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We introduce a new formulation of asset trading games in continuous time in the framework of the game-
theoretic probability established by Shafer and Vovk (Probability and Finance: It’s Only a Game! (2001)
Wiley). In our formulation, the market moves continuously, but an investor trades in discrete times, which
can depend on the past path of the market. We prove that an investor can essentially force that the asset
price path behaves with the variation exponent exactly equal to two. Our proof is based on embedding
high-frequency discrete-time games into the continuous-time game and the use of the Bayesian strategy of
Kumon, Takemura and Takeuchi (Stoch. Anal. Appl. 26 (2008) 1161–1180) for discrete-time coin-tossing
games. We also show that the main growth part of the investor’s capital processes is clearly described by
the information quantities, which are derived from the Kullback–Leibler information with respect to the
empirical fluctuation of the asset price.

Keywords: Bayesian strategy; beta-binomial distribution; game-theoretic probability; Hölder exponent;
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1. Introduction

In this paper, we present a new formulation of asset trading games in continuous time, in the
framework of the game-theoretic probability of Shafer and Vovk [15]. In the book by Shafer
and Vovk, continuous-time games are formulated as limits of discrete-time games by using tech-
niques of nonstandard analysis. Although their approach is rigorously formulated in the frame-
work of nonstandard analysis, we give another formulation of continuous-time games in the
game-theoretic probability, which is tractable within the conventional theory of analysis.

An asset trading game is a complete information game between an investor and the market.
Following Chapter 9 of Shafer and Vovk [15], we denote these two players as “Investor” and
“Market”. In our formulation, Market moves continuously, but Investor moves in discrete times,
depending on the past path of Market. The trading times of Investor need not be equally spaced.
In this paper, we mainly consider “limit order” strategy (rather than the “market order” strategy)
of Investor. In the limit order strategy, Investor trades a financial asset when the asset price or
the increment of the asset price hits a certain level. We shall prove that by a high-frequency limit
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order type Bayesian strategy, Investor can essentially force the variation exponent of two in the
price path of Market. The precise definition of essential forcing will be given in Section 2.

In an infinitely repeated series of fair betting games, a gambler cannot make gain with cer-
tainty. This fact has been formulated and proven in the theory of martingales. But when the
games are favorable to a gambler, for example, if the results of the games are stochastically
independent with positive expected value, to what extent can he exploit the situation and what
would be a good strategy to adopt? Several years after the advent of Shannon’s celebrated work
[16], this problem was first systematically studied by Kelly [9] in relation to the betting game
interpretation of Shannon’s mutual information quantity. In this spirit, betting games have been
investigated by information theorists, which led to the notion of Cover’s universal portfolios [2,
3]. One of the present authors also wrote a note on it about forty years ago in Japanese, presenting
the results in [18].

Recently, Shafer and Vovk originated a new, attractive field of game-theoretic probability and
finance [15]. The most important point concerning their approach is that stochastic behavior of
Market is not assumed a priori, but follows from the protocol of the game between Investor
and Market. Shafer and Vovk established the general fact that in order to prevent Investor from
making an infinitely large gain, Market must behave as if he is stochastic and make the game
fair in a stochastic sense. However, the question remains as to what Investor can make from
Market’s failure to do so. This issue was treated by Kumon and Takemura [10], where it is
proved that when Market’s moves are bounded, a simple strategy forces the strong law of large
numbers (SLLN) with a convergence rate of O(

√
logn/n). Kumon, Takemura and Takeuchi [11]

proved several versions of SLLN for the case where Market’s moves are unbounded. For coin-
tossing games, Kumon, Takemura and Takeuchi [12] considered a class of Bayesian strategies
for Investor and established the important fact that if Market violates SLLN, then Investor can
increase his capital exponentially fast and the exponential growth rate is precisely described in
terms of the Kullback–Leibler information between the average of Market’s moves when he
violates SLLN and the average when he observes SLLN.

In this paper, we apply the results of [12] to asset trading games in continuous time. We con-
sider implications of high-frequency limit order type Bayesian strategies and prove that Investor
can make arbitrarily large gain if Market does not move jaggedly with the variation exponent
equal to two. In the mathematical finance literature, this phenomenon has long been recognized
and understood as the fact that fractional Brownian motion with the Hölder exponent H �= 1/2 is
not a semimartingale; see Rogers [14], Section 4.2 of Embrechts and Maejima [6] and Section 3
of Hobson [7]. Kunitomo [13] presented a similar result earlier. Note that in the measure-theoretic
approach, these results require strong stochastic assumptions. Vovk and Shafer [23] treated the√

dt effect using nonstandard analysis. The game-theoretic approach in the present paper and in
[23] is advantageous because no probabilistic model, such as fractional Brownian motion, is im-
posed on the paths of Market. It can be an arbitrary continuous path in our formulation. Another
fundamental strength of the game-theoretic approach is that we can give statements on an indi-
vidual path of Market, whereas in measure-theoretic probability, one can only make statements
on measurable sets of the space of appropriate paths.

This paper is organized as follows. In Section 2, we formulate asset trading games and intro-
duce the necessary notation and definitions. We also review the results on the Bayesian strategy
of [12] for discrete-time games embedded into the continuous-time game. We investigate the
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consequences of high-frequency Bayesian strategy in Section 3 and establish that Market is es-
sentially forced to move with the variation exponent exactly equal to two. We end the paper with
some concluding remarks in Section 4.

2. Asset trading games in continuous time

In this section, we formulate asset trading games in continuous time and introduce appropriate
notation and definitions. We begin with an informal description of asset trading games in con-
tinuous time and their embedded discrete-time games in Section 2.1. More precise definitions
of the game and the move spaces of the players are presented in Section 2.2. In particular, we
will define the notion of essential forcing of an event by Investor. In Section 2.3, we review no-
tions of the variation exponent and the Hölder exponent. In Section 2.4, we summarize results on
Bayesian strategy for coin-tossing games in [12].

2.1. Formulation of asset trading games in continuous time

Suppose that there is a financial asset which is traded in a market in continuous time. Let S(t)

denote the price of the unit amount of the asset at time t . We assume that S(t) is positive and a
continuous function of t . We consider the price path S(·) to be chosen by the player “Market”.
“Investor” enters the market at time t = t0 = 0 (knowing the initial price S(0)) with the initial
capital of K(0) = 1 and he can buy or sell any amount of the asset at any time, provided that
his capital always remains nonnegative. It is assumed that Investor can trade only at discrete
time points 0 = t0 < t1 < t2 < · · ·, although he can decide the trading time ti and the amount he
trades at ti based on the path of S(t) up to time ti . Since S(t) is continuous, when we say “up
to time ti”, we do not need to distinguish whether Investor is allowed to use the value S(ti) or
not. His repeated tradings up to time ti also decide the amount Mi of the asset he holds for the
interval [ti , ti+1). Again, Mi can only depend on the path of S(t) up to time ti .

Let K(t) denote the capital of Investor (expressed in cash) at time t . It is written as

K(0) = 1,
(1)

K(t) = K(ti) + Mi

(
S(t) − S(ti)

)
for ti ≤ t < ti+1.

In the case Mi < 0, K(t) is the capital at time t if he buys back |Mi | units of the asset at the
current price S(t). As mentioned above, Investor is required to keep K(t) nonnegative, whatever
price path S(·) Market chooses. Also, note that K(t) is continuous in t , since S(t) is continuous
in t .

By defining

θi = MiS(ti)

K(ti)
,

we rewrite (1) as

K(t) = K(ti)

(
1 + θi

S(t) − S(ti)

S(ti)

)
for ti ≤ t < ti+1
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in terms of the return (S(t) − S(ti))/S(ti) of the asset.
In this paper, we mainly consider the scenario where Investor decides the trading times

t1, t2, . . . by “limit order” strategy. Let δ1, δ2 > 0 be some constants and determine t1, t2, . . .

as follows. After ti is determined, let ti+1 be the first time after ti when either

S(ti+1)

S(ti)
= 1 + δ1 or

S(ti+1)

S(ti)
= 1

1 + δ2
. (2)

In this scheme, although Investor enters the market at time t0 = 0, he begins trading at time t1.
This process leads to a discrete-time coin-tossing game embedded in the asset trading game as
follows. Let

xn = (1 + δ2)S(tn+1) − S(tn)

(δ1 + δ2 + δ1δ2)S(tn)
=

{
1, if S(tn+1) = S(tn)(1 + δ1),

0, if S(tn+1) = S(tn)/(1 + δ2).

The risk-neutral probability ρ of the coin-tossing game [12,17] can be deduced from

1 = ρ(1 + δ1) + 1 − ρ

1 + δ2
,

which yields

ρ = δ2

δ1 + δ2 + δ1δ2
.

Also, write

K̃n = K(tn+1), νn = δ1 + δ2 + δ1δ2

1 + δ2
θn.

We then have the following protocol for an embedded discrete-time coin-tossing game.

EMBEDDED DISCRETE-TIME COIN-TOSSING GAME

Protocol:
K̃0 := 1.
FOR n = 1,2, . . .:

Investor announces νn ∈ R.
Market announces xn ∈ {0,1}.
K̃n = K̃n−1(1 + νn(xn − ρ)).

END FOR

This embedded discrete-time game allows us to apply results on coin-tossing games to the asset
trading game in continuous time. In particular, we can apply the strong law of large numbers for
coin-tossing games.

However, it should be noted that in the embedded game, Market may decide to keep the vari-
ation of S(t) small after tn:

S(tn)

1 + δ2
< S(t) < S(tn)(1 + δ1) ∀t ≥ tn.
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The embedded coin-tossing game is then played for only n rounds and the SLLN cannot be
applied. Naturally, we are tempted to make δ1, δ2 smaller so that the total number of rounds
increases, and we expect that Investor’s high-frequency tradings take place when δ1 and δ2 are
small. But once δ1, δ2 are announced, Market can always make the variation even smaller. This
suggests that we should formulate the asset trading game and the move spaces of the players
more carefully.

2.2. Formal definition of asset trading games and the notion of essential
forcing

Here, we provide definitions of asset trading games and the move spaces of the players. Also, we
define the notion of essential forcing of an event.

Market is required to choose a positive continuous function S(·) as his price path. Let

� = C>0[R+]
denote the set of positive continuous functions on R+ = [0,∞). This is the move space of Mar-
ket, that is, Market chooses an element S(·) ∈ �. We also call � the path space or sample space.
A subset E of � is called an event. A variable is a real-valued function f :� → R on the path
space.

In order to define the move space of Investor, we need a game-theoretic definition of a stopping
time (see Section 5.3 of [15] and Section 1.1 of [8]) and a marked stopping time. A variable
τ :� → [0,∞] is called a stopping time if it follows from

τ(S(·)) < ∞ and S(u) = S̃(u), 0 ≤ u < τ(S(·))
that τ(S̃(·)) = τ(S(·)). Investor’s trading times are stopping times. When τ(S(·)) = t < ∞, we
say that τ is realized at time point t . Investor also decides how many units of the asset to hold at
the time when τ is realized. A pair of variables

(τ,m) :� → [0,∞] × R

is a marked stopping time if τ is a stopping time and m depends only on the path up to the
realized time of τ , that is,

τ(S(·)) < ∞ and S(u) = S̃(u), 0 ≤ u < τ(S(·)),
implies that m(S̃(·)) = m(S(·)). We call m the mark associated with the stopping time τ . For
definiteness, we define m(S(·)) = 0 if τ(S(·)) = ∞.

A strategy P of Investor is a set of countably many marked stopping times

P = {(τ1,m1), (τ2,m2), . . .} (3)

with the additional requirement that the stopping times are “discrete” in the following sense.
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Definition 2.1. A set of countably many stopping times {τ1, τ2, . . .} is discrete if for each S(·) ∈ �

there is no accumulation point of the set of realized stopping times.

In the above definition, we are not requiring τ1 ≤ τ2 ≤ · · ·. For example, a strategy of Investor
may consist of just two marked stopping times P = {(τ1,m1), (τ2,m2)}, where τ1 is the first time
S(t) hits a predetermined high value and τ2 is the first time S(t) hits a predetermined low value.
Then, τ1 may realize before τ2 or vice versa. We use the notation τ(1) ≤ τ(2) ≤ · · · for the ordered
realized stopping times.

By discreteness of the stopping times, we require Investor to trade only a finite number of
times in every finite interval. The limit order type strategy in (2) clearly satisfies this requirement,
because any continuous function on [0,∞) is uniformly continuous on the finite interval [0, t].
Under the above requirement, given a strategy P of Investor and a path S(·) of Market, the
capital process K P (t) = K P (t, S(·)) of Investor is defined as in (1), with ti = τ(i)(S(·)) and
Mi = m(i)(S(·)), provided that the realized stopping times are all distinct. When realized time
points of some stopping times coincide, for example when Investor employs nested strategies, we
need to deal with obvious notational complications in adding up associated marks. But even when
realized time points of some stopping times coincide, it is clear that the discreteness requirement
guarantees that the capital process K P (t) is written as a finite sum for each t > 0.

Furthermore, we require that Investor observes his “collateral duty”, that is, starting with the
initial capital of K P (0) = 1, his strategy P must satisfy

K P (t, S(·)) ≥ 0 ∀t > 0,∀S(·) ∈ �.

In summary, the move space F0 = {P } of Investor is the set of strategies in (3) satisfying the
discreteness of Definition 2.1 and the collateral duty.

We note that F0 is closed under finite static mixtures. Let Pj = {(τij ,mij )}∞i=1, j = 1,2, be
two strategies belonging to F0. For 0 < c1, c2 < 1 with c1 +c2 = 1, Investor sets up two accounts
with the initial capitals cj , j = 1,2. He then applies cj Pj = {(τij , cjmij )}∞i=1 to account j . This
mixture is written as c1 P2 + c2 P2 ∈ F0 with the capital process Kc1 P1+c2 P2(t) = c1 K P1(t) +
c2 K P2(t). By induction, it is clear that F0 is closed with respect to any convex combination of a
finite number of strategies.

In the spirit of game-theoretic probability, we assume that Investor first announces his strat-
egy P to Market and then Market decides his path S(·). Therefore, the protocol of an asset trading
game in continuous time is formulated as follows.

ASSET TRADING GAME IN CONTINUOUS TIME

Protocol:
K(0) := 1.

Investor announces P ∈ F0.
Market announces S(·) ∈ �.

In game-theoretic probability, given some event E ⊂ �, Investor is interpreted as the winner
of the game if Market chooses a path S(·) ∈ E or else Investor’s capital increases to infinity. In
this case, we say that Investor can force the event E. In order to prove forcing of an event E,
as shown in Shafer and Vovk [15], it is often useful to consider static mixtures of countably
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many strategies of Investor. However in our formulation, countable mixing involves a conceptual
difficulty because such a mixture of trading strategies allows Investor to trade infinitely many
times in a finite interval. Hence, in this paper, we use the following notion of “essential forcing”
of an event E.

Definition 2.2. In the asset trading game in continuous time, Investor can essentially force an
event E if, for any C > 0, there exists a strategy P C ∈ F0 such that

sup
0≤t<∞

K P C

(t, S(·)) > C ∀S(·) ∈ Ec.

In Section 4, we will discuss the fact that essential forcing implies forcing in the sense of
Shafer and Vovk [15] if we allow countable static mixtures. Therefore, the notion of essential
forcing is good enough for the development in the present paper. Also, note that if Investor can
essentially force a finite number of events E1, . . . ,EK , he can essentially force the intersection
E1 ∩ · · · ∩ EK by a finite mixture of appropriate strategies (cf. Lemma 3.2 of [15]).

We also give a somewhat stronger definition of essential forcing for a finite interval [T1, T2] ⊂
[0,∞).

Definition 2.3. Investor can essentially force an event E ⊂ � in [T1, T2] if, for any C > 0, there
exists a strategy P C ∈ F such that

sup
T1≤t≤T2

K P C

(t, S(·)) > C ∀S(·) ∈ Ec.

2.3. Variation exponent and Hölder continuity

Here, we summarize the notion of variation exponent and Hölder exponent (see, e.g., Section 4.1
of [6]). A continuous function f on the interval [T1, T2] is called Hölder continuous (Lipschitz
continuous) of order H on [T1, T2] if, for some C > 0,

|f (y) − f (x)|
|y − x|H ≤ C, T1 ≤ ∀x < ∀y ≤ T2.

The largest value of such an H is usually called the modulus of continuity or the Hölder exponent.
In this paper, we distinguish between several closely related notions and call H an upper Hölder
exponent. In Section 3, we consider the set of functions

EH,C,T1,T2
=

{
S ∈ �

∣∣∣ | logS(y) − logS(x)|
|y − x|H ≤ C,T1 ≤ ∀x < ∀y ≤ T2

}
. (4)

We also consider the bounding of the modulus of continuity (jaggedness of S(·)) from below.
Let Q ⊂ [0,∞) be a given dense countable subset, such as the set of rational numbers. We define

EH,C,T1,T2
=

{
S ∈ �

∣∣∣ ∀ε > 0,∀x ∈ [T1, T2 − ε] ∩ Q,∃y ∈ (x, T2] :
(5)

| logS(y) − logS(x)| ≥ CεH and
| logS(y) − logS(x)|

|y − x|H ≥ C

}
.
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This definition of bounding the jaggedness from below by a lower Hölder exponent H is conve-
nient for our limit order type strategy.

Finally, for A > 0, we write

EA,T1,T2 = {S ∈ � | | logS(y) − logS(x)| ≤ A,T1 ≤ ∀x < ∀y ≤ T2}. (6)

The modulus of continuity can also be understood from the viewpoint of total variation of a
continuous function. Here, we use the notion of strong p-variation from Section 11.6 of [15]. Let
κ :T1 = t0 < t1 < · · · < tn = T2 be a division of the interval [T1, T2]. For p ≥ 1 and a continuous
function f : [T1, T2] → R, define

varf (p) = sup
κ

n∑
i=1

|f (ti) − f (ti−1)|p,

where sup is taken over all positive integers n and all divisions κ . There exists a unique value
vexf ∈ [1,∞] such that varf (p) < ∞ for p > vexf and varf (p) = ∞ for p < vexf . We call
vexf the variation exponent of f . Note that each S ∈ � is uniformly continuous in the closed
interval [T1, T2] and hence bounded away from 0 and +∞. Also, log′(S) = 1/S is uniformly
continuous in each compact interval of (0,∞). Therefore, S ∈ EH,C,T1,T2

implies vex logS ≤
1/H and S ∈ EH,C,T1,T2

implies vex logS ≥ 1/H . Also, note that vex logS = vexS for S ∈ �.
From these relations, we call H = 1/vexS the Hölder exponent of S.

Results on the modulus of continuity of the paths of Brownian motion and fractional Brownian
motion are summarized in Chapter IV of [1], Section 4.1 of [6] and Section 11.6 of [15].

2.4. Bayesian strategy for coin-tossing games

As discussed in Section 2.1, we mainly consider the scenario where Investor decides the trading
times by the limit order type strategy in (2). In addition, we consider the situation where Investor
specifies Mi by the Bayesian strategy in [12]. Here, we briefly review the results of [12].

Suppose that Investor models Market’s sequence of moves x1x2 · · · (xi ∈ {0,1}) in the em-
bedded discrete-time coin-tossing game of Section 2.1 by a probability distribution Q. Let
hn = nx̄n = ∑n

i=1 xi denote the number of heads and tn = n − hn denote the number of tails.
The beta-binomial model is defined as

Q(x1 · · ·xn) = 1

B(α,β)

∫ 1

0
phn+α−1(1 − p)tn+β−1 dp

= (�(α + hn)/�(α)) × (�(β + tn)/�(β))

�(α + β + n)/�(α + β)
,

where α,β > 0 are fixed and correspond to the prior numbers of heads and tails. We denote the
conditional probability of xi = 1 under Q given x1, . . . , xi−1 by

p̂
Q
i = p̂

Q
i (x1, . . . , xi−1) = Q(xi = 1 | x1, . . . , xi−1).
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In this model,

p̂Q
n = B(α + hn−1 + 1, β + tn−1)

B(α + hn−1, β + tn−1)
= α + hn−1

α + β + n − 1

and the Investor’s associated beta-binomial strategy is

ν∗
n = p̂

Q
n − ρ

ρ(1 − ρ)
. (7)

The capital process K̃∗
n for this Bayesian strategy is explicitly written as

K̃∗
n(x1 · · ·xn) = Q(x1 · · ·xn)

ρhn(1 − ρ)tn
. (8)

When both hn and tn are large, by using Stirling’s formula

log�(x) = (
x − 1

2

)
logx − x + log

√
2π + O(x−1),

we can evaluate the log capital process log K̃∗
n as

log K̃∗
n = nD

(
hn

n

∥∥∥ρ

)
− 1

2
logn + O(1),

where

D(p‖q) = p log
p

q
+ (1 − p) log

1 − p

1 − q

denotes the Kullback–Leibler information between 0 < p < 1 and 0 < q < 1. This expression,
together with the Taylor expansion

D(ρ + δ‖ρ) = δ2

2ρ(1 − ρ)
+ O(δ3),

allows us to analyze the behavior of the capital process for a high-frequency Bayesian strategy
of Investor in the next section.

3. Essential forcing of variation exponent in the asset trading
game

Consider the asset trading game in continuous time in Section 2.2 and the events EH,C,T1,T2
in

(4), EH,C,T1,T2
in (5) and EA,T1,T2 in (6). In this section, we prove the following main result of

this paper.
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Theorem 3.1. For every H > 0.5,A > 0,C > 0,0 ≤ T1 < T2 ≤ T , Investor can essentially force

EH,C,T1,T2
⇒ EA,T1,T2 .

For every H < 0.5,A > 0,C > 0,0 ≤ T1 < T2 ≤ T , Investor can essentially force

EH,C,T1,T2
⇒ EA,T1,T2 .

Here “E1 ⇒ E2” stands for Ec
1 ∪ E2 (Section 4.1 of [15]) for two events E1,E2 ⊂ �. Also,

from the proof of the theorem below, it will be clear that Investor can essentially force these
events in the interval [T1, T2]. This theorem roughly says that within an arbitrarily small constant
ε > 0, Market’s path is essentially forced to have the variation exponent 2 − ε < vexS < 2 + ε,
unless he stays constant. However, as we again discuss in Section 4, there is some gap between
the two events (4) and (5). A stronger statement in terms of the variation exponent vexS itself is
now given in Theorem 1 of Vovk [21].

We give a proof of Theorem 3.1 after some preliminary investigations of the limit order type
strategy in Section 2.1 combined with the Bayesian strategy in Section 2.4 for the embedded
discrete-time game. Our proof is based on the limit order type strategy with sufficiently small
δ1 = δ2 in (2). After the proof, we also investigate the behavior of Investor’s capital processes for
the cases where δ1 and δ2 decrease with different rates.

First, note that it suffices to consider the case T1 = 0, because we can think of Investor as
entering the game at time t = T1 instead of t = 0 and using the strategy described below from T1

on. Writing simply T = T2, we thus consider only the case [T1, T2] = [0, T ].
We take the limit order type strategy in Section 2.1. Write δ = (δ1, δ2), where δ1, δ2 > 0. Let

t0 = 0 < t1 < t2 < · · · be the sequence of Investor’s trading time points determined by (2). We
then have the embedded discrete-time coin-tossing game and the associated Mn’s are determined
by the Bayesian strategy in Section 2.4 in the form of ν∗

n in (7). The parameters α,β > 0 for
the Bayesian strategy are fixed throughout the rest of this section. It is clear that the resulting
strategy P = P δ1,δ2,α,β satisfies the collateral duty K P (t, S(·)) ≥ 0, ∀t > 0, ∀S(·) ∈ �. We use
the notation

ηi = log(1 + δi), δi = eηi − 1, i = 1,2,

and η = (η1, η2). Define n∗ = n∗(T , δ, S(·)) by tn∗ < T ≤ tn∗+1. Note that

n∗(T , δ, S(·)) ≥ A

max(η1, η2)

for every S(·) ∈ Ec
A,0,T . Therefore, n∗ can be made arbitrarily large, uniformly in S(·) ∈ Ec

A,0,T ,
by taking δ1, δ2 sufficiently small.

K(T ) = K P δ1,δ2,α,β
(T , S(·)) is now written as

K(T ) = K̃∗
n∗

(
1 + θ∗

n

S(T ) − S(tn∗)

S(tn∗)

)
, θ∗

n = 1 + δ2

δ1 + δ2 + δ1δ2
ν∗
n.
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Since |S(T )−S(tn∗ )

S(tn∗ )
| < max(δ1, δ2), we have

log K(T ) = log K̃∗
n∗ + O(1) = n∗D

(
hn∗

n∗
∥∥∥ρ

)
− 1

2
logn∗ + O(1). (9)

Define

TV(η,T ) =
n∗∑
i=1

| logS(ti) − logS(ti−1)| = hn∗η1 + tn∗η2, (10)

L(η,T ) = logS(tn∗) − logS(0) = hn∗η1 − tn∗η2, (11)

σ(η,T ) = L(η,T )

TV(η,T )
= hn∗η1 − tn∗η2

hn∗η1 + tn∗η2
.

We call TV(η,T ) the total η-variation of logS(t) in the interval [0, T ]. We also write

L(T ) = logS(T ) − logS(0) = L(η,T ) + O(max(η1, η2)).

We can then express (9) as

log K(T ) = n∗D(p(η,T )‖ρ) − 1
2 logn∗ + O(1), (12)

where

p(η,T ) = hn∗

n∗ = η2(1 + σ(η,T ))

η1(1 − σ(η,T )) + η2(1 + σ(η,T ))
.

Also, from (10) and (11), n∗ can be written as

n∗ =
(

η1 + η2 − σ(η,T )(η1 − η2)

2η1η2

)
TV(η,T ). (13)

Let η1k = a−k
1 , η2k = a−k

2 for a1, a2 > 1, k = 1,2, . . . , and let log(1 + δ1k) = η1k, log(1 +
δ2k) = η2k . We consider a sequence of the discretized games with δk = (δ1k, δ2k) and let Kk(T )

be the Investor’s capital at t = T for the beta-binomial strategy in each game. We denote the
values of n∗, ρ by n∗

k, ρk corresponding to ηk = (η1k, η2k).
We are now ready to give a proof of Theorem 3.1.

Proof of Theorem 3.1. Take a1 = a2 = a > 1 and write ηk = a−k, log(1 + δk) = ηk . We then
have

n∗
k = TV(ηk, T )

ηk

, p(ηk, T ) = 1 + σ(ηk, T )

2
, ρk = 1

2 + δk

.

Note that ρk → 1/2 as k → ∞. More precisely,

ρk = 1

2
− δk

4
+ o(δk).
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Consider n∗
kD(p(ηk, T )‖ρk) in (12). Since n∗

k can be made arbitrarily large uniformly in S(·) ∈
Ec

A,0,T , we only need to consider k and S(·) ∈ Ec
A,0,T such that p(ηk, T ) is close to 1/2. Now

use the Taylor expansion

D

(
1 + d1

2

∥∥∥1 + d2

2

)
= 1

2
(d1 − d2)

2 + o(|d1 − d2|2),

with d1 = σ(ηk, T ), d2 = −δk/2. Hence, noting δk = eηk − 1 = a−k + O(a−2k), we can evaluate
n∗

kD(p(ηk, T )‖ρk) as

n∗
kD(p(ηk, T )‖ρk) � akT V (ηk, T ) × 1

2

(
L(T )

TV(ηk, T )
+ 1

2ak

)2

(14)

= 1

2

[
ak

TV(ηk, T )
L2(T ) + L(T ) + 1

4

TV(ηk, T )

ak

]
.

Let H > 0.5 and consider S(·) ∈ EH,C,T1,T2
. It is easily seen that there exists some c such that

TV(ηk, T ) ≤ caBk, B = (1 − H)/H < 1

for all k and for all S(·) ∈ EH,C,T1,T2
. In this case, ak/TV(ηk, T ) → ∞ as k → ∞ uniformly in

S(·) ∈ EH,C,T1,T2
. As seen from the argument below at the end of the proof, for S(·) ∈ Ec

A,0,T ,
we only need to consider the case |L(T )| ≥ A/4. Therefore, n∗

kD(p(ηk, T )‖ρk) → ∞ uni-
formly in S(·) ∈ EH,C,T1,T2

. Also, it is easily verified that logn∗
k in (9) is of smaller order than

n∗
kD(p(ηk, T )‖ρk).
Now let H < 0.5 and consider S(·) ∈ EH,C,T1,T2

. There then exist some c and k0 such that

TV(ηk, T ) ≥ caBk, B = (1 − H)/H > 1

for all k ≥ k0 and all S(·) ∈ EH,C,T1,T2
. In this case, TV(ηk, T )/ak → ∞ as k → ∞ uniformly

in S(·) ∈ EH,C,T1,T2
. Again, logn∗

k can be ignored.
Thus, we have the following behavior of Kk(T ) according to the values of the upper and the

lower Hölder exponents.

If H > 0.5, S(·) ∈ EH,C,T1,T2
∩ Ec

A,0,T and |L(T )| ≥ A

4
, then Kk(T ) → ∞.

If H < 0.5, S(·) ∈ EH,C,T1,T2
∩ Ec

A,0,T , then Kk(T ) → ∞.

We can guarantee the condition |L(T )| ≥ A/4 above in the following manner. Let Investor
divide his initial capital K(0) = 1 into two accounts with the initial capitals K1(0) + K2(0) =
1. For the first account, Investor follows the high-frequency trading strategy explained above.
For the second account, Investor starts the game at the first time tA(< T ) when | logS(tA) −
logS(0)| ≥ A/2 and follows the same high-frequency trading strategy. We denote Investor’s
capitals of respective accounts at t = T by Kk1(T ), Kk2(T ). Then,

max
(| logS(T ) − logS(0)|, | logS(T ) − logS(tA)|) ≥ A

4
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on Ec
A,0,T . Therefore, at least one of Kk1(T ), Kk2(T ) diverges to infinity. This proves the theo-

rem. �

For numerical comparison of capital processes, it is useful to approximate the capital process
for the simple case. If TV(ηk, T ) � caBk , then (14) is rewritten as

n∗
kD(p(ηk, T )‖ρk) � 1

2

[
a(1−B)k

c
L2(T ) + L(T ) + ca(B−1)k

4

]
. (15)

We also investigate the capital Kk(T ) for two other cases: (ii) a1 < a2, (iii) a1 > a2. From (13)
with TVk = TV(ηk, T ),pk = p(ηk, T ), we have

n∗
kpk � 1

2ak
1(TVk + L), n∗

k(1 − pk) � 1
2ak

2(TVk − L),

so it follows that

n∗
kD(pk‖ρk) = n∗

kpk log
pk

ρk

+ n∗
k(1 − pk) log

1 − pk

1 − ρk
(16)

� 1

2

[
ak

1(TVk + L) log
pk

ρk

+ ak
2(TVk − L) log

1 − pk

1 − ρk

]
.

(ii) a1 < a2: In this case, pk,ρk → 0 as k → ∞. However, the expression (16) has the follow-
ing approximation:

n∗
kD(pk‖ρk) � 1

2
ak

1(TVk + L)

[
log

TVk + L

TVk − L
− 2L

TVk + L

]
�

(
ak

1

TV(ηk, T )

)
L2(T ). (17)

Suppose that TV(ηk, T ) � caBk
1 . (17) is then rewritten as

n∗
kD(pk‖ρk) � a

(1−B)k
1

c
L2(T ) (18)

and we can derive the behavior of Kk(T ) as follows:

if H > 0.5 and |L(T )| ≥ A

4
, then Kk(T ) → ∞,

which is the only case such that Kk(T ) → ∞.
(iii) a1 > a2: In this case, pk,ρk → 1 as k → ∞. Again, the expression (16) has the following

approximation:

n∗
kD(pk‖ρk) � 1

2
ak

2(TVk − L)

[
log

TVk − L

TVk + L
+ 2L

TVk − L
+ 2L

TVk − L
a−k

2 + 1

2
a−2k

2

]
(19)

�
(

ak
2

TV(ηk, T )

)
L2(T ) + L(T ) + 1

4

(
TV(ηk, T )

ak
2

)
.
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Suppose that TV(ηk, T ) � caBk
2 . (19) is then rewritten as

n∗
kD(pk‖ρk) � a

(1−B)k
2

c
L2(T ) + L(T ) + ca

(B−1)k
2

4
(20)

and, as in the case of a1 = a2, the same behavior of Kk(T ) is derived.

If H > 0.5 and |L(T )| ≥ A

4
, then Kk(T ) → ∞.

If H < 0.5, then Kk(T ) → ∞.

We note that when a = a2, the exponential growth part (20) is twice as large as (15).

4. Concluding remarks

In this paper, we proposed a new formulation of continuous-time games in the framework of the
game-theoretic probability of Shafer and Vovk [15]. The present approach can be extended to
prove that Investor can essentially force other properties of Market’s path corresponding to vari-
ous probability laws in continuous-time stochastic processes. Vovk [19] provided an approach to
point processes and diffusion processes from the prequential viewpoint, but it was not developed
further from the game-theoretic viewpoint. Extending the approach of the present paper, Vovk
[20–22] has now fully developed the formulation of continuous-time processes in the game-
theoretic probability setting within the conventional analysis.

From a theoretical perspective, it is important to consider taking the countable closure of
the move space F0 of Investor. For the discrete-time games, there is no conceptual difficulty in
considering static mixtures of countably many strategies. Even in continuous-time games, there is
no conceptual difficulty in dividing the initial capital into countably many accounts and applying
separate strategies to each account. Suppose that Investor can essentially force an event E. He
can then divide his initial capital of one as

1 = 1
2 + 1

4 + · · ·

and put 1/2i into the ith account as the initial capital. He applies the corresponding strategy P C

with C = 2i in Definition 2.2 to the ith account until K P 2i ≥ 1. He then collects one (dollar)
from each account and his capital diverges to infinity. This argument shows that if Investor can
essentially force E, then he can force E, provided that static mixtures of countable strategies are
allowed. In Vovk’s new formulation [20–22], static mixtures of strategies are properly formulated
and the notion of forcing is well defined for continuous-time games.

Our main Theorem 3.1 is stated in terms of the essential forcing of events (4) and (5). There is
some gap between these two sets of functions. In particular, the set (5) may be too small. We used
this definition for convenience in employing our simple limit order type strategy. A stronger state-
ment in terms of the variation exponent vexS has been established in Theorem 1 of Vovk [21].
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Finally, we comment on the differences between our approach and standard measure-theoretic
approaches to no arbitrage and the Hölder exponent. A general theory of arbitrage was estab-
lished by Delbaen and Schachermayer [4] (see also [5]) and it clarifies exact mathematical rela-
tions among various conditions concerning no arbitrage. Later, Rogers [14] gave an explicit trad-
ing strategy, but assumed a fractional Brownian motion with H �= 1/2. In these measure-theoretic
works, a stochastic process is given first and the effect of a trading strategy on probabilities over
the set of paths is studied. On the contrary, we do not make any probabilistic assumptions. Fur-
thermore, we study the behavior of an explicit strategy against each individual price path, rather
than subsets of the set of paths.
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