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1. Introduction

The goal of the present paper is to investigate the concentration of measure phenomenon for
norms of infinitely divisible random vectors with independent coordinates. Let X ∼ ID(γ,0, ν)

be an infinitely divisible (ID) vector without Gaussian component in R
d , and with characteristic

function

ϕ(t) = Eei〈t,X〉 = exp

{
i〈t, γ 〉 +

∫
Rd

(
ei〈t,u〉 − 1 − i〈t, u〉1‖u‖2≤1

)
ν(du)

}
, (1.1)

where t, γ ∈ R
d and where ν 	≡ 0 (the Lévy measure) is a positive Borel measure on R

d , with-
out atom at the origin and such that

∫
Rd (1 ∧ ‖u‖2

2)ν(du) < +∞ (throughout, 〈·, ·〉 denotes the
Euclidean inner product in R

d , while ‖ · ‖2 is the corresponding Euclidean norm). Properties of
X can be read from properties of ν. For example, X has independent components if and only if
ν is supported on the axes of R

d , that is,

ν(dx1, . . . ,dxd) =
d∑

k=1

δ0(dx1) · · · δ0(dxk−1)ν̃k(dxk)δ0(dxk+1) · · · δ0(dxd) (1.2)

for some one-dimensional Lévy measures ν̃k , the i.i.d. case corresponding to ν̃k = ν̃, for
k = 1, . . . , d . For simplicity of notation, we shall often assume in the sequel that X has i.i.d.
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components rather than merely independent ones. It is an easy matter, left to the reader, to trans-
form any i.i.d. result obtained below into an “independent” one; often it just involves introducing
mink=1,...,d or maxk=1,...,d in the notation.

In a seminal work, Talagrand [13] proved a concentration inequality for the product of (one-
sided) exponential measures (see also Maurey [9]). This inequality was the first to mix two dif-
ferent norms (�1 and �2), improving upon some aspects of Gaussian concentration. Rewriting it,
in functional form, it asserts that if X is a random vector in R

d with i.i.d. exponential components
and if f is a real-valued Lipschitz function on R

d such that

∃α,β > 0,∀x, y ∈ R
d |f (x) − f (y)| ≤ min(α‖x − y‖2, β‖x − y‖1),

then there exists a universal constant K > 0 such that

P
(
f (X) − m(f (X)) ≥ u

) ≤ exp

(
−K min

(
x2

α2
,
x

β

))
,

where m(f (X)) is a median of f (X). What is remarkable here is the dimension-free nature
of this concentration inequality. For instance, applying it to the Euclidean norm, we note that
α = β = 1 and that the only dependency in the dimension d is through the median itself. This
result of Talagrand, which clearly continues to hold for Lipschitz images of the exponential
measure, is actually true for any law satisfying a Poincaré inequality (see Bobkov and Ledoux
[2]).

We would here like to obtain dimension-free concentration for infinitely divisible vectors with
finite exponential moments, of which the exponential measure is a particular case. The need to
have finite exponential moments to obtain dimension-free results is clear, in view of Proposi-
tion 5.1 of [13] (see also [1]). On the other hand, by a result of Borovkov and Utev [3], one-
dimensional laws satisfying a Poincaré inequality must have a non-trivial absolutely continuous
component, thus making our results non-vacuous. The class of infinitely divisible laws is quite
encompassing and, for example, on R

+, any log-convex density is infinitely divisible. The situa-
tion is more subtle as far as one-dimensional log-concave measures (which necessarily satisfy a
Poincaré inequality) is concerned and, for instance, the (infinitely divisible) gamma law with pa-
rameters α > 0 and t > 0, and with density αtxt−1e−αx/	(t), x > 0, is log-concave if and only
if t ≥ 1. Let us also mention that double Wiener–Itô integrals form another important example
of infinitely divisible laws (we refer the reader to Sato [12] for a comprehensive introduction to
infinitely divisible laws).

For general Lipschitz functions and general ID vectors, generic results have already been ob-
tained, but when specialized to vectors with i.i.d. components, they are not always dimension-free
(we refer to [6] for more precise statements). In fact, it is not clear whether or not an extra as-
sumption, such as convexity, might be needed in order to obtain dimension-free concentration for
generic Lipschitz functions. As shown below, for �p-norms, p ≥ 2, we do obtain dimension-free
concentration.

Let us state a first result for the Euclidean norm.

Theorem 1. Let X = (X1, . . . ,Xd) be an ID vector with i.i.d. coordinates, characteristic func-
tion (1.1) and Lévy measure as in (1.2). Let Eet‖X‖2 < +∞ for some t > 0, let M = sup{t >
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0 : Eet |X1| < +∞} and also let l = − logE[e−X2
1 ]. Then, for all x > 0,

P(‖X‖2 ≥ E‖X‖2 + x) ≤ e− sup0≤t≤T [tx−∫ t
0 2g(s)ds], (1.3)

where, for 0 < t < M ,

g(t) =
(

8 + 12 log(2)

l

)∫
R

|u|(et |u| − 1
)
ν̃(du) + 8

l

∫
R

|u|3(et |u| − 1
)
ν̃(du)

and where T is such that for all t ≤ T , tg(t) ≤ 1/2.

Inequality (1.3) does recover Talagrand’s inequality for the Euclidean norm (up to the
value of the constants). Indeed, for the symmetric exponential law, in which case ν̃(du)/du =
e−|u|/|u|, u ∈ R, u 	= 0, we obtain T � 0.06. Moreover, since g(0) = 0, there exists a C > 0 such
that

∫ t

0 2g(s)ds ≤ Ct2 for all t ≤ T . Taking t = x/(2C) for x ≤ 2CT and t = T otherwise, we
get bounds of the form exp(−x2/(4C)) for x ≤ 2CT and K exp(−T x) for x > 2CT .

We next obtain a result for general �p-norms, p ≥ 2, but under some assumptions on the law
of X.

Theorem 2. Let X be as in Theorem 1 and let X1 be either symmetric or non-negative. Let
2 ≤ p < ∞. Then, for all 0 < x < hp(M−),

P(‖X‖p − E‖X‖p ≥ x) ≤ exp

(
−

∫ x

0
h−1

p (s)ds

)
, (1.4)

where the (dimension-free) function hp is given by

hp(t) = p2
∫

R

[(
1 + 41/p|u|

m
1/p
p

)2p−2

+ 22p+1 m2p

m2
p

]
|u|(et |u| − 1

)
ν̃(du),

where 0 < t < M and where, for any q > 1, mq = E[|X1|q ].

The hypotheses on X may seem restrictive, but we shall see that a similar result (see Theorem 5
in Section 4) holds under far more general conditions. However, the dimension-free bound we
obtain in that general framework is more complicated to express.

Note that Theorem 2 also recovers a bound of the form exp(−min(cx2, c′x)), as in Talagrand’s
result. Moreover, the constant c′ is now asymptotically optimal. More precisely, suppose that X

is infinitely divisible (without Gaussian component), one-dimensional and satisfies

logP(|X| ≥ x) ∼ −λ0x (1.5)

as x → ∞, for some constant λ0 > 0. Then, for every λ < λ0,∫
R

|u|(eλ|u| − 1
)
ν̃(du) < ∞
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and, therefore, h−1
p is well defined on [0, λ0). It follows that if we study the �p-norm of

(X1, . . . ,Xn), where the Xi are i.i.d. and have the same law as X, Theorem 2 gives, for every
ε > 0, a bound of order exp(−(λ0 − ε)x) for large x. In view of (1.5), we see that this bound is
optimal, up to some subexponential factor.

For instance, suppose that ν̃ is concentrated on R+, has a density k and there exist two con-
stants λ0, q > 0 such that, as x → ∞,

k(x) � x−qe−λ0x,

where, as usual, � indicates that the ratio of the two quantities is bounded, above and below, as
x → ∞. Then, if 2 ≤ p < q/2, Theorem 2 gives, for large enough x, a bound of the form

P(‖X‖p − E‖X‖p ≥ x) ≤ c(x)e−λ0x,

where log c(x)/ logx → 0 as x → ∞. On the other hand, if p ≥ sup(2, q/2), then for every
λ < λ0, if x is large enough,

P(‖X‖p − E‖X‖p ≥ x) ≤ c(x)e−λx.

Moreover, if the Lévy measure ν has bounded support, Theorem 2 gives a bound of order
exp(−x logx) for large x. This is known to be the right order of magnitude for a Poisson random
variable (see, e.g., [6]). In turn, this kind of bound entails the existence of more-than-exponential
moments. The most precise result we obtain is the following dimension-free extension of the
results of [6,11].

Theorem 3. Let X be as in Theorem 1, let ν̃ have bounded support and let R = inf{ρ : ν̃(|x| >

ρ) = 0}. Then,

E
[
e(‖X‖2/R) log(λ‖X‖2/R)

]
< +∞,

for all λ such that λV 2/R2 < 1/e, where V 2 = 8
∫

R
|u|2ν̃(du).

Further results of a similar flavor, dealing with projections, �p-norms or integrals with respect
to a Poisson process, are given in the remainder of this paper. All these results are based on a
covariance formula that can be derived from a result in [5]. This formula, together with its first
applications, is proved in Section 2. Theorem 1 is then proved in Section 3. In Section 4, we state
and prove Theorem 5, which is a generalization of Theorem 2. The last section is devoted to the
proof of Theorem 3.

2. The covariance formula and its first applications

2.1. The covariance formula

The result at the root of every proof in this paper is the following one.
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Proposition 1. Let X = (X1, . . . ,Xd) ∼ ID(γ,0, ν) have independent components and be such
that Eet‖X‖2 < +∞ for some t > 0. Let f : Rd → R be such that Ef (X) = 0 and let there
exist bk ∈ R, k = 1, . . . , d , such that |f (x + uek) − f (x)| ≤ bk|u| for all u ∈ R, x ∈ R

d . Let
M = sup{t > 0 :∀k = 1, . . . , d,Eetbk |Xk | < +∞}. Then, for all 0 ≤ t < M ,

Ef etf ≤
∫ 1

0
Ez

[
d∑

k=1

∫
R

|f (U + uek) − f (U)|2 + |f (V + uek) − f (V )|2
2

× etf (V )

(
etbk |u| − 1

bk|u|
)

ν̃k(du)

]
dz,

where the expectation Ez is with respect to the ID vector (U,V ) in R
2d of parameter (γ, γ ) and

with Lévy measure zν1 + (1 − z)ν0, 0 ≤ z ≤ 1. The measure ν0 is given by

ν0(du,dv) = ν(du)δ0(dv) + δ0(du)ν(dv), u, v ∈ R
d ,

while ν1 is the measure ν supported on the main diagonal of R
2d .

An important feature of this proposition is the fact that the first marginal of (U,V ) is X

and so is its second marginal. Therefore, the main problem in estimating the right-hand side
of the inequality in Proposition 1 will be to decouple U and V , that is, to split the product
|f (U +uek)− f (U)|2etf (V ) without changing the term etf (V ). To do so, a first attempt could be
to use a supremum.

Corollary 1. Let X = (X1, . . . ,Xd) ∼ ID(γ,0, ν) have independent components and be such
that Eet‖X‖2 < +∞ for some t > 0. Let f : Rd → R and let there exist bk ∈ R, k = 1, . . . , d ,
such that |f (x + uek) − f (x)| ≤ bk|u| for all u ∈ R, x ∈ R

d . Let

hf (t) = sup
x∈Rd

d∑
k=1

∫
R

|f (x + uek) − f (x)|2 etbk |u| − 1

bk|u| ν̃k(du), 0 ≤ t < M,

where M = sup{t > 0 :∀k = 1, . . . , d,Eetbk |Xk | < +∞}. Then,

P
(
f (X) − Ef (X) ≥ x

) ≤ e− ∫ x
0 h−1

f (s)ds (2.1)

for all 0 < x < h−1
f (M−).

Proof of Proposition 1 and Corollary 1. Below, and throughout, by “f Lipschitz with constant
a” we mean that |f (x) − f (y)| ≤ a‖x − y‖ for all x, y ∈ R

d (the Lipschitz convention stated in
[6] also applies). Let us start by recalling the following simple lemma which will be crucial to
our approach [5] (or [6] for a sketch of proof). The lemma is the infinitely divisible version of the
covariance representation for functions of Gaussian vectors obtained via Gaussian interpolation.
Its proof is also obtained via infinitely divisible interpolation and, below, the law of the vector
(U,V ) is as in the previous proposition.
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Lemma 1. Let X ∼ ID(γ,0, ν) be such that E‖X‖2
2 < +∞. Let f,g : Rd → R be Lipschitz

functions. Then,

Ef (X)g(X) − Ef (X)Eg(X)
(2.2)

=
∫ 1

0
Ez

[∫
Rd

(
f (U + u) − f (U)

)(
g(V + u) − g(V )

)
ν(du)

]
dz,

where Ez is as in Proposition 1.

We then follow [6]. First, by independence,

C = {
t > 0 :∀k = 1, . . . , d,Eetbk |Xk | < +∞}

=
{
t > 0 :∀k = 1, . . . , d,

∫
|u|>1

etbk |u|ν̃k(du) < +∞
}
.

Next, we apply the covariance representation (2.2) to f satisfying the above hypotheses and
moreover assumed to be bounded and such that Ef = 0. Hence,

Ef etf =
∫ 1

0
Ez

[
etf (V )

d∑
k=1

∫
R

(
f (U + uek) − f (U)

)(
et (f (V +uek)−f (V )) − 1

)
ν̃k(du)

]
dz

≤
∫ 1

0
Ez

[
etf (V )

d∑
k=1

∫
R

|f (U + uek) − f (U)|

× |f (V + uek) − f (V )| etbk |u| − 1

bk|u| ν̃k(du)

]
dz

≤
∫ 1

0
Ez

[
etf (V )

d∑
k=1

∫
R

|f (U + uek) − f (U)|2 + |f (V + uek) − f (V )|2
2

×
(

etbk |u| − 1

bk|u|
)

ν̃k(du)

]
dz,

which gives Proposition 1. For Corollary 1, we continue.

Ef etf ≤ hf (t)E[etf ],
where we have used the “marginal property” mentioned above and the fact that hf (t) is well
defined for 0 ≤ t < M . Integrating this last inequality, applied to f − Ef , leads to

Eet (f −Ef ) ≤ e
∫ t

0 hf (s)ds , 0 ≤ t < M, (2.3)

for all bounded f satisfying the hypotheses of the theorem. Fatou’s lemma allows us to remove
the boundedness assumption in (2.3).
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To obtain the tail inequality (2.1), the Bienaymé–Chebyshev inequality gives

P
(
f (X) − Ef (X) ≥ x

) ≤ exp

(
− sup

0<t<M

(
tx −

∫ t

0
hf (s)ds

))
= e− ∫ x

0 h−1
f (s)ds

by standard arguments (see, e.g., [6]). �

2.2. First applications

In general, the above corollary does not provide dimension-free results, even if it slightly im-
proves a result of [6]. However, for particular functions, the above formula can, in fact, be quite
efficient. As a consequence of the previous corollary, we present some almost dimension-free
results. First, we have the following.

Theorem 4. Let X be as in Theorem 1. Let ε > 0. Then, for all 0 < x < h(M−),

P
(‖X‖2 ≥ (1 + ε)E‖X‖2 + x

) ≤ e− ∫ x
0 h−1(s)ds , (2.4)

where the (dimension-free) function h is given by

h(t) = 8
∫

R

|u|(et |u| − 1
)
ν̃(du) + 2d

(εE‖X‖2)2

∫
R

|u|3(et |u| − 1
)
ν̃(du).

Theorem 4 still has some weak dimension dependency via the term εE‖X‖2 (the expecta-
tion and the median playing the same role up to some constant). In particular, it does not pre-
cisely recover Talagrand’s result, even for the Euclidean norm. However, the function h itself is
dimension-free, in that it can be both upper and lower bounded independently of the dimension d

since for X = (X1, . . . ,Xd), d mini=1,...,d (E|Xi |)2 ≤ (E‖X‖2)
2 ≤ d maxi=1,...,d E(X2

i ).
The advantage of Theorem 4 is that it does not require any additional assumptions, in contrast

to Theorem 2, and that it recovers the x logx-type bound when ν has bounded support, which is
not the case of Theorem 1. We refer the reader to [7], whose results are sometimes superseded
by the present paper, for various applications of Theorem 4.

Actually, the mild dimension dependency in Theorem 4 is not much of a problem in the statis-
tical applications we have in mind. However, a statistician would prefer not to have any unnec-
essary extra assumptions on the variables themselves. Let us explain these comments by means
of an example.

Assume that we observe n Poisson processes on [0,1] with intensity s with respect to the
Lebesgue measure. We would like to estimate the function s. A simple way to do it is to discretize
the problem. So, let d be some integer (usually smaller than

√
n if s is regular enough) and for

all i, 1 ≤ i ≤ d , let Ni be the total number of points that have appeared between (i − 1)/d and
i/d . Therefore, the variables Ni are independent and Ni obeys a Poisson law with parameter
Si = ∫ i/d

(i−1)/d s(x)ndx � (n/d)s(i/d). If we want to understand the behavior of the estimator
N = (N1, . . . ,Nd) around S = (S1, . . . , Sd), we need to control ‖ε‖2, where we write, for all i,

Ni = Si + εi .
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We deal here with a regression problem where the noise ε = (ε1, . . . , εn) has independent com-
ponents, but these components are not identically distributed. More generally, we would like to
encompass the case where the noise is centered with independent infinitely divisible components.
Classical regression corresponds to a Gaussian i.i.d. noise and we refer the interested reader to [8]
for an extensive study of the link between concentration and estimation of the signal S through
model selection methods in that framework.

We would not only like to drop the i.i.d. assumption in Theorem 4 (which is rather easy to
do), but we would also like to have an inequality which is valid under a very mild assumption on
the noise. The next corollary only assumes that there exists a known bound on the support of the
Lévy measures, which is, for instance, the case for the Poisson problem we described above.

Corollary 2. Let X ∼ ID(γ,0, ν) have independent components and be such that Rk = inf{ρ >

0, ν̃k(|x| > ρ) = 0} is finite, with R = max1≤k≤d Rk . Let ε > 0 and let

V 2
ε = 8 max

1≤k≤d

∫
u2ν̃k(du) + 2

(εE‖X‖2)2

d∑
k=1

∫
u4ν̃k(du).

Then, for all x ≥ 0,

P
(‖X‖2 ≥ (1 + ε)E‖X‖2 + x

) ≤ ex/R−(x/R+V 2
ε /R2) log(1+Rx/V 2

ε ).

The above result improves upon known concentration inequalities for Poisson processes. One
can easily prove that in the framework mentioned above with X = N −S, the factor V 2

ε appearing
in Corollary 2 is of the order 8nB/d , where B is an upper bound on s, as soon as s is bounded
from below and d <<

√
n. So, applying Corollary 2 to N − S, we obtain that there exists a

constant C > 0 such that for all x ≥ 0,

P
(‖N − S‖2 ≥ (1 + ε)E‖N − S‖2 + x

) ≤ e−C min(x2d/Bn,x log(xd/Bn)).

Applying instead Theorem 4 of [10] to our problem, we see that there exists a constant C′ > 0
such that for all x ≥ 0,

P
(‖N − S‖2 ≥ (1 + ε)E‖N − S‖2 + x

) ≤ e−C′ min(x2d/Bn,x).

Thus, even in this simplest case (of a Poisson process), we see that Corollary 2 (optimally)
improves known results by a logarithmic factor.

However, if one is interested in recovering the function s from the observations of the n Pois-
son processes and if s is not very smooth and varies greatly on a very small interval, looking at
a regular partition might be rather useless. It might, instead, be much more fruitful to look at the
function s discretized on very small intervals (d = n) and then to look at the projection of the
signal S on a space S which is generated by, say, a few Haar wavelets. Now, if the signal S is
sparse on the Haar basis, it means that one can find (and use) a space S , with a dimension much
smaller than n, to provide a good approximation for S. However, one now needs to understand
the behavior of ‖�S (N −S)‖2, where �S is the orthogonal projection on S . As before, we want
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to deal with more general infinitely divisible noise than simply centered Poisson variables. The
two following corollaries provide such results.

Corollary 3. Let X ∼ ID(γ,0, ν) have independent components. Let S be a subspace of R
d

and �S the orthogonal projection on S . Let M = sup{t > 0 :∀k = 1, . . . , d,Eet |Xk | < +∞}. Let
E > 0. Then, for all 0 < x < h(M−),

P
(‖�S (X)‖2 ≥ E‖�S (X)‖2 + E + x

) ≤ e− ∫ x
0 h−1(s)ds (2.5)

and

P
(‖�S X‖2 ≤ E‖�S (X)‖2 − E − x

) ≤ e− ∫ x
0 h−1(s)ds , (2.6)

where the function h is given by

h(t) = 8 max
1≤k≤d

∫
R

|u|(et |u| − 1
)
ν̃k(du) + 2

E2

d∑
k=1

‖�S (ek)‖4
2

∫
R

|u|3(et |u| − 1
)
ν̃k(du)

for 0 ≤ t < M .

The next version, which assumes i.i.d. coordinates, in contrast to the above, can sometimes be
easier to use. For the statistician, the i.i.d. case appears when dealing with a regression problem
where the noise does not depend on the signal itself.

Corollary 4. Let X be as in Theorem 1. Let S be a subspace of R
d and let �S be the orthogonal

projection on S . Let ε > 0. Then, for all 0 < x < h(M−),

P
(‖�S (X)‖2 ≥ (1 + ε)

√
E‖�S (X)‖2

2 + x
) ≤ e− ∫ x

0 h−1(s)ds (2.7)

and

P
(‖�S (X)‖2 ≤ E‖�S (X)‖2 − ε

√
E‖�S (X)‖2

2 − x
) ≤ e− ∫ x

0 h−1(s)ds , (2.8)

where the (dimension-free) function h is given by

h(t) = 8
∫

R

|u|(et |u| − 1
)
ν̃(du) + 2

ε2EX2
1

∫
R

|u|3(et |u| − 1
)
ν̃(du)

for 0 ≤ t < M .

Finally, in the density framework [4], it is known that the Euclidean norm does not suffice to
assess the performance of one estimator: if the density s belongs to a Sobolev space Hα , linear
estimators cannot achieve the optimal rate of convergence for the Lp-norm if p > 2, whereas
they can for the L2-norm. This corresponds to sparse signals S that can be approximated by their
projection on a subspace with small dimension with respect to n but for the Lp-norm. So, in that
context, it is necessary to work with general Lp-norms and concentration results for �p-norms
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are more relevant than for the �2-norm. Such results are presented in the following corollary with
a weak dimension dependency and in Theorem 5 without any dimension dependency and with
as few assumptions as possible on the noise (see Section 4). These results are given in their i.i.d.
version for the sake of simplicity, but one can easily see their non-i.i.d. version from the given
proofs.

Corollary 5. Let X be as in Theorem 1. Let p ≥ 2 and ε > 0. Then, for all 0 < x < h(M−),

P
(‖X‖p ≥ (1 + ε)E(‖X‖p) + x

) ≤ e− ∫ x
0 h−1(s)ds (2.9)

and

P
(‖X‖p ≤ (1 − ε)E(‖X‖p) − x

) ≤ e− ∫ x
0 h−1(s)ds , (2.10)

where the function h is given by

h(t) = p2
∫

R

(
1 + |u|d1/(2p−2)

εE(‖X‖p)

)2p−2

|u|(et |u| − 1
)
ν̃(du)

for 0 ≤ t < M.

2.3. Proofs

Let us proceed to the proof of the results of the previous subsection. We begin with Corollary 3,
the other proofs being easier.

Proof of Corollary 3. We apply Corollary 1 to f (x) = (‖�S(x)‖2 − E)+. First, it is easily
verified that for each k, |f (x + uek) − f (x)| ≤ |‖�S(x + uek)‖2 − ‖�S(x)‖2|1Ak

, where Ak =
{‖�S(x + uek)‖2 ≥ E or ‖�S(x)‖2 ≥ E}. We then have

|f (x + uek) − f (x)| ≤ |2〈u�S(ek),�S(x)〉 + u2‖�S(ek)‖2
2|1Ak

‖�S(x + uek)‖2 + ‖�S(x)‖2
(2.11)

≤ 2|u||〈�S(ek),�S(x)〉|
‖�S(x)‖2

+ u2‖�S(ek)‖2
2

E
.

Moreover, since |f (x + uek) − f (x)| ≤ |u|, we have

d∑
k=1

∫
R

|f (x + uek) − f (x)|2 etbk |u| − 1

bk|u| ν̃k(du)

≤
d∑

k=1

∫
R

(
8u2 |〈�S(ek),�S(x)〉|2

‖�S(x)‖2
2

+ 2u4‖�S(ek)‖4
2

E2

)(
et |u| − 1

|u|
)

ν̃k(du)

≤
d∑

k=1

∫
R

(
8u2 |〈ek,�S(x)〉|2

‖�S(x)‖2
2

+ 2u4‖�S(ek)‖4
2

E2

)(
et |u| − 1

|u|
)

ν̃k(du).
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Hence, hf ≤ h. To complete the proof of (2.5), note that ‖�S(X)‖2 − E ≤ (‖�S(X)‖2 − E)+
and that E(‖�S(X)‖2 −E)+ ≤ E‖�S(X)‖2. To get the lower bound (2.6), just proceed as above,
but with the function f (x) = −(‖�S(x)‖2 −E)+ and note that (‖�S(X)‖2 −E)+ ≤ ‖�S(X)‖2
and that E‖�S(X)‖2 − E ≤ E(‖�S(X)‖2 − E)+. �

Proof of Theorem 4. We apply Corollary 3 with S = R
d and E = εE‖X‖2. �

Proof of Corollary 2. It is sufficient to note that, proceeding as in Corollary 3, h(t) ≤ h0(t) =
V 2

ε (exR − 1/R) and that M = +∞. It remains to integrate the reciprocal of h0. �

Proof of Corollary 4. Again applying Corollary 3, let us take E = ε

√
E(‖�S(X)‖2

2). Then, note
that in the centered i.i.d. case,

E[‖�S(X)‖2
2] = E

[
d∑

l=1

(
d∑

k=1

Xk〈�S(ek), el〉
)2]

=
d∑

l=1

d∑
k=1

E[X2
k ]〈�S(ek), el〉2

= E[X2
1]

d∑
k=1

‖�S(ek)‖2
2

≥ E[X2
1]

d∑
k=1

‖�S(ek)‖4
2

since ‖�S(ek)‖2 ≤ ‖ek‖2 = 1. �

Proof of Corollary 5. We apply Corollary 1 to f (x) = (‖x‖p − εE(‖X‖p))+ to get the first
result. For the second one, it is sufficient to do the same with −(‖x‖p − εE(‖X‖p))+. The
end of the proof is as in Corollary 3. Let x be in R

d . First, it is easily verified that for each
k, |f (x + uek) − f (x)| ≤ |‖x + uek‖p − ‖x‖p|1Ak

, where Ak = {‖x + uek‖p ≥ εE(‖X‖p) or
‖x‖p ≥ εE(‖X‖p)}. Since

∀a, b ≥ 0 |a − b| ≤ |ap − bp|
sup(a, b)p−1

, (2.12)

we have

|f (x + uek) − f (x)| ≤ ||xk + u|p − |xk|p|
sup(‖x‖p,‖x + uek‖p)p−1

1Ak
. (2.13)

But since x �→ xp is convex, we have∣∣|xk + u|p − |xk|p
∣∣ ≤ ∣∣(|xk| + |u|)p − |xk|p

∣∣.
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Combining this with the fact that

∀y ≥ 0 (1 + y)p − 1 ≤ py(1 + y)p−1

implies that

|f (x + uek) − f (x)| ≤ p|u|(|xk| + |u|)p−1

sup(‖x‖p,‖x + uek‖p)p−1
1Ak

(2.14)

≤ p|u|(|xk| + |u|)p−1

sup(‖x‖p, εE(‖X‖p))p−1
.

Moreover, since |f (x + uek) − f (x)| ≤ |u|, we have

d∑
k=1

∫
R

|f (x + uek) − f (x)|2 etbk |u| − 1

bk|u| ν̃k(du)

≤ p2
∫

R

‖|x| + |u|I‖2p−2
2p−2

sup(‖x‖p, εE(‖X‖p))2p−2
|u|(et |u| − 1

)
ν̃(du) (2.15)

≤ p2
∫

R

(‖x‖2p−2 + |u|‖I‖2p−2

sup(‖x‖p, εE(‖X‖p))

)2p−2

|u|(et |u| − 1
)
ν̃(du),

where I = (1, . . . ,1) ∈ R
d and |x| = (|x1|, . . . , |xd |). Since p ≥ 2, 2p − 2 ≥ p and ‖x‖2p−2 ≤

‖x‖p , which implies that

d∑
k=1

∫
R

|f (x + uek) − f (x)|2 etbk |u| − 1

bk|u| ν̃k(du)

≤ p2
∫

R

(
1 + |u| d1/(2p−2)

εE(‖X‖p)

)2p−2

|u|(et |u| − 1
)
ν̃(du).

Here, again, the upper bound is dimension-free since E(‖X‖p) ≥ E(|X1|)d1/p . �

3. Proof of Theorem 1

Another method to decouple U and V in Proposition 1 is to use the following inequality, which
is a particular instance of Young’s inequality (for the pairs of conjugate functions cex and
y log(y/c) − y, with the optimal c) and has already been used in [8].

Lemma 2. Let λ > 0 and let X and Y be random variables for which all the expectations below
exist. Then,

E[XeλY ] ≤ E[Y eλY ] + log E[eλX]
λ

E[eλY ] − logE[eλY ]
λ

E[eλY ]. (3.1)
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Proof. Indeed, if

dQ = eλY

E[eλY ] dP,

then, by Jensen’s inequality,

λEQ(X − Y) ≤ logEQ

(
eλ(X−Y)

)
. �

With the help of the previous lemma, the following holds.

Corollary 6. Let X = (X1, . . . ,Xd) ∼ ID(γ,0, ν) have i.i.d. components and be such that
Eet‖X‖2 < +∞ for some t > 0. Let f : Rd → R be such that Ef (X) = 0 and let there exist
b ∈ R such that for all k, |f (x + uek) − f (x)| ≤ b|u| for all u ∈ R, x ∈ R

d . Assume, moreover,
that for all u ∈ R, there exists a function Cu such that

d∑
k=1

∫
R

|f (X + uek) − f (X)|2ν̃k(du) ≤ u2Cu(X)

and such that E[eλ(u,t)Cu(X)] < ∞ for λ(u, t) > 0. Then, for all t for which all the quantities
below are well defined, we have(

1 − h(t)
)
E[f etf ] ≤ g(t)E[etf ], (3.2)

where

h(t) =
∫

R

t

λ(u, t)
|u|etb|u| − 1

b
ν̃(du)

and

g(t) =
∫

R

ln(φ(u, t))

λ(u, t)
|u|etb|u| − 1

b
ν̃(du),

and where φ(u, t) = E[eλ(u,t)Cu(X)].

Proof. Applying Proposition 1 to f , the above assumptions entail that

Ef etf ≤
∫ 1

0
Ez

[∫
R

Cu(U) + Cu(V )

2
etf (V )

(
|u|etb|u| − 1

b

)
ν̃(du)

]
dz.

Next, apply Lemma 2 to λ(u, t)Y = tf (V ) and to X = Cu(U) or X = Cu(V ). Since Y has zero
mean, one can ignore the last term in (3.1), and this leads to

Ef etf ≤
∫

R

[
E

(
t

λ(u, t)
f etf

)
+ ln(φ(u, t))

λ(u, t)
E(etf )

]
|u|etb|u| − 1

b
ν̃(du),

which concludes the proof. �
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(3.2) is non-trivial only when h(t) < 1. One of its applications is to prove Theorem 1, with the
help of our next two results.

Lemma 3. For α > 0, let �α = − ln E[e−αX2
1 ]. Then, for all λ > 0, v > 0 such that, �α ≥ λ/v,

E

(
exp

(
λd

‖X‖2
2 + v

))
≤ 1 + exp

(
αλ

�α − λ/v

)
.

Proof. Let ε > 0, to be chosen later. Let a = exp( λd

εdE(X2
1)+v

) and let b = exp( λd
v

). Then,

E

(
exp

(
λd

‖X‖2
2 + v

))
=

∫ b

0
P

(
exp

(
λd

‖X‖2
2 + v

)
≥ t

)
dt

≤ a +
∫ b

a

P

(
−‖X‖2

2 ≥ v − λd

ln t

)
dt

≤ a +
∫ b

a

E[e−αX2
1 ]de−αv+αλd/ln t dt

≤ a + e−d�α+αεdE(X2
1)(b − a)

≤ a + ed(εαE(X2
1)+(λ/v)−�α).

Taking ε such that εαE(X2
1) + (λ/v) − �α = 0 leads to

E

(
exp

(
λd

‖X‖2
2 + v

))
≤ a + 1 ≤ 1 + exp

(
αλ

�α − λ/v

)
. �

Lemma 4. There exists positive constants c1, c2, c3 such that for all x ∈ R
d and u ∈ R,

d∑
k=1

∣∣‖x + uek‖2 − ‖x‖2
∣∣2 ≤ u2

(
c1 + c2 du2

‖x‖2 + c3u2

)
.

Proof. The proof is similar to an argument used in the proof of Corollary 3. We have

d∑
k=1

∣∣‖x + uek‖2 − ‖x‖2
∣∣2 ≤

d∑
k=1

(
2uxk + u2

‖x + uek‖2 + ‖x‖2

)2

.

But, for all ε > 0,

‖x + uek‖2
2 =

∑
j 	=k

x2
j + (xk + u)2 = ‖x‖2

2 + 2uxk + u2 ≥ ‖x‖2
2 − εx2

k + (1 − ε−1)u2.

Therefore,

(‖x + uek‖2 + ‖x‖2)
2 ≥ ‖x + uek‖2

2 + ‖x‖2
2 ≥ (2 − ε)‖x‖2

2 + (1 − ε−1)u2.
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Taking ε = 3/2, completes the proof. �

With the help of the previous lemmas, we now get the following.

Proof of Theorem 1. We want to apply Corollary 6 to f (X) = ‖X‖2 −E‖X‖2. With the notation
of Lemma 4,

Cu(X) = c1 + c2 du2

‖X‖2 + c3u2

works. We must then compute ln(φ(u, t)). But,

ln(φ(u, t)) = c1λ(u, t) + ln

(
E

[
exp

(
λ(u, t)c2u

2d

‖X‖2
2 + c3u2

)])

and so from Lemma 3, it follows that

ln(φ(u, t)) ≤ c1λ(u, t) + ln

(
1 + exp

(
αλ(u, t)c2u

2

�α − λ(u, t)c2/c3

))

for all α such that �α > λ(u, t)c2/c3.

Taking α = 1 and λ(u, t) = c3l/(2c2) gives

ln(φ(u, t)) ≤ c1λ(u, t) + ln 2 + c3u
2,

which leads to the result by standard arguments. �

4. Proof of Theorem 2

We state and prove in this section a generalization of Theorem 2. First, recall that the vector
X can be viewed as the value at time 1 of a Lévy process (Xz, z ≥ 0). For every z ∈ [0,1],
decompose X = Yz + Zz, where Yz = Xz and Zz = X − Xz, so that Yz,Zz are independent. If
1 ≤ k ≤ d , we write (Yk)z, (Zk)z for the kth coordinate of Yz,Zz. Furthermore, to simplify the
notation, we denote

Y+
t = (Y1)t1(Y1)t≥0 (4.1)

and likewise define Y−
t , Z+

t , Z−
t .

Theorem 5. Let X be as in Theorem 1 and let 2 ≤ p < ∞. Then, for all 0 < x < hp(M−),

P(‖X‖p − E‖X‖p ≥ x) ≤ exp

(
−

∫ x

0
h−1

p (s)ds

)
, (4.2)

where the (dimension-free) function hp is given as follows:
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• if X has almost surely non-negative coordinates,

hp(t) = p2
∫

R+

[(
1

21/p
+ u

m
1/p
p

)2p−2

+ 4

(
1 + 1

21/p

)2p−2 m2p

m2
p

]
u(etu − 1)ν̃(du), (4.3)

where the moments m2p,mp are defined by mq = E[Xq

1 ] for q = p,2p;
• in the general case,

hp(t) = p2
∫

R

[(
1 + 21/p|u|

m
1/p
p

)2p−2

+ 22p m2p

m2
p

]
|u|(et |u| − 1

)
ν̃(du), (4.4)

where the modified moments m2p,mp are defined, using the notation given in (4.1), by

mp = inf
z∈[0,1]

[
inf{E[|Y+

z + Z+
z |p],E[|Y−

z + Z−
z |p]}]

and

m2p = sup
z∈[0,1]

[
sup{E[|Y+

z + Z+
z |2p],E[|Y−

z + Z−
z |2p]}].

When 1 ≤ p < 2, an inequality similar to (4.2) holds, where hp is now replaced by the following
function hp,d (which is no longer dimension-free):

hp,d(t) = p2
∫

R

[
d2/p−1

(
1 + 21/p|u|

m
1/p
p

)2p−2

+ 22p m2p

m2
p

]
|u|(et |u| − 1

)
ν̃(du).

Observe that Theorem 2 is a particular case of this more general result. The obvious drawback
of Theorem 5 is that, except in the cases considered in Theorem 2, we do not have a precise
control of the quantities mp , m2p . In particular, if mp = 0, then hp = ∞ and we get a trivial
bound. However, it should be clear that when x does not have almost surely positive coordinates,
the quantity

inf
z∈[ε,1]

[
inf{E[|Y+

z + Z+
z |p],E[|Y−

z + Z−
z |p]}]

is positive for every ε > 0. So, the only case when mp might be zero is the case when (X1)t , the
first coordinate of the Lévy process X1, taken at time t , has a probability tending to 1 or to 0 to
be positive as t → 0. This kind of behavior does exist, but in most ‘natural’ examples, this is not
the case and then Theorem 5 does give a non-trivial bound, although the expression of this bound
is not always easy to handle.

Proof of Theorem 5. The proof can be divided into three steps. Define the function f (V ) =
‖V ‖p − E‖X‖p .

Step 1: We claim that

|f (X + uek) − f (X)| ≤ p|u|
( |Xk| + |u|

(‖X‖p
p + |u|p)1/p

)p−1

. (4.5)
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Step 2: Using the notation of Proposition 1, we have

A := Ez

[
d∑

k=1

|f (V + uek) − f (V )|2etf (V )

]
≤ p2|u|2F(p,d,u)E

[
etf (V )

]
,

B := Ez

[
d∑

k=1

|f (U + uek) − f (U)|2etf (V )

]
≤ p2|u|2F(p,d,u)E

[
etf (V )

]

for some function F(p,d,u) that will be made explicit in the course of the proof.
Step 3: For hp and hp,d as in Theorem 5, we have, if p ≥ 2,

E(f etf ) ≤ hp(t)E(etf )

and if 1 ≤ p < 2,

E(f etf ) ≤ hp,d(t)E(etf ).

Integrating the inequalities of this last step leads to Theorem 5.
Proof of Step 1. First, for all reals a, b ≥ 0,

max(a, b)1/p − min(a, b)1/p =
(

a + b

2
+ |a − b|

2

)1/p

−
(

a + b

2
− |a − b|

2

)1/p

=
(

a + b

2

)1/p[(
1 + |a − b|

a + b

)1/p

−
(

1 − |a − b|
a + b

)1/p]
.

Since the function x �→ (1 + x)1/p − (1 − x)1/p is convex on [0,1], is zero at zero and 21/p at 1,
we get

max(a, b)1/p − min(a, b)1/p ≤
(

a + b

2

)1/p(
21/p |a − b|

a + b

)
= |a − b|

(a + b)(p−1)/p
. (4.6)

Next, we want to apply (4.6) to a = ‖X‖p
p , b = ‖X + uek‖p

p . Put ck = u/Xk and distinguish
between three cases. First, if ck ≥ 0, then∣∣|Xk + u|p − |Xk|p

∣∣ ≤ p|u|(|Xk| + |u|)p−1

and

|Xk + u|p + |Xk|p ≥ 2|Xk|p + |u|p.

Second, if −2 ≤ ck ≤ 0, then∣∣|Xk + u|p − |Xk|p
∣∣ ≤ p|u||Xk|p−1

and we can check that for every A ≥ 0,

|Xk|
(A + |Xk + u|p + |Xk|p)1/p

≤ (1 + |ck|)|Xk|
(A + |Xk|p + |ck|p|Xk|p)1/p

.
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Third, if ck ≤ −2, then∣∣|Xk + u|p − |Xk|p
∣∣ ≤ p|u||Xk + u|p−1 = p|u|[|1 + ck||Xk|]p−1

and we can check that for every A ≥ 0,

|1 + ck||Xk|
(A + |Xk + u|p + |Xk|p)1/p

≤ (1 + |ck|)|Xk|
(A + |Xk|p + |ck|p|Xk|p)1/p

.

Combining the inequalities in these three cases with (4.6), we obtain (4.5).
Proof of Step 2. We will use the following well-known result.

Lemma 5. Let T be a random vector in R
d with i.i.d. components and let A,B : Rd → R be two

functions. For every i ≤ d and every x ∈ R
d−1, define the functions Ax,i,Bx,i : R → R via

Ax,i(t) = A(x1, . . . , xi−1, t, xi+1, . . . , xd),

Bx,i(t) = (x1, . . . , xi−1, t, xi+1, . . . , xd).

Assume that for every i ≤ d and every x ∈ R
d−1, one of the two functions Ax,i,Bx,i is non-

decreasing and the other one is non-increasing. Then

E[A(T )B(T )] ≤ E[A(T )]E[B(T )]. (4.7)

Proof. When d = 1, the proof is obtained by writing

E[A(T )B(T )] − E[A(T )]E[B(T )] = 1
2E

[(
A(T ) − A(T ′)

)(
B(T ) − B(T ′)

)]
,

where T ′ is an independent copy of T , and using the monotonicity assumptions. When d ≥ 1,
we proceed by induction. �

Let us first bound A. Summing (4.5) over k, the triangle inequality for ‖ · ‖2p−2 gives

A ≤ p2|u|2Ez

[(‖V ‖2p−2 + |u|d1/(2p−2)

(‖V ‖p
p + |u|p)1/p

)2p−2

etf (V )

]
.

If 2p−2 ≥ p, ‖V ‖2p−2 ≤ ‖V ‖p and, otherwise, ‖V ‖2p−2 ≤ ‖V ‖pd1/(2p−2)−1/p . Consequently,

A ≤ p2|u|2Ez

[
Qp

(
(‖V ‖p

p + |u|p)1/p

|u|d1/(2p−2)

)
etf (V )

]
,

where the polynomials Qp are defined as follows:

• if p ≥ 2, Qp :x �→ (1 + 1/x)2p−2;
• if p < 2, Qp :x �→ (d1/(2p−2)−1/p + 1/x)2p−2.
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We can apply (4.7) to T = ‖V ‖p since Qp(
(‖V ‖p

p+|u|p)1/p

|u|d1/(2p−2) ) is decreasing in ‖V ‖p , while etf (V )

is increasing. This gives

A ≤ p2|u|2E

[
Qp

(
(‖V ‖p

p + |u|p)1/p

|u|d1/(2p−2)

)]
E

[
etf (V )

]
.

Next, let us bound B. Summing (4.5) over k gives B ≤ p2|u|2 D with

D = Ez

[
Qp

(
(‖U‖p

p + |u|p)1/p

|u|d1/(2p−2)

)
etf (V )

]
.

Note that the distribution Pz of (U,V ) is such that for all z ∈ [0,1], U = Y ′
z + Zz, while

V = Yz + Zz, where Yz,Y
′
z and Zz are independent and Yz and Y ′

z are identically distributed.
Hence,

D = Ez

[
Qp

(
(‖Y ′

z + Zz‖p
p + |u|p)1/p

|u|d1/(2p−2)

)
etf (Yz+Zz)

]
.

Let us introduce the function Mp: for all real u, y, y′, z in R
d ,

Mp(|u|, y, y′, z) =
[
|u|p +

∑
i

1sgn(yi )=sgn(y′
i )=sgn(zi )

|zi + y′
i |p

]1/p

.

Then, Mp(|u|, y, y′, z) ≤ (‖y′ + z‖p
p + |u|p)1/p and since Qp is decreasing,

D ≤ Ez

[
Qp

(
Mp(|u|, Yz, Y

′
z,Zz)

|u|d1/(2p−2)

)
etf (Yz+Zz)

]
. (4.8)

From now on, we split Ez into EYz,Y ′
z
EZz , meaning that we first integrate according to the law of

Zz. Let us fix Yz and Y ′
z. Suppose, first, that (Zk)z, (Yk)z and (Y ′

k)z have the same sign. Then,

one of the two functions Qp(
Mp(|u|,Yz,Y

′
z,Zz)

|u|d1/(2p−2) ), etf (Yz+Zz) is non-decreasing in (Zk)z, while the

other function is non-increasing in (Zk)z. Next, if two of the three reals (Zk)z, (Yk)z and (Y ′
k)z

have a different sign, then the function Mp is constant in (Zk)z. Hence, we can use (4.7) and if
we denote by I the set of indices for which (Zk)z is positive, we get

D =
∑

I⊂{1,...,d}
EZz

[
Qp

(
Mp(|u|, Yz, Y

′
z,Zz)

|u|d1/(2p−2)

)
etf (Yz+Zz)1(Zk)z≥0 iff {k∈I }

]

≤
∑

I⊂{1,...,d}
EZz

[
Qp

(
Mp(|u|, Yz, Y

′
z,Zz)

|u|d1/(2p−2)

)]
EZz

[
etf (Yz+Zz)1{(Zk)z≥0 iff k∈I }

]

= EZz

[
Qp

(
Mp(|u|, Yz, Y

′
z,Zz)

|u|d1/(2p−2)

)]
EZz

[
etf (Yz+Zz)

]
.
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Integrating in Y ′
z and then in Yz leads to

D ≤ sup
y∈Rd

EY ′
z,Zz

[
Qp

(
Mp(|u|, y,Y ′

z,Zz)

|u|d1/(2p−2)

)]
E

[
etf (V )

]
,

where there is no index z in the last expectation since all the marginals are the same. In this way,
we have proven the second step, with

F(p,d,u) = sup
y∈Rd

EY ′
z,Zz

[
Qp

(
Mp(|u|, y,Y ′

z,Zz)

|u|d1/(2p−2)

)]
.

Proof of Step 3. Since Qp is continuous and decreasing, let us denote by Vp its reciprocal. In
order to bound F(p,d,u), we start by evaluating the probability

PY ′
z,Zz

[
Qp

(
Mp(|u|, y,Y ′

z,Zz)

|u|d1/(2p−2)

)
≥ s

]

= PY ′
z,Zz

[
Mp(|u|, y,Y ′

z,Zz)

|u|d1/(2p−2)
≤ Vp(s)

]
,

which is, in fact, zero if s ≥ a = Qp(1/d1/(2p−2)).
Suppose that y has k positive coordinates and d − k negative coordinates. Let I+ be the set of

i such that yi > 0 and let I− be the set of i such that yi < 0. Set

m+
q (z) = E(|Y+

z + Z+
z |q),

mq(z) = sup(m+
q (z),m−

q (z)),

and define m−
q (z) and mq(z) likewise, using Y−

z and Z−
z . Then,

PY ′
z,Zz

[
Qp

(
Mp(|u|, y,Y ′

z,Zz)

|u|d1/(2p−2)

)
≥ s

]

= PY ′
z,Zz

[ ∑
i∈I+

|Y ′
z
+ + Z+

z |p +
∑
i∈I−

|Y ′
z
− + Z−

z |p ≤ dp/(2p−2)|u|pVp(s)p − |u|p
]

≤ PY ′
z,Zz

[ ∑
i∈I+

|Y ′
z
+ + Z+

z |p +
∑
i∈I−

|Y ′
z
− + Z−

z |p ≤ dp/(2p−2)|u|pVp(s)p

]
.

Now, if s is such that dp/(2p−2)|u|pVp(s)p ≤ dmp(z)/2, which is equivalent to saying that

s ≥ b = Qp

([
d(p−2)/(2p−2)mp(z)

2|u|p
]1/p)

, (4.9)
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then

PY ′
z,Zz

[
Qp

(
Mp(|u|, y,Y ′

z,Zz)

|u|d1/(2p−2)

)
≥ s

]

≤ PY ′
z,Zz

[ ∑
i∈I+

|Y ′
z
+ + Z+

z |p +
∑
i∈I−

|Y ′
z
− + Z−

z |p ≤
dmp(z)

2

]

≤ PY ′
z,Zz

[∑
i∈I+

|Y ′
z
+ + Z+

z |p +
∑
i∈I−

|Y ′
z
− + Z−

z |p

≤ km+
p (z) + (d − k)m−

p (z) −
dmp(z)

2

]
.

Using the Bienaymé–Chebyshev inequality, we obtain

PY ′
z,Zz

[
Qp

(
Mp(|u|, y,Y ′

z,Zz)

|u|d1/(2p−2)

)
≥ s

]
≤ 4

km+
2p(z) + (d − k)m−

2p(z)

d2mp
2(z)

≤ 4m2p(z)

dmp
2(z)

.

Integrating this last probabilistic inequality gives

EY ′
z,Zz

[
Qp

(
Mp(|u|, y,Y ′

z,Zz)

|u|d1/(2p−2)

)]
≤ b + 4

(
a

d

)
m2p(z)

mp
2(z)

.

Recalling that a = Qp(1/d1/(2p−2)), so that a/d ≤ 22p−2, this entails

F(p,d,u) ≤ b + 22p m2p(z)

mp
2(z)

. (4.10)

Then, using Proposition 1, where all the bk are here equal to 1, together with Step 2 and (4.10),
we get Step 3.

The positive case. When X has almost surely non-negative coordinates, the following im-
provements are possible. First, (4.5) can be replaced by

|f (X + uek) − f (X)| ≤ p|u|
( |Xk| + |u|

(2‖X‖p
p + |u|p)1/p

)p−1

. (4.11)

Indeed, we can use the proof of (4.5), but here we only have to consider the case ck ≥ 0.
Second, if X has non-negative coordinates, we can apply (4.7) directly, without introducing

Mp . In this way, (4.10) can be replaced by

F(d,p,u) ≤ b + 4

(
1 + 1

21/p

)2p−2 m2p

m2
p

, (4.12)
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where mp and m2p now stand for the usual moments, that is, mq = E[Xq ] for q = p,2p. �

5. Proof of Theorem 3

Let

g(x) = x

R
log+

(
λx

R

)
.

Note that g is a bijection from [R/λ,+∞[ to [0,+∞[. To prove Theorem 3, it is thus sufficient
to determine for which λ, Eeg(‖X‖2) converges. Let ε > 0 and let c = max((1 + ε)E‖X‖2,R/λ).
Then,

Eeg(‖X‖2) =
∫ +∞

0
P
(
eg(‖X‖2) ≥ t

)
dt ≤ eg(c) +

∫ +∞

eg(c)

P
(
eg(‖X‖2) ≥ t

)
dt.

Setting t = eg(c+u) in the last integral and applying Corollary 2, we get

Eeg(‖X‖2) ≤ eg(c) +
∫ +∞

0
eu/R−(u/R+V 2

ε /R2) log(1+Ru/V 2
ε )

×
[

1

R
+ 1

R
log+

(
λ(c + u)

R

)]
e(c+u)/R log+(λ(c+u)/R) du.

For this last integral to converge, it is sufficient that the power of eu/R be negative, that is, that

1 + log+
(

λ(c + u)

R

)
− log

(
1 + Ru

V 2
ε

)
< 0,

at least for u large enough. But, if u tends to +∞ in the expression above, we obtain that

1 + log

(
λV 2

ε

R2

)
< 0, that is, λ <

R2e−1

V 2
ε

.

Next, we need to pass from Vε to V . But, if λ < R2e−1/V 2, then there exists ε (quite large, of
course) such that λ < R2e−1/V 2

ε and this concludes the proof.
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