ ), and two-dimensional Gaussian random vectors (Y,Z) with Y,Z ∼
N(0,1) and cov(Y,Z) = t .

Proof. Given t ∈ [0,1), let (Y,Z) be the above two-dimensional Gaussian random vector, that
is, we have the covariance

Ct :=
(

1 t

t 1

)
so that C−1

t := 1

1 − t2

(
1 −t

−t 1

)
and the density of the law of (Y,Z) can be computed as

pt (y, z) := 1

2π
√

1 − t2
e−(y2−2tyz+z2)/(2(1−t2)).

Letting (y, z) ∈ Q(x0,
√

1 − t) with y = x0 + r , z = x0 + s and r, s ∈ [−√
1 − t,

√
1 − t] we get

that

y2 − 2tyz + z2 = 2(1 − t)x0[x0 + s + r] + r2 + s2 − 2trs

so that |y2 − 2tyz + z2| ≤ A(1 − t) with A = A(x0) > 0 and

pt(y, z) ≥ 1

2π
√

1 − t2
e−A/(2(1+t)) ≥ 1

16eA
√

1 − t
for (y, z) ∈ Q

(
x0,

√
1 − t

)
.

Consequently,

E|g(Y ) − g(Z)|p ≥ 1

16eA
√

1 − t

∫
Q(x0,

√
1−t)

|g(y) − g(z)|p dy dz

= 1

4eA

√
1 − t

(
1

4(1 − t)

∫
Q(x0,

√
1−t)

|g(y) − g(z)|p dy dz

)
. �
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Remark 4.10. We use Lemma 4.9 implicitly in the proof of Corollary 4.11 below to get a state-
ment (in a sense) opposite to [25], Corollary on page 185: Instead of deducing Hölder continuity
properties of g we assume that the local oscillation of g in x0 ∈ R is singular of order η ≥ 0 to
deduce the upper bound β ≤ 1

p
− η for our fractional smoothness.

Corollary 4.11. Let X = B , p ∈ [2,∞), η ∈ [0, 1
2 ), β ∈ (0,1] and g ∈ Lp(γ ).

(i) If there exists a continuous Lp-integrable martingale M such that

√
nC(τn,β) �⇒C[0,1] M

and
(ii) if there exists an x0 ∈ R such that lim sup1≥ε→0 εη OSCp(g, x0, ε) > 0,

then, necessarily, p ≤ 1
β+η

.

Note that OSCp(g, x0, ε) is monotone in p, so that we can use OSC2(g, x0, ε) in (ii) as well.

Proof of Corollary 4.11. By Corollary 4.4, Assumption (i) ensures that

sup
t∈[0,1)

(1 − t)(1−β)/2‖AG(t,Bt )‖Lp < ∞,

so that the statements of Proposition 4.5 are valid for this β . On the other hand, Assumption (ii)
ensures a constant d > 0 and a sequence tn ↑ 1 such that, by Lemma 4.9 and Proposition 4.5(iii),

1

d

(√
1 − tn

)−η ≤ OSCp

(
g, x0,

√
1 − tn

)
≤ c(4.9)(1 − tn)

−1/(2p)‖g(Yn) − g(Zn)‖Lp

≤ c(4.9)c(4.5)(1 − tn)
−1/(2p)(1 − tn)

β/2,

where cov(Yn,Zn) = tn. But this implies β + η ≤ 1
p

. �

Example 4.12. (i) Let p ∈ [1,∞), η ∈ [0,1/p) and define g(x) := 0 for x ≤ 0 and g(x) := x−η

for x > 0. Then

1

c
ε−η ≤ OSCp(g,0, ε) ≤ cε−η for ε ∈ (0,1] where c = c(p,η) > 0.

(ii) Let g : R → R be locally Lp-integrable, p ∈ [1,∞), such that there are x0, y0 ∈ R and
δ > 0 with g(x) ≤ y0 − δ for x ∈ (x0 − δ, x0) and g(x) ≥ y0 + δ for x ∈ (x0, x0 + δ). Then

lim sup
1≥ε→0

OSCp(g, x0, ε) ≥ 21−1/pδ.
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Remark 4.13. So far we considered Lp-bounds for the weak limit and used the Burkholder–
Davis–Gundy inequalities that preserve these Lp-bounds. In the limiting case p = ∞ we have
to proceed differently and exploit for a random variable Z the following equivalence: given
r ∈ (0,∞) there is a c > 0 such that

P(|Z| > λ) ≤ ce−λr/c for λ > 0 if and only if sup
p∈[1,∞)

p−1/r‖Z‖Lp < ∞.

Letting A := Aβ(1)χ{Aβ(1)<∞} and applying this equivalence to

‖WA‖Lp = ∥∥√
A

∥∥
Lp

‖W1‖Lp ∼ √
p
∥∥√

A
∥∥

Lp

for p ∈ [1,∞), one can compare the tail behavior of WA and that of
√

A. In particular,

‖A‖L∞ < ∞ (10)

if and only if there exists a constant c > 0 such that

P
(∣∣WAβ(1)χ{Aβ (1)<∞}

∣∣ > λ
) ≤ ce−λ2/c for λ > 0.

A typical example for (10) is obtained if there exist θ ∈ [0,1) and c > 0 such that∣∣∣∣(σ 2 ∂2G

∂x2

)
(t, x)

∣∣∣∣ ≤ c

(1 − t)θ
. (11)

Then obviously ‖Aβ(1)‖L∞ < ∞ is satisfied for β ∈ (0,2(1−θ))∩(0,1]. In particular, condition
(11) holds for X = B and η-Hölder continuous g : R → R and for X = S if g(ex) is η-Hölder
continuous, where θ = 1 − η

2 ∈ [ 1
2 ,1), η ∈ (0,1]. Here one can follow the same pattern as in

Example 4.8 because

∂2G

∂x2
(t, x) = Eg

(
x + √

1 − tB1
)B2

1 − 1

1 − t

for X = B and

x2 ∂2G

∂x2
(t, x) = E

(
g(xS1−t )

[
B2

1−t − (1 − t)

(1 − t)2
− B1−t

1 − t

])
for X = S.

5. Proof of Theorem 3.1

Throughout this section we let

H(t) :=
∥∥∥∥(

σ 2 ∂2G

∂x2

)
(t,Xt )

∥∥∥∥
L2

for t ∈ [0,1)

and obtain a continuous and non-decreasing function H : [0,1) → [0,∞) (see [12], Lemma 3.9).
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5.1. Proof of (iii) �⇒ (ii) �⇒ (i)

For the first implication we simply take Mt := Z̃β(t) and the natural filtration of M . For the
second one we remark that (ii) implies that

1

2

∫ 1

0
νβ(u)H(u)2 du = sup

t∈[0,1)

E
1

2

∫ t

0
νβ(u)

[(
σ 2 ∂2G

∂x2

)
(u,Xu)

]2

du

= sup
t∈[0,1)

EZβ(t)2

= sup
t∈[0,1)

EM2
t

≤ EM2
1 < ∞

so that ∫ 1

0
(1 − u)1−βH(u)2 du < ∞.

Now Assertion (i) follows from (5).

5.2. Preparations for the proof of (i) �⇒ (iii)

First we decompose the error process. For t ∈ [0,1] and a time-net τ = (ti)
n
i=0, 0 = t0 < · · · <

tn = 1, we obtain, P-a.s., that

Ct(τ ) =
[∫ t

0

∂G

∂x
(u,Xu)dXu −

n−1∑
i=0

∂G

∂x
(ti ,Xti )(Xti+1∧t − Xti∧t )

]

=
n−1∑
i=0

∫ ti+1∧t

ti∧t

[
∂G

∂x
(u,Xu) − ∂G

∂x
(ti ,Xti )

− ∂2G

∂x2
(ti ,Xti )(Xu − Xti )

]
dXu

+
n−1∑
i=0

∫ ti+1∧t

ti∧t

[σ(Xu) − σ(Xti )]
∂2G

∂x2
(ti ,Xti )(Xu − Xti )dBu

+
n−1∑
i=0

∫ ti+1∧t

ti∧t

(
σ

∂2G

∂x2

)
(ti ,Xti )(Xu − Xti )dBu

=: I 1
t (τ ) + I 2

t (τ ) + I 3
t (τ ).

The appropriate L2-integrability of the integrands in the decomposition above is obtained by
standard arguments (see, e.g., Lemma 4.1 and its proof).
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Estimation of I 1(τ ) and I 2(τ ).

First we show that a Taylor expansion of order one of the integrand of the stochastic integral∫ 1
0

∂G
∂x

(u,Xu)dXu gives an L2-approximation rate of o(1/
√

n) provided that appropriate time-
nets are taken.

Proposition 5.1. Let β ∈ (0,1], and g ∈ B
β

2,2(γ ) for X = B and g(e·−1/2) ∈ B
β

2,2(γ ) for X = S,
respectively. Then one has that

lim
n

nE|I 1
1 (τn,β)|2 = lim

n
nE

∣∣∣∣∣
n−1∑
i=0

∫ t
n,β
i+1

t
n,β
i

[
∂G

∂x
(u,Xu) − ∂G

∂x
(t

n,β
i ,X

t
n,β
i

)

− ∂2G

∂x2
(t

n,β
i ,X

t
n,β
i

)(Xu − X
t
n,β
i

)

]
dXu

∣∣∣∣∣
2

= 0.

Proof. (a) Let 0 ≤ a < b < 1 and

�(u,x) = �(u,x,ω)

:=
[
∂G

∂x
(u, x) − ∂G

∂x
(a,Xa(ω)) − ∂2G

∂x2
(a,Xa(ω))

(
x − Xa(ω)

)]
σ(x)

for u ∈ [a, b] and x ∈ E, where we shall suppress ω in the following. By a computation we get
that

∂�

∂u
(u, x) + σ(x)2

2

∂2�

∂x2
(u, x) = −∂2G

∂x2
(a,Xa)σ

′(x)σ (x)2.

From this we conclude that

∂�2

∂u
(u, x) + σ(x)2

2

∂2�2

∂x2
(u, x)

= 2�(u,x)

[
∂�

∂u
(u, x) + σ(x)2

2

∂2�

∂x2
(u, x)

]
+ σ(x)2

[
∂�

∂x
(u, x)

]2

= −2�(u,x)
∂2G

∂x2
(a,Xa)σ

′(x)σ (x)2 + σ(x)2
[
∂�

∂x
(u, x)

]2

= −2�(u,x)
∂2G

∂x2
(a,Xa)σ

′(x)σ (x)2

+
[
�(u,x)σ ′(x) +

[
∂2G

∂x2
(u, x) − ∂2G

∂x2
(a,Xa)

]
σ(x)2

]2

.
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This yields∣∣∣∣∂�2

∂u
(u, x) + σ(x)2

2

∂2�2

∂x2
(u, x)

∣∣∣∣ ≤ 2

∣∣∣∣�(u,x)
∂2G

∂x2
(a,Xa)σ (x)2

∣∣∣∣
+ 2�(u,x)2 + 2

[
∂2G

∂x2
(u, x) − ∂2G

∂x2
(a,Xa)

]2

σ(x)4.

Moreover, by Itô’s formula,

E�(b,Xb)
2 = E�(a,Xa)

2 + E

∫ b

a

[
∂�2

∂u
(u,Xu) + σ(Xu)

2

2

∂2�2

∂x2
(u,Xu)

]
du.

In fact, first we condition on Xa = y, then we apply Itô’s formula on [a, b] to obtain
(conditionally) the equation with b replaced by τN defined as the minimum of b, inf{s ∈
[a, b] : |(∂(�2)/∂x)(u,Xu)| ≥ N} and inf{s ∈ [a, b] : |Xu − y| ≥ N if X = B, |Xu/y| /∈ ((1/N),

N) if X = S}. Finally we let N → ∞ by the help of Lemma 4.1 (cf. [10], proof of Theorem 6,
for the conditioning argument). One more integration to remove the condition Xa = y gives the
equation we want.

Now Gronwall’s lemma gives

E�(b,Xb)
2 ≤ c(12)

[∫ b

a

E

∣∣∣∣�(u,Xu)
∂2G

∂x2
(a,Xa)σ (Xu)

2
∣∣∣∣du

(12)

+
∫ b

a

E

[
∂2G

∂x2
(u,Xu) − ∂2G

∂x2
(a,Xa)

]2

σ(Xu)
4 du

]
for some absolute constant c(12) > 0.

(b) Let i ∈ {0, . . . , n − 1} and u ∈ [tn,β
i , t

n,β

i+1) and set

�n
i (u, x) :=

[
∂G

∂x
(u, x) − ∂G

∂x
(t

n,β
i ,X

t
n,β
i

) − ∂2G

∂x2
(t

n,β
i ,X

t
n,β
i

)(x − X
t
n,β
i

)

]
σ(x).

From step (a) we conclude that

nE

∣∣∣∣∣
n−1∑
i=0

∫ t
n,β
i+1

t
n,β
i

[
∂G

∂x
(u,Xu) − ∂G

∂x
(t

n,β
i ,X

t
n,β
i

)

− ∂2G

∂x2
(t

n,β
i ,X

t
n,β
i

)(Xu − X
t
n,β
i

)

]
dXu

∣∣∣∣∣
2

= n

n−1∑
i=0

∫ t
n,β
i+1

t
n,β
i

E�n
i (u,Xu)

2 du



944 S. Geiss and A. Toivola

≤ c(12)n

n−1∑
i=0

∫ t
n,β
i+1

t
n,β
i

[∫ u

t
n,β
i

E

∣∣∣∣�n
i (v,Xv)

∂2G

∂x2
(t

n,β
i ,X

t
n,β
i

)σ (Xv)
2
∣∣∣∣dv

+
∫ u

t
n,β
i

E

[
∂2G

∂x2
(v,Xv) − ∂2G

∂x2
(t

n,β
i ,X

t
n,β
i

)

]2

σ(Xv)
4 dv

]
du

= c(12)n

n−1∑
i=0

∫ t
n,β
i+1

t
n,β
i

∫ u

t
n,β
i

An
i (v)2 dv du

with

An
i (v)2 := E

∣∣∣∣�n
i (v,Xv)

∂2G

∂x2
(t

n,β
i ,X

t
n,β
i

)σ (Xv)
2
∣∣∣∣

+ E

[
∂2G

∂x2
(v,Xv) − ∂2G

∂x2
(t

n,β
i ,X

t
n,β
i

)

]2

σ(Xv)
4

for v ∈ [tn,β
i , t

n,β

i+1). Using (4) we continue by (cf. [12])

c(12)n

n−1∑
i=0

∫ t
n,β
i+1

t
n,β
i

∫ u

t
n,β
i

An
i (v)2 dv du = c(12)n

n−1∑
i=0

∫ t
n,β
i+1

t
n,β
i

(t
n,β

i+1 − u)An
i (u)2 du

≤ c(12)

β

n−1∑
i=0

∫ t
n,β
i+1

t
n,β
i

(1 − u)1−βAn
i (u)2 du

= c(12)

β

∫ 1

0
(1 − u)1−βψn(u)du

with

ψn(u) :=
n−1∑
i=0

χ[tn,β
i ,t

n,β
i+1)

(u)An
i (u)2.

(c) Now we show that

ψn(u) ≤ c(13)|H(u) ∨ ‖g(X1)‖L2 |2 (13)

for some absolute constant c(13) > 0. Assume again a = t
n,β
i ≤ u < t

n,β

i+1. Since the process

((σ 2 ∂2G

∂x2 )(u,Xu))u∈[0,1) ⊆ L2 is a martingale (the argument for X = S is given in [8]; the case
X = B can be treated in the same way) we get that

E

[
∂2G

∂x2
(u,Xu) − ∂2G

∂x2
(a,Xa)

]2

σ(Xu)
4 ≤ c(14)H(u)2 (14)
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for some absolute constant c(14) > 0. The first term of An
i (u)2 can be bounded by

E

∣∣∣∣�n
i (u,Xu)σ (Xu)

2 ∂2G

∂x2
(a,Xa)

∣∣∣∣
= E

∣∣∣∣[∂G

∂x
(u,Xu) − ∂G

∂x
(a,Xa) − ∂2G

∂x2
(a,Xa)(Xu − Xa)

]
σ(Xu)σ (Xu)

2 ∂2G

∂x2
(a,Xa)

∣∣∣∣
≤ E

∣∣∣∣[σ(Xu)
∂G

∂x
(u,Xu)

][
σ(Xa)

2 ∂2G

∂x2
(a,Xa)

][
σ(Xu)

σ (Xa)

]2∣∣∣∣
+ E

∣∣∣∣[σ(Xa)
∂G

∂x
(a,Xa)

][
σ(Xa)

2 ∂2G

∂x2
(a,Xa)

][
σ(Xu)

σ (Xa)

]3∣∣∣∣
+ Eσ(Xa)

4
[
∂2G

∂x2
(a,Xa)

]2
σ(Xu)

3|Xu − Xa|
σ(Xa)4

.

Since ((σ ∂G
∂x

)(u,Xu))u∈[0,1) is an L2-martingale (for a similar reason the process ((σ 2 ∂2G

∂x2 )(u,

Xu))u∈[0,1) shares this property) we finally get that

E

∣∣∣∣�n
i (u,Xu)σ (Xu)

2 ∂2G

∂x2
(t

n,β
i ,X

t
n,β
i

)

∣∣∣∣
(15)

≤ c(15)

[
H(u)

∥∥∥∥(
σ

∂G

∂x

)
(u,Xu)

∥∥∥∥
L2

+ H(u)2
]

for some absolute constant c(15) > 0. Using E|(σ ∂G
∂x

)(u,Xu)|2 = ∑∞
k=1 kα2

ku
k−1 for g =∑∞

k=0 αkhk if X = B and g(e·−(1/2)) = ∑∞
k=0 αkhk if X = S, where (hk)

∞
k=0 are the normal-

ized Hermite polynomials and [12], Lemma 3.9, we get that∥∥∥∥(
σ

∂G

∂x

)
(u,Xu)

∥∥∥∥
L2

≤ c(16)[‖g(X1)‖L2 + H(u)], (16)

where c(16) > 0 is an absolute constant, so that

ψn(u) ≤ c(15)

[
H(u)

∥∥∥∥(
σ

∂G

∂x

)
(u,Xu)

∥∥∥∥
L2

+ H(u)2
]

+ c(14)H(u)2

≤ [
c(14) + c(15)

]
H(u)2 + c(15)c(16)H(u)[‖g(X1)‖L2 + H(u)]

and inequality (13) follows.
(d) Now we can conclude the proof. Because of (5) the assumption of Proposition 5.1 implies

that ∫ 1

0
(1 − u)1−β |H(u) ∨ ‖g(X1)‖L2 |2 du < ∞
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and it remains to show that

lim
n

ψn(u) = 0 for all u ∈ [0,1).

But this follows from

lim
n

E

n−1∑
i=0

∣∣∣∣�n
i (u,Xu)

∂2G

∂x2
(t

n,β
i ,X

t
n,β
i

)σ (Xu)
2
∣∣∣∣χ[tn,β

i ,t
n,β
i+1)

(u) = 0

and

lim
n

E

n−1∑
i=0

[
∂2G

∂x2
(u,Xu) − ∂2G

∂x2
(t

n,β
i ,X

t
n,β
i

)

]2

σ(Xu)
4χ[tn,β

i ,t
n,β
i+1)

(u) = 0

by dominated convergence and Lemma 4.1. �

Lemma 5.2. For β ∈ (0,1] and g(X1) ∈ L2 one has that

lim
n

nE|I 2
1 (τn,β)|2 = lim

n
nE

∣∣∣∣∣
n−1∑
i=0

∫ t
n,β
i+1

t
n,β
i

[σ(Xu) − σ(X
t
n,β
i

)]

× ∂2G

∂x2
(t

n,β
i ,X

t
n,β
i

)(Xu − X
t
n,β
i

)dBu

∣∣∣∣∣
2

= 0.

Proof. For X = B the integrand vanishes so that we would only need to check the case X = S.
This can be done by observing

E

∣∣∣∣∣
n−1∑
i=0

∫ t
n,β
i+1

t
n,β
i

[Su − S
t
n,β
i

]2 ∂2G

∂x2
(t

n,β
i , S

t
n,β
i

)dBu

∣∣∣∣∣
2

=
n−1∑
i=0

∫ t
n,β
i+1

t
n,β
i

E

∣∣∣∣S2
t
n,β
i

∂2G

∂x2
(t

n,β
i , S

t
n,β
i

)

∣∣∣∣2

E

∣∣∣∣Su − S
t
n,β
i

S
t
n,β
i

∣∣∣∣4

du,

exploiting that H is continuous and non-decreasing, and by using∫ 1

0
(1 − u)H(u)2 du < ∞,

which is true for all g with g(X1) ∈ L2 and a consequence of [12], Lemma 3.9 (cf. (5)). �

Preparations for I 3(τ ).

The process I 3(τ ) is responsible for the structure of the weak limit of the renormalized error
process. The next lemma is a counterpart of [22], Lemma 1.5. For the convenience of the reader
we give some details concerning the proof in the Appendix.
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Lemma 5.3. Let k ∈ {1,2}, T ∈ (0,1] and let a = (at )t∈[0,T ] be a continuous process. Define

ψn,k
s (a) := nk/2

n−1∑
i=0

a
t
n,β
i

(Xs − X
t
n,β
i

σ (X
t
n,β
i

)

)k

X[tn,β
i ,t

n,β
i+1)

(s)

for s ∈ [0, T ]. Then

lim
n

[
sup

t∈[0,T ]

∣∣∣∣ ∫ t

0
ψn,1

s (a)ds

∣∣∣∣ + sup
t∈[0,T ]

∣∣∣∣ ∫ t

0
ψn,2

s (a)ds − 1

2

∫ t

0
νβ(s)as ds

∣∣∣∣] = 0

in probability, where νβ(s) = (1/β)(1 − s)1−β .

Lemma 5.4. For T ∈ (0,1) one has that∥∥∥ sup
t∈[T ,1]

∣∣√nCt (τ
n,β) − √

nCT (τn,β)
∣∣∥∥∥

L2

≤ c√
β

(∫ 1

(T −1/(βn))+
(1 − s)1−βH(s)2 ds

)1/2

,

where H(s)2 = E((σ 2 ∂2G

∂x2 )(s,Xs))
2 and c > 0 is an absolute constant.

Proof. Let T
β
n := sup{tn,β

i : t
n,β
i ≤ T , i = 0, . . . , n − 1}. Then, by Doob’s maximal inequality

and [10], Proof of Theorem 6,∥∥∥ sup
t∈[T ,1]

|Ct(τ
n,β) − CT (τn,β)|

∥∥∥
L2

≤ 4‖C1(τ
n,β) − C

T
β
n
(τn,β)‖L2

≤ c

(
n−1∑
i=0

∫ t
n,β
i+1∨T

β
n

t
n,β
i ∨T

β
n

(t
n,β

i+1 − s)H(s)2 ds

)1/2

≤ c sup
i=0,...,n−1

s∈[tn,β
i ,t

n,β
i+1)

∣∣∣∣ t
n,β

i+1 − s

(1 − s)1−β

∣∣∣∣1/2(∫ 1

T
β
n

(1 − s)1−βH(s)2 ds

)1/2

≤ c√
βn

(∫ 1

(T −1/(βn))+
(1 − s)1−βH(s)2 ds

)1/2

,

where c > 0 is an absolute constant and we have used (4). �

The next theorem is due to Rootzén and was formulated for T = 1.
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Theorem 5.5 ([22], Theorem 1.2). Let T ∈ [0,1]. Suppose that ψn = (ψn
t )t∈[0,T ], n = 1,2, . . . ,

are progressively measurable processes and that

lim
n

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0
[ψn

s ]2 ds − At

∣∣∣∣ = 0 in probability

for some continuous process A = (At )t∈[0,T ] and that

lim
n

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0
ψn

s ds

∣∣∣∣ = 0 in probability.

Then (∫ t

0
ψn

s dBs

)
t∈[0,T ]

�⇒C[0,T ] (WAt )t∈[0,T ] for n → ∞,

where the Brownian motion W is independent from F .

Proof of Theorem 3.1. Combining Theorem 5.5 and Lemma 5.3 for at := (σ 2 ∂2G

∂x2 )(t,Xt ) in

case k = 1, at := [(σ 2 ∂2G

∂x2 )(t,Xt )]2 in case k = 2 and At := Aβ(t) yields to(√
nI 3

t (τ n,β)
)
t∈[0,T ] �⇒C[0,T ]

(
WAβ(t)

)
t∈[0,T ] = (Zβ(t))t∈[0,T ]

for all T ∈ [0,1). Because of Proposition 5.1, Lemma 5.2 and Doob’s maximal inequality
(note that (I 1

t (τ n,β))t∈[0,T ] and (I 2
t (τ n,β))t∈[0,T ] are L2-martingales (cf. Lemma 4.1) so that√

n supt∈[0,T ] |I k
t (τ n,β)| →L2 0 as n → ∞ for k = 1,2), we can deduce that(√

nCt (τ
n,β)

)
t∈[0,T ] �⇒C[0,T ] (Zβ(t))t∈[0,T ] as n → ∞. (17)

Proof of (i) ⇒ (iii): First, we observe that (i) implies∫ 1

0
(1 − s)1−βH(s)2 ds < ∞

according to (5) so that EAβ(1) < ∞. Given a continuous and bounded ϕ :C[0,1] → R we have
to prove that

lim
n

Eϕ(Yn) = Eϕ(Z̃β),

where Yn
t := √

nCt (τ
n,β). We can restrict ourselves to uniformly continuous and bounded ϕ (cf.

[3]). Let T ∈ (0,1), YT,n := (Y n
t∧T )t∈[0,1], and Z̃T

β := (Z̃β(t ∧ T ))t∈[0,1]. Then

|Eϕ(Yn) − Eϕ(Z̃β)| ≤ |Eϕ(Yn) − Eϕ(YT,n)| + |Eϕ(YT,n) − Eϕ(Z̃T
β )|

+ |Eϕ(Z̃T
β ) − Eϕ(Z̃β)|.
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We fix ε > 0 and find a δ > 0 such that |ϕ(f ) − ϕ(g)| < ε for ‖f − g‖C[0,1] < δ. Then

|Eϕ(Yn) − Eϕ(YT,n)|
≤

∫
{‖Yn−YT,n‖C[0,1]≥δ}

|ϕ(Yn) − ϕ(YT,n)|dP

+
∫

{‖Yn−YT,n‖C[0,1]<δ}
|ϕ(Yn) − ϕ(Y T,n)|dP

≤ 2‖ϕ‖∞P
(‖Yn − YT,n‖C[0,1] ≥ δ

) + ε

≤ 2‖ϕ‖∞
c2
(5.4)

δ2β

∫ 1

(T −1/(βn))+
(1 − s)1−βH(s)2 ds + ε,

where we have used Lemma 5.4. Let T0 ∈ (0,1) be such that

2‖ϕ‖∞
c2
(5.4)

δ2β

∫ 1

T0

(1 − s)1−βH(s)2 ds ≤ ε

and

|Eϕ(Z̃T
β ) − Eϕ(Z̃β)| ≤ ε

for T ∈ [T0,1) (note that ‖Z̃T
β (ω) − Z̃β(ω)‖C[0,1] → 0 as T ↑ 1 for all ω ∈ 	). Fix n0 ≥ 1 such

that 1/(βn0) ≤ (1 − T0)/2. Hence, for T ∈ [(T0 + 1)/2,1) and n ≥ n0 one has T − 1
βn

≥ T0 and

|Eϕ(Yn) − Eϕ(Z̃β)| ≤ 3ε + |Eϕ(Y T,n) − Eϕ(Z̃T
β )|.

Defining the bounded and continuous function ϕT :C[0, T ] → R by ϕT (g) := ϕ(f ) with f (t) :=
g(t ∧ T ), we get

lim
n

Eϕ(YT,n) = lim
n

EϕT

(
(Y n

t )t∈[0,T ]
) = EϕT

(
(Z̃β(t))t∈[0,T ]

) = Eϕ(Z̃T
β ),

where we used (17), and

lim sup
n

|Eϕ(Yn) − Eϕ(Z̃β)| ≤ 3ε.

Since this is true for all ε > 0 we are done. �

Appendix

First we formalize some ideas of [22].

Lemma A.1. Let T ∈ (0,1] and μn(ω) = μ+
n (ω) − μ−

n (ω), where μ+
n (ω) and μ−

n (ω) are finite
Borel measures on [0, T ] for ω ∈ 	. Assume that
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(i) μ±
n ([0, t]) are measurable for all t ∈ [0, T ],

(ii) supn E|(μ+
n + μ−

n )([0, T ])|p < ∞ for some p ∈ (0,∞) and
(iii) there is a finite Borel measure μ on [0, T ] such that, in probability,

lim
n

sup
t∈[0,T ]

|μn([0, t]) − μ([0, t])| = 0.

Then, given a continuous process (as)s∈[0,T ] of F -measurable random variables, one has that

lim
n

sup
t∈[0,T ]

∣∣∣∣ ∫[0,t]
as dμn(s) −

∫
[0,t]

as dμ(s)

∣∣∣∣ = 0 in probability. (18)

Proof. (a) For N = 1,2, . . . let

aN
t := a0χ[0,T /2N ](t) +

2N−1∑
l=1

a(l/2N)T χ((l/2N)T ,((l+1)/2N )T ](t)

= aT (2N−1)/2N χ[0,T ](t) + (aT (2N−2)/2N − aT (2N−1)/2N )χ[0,T (2N−1)/2N ](t) + · · ·
+ (a0 − aT/2N )χ[0,T 1/2N ](t).

To check (18) for aN = (aN
t )t∈[0,T ] it is enough to verify (18) for aN replaced by b =

(ϕχ[0,r](t))t∈[0,T ] with r ∈ [0, T ] and an F -measurable random variable ϕ. Since ϕ is a con-
stant factor, an easy argument shows that it is sufficient to check the case ϕ ≡ 1. But then we can
use Assumption (iii) and obtain (18) for aN .

(b) To replace aN by a we observe that

sup
t∈[0,T ]

∣∣∣∣ ∫[0,t]
as dμn(s) −

∫
[0,t]

as dμ(s)

∣∣∣∣ ≤ sup
t∈[0,T ]

|at − aN
t |(μ+

n + μ−
n + μ)([0, T ])

+ sup
t∈[0,T ]

∣∣∣∣ ∫[0,t]
aN
s dμn(s) −

∫
[0,t]

aN
s dμ(s)

∣∣∣∣.
Because of (ii) and supt∈[0,T ] |at (ω) − aN

t (ω)| → 0 as N → ∞ for all ω ∈ 	 step (a) implies the
assertion. �

Proof of Lemma 5.3. The proof is similar to the one in [22]; the part that differs is the estimate
of (22). For the convenience of the reader we give some details. Define the random measures

μk
n := nk/2

n−1∑
i=0

δ{sn,β
i }

∫ s
n,β
i+1

s
n,β
i

(Xs − X
s
n,β
i

σ (X
s
n,β
i

)

)k

ds
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for k ∈ {1,2} and s
n,β
i := t

n,β
i ∧ T and let (μk

n)
± be the positive and negative parts (ω-wise),

respectively. By a standard computation one checks that

sup
n

Enk/2
n−1∑
i=0

∫ s
n,β
i+1

s
n,β
i

∣∣∣∣Xs − X
s
n,β
i

σ (X
s
n,β
i

)

∣∣∣∣k ds < ∞

so that supn E((μk
n)

+ + (μk
n)

−)([0, T ]) < ∞. Moreover, using (4),

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0
ψn,k

s (a)ds −
∫

[0,t]
as dμk

n(s)

∣∣∣∣2

≤ sup
0≤i≤n−1

t∈[sn,β
i ,s

n,β
i+1]

∣∣∣∣ ∫ s
n,β
i+1

t

ψn,k
s (a)ds

∣∣∣∣2

≤ sup
0≤i≤n−1

(s
n,β

i+1 − s
n,β
i )

∫ T

0
(ψn,k

s (a))2 ds

≤ (a∗)2

βn

∫ T

0
(ψn,k

s (1))2 ds,

where a∗ := supt∈[0,T ] |at | and supm≥1 E
∫ T

0 (ψ
m,k
s (1))2 ds < ∞, so that

lim
n

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0
ψn,k

s (a)ds −
∫

[0,t]
as dμk

n(s)

∣∣∣∣ = 0 (19)

in probability. In view of (19) and Lemma A.1 we only need to verify

lim
n

sup
t∈[0,T ]

|μ1
n([0, t])| = 0 and lim

n
sup

t∈[0,T ]

∣∣∣∣μ2
n([0, t]) − 1

2

∫ t

0
νβ(s)ds

∣∣∣∣ = 0 (20)

in probability. Let E1 := 0, E2 := 1/2 and b
n,k
s := ψ

n,k
s (1). To show (20) we upper bound

sup
0≤i≤n

∣∣∣∣ ∫ s
n,β
i

0
bn,k
s ds − Ek

∫ s
n,β
i

0
νβ(s)ds

∣∣∣∣ + sup
1≤i≤n

sup
t∈[sn,β

i−1,s
n,β
i ]

∣∣∣∣Ek

∫ s
n,β
i

t

νβ(s)ds

∣∣∣∣
≤ sup

0≤i≤n

∣∣∣∣ ∫ s
n,β
i

0
bn,k
s ds − E

∫ s
n,β
i

0
bn,k
s ds

∣∣∣∣ (21)

+ sup
0≤i≤n

∣∣∣∣E∫ s
n,β
i

0
bn,k
s ds − Ek

∫ s
n,β
i

0
νβ(s)ds

∣∣∣∣ + 1/(2β2n), (22)

where we used (4) again.
Term (21): By Doob’s maximal inequality for martingales one can show that

E sup
0≤i≤n

∣∣∣∣ ∫ s
n,β
i

0
bn,k
s ds − E

∫ s
n,β
i

0
bn,k
s ds

∣∣∣∣
2

−→
n→∞ 0.
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Term (22): Because for k = 1 the term is zero we assume that k = 2 and get

sup
0≤i≤n

∣∣∣∣E∫ s
n,β
i

0
bn,2
s ds − 1

2

∫ s
n,β
i

0
νβ(s)ds

∣∣∣∣
= sup

1≤i≤n

∣∣∣∣∣
i−1∑
j=0

∫ s
n,β
j+1

s
n,β
j

nE

(Xs − X
s
n,β
j

σ (X
s
n,β
j

)

)2

ds − 1

2

∫ s
n,β
i

0
νβ(s)ds

∣∣∣∣∣
= sup

1≤i≤n

∣∣∣∣∣
i−1∑
j=0

∫ s
n,β
j+1

s
n,β
j

n
(
s − s

n,β
j + m(s − s

n,β
j )(s − s

n,β
j )2)ds − 1

2

∫ s
n,β
i

0
νβ(s)ds

∣∣∣∣∣
≤

n−1∑
j=0

∫ s
n,β
j+1

s
n,β
j

nm(s − s
n,β
j )(s − s

n,β
j )2 ds

+ 1

2

n−1∑
j=0

∫ s
n,β
j+1

s
n,β
j

|n(s
n,β

j+1 − s
n,β
j ) − νβ(s)|ds

≤ e

3β3n
+ 1

2

n−1∑
j=0

∫ s
n,β
j+1

s
n,β
j

|n(s
n,β

j+1 − s
n,β
j ) − νβ(s)|ds

≤ e

3β3n
+ 1

2

∫
[0,t

β,n
j0,n

)

1

β
sup

u∈[0,1−1/n]

∣∣∣∣(u + 1

n

)1/β−1

− u1/β−1
∣∣∣∣ds

+ 1

2

∫
[tβ,n

j0,n
,T ]

|n(s
n,β

j+1 − s
n,β
j ) − νβ(s)|ds,

where m : [0,1] → [0, e] is a continuous function and j0,n is the largest j ∈ {0,1, . . . , n} such
that s

n,β
j = t

n,β
j . Finally, by (4) we can bound the last term by

1

β
|T − t

n,β
j0,n

| ≤ 1

β2n

so that the term (22) converges to zero as n → ∞ and the proof is complete. �
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