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Motivated by second order asymptotic results, we characterize the convergence in law of double integrals,
with respect to Poisson random measures, toward a standard Gaussian distribution. Our conditions are ex-
pressed in terms of contractions of the kernels. To prove our main results, we use the theory of stable con-
vergence of generalized stochastic integrals developed by Peccati and Taqqu. One of the advantages of our
approach is that the conditions are expressed directly in terms of the kernel appearing in the multiple inte-
gral and do not make any explicit use of asymptotic dependence properties such as mixing. We illustrate our
techniques by an application involving linear and quadratic functionals of generalized Ornstein–Uhlenbeck
processes, as well as examples concerning random hazard rates.
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1. Introduction

Let N̂ = {N̂(B) :B ∈ Z} be a centered Poisson measure over some Borel space (Z,Z) and let
{gn :n ≥ 1} and {fn :n ≥ 1} be, respectively, a sequence of real-valued functions over Z and a
sequence of real-valued symmetric functions over Z2, vanishing on the diagonal set {(a, b) ∈
Z2 : a = b}. The aim of this paper is to characterize the convergence in distribution, toward a
bivariate Gaussian law, of sequences of random vectors of the type

{I1(gn), I2(fn) :n ≥ 1}, (1)

where

I1(gn) =
∫

Z

gn(a)N̂(da), n ≥ 1, (2)

are single Wiener–Itô stochastic integrals with respect to N̂and

I2(fn) =
∫

Z

∫
Z

fn(a, b)N̂(da)N̂(db), n ≥ 1, (3)

is a double Wiener–Itô integral with respect to N̂ (see [24], as well as the discussion contained in
Section 2, for precise definitions). One of the main motivations for the study of random objects
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such as (2) and (3) is that the (Hilbert) space of random variables Z having the representation

Z = c + I1(g) + I2(f ), (4)

for some real constant c and some (uniquely defined) deterministic kernels g and f , coincides
with the L2-space generated by random variables of the type P(N̂(A1), . . . , N̂(Am)), m ≥ 1,
where P(·) is a polynomial of degree ≤ 2 in m variables (see, e.g., Ogura [14], or Rota and
Wallstrom [21], for a proof of this fact and for a representation of multiple Poisson integrals in
terms of Charlier polynomials). It follows that a characterization of the asymptotic normality of
a sequence such as (1) is crucial in the study of the asymptotic behavior of random variables that
are linear or quadratic transformations of the measure N̂ . For instance, we will see below that
one can effectively study linear and quadratic functionals of stochastic processes constructed
from N̂ by first resorting to their representation in the form (4).

The main point in the characterization of the asymptotic normality of (1) is to obtain criteria
for the weak convergence (toward a Gaussian law) of the sequence {I2(fn) :n ≥ 1}. To do this,
we shall make extensive use of the results, involving ‘generalized adapted stochastic integrals,’
developed in [17] and [19]. These results are based on a decoupling technique, known as the
principle of conditioning (see, e.g., Xue [27]). In particular, the sufficient conditions for the
asymptotic normality of {I2(fn) :n ≥ 1} will be expressed in terms of the contraction kernels
associated with the functions fn. These contraction kernels, whose definition is given in Section 2
below, can be easily computed from the analytic expression for fn.

We will also show that if the variances of I2(fn) converge to 1 and if some integrability as-
sumptions are satisfied (e.g., if the sequence {I2(fn)

4 :n ≥ 1} is uniformly integrable), our con-
ditions are necessary and sufficient, and also that they are equivalent to the convergence of the
fourth moments E[I2(fn)

4] toward 3. Note that the number 3 is simply the fourth moment of a
standard Gaussian random variable: in our opinion, this fact is rather striking, as it shows that
central limit theorems (CLTs) involving the integrals I2(fn), n ≥ 1, are essentially determined
by the convergence of quantities associated with their first two even moments. This implication
should be regarded as a drastic simplification of the method of moments and cumulants, custom-
arily adopted to prove CLTs for polynomial forms in random variables with finite moments of
any order. See the two surveys by Surgailis, [24] and [25], for more details on this point.

Our findings extend to the framework of Poisson measures results previously established in
[13,18] and [20] for sequences of multiple Wiener–Itô integrals (of arbitrary order) with respect
to general Gaussian processes. For instance, in the Gaussian case, the necessary and sufficient
conditions for a CLT involving multiple integrals also require the mere convergence of second
and fourth moments and can equivalently be expressed in terms of contraction kernels. Note that
the results proved in [13] and [20] have already been applied in a variety of frameworks: see, for
example, [9] for applications to self-intersection local times of fractional Brownian motion and
[12] for an application to high-frequency CLTs on commutative groups.

As an illustration of our techniques, in Section 4 we focus on generalized Volterra processes
associated with independently scattered random measures. These processes have the form

Yh
t =

∫
R

∫
R

uh(t, s)N̂(du,ds), t ≥ 0, (5)
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where N̂ is a suitable Poisson measure over R × R and h is deterministic. The function h is
called the kernel of Yh. When h has the form h(t, s) = v(t − s), where v has support in R+,
then Yh is called a (stationary) moving average Lévy process. To keep the length of this paper
within bounds, we only treat the specific example of a Ornstein–Uhlenbeck Lévy process, which
is a moving average process corresponding to the case h(t, s) = √

2λ exp(−λ(t − s))1t>s , λ > 0.
These processes appear, for example, in Bayesian survival analysis (see James [10]), network
modeling (see Cohen and Taqqu [4] or Wolpert and Taqqu [26]) and finance (see Bandorff-
Nielsen and Shepard [3]). We will characterize the asymptotic behavior of the functionals

VT = 1

T

∫ T

0
(Y h

t )2 dt, T > 0,

as T → ∞. We do so by expressing the centered random variable VT − T −1E
∫ T

0 (Y h
t )2 dt as

the sum of a single and a double integral with respect to N̂ , and we use our results to prove the
existence of positive constants C(T ) such that

C(T )

[
VT − 1

T
E

∫ T

0
(Y h

t )2 dt

]
law→N (0,1), (6)

where N (0,1) is a standard Gaussian random variable.
This approach can be used beyond the framework of Ornstein–Uhlenbeck processes. Indeed,

further applications of our main results have been developed in the two papers [5] and [15],
where several CLTs are proved, involving linear and quadratic functionals of random hazard
rates in nonparametric Bayesian survival analysis. Random hazard rates can be thought of as the
mathematical representation of the ‘instantaneous risk’ associated with the average lifetime of
a given population. In a Bayesian framework, they are modeled in terms of moving averages of
the type (5). In particular, the results proved in [5] and [15] can be used in prior specification
procedures. See Section 4.2 for more details on this subject.

As discussed below and in [5] and [15], one of the advantages of our techniques is that the
conditions one has to check in order to prove that (6) holds can be expressed directly in terms
of the kernel h appearing in (5) and do not make any explicit use of (asymptotic) dependence
properties of the process Yh

t (such as mixing).
Observe that the theory developed in this paper also applies to a wider class of quadratic forms

associated with Yh
t such as∫ T

0

∫ T

0
Yh

s Y h
t α(ds,dt) and

∑
1≤j,i≤n

mi,j Y
h
i Y h

j ,

where α and m are, respectively, a measure and a real matrix. This kind of application, which
will be the object of a separate study, should be compared with the findings contained in [1], [2]
and [6].

The paper is organized as follows. In Section 2, we define multiple stochastic integrals and
discuss some of their basic properties. In Section 3, we focus on sequences of single and double
Poisson integrals, for which a general central limit theorem is proved. In Section 4, we describe
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some applications involving Ornstein–Uhlenbeck processes, random hazard rates and Bayesian
survival analysis.

2. Definitions and preliminary results

Throughout the paper, (Z,Z,μ) is a Borel measure space, with μ non-atomic, σ -finite and
positive. We define the class Zμ as Zμ = {B ∈ Z :μ(B) < ∞}. The symbol N̂ = {N̂(B) :B ∈
Zμ} indicates a compensated Poisson random measure on (Z,Z) with control μ. This means
that N̂ is a collection of random variables defined of some probability space (�,F ,P), indexed
by the elements of Zμ and such that: (i) for every B,C ∈ Zμ such that B ∩ C = ∅, N̂(B) and
N̂(C) are independent; (ii) for every B ∈Zμ,

N̂(B)
law= P(B) − μ(B),

where P(B) is a Poisson random variable with parameter μ(B). Note that properties (i)–(ii) im-
ply, in particular, that N̂ is an independently scattered (or completely random) measure (see [19]).
For every deterministic function h ∈ L2(Z,Z,μ) = L2(μ), we write N̂(h) = ∫

Z
h(z)N̂(dz)

to indicate the Wiener–Itô integral of h with respect to N̂ (see [22]). We recall that for every
h ∈ L2(μ), N̂(h) has an infinitely divisible law, with Lévy–Khinchine exponent (again see [22])
given by

ψ(h,λ) =
∫

Z

exp
(
iλh(z) − 1 − iλh(z)

)
μ(dz), λ ∈ R. (7)

Also, recall the isometric relation: for every g,h ∈ L2(μ), E[N̂(g)N̂(h)] = ∫
Z

h(z)g(z)μ(dz).
Although our main results involve exclusively single and double integrals with respect to N̂ ,

we will often need to deal with multiple integrals of higher orders. To this end, we briefly recall
the definition, as well as some basic properties, of general multiple Poisson integrals. Fix n ≥ 2.

We denote by L2(μn) the space of real-valued functions on Zn that are square-integrable with
respect to μn and we write L2

s (μ
n) to indicate the subspace of L2(μn) composed of symmetric

functions. We denote by Sn and S̃n, respectively, the vector space generated by simple functions
with the form

f (z1, . . . , zn) = 1B1(z1) · · ·1Bn(zn), (8)

where B1, . . . ,Bn are disjoint subsets of Z, and the vector space generated by the symmetriza-
tions of the elements of Sn. If f is as in (8) and f̃ ∈ S̃n is its symmetrization, we define In(f̃ ) as

In(f̃ ) = N̂(B1) · · · N̂(Bn). (9)

The random variable In(f̃ ) is the multiple Wiener–Itô integral of order n, of f̃ with respect
to N̂ . Now, note that μ is non-atomic so μn does not charge diagonals. This implies that for
every n ≥ 2, S̃n is dense in L2

s (μ
n) and, consequently, the domain of the operator In can be

extended to L2
s (μ

n) by continuity, due to the isometric formula, true for every m,n ≥ 2, f̃ ∈ S̃n

and g̃ ∈ S̃m,

E(In(f̃ )Im(g̃)) = n!〈f̃ , g̃〉L2(μn)1(n=m). (10)
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We also use the following conventional notation: I1(f ) = N̂(f ), f ∈ L2(μ); In(f ) = In(f̃ ), f ∈
L2(μn), n ≥ 2 (this convention extends the definition of I N̂

n (f ) to non-symmetric functions f );
I0(c) = c, c ∈ R.

Before stating the main result of the section, we recall a useful version of the multiplication
formula for multiple Poisson integrals. To this end, we define, for q,p ≥ 1, f ∈ L2

s (μ
p), g ∈

L2
s (μ

q), r = 0, . . . , q ∧ p and l = 1, . . . , r , the (contraction) kernel on Zp+q−r−l , which reduces
the number of variables in the product fg from p + q to p + q − r − l as follows: r variables
are identified and, among these, l are integrated out. This contraction kernel is formally defined
as follows:

f �l
r g(γ1, . . . , γr−l , t1, . . . , tp−r , s1, . . . , sq−r )

=
∫

Zl

f (z1, . . . , zl, γ1, . . . , γr−l , t1, . . . , tp−r )

× g(z1, . . . , zl, γ1, . . . , γr−l , s1, . . . , sq−r )μ
l(dz1 · · ·dzl)

and, for l = 0,

f �0
r g(γ1, . . . , γr , t1, . . . , tp−r , s1, . . . , sq−r )

(11)
= f (γ1, . . . , γr , t1, . . . , tp−r )g(γ1, . . . , γr , s1, . . . , sq−r )

so that f �0
0 g(t1, . . . , tp, s1, . . . , sq) = f (t1, . . . , tp)g(s1, . . . , sq). For example, if p = q = 2,

f �0
1 g(γ, t, s) = f (γ, t)g(γ, s), f �1

1 g(t, s) =
∫

Z

f (z, t)g(z, s)μ(dz) (12)

f �1
2 g(γ ) =

∫
Z

f (z, γ )g(z, γ )μ(dz),

(13)

f �2
2 g =

∫
Z

∫
Z

f (z1, z2)g(z1, z2)μ(dz1)μ(dz2).

The following product formula for two Poisson multiple integrals is proved in, for example,
[11] and [23]: letting f ∈ L2

s (μ
p) and g ∈ L2

s (μ
q), p,q ≥ 1, and further supposing that f �l

r g ∈
L2(μp+q−r−l) for every r = 0, . . . , p ∧ q and l = 1, . . . , r , we have further supposing

Ip(f )Iq(g) =
p∧q∑
r=0

r!
(

p

r

)(
q

r

) r∑
l=0

(
r

l

)
Iq+p−r−l (f̃ �l

r g), (14)

where the tilde (̃ ) stands for symmetrization, that is,

f̃ �l
r g(x1, . . . , xq+p−r−l) = 1

(q + p − r − l)!
∑
σ

f �l
r g

(
xσ(1), . . . , xσ(q+p−r−l)

)
,

where σ runs over all (q + p − r − l)! permutations of the set {1, . . . , q + p − r − l}.
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In what follows, we will systematically work under the assumption that there exists a collection
of subsets {Zt : t ∈ [0,1]} ⊂ Z such that Z0 = ∅, Z1 = Z, Zs ⊆ Zt for s < t and the following
continuity condition is satisfied: for every g ∈ L1(μ) and every t ∈ [0,1],

lim
s→t

∫
Zs

g(z)μ(dz) =
∫

Zt

g(z)μ(dz). (15)

Observe that (15) is easily satisfied when Z is a Euclidean space. For instance, when Z = R2+
and μ is equal to the Lebesgue measure, one can take Zt = [0, log(1/1 − t)]2 (t ∈ [0,1)) and
Z1 = R2+. Also, note that for every t ∈ [0,1], the operator

πt :L2(μ) �→ L2(μ) :f �→ πtf = f 1Zt (16)

defines a projection operator. Since the family of projections π = {πt : t ∈ [0,1]} is non-
decreasing and continuous, one says that π is a continuous resolution of the identity (see, e.g.,
[28]). This concept in central in the general theory developed in [17]. In what follows, we will
use the following notation (introduced in [19]): for every z, z′ ∈ Z, one writes

z′ ≺π z (17)

whenever there exists t ∈ [0,1] such that z′ ∈ Zt and z ∈ Zc
t . As an example, consider the case

Z = [0,1]d (d ≥ 1) and Zt = [0, t]d , and fix z = (z(1), . . . , z(d)) ∈ (0,1)d . Then z′ ≺π z if and
only if z′ ∈ [0, z)d , where z = max(z(1), . . . , z(d)). In particular, in the case d = 1, one has that
z′ ≺π z if and only if z′ < z.

Given a kernel f ∈ L2
s (μ

2) and z ∈ Z, we will write f 1(· ≺π z) to indicate the application

Z �→ R :y �→ f (y, z)1(y ≺π z); (18)

note that f 1(· ≺π z) ∈ L2(μ). As an example, again consider the case Z = [0,1]d and Zt =
[0, t]d , t ∈ [0,1]. Then for every fixed z = (z(1), . . . , z(d)) ∈ (0,1)d , the function f 1(· ≺π z) is
the application

[0,1]d �→ R :y �→ f (y, z)1
(
y ∈ [0, z)d

)
,

where z = max(z(1), . . . , z(d)).

3. Main results: CLTs for single and double Poisson integrals

In this section, we apply the results proved in [19] to study the asymptotic behavior of a sequence
of random variables of the type

Fn = I2(fn), n ≥ 1, (19)

where fn ∈ L2
s (μ

2). In particular, our starting point is the following result, taken from [19].
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Proposition 1 (See [19]). Consider the sequence {Fn :n ≥ 1} in (19) and for every fixed z ∈ Z,
define fn1(· ≺π z) ∈ L2(μ) according to (17) and (18). Suppose that for every λ ∈ R,∫

Z

exp
(
iλ2N̂

(
fn1(· ≺π z)

) − 1 − iλ2N̂
(
fn1(· ≺π z)

))
μ(dz)

P→
n→∞−λ2

2
, (20)

where
P→ denotes convergence in probability. Then Fn

law→ N (0,1), where N (0,1) denotes a
standard Gaussian random variable.

Note that condition (20) is quite difficult to verify, since it involves a continuum of non-trivial
transformations of the kernels fn (one for every z ∈ Z). However, in what follows, we shall show
that Proposition 1 can be used to obtain neat sufficient (and sometimes also necessary) conditions

on the kernels fn for the CLT Fn
law→ N (0,1) to hold. In particular, these conditions do not involve

the resolution of the identity π and are exclusively expressed in terms of the kernels {fn}. Our
results will apply to sequences of kernels satisfying the following assumption.

Assumption N. The sequence fn, n ≥ 1, in (19) verifies:

(N-i) (integrability condition) ∀n ≥ 1,∫
Z

fn(z, ·)2μ(dz) ∈ L2(μ) and

{∫
Z

fn(z, ·)4μ(dz)

}1/2

∈ L1(μ); (21)

(N-ii) (normalization condition) as n → ∞,

2
∫

Z

∫
Z

fn(z, z
′)2μ(dz)μ(dz′) → 1; (22)

(N-iii) (fourth power condition) as n → ∞,∫
Z

∫
Z

fn(z, z
′)4μ(dz)μ(dz′) → 0 (23)

(this implies, in particular, that fn ∈ L4(μ2)).

Remarks. (1) Suppose there exists a set B , independent of n, such that μ(B) < ∞ and for
each n, fn = fn1B , a.e.-dμ2 (this is true, in particular, when μ is finite). Then by the Cauchy–
Schwarz inequality, if (23) is verified, (fn) must necessarily converge to zero in L2

s (μ
2). To get

more general sequences (fn), we need to suppose μ(Z) = ∞.
(2) As shown in [13], condition (23) is not required to obtain CLTs for sequences of double

Wiener–Itô integrals with respect to Gaussian processes and hence, in this case, it is not necessary
to suppose μ(Z) = ∞. Thus, in [13], the setup of a Gaussian measure on [0,1]d (d ≥ 1) with a
finite control measure was considered.

(3) Assumption N is satisfied, for example, by a properly normalized sequence of uniformly
bounded functions, with supports ‘slowly converging’ to Z. For instance, consider a sequence
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gn ∈ L2
s (μ

2) such that for n ≥ 1, |gn(·, ··)| ≤ c < ∞ (c independent of n) and the support of gn

is contained in a set of the type Bn × Bn, where 0 < μ(Bn) < ∞ and μ(Bn) → ∞. Then if

μ(Bn)
−2

∫
Z

∫
Z

gn(z, z
′)2μ(dz)μ(dz′) → 1,

the sequence fn � μ(Bn)
−1gn, n ≥ 1, verifies Assumption N. Indeed, since |fn| ≤ cμ(Bn)

−1,∫
Z

(∫
Z

fn(z, z
′)4μ(dz)

)1/2

μ(dz′) ≤ c2

μ(Bn)1/2
< ∞,

∫
Z

∫
Z

fn(z, z
′)4μ(dz)μ(dz′) ≤ c4

μ(Bn)2
→ 0,

∫
Z

(∫
Z

fn(z, z
′)2μ(dz)

)2

μ(dz′) ≤ c4

μ(Bn)
< ∞.

The following central limit theorem is one of the main results of the paper.

Theorem 2. Define the sequence Fn = I2(fn) and fn ∈ L2
s (μ

2), n ≥ 1, as in (19), and suppose
Assumption N holds. Then

fn �0
1 fn ∈ L2(μ3) and fn �1

1 fn ∈ L2
s (μ

2)

for every n ≥ 1 and, moreover,

1. if

fn �1
1 fn → 0 in L2

s,0(μ
2) and fn �1

2 fn → 0 in L2(μ), (24)

then

Fn
law→ N (0,1), (25)

where N (0,1) is a standard Gaussian random variable;
2. if Fn ∈ L4(P) for every n, then a sufficient condition to have (24) is that

E(F 4
n ) → 3 = E[N (0,1)4]; (26)

3. if the sequence {F 4
n :n ≥ 1} is uniformly integrable, then conditions (24), (25) and (26) are

equivalent.

Remark. (a) As already indicated in the Introduction, point 3 can be rephrased by saying that,

if Assumption N is satisfied and {F 4
n :n ≥ 1} is uniformly integrable, then Fn

law→ N (0,1) if
and only if E(F 4

n ) → E[N (0,1)4]. This result should be compared with the usual ‘method of
moments’ for sequences of random variables. See, for example, [24] and [25].
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(b) We recall (see, e.g., [8], page 355) that {F 4
n :n ≥ 1} is uniformly integrable if and only if

lim
M→∞ sup

n≥1
E

[
F 4

n 1(F 4
n >M)

] = 0.

(c) While the statement of Theorem 2 does not involve any resolution of the identity π , the
objects appearing in (16) and (17) will play a crucial role in the proof.

(d) Observe that

‖fn �1
1 fn‖2

L2(μ2)
=

∫
Z

∫
Z

(∫
Z

fn(a, z)fn(b, z)μ(dz)

)2

μ(da)μ(db), (27)

‖fn �1
2 fn‖2

L2(μ)
=

∫
Z

(∫
Z

fn(a, z)2μ(da)

)2

μ(dz), (28)

‖fn �0
1 fn‖2

L2(μ3)
=

∫
Z

∫
Z

∫
Z

(fn(a, z)fn(b, z))2μ(dz)μ(da)μ(db), (29)

(e) Let G be a Gaussian measure on (Z,Z) with non-atomic control μ and for n ≥ 1, let
Hn = IG

2 (hn) be the double Wiener–Itô integral of a function hn ∈ L2
s (μ

2). In [13] Theorem 1 it
is proved that if the normalization relation 2‖hn‖2 → 1 holds and regardless of Assumptions

(N-i) and (N-iii), the following three conditions are equivalent: (i) Hn
law→ N (0,1); (ii)

E(H 4
n ) → 3; (iii) hn �1

1 hn → 0. Also, note that [13] Theorem 1 applies to multiple integrals
of arbitrary order.

(f) A sufficient condition for the uniform integrability of (F 4
n ) is clearly that supn E(F 4+ε

n ) <

∞ for some ε > 0. Note that in the Gaussian framework of [13] Theorem 1 the uniform inte-
grability condition is always satisfied. Indeed, by noting Hn = IG

2 (hn) (n ≥ 1), the sequence of
double integrals introduced in the previous remark, for every p > 2, there exists a finite constant
cp such that supn E(|Hn|p) ≤ cp(supn E(H 2

n ))p/2 < ∞, where the last relation follows from the
normalization condition E(H 2

n ) = 2‖hn‖2 → 1.

Proof of Theorem 2. Since

fn �1
1 fn(t, s) =

∫
Z

fn(s, z)fn(t, z)μ(dz)

and f ∈ L2(μ2), the relation fn �1
1 fn ∈ L2

s (μ
2) is a consequence of the Cauchy–Schwarz in-

equality. On the other hand, by (12),∫
Z3

(fn �0
1 fn(γ, t, s))2μ3(dγ,dt,ds) =

∫
Z

(∫
Z

fn(γ, t)2μ(dt) ×
∫

Z

fn(γ, s)2μ(ds)

)
μ(dγ )

=
∫

Z

(∫
Z

fn(γ, s)2μ(ds)

)2

μ(dγ ) < ∞,

due to part (N-i) Assumption N, so fn �0
1 fn ∈ L2(μ3).
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(Proof of point 1.) According to Proposition 1, to prove point 1, it is sufficient to show that,
when Assumption N is verified, condition (24) implies that (20) is satisfied. To this end, we write∫

Z

(
exp

(
iλ2N̂(fn1(· ≺π z))

) − 1 − iλ2N̂
(
fn1(· ≺π z)

))
μ(dz)

= −λ2

2

∫
Z

(
2N̂

(
fn1(· ≺π z)

))2
μ(dz)

(30)

+
∫

Z

[
exp

(
iλ2N̂

(
fn1(· ≺π z)

)) − 1

− iλ2N̂
(
fn1(· ≺π z)

) + λ2

2

(
2N̂

(
fn1(· ≺π z)

))2
]
μ(dz)

� Un + Vn

and we shall show that under the assumptions of Theorem 2, Un
P→ −λ2

2 and Vn
P→ 0. To show

that ∫
Z

(
2N̂

(
fn1

(· ≺π z
)))2

μ(dz)
P→ 1 (31)

and hence that Un
P→ −λ2

2 , we apply (14) in the case p = q = 1 and obtain((
2N̂

(
fn1(· ≺π z)

))2)2

= 4I1
(
fn(z, ·)1(· ≺π z)

)2 (32)

� 4
∫

Z

fn(z, x)21(x ≺π z)μ(dx) + 4I1
(
fn(z, ·)21(· ≺π z)

) + 4I2(gn(z; ·, ··)),

where gn(z; ·, ··) ∈ L2
s (μ

2) is given by

gn(z;a, b) = fn �0
0 fn(z, a; z, b)1(a≺π z)1(b≺π z)

(33)
= fn(z, a)fn(z, b)1(a≺π z)1(b≺π z).

The three terms in (32) correspond, respectively, to the terms (r = 1, l = 1), (r = 1, l = 0) and
(r = 0, l = 0) in (14). We deal with each term in (32) in succession. For the first term, observe
that, due to [19] Corollary 4 and the symmetry of fn,∫

Z

∫
Z

fn(z, x)2μ(dx)μ(dz)

=
∫

Z

∫
Z

fn(z, x)2[1(x ≺π z) + 1(z ≺π x)]μ(dx)μ(dz)

= 2
∫

Z

∫
Z

fn(z, x)21(x ≺π z)μ(dx)μ(dz)
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and therefore, thanks to Assumption N,

−λ2

2

∫
Z

4
∫

Z

fn(z, x)21(x ≺π z)μ(dx)μ(dz)

(34)

= −λ2

2

[
2
∫

Z

∫
Z

fn(z, x)2μ(dx)μ(dz)

]
→ −λ2

2
.

For the second term in (32), one has, by applying Fubini’s theorem and the Cauchy–Schwarz
inequality,

E

[∫
Z

∣∣I1
(
fn(z, ·)21(· ≺π z)

)∣∣μ(dz)

]2

=
∫

Z2
E

[∣∣I1
(
fn(z, ·)21(· ≺π z)

)∣∣∣∣I1
(
fn(z

′, ·)21(· ≺π z′)
)∣∣]μ(dz)μ(dz′)

≤
∫

Z2
E

[
I1

(
fn(z, ·)21(· ≺π z)

)2]1/2
E

[
I1

(
fn(z

′, ·)21(· ≺π z′)
)2]1/2

μ(dz′)μ(dz)

=
{∫

Z

[∫
Z

μ(da)fn(z, a)41(a ≺π z)

]1/2

μ(dz)

}2

< ∞

since Part ( N–i) of Assumption N is satisfied. It follows that by once again applying Fubini’s
theorem,

E

[∫
Z

I1
(
fn(z, ·)21(· ≺π z)

)
μ(dz)

]2

=
∫

Z2
E

[
I1

(
fn(z, ·)21(· ≺π z)

)
I1

(
fn(z

′, ·)21(· ≺π z′)
)]

μ(dz)μ(dz′)
(35)

=
∫

Z

[∫
Z

fn(z, x)21(x ≺π z)μ(dz)

]2

μ(dx)

≤
∫

Z

[∫
Z

fn(z, x)2μ(dz)

]2

μ(dx) → 0,

due to (27) and (24). Hence, the integral of the second term in (32) tends to 0 in probability. Now,
consider the third term in (32), and observe that by a Fubini argument, and by (33),

E

(∫
Z

|I2(gn(z; ·, ··))|μ(dz)

)2

=
∫

Z2
E(|I2(gn(z; ·, ··))I2(gn(z

′; ·, ··))|)μ(dz)μ(dz′)

≤
(∫

Z

E(I2(gn(z; ·, ··))2)1/2μ(dz)

)2
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=
(∫

Z

[∫
Z2

fn(z, a)2fn(z, b)21(a≺π z)1(b≺π z)μ(da)μ(db)

]1/2

μ(dz)

)2

=
(∫

Z

∫
Z

fn(z, a)21(a≺π z)μ(da)μ(dz)

)2

< ∞.

From this, one deduces that

E

(∫
Z

I2(gn(z; ·, ··))μ(dz)

)2

=
∫

Z2
E[I2(gn(z; ·, ··))I2(gn(z

′; ·, ··))]μ(dz)μ(dz′) = 2‖hn‖2
L2(μ2)

,

where, thanks to (33), hn ∈ L2
s (μ

2) is such that

hn(a, b) =
∫

Z

fn(z, a)fn(z, b)1(a≺π z)1(b≺π z)μ(dz). (36)

We now want to show that fn �1
1 fn(a, b) = ∫

Z
fn(z, a)fn(z, b)μ(dz) → 0 implies that hn → 0.

To do this, we start by observing that, a.e.-μ2(da,db) and thanks to Corollary 4 in [19],

fn(a, b) = fn(a, b)1(a≺π b)∪(b≺π a).

As a consequence, by noting (for fixed z)

(z ≺π a ∨ b) = [(z ≺π a) ∩ (z ≺π b)] ∪ (a ≺π z ≺π b) ∪ (b ≺π z ≺π a),

(a ∨ b ≺π z) = (a ≺π z) ∩ (b ≺π z),

(a ∨ b ≺π z ∨ z′) = [(a ∨ b ≺π z′) ∩ (z ≺π z′)] ∪ [(a ∨ b ≺π z) ∩ (z′ ≺π z)],
we obtain that∫

Z2
(fn �1

1 fn(a, b))2μ2(da,db)

=
∫

Z2

(∫
Z

fn(z, a)1(a≺π z)∪(z≺πa)1(z≺π b)∪(b≺π z)fn(z, b)μ(dz)

)2

μ2(da,db)

=
∫

Z2

(∫
Z

fn(z, a)fn(z, b)
(
1(z≺πa∨b) + 1(a∨b≺π z)

)
μ(dz)

)2

μ2(da,db) (37)

=
∫

Z2

(∫
Z

fn(z, a)fn(z, b)1(z≺π a∨b)μ(dz)

)2

μ2(da,db) (38)

+
∫

Z2

(∫
Z

fn(z, a)fn(z, b)1(a∨b≺π z)μ(dz)

)2

μ2(da,db)
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+ 2
∫

Z2

(∫
Z

fn(z, a)fn(z, b)1(a∨b≺π z)μ(dz)

)
×

(∫
Z

fn(z
′, a)fn(z

′, b)1(z≺πa∨b)μ(dz′)
)

μ2(da,db).

We now note

(a ≺π z ∧ z′) = (a ≺π z′) ∩ (a ≺π z), (39)

so that, by a Fubini argument,∫
Z2

(∫
Z

fn(z, a)fn(z, b)1(a∨b≺π z)μ(dz)

)2

μ2(da,db)

(40)

=
∫

Z2

(∫
Z

fn(z, a)fn(z
′, a)1(a≺π z∧z′)μ(da)

)2

μ2(dz,dz′)

and also

2
∫

Z2

(∫
Z

fn(z, a)fn(z, b)1(a∨b≺π z)μ(dz)

)
×

(∫
Z

fn(z
′, a)fn(z

′, b)1(z′≺π a∨b)μ(dz′)
)

μ2(da,db)

=
∫

Z2

(∫
Z

fn(z, a)fn(z, b)1(a∨b≺π z∨z′)μ(dz)

)
×

(∫
Z

fn(z
′, a)fn(z

′, b)1(z′∧z≺π a∨b)μ(dz′)
)

μ2(da,db),

so that the relation

1(a∨b≺π z∨z′)1(z′∧z≺π a∨b) = 1(z′∧z≺π a,b≺π z∨z′) + 1(z′∧z≺π a≺π z∨z′)1(b≺π z∧z′)

+ 1(z′∧z≺π b≺π z∨z′)1(a≺π z∧z′)

gives

2
∫

Z2

(∫
Z

fn(z, a)fn(z, b)1(a∨b≺π z)μ(dz)

)
×

(∫
Z

fn(z
′, a)fn(z

′, b)1(z′≺πa∨b)μ(dz′)
)

μ2(da,db)

=
∫

Z2

(∫
Z

fn(z, a)fn(z
′, a)1(z∧z′≺π a≺π z∨z′)μ(da)

)2

μ2(dz,dz′) (41)

+ 2
∫

Z2

(∫
Z

fn(z, a)fn(z
′, a)1(z∧z′≺π a≺π z∨z′)μ(da)

)
(42)
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×
(∫

Z

fn(z, a)fn(z
′, a)1(a≺π z∧z′)μ(da)

)
μ2(dz,dz′).

After making the change of variables (z, a, b) → (a, z, z′) in (38), observe that the terms (38),
(40), (41) and (42) are integrals of terms of the form (A + B)2, A2, B2 and 2AB , respectively,
whose sum therefore equals 2(A + B)2, yielding∫

Z2

(
fn �1

1 fn(a, b)
)2

μ2(da,db)

(43)

= 2
∫

Z2

(∫
Z

fn(z, a)fn(z, b)1(z≺π a∨b)μ(dz)

)2

μ2(da,db).

Since hn (as defined in (36)) is such that∫
Z2

hn(a, b)2μ2(da,db) =
∫

Z2

(∫
Z

fn(z, a)fn(z, b)1(a∨b≺π z)μ(dz)

)2

μ2(da,db)

and ∫
Z2

(
fn �1

1 fn(a, b)
)2

μ2(da,db)

=
∫

Z2

[∫
Z

fn(z, a)fn(z, b)
(
1(a∨b≺π z) + 1(z≺πa∨b)

)
μ(dz)

]2

μ2(da,db),

relation (43) gives the implication: if fn �1
1 fn → 0 in L2(μ2), then

hn → 0 in L2(μ2). (44)

This last result, combined with (34) and (35), implies that the sequence Un, n ≥ 1, as defined in

(30), converges to −λ2

2 in probability.

To show that Vn
P→ 0, observe that | exp(iλx)−1− iλx + 1

2λ2x2| ≤ |λx|3/6 and, consequently,
by Cauchy–Schwarz,

|Vn| ≤ |λ|3
6

∫
Z

∣∣2N̂
(
fn1(· ≺π z)

)∣∣3
μ(dz)

(45)

≤ |λ|3
6

(∫
Z

∣∣2N̂
(
fn1(· ≺π z)

)∣∣4
μ(dz)

)1/2(∫
Z

∣∣2N̂
(
fn1(· ≺π z)

)∣∣2
μ(dz)

)1/2

.

Since the first part of the proof implies that under (24), (
∫
Z

|2N̂(fn1(· ≺π z))|2μ(dz))1/2 P→ 1,
to conclude the proof of point 1 it is sufficient to show that under Assumption N and (24),∫

Z

∣∣2N̂
(
fn1(· ≺π z)

)∣∣4
μ(dz) → 0
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in L1(P). To do this, one can use (32) and the orthogonality of multiple integrals of different
orders to obtain that for any fixed z,

E
[(

2N̂
(
fn1(· ≺π z)

))4]
= E

[((
2N̂

(
fn1(· ≺π z)

))2)2]
= 16

(∫
Z

fn(z, x)21(x ≺π z)μ(dx)

)2

+ 16
∫

Z

fn(z, ·)41(· ≺π z)μ(da)

+ 32
∫

Z2
fn(z, a)2fn(z, b)21(a≺π z)1(b≺π z)μ

2(da,db)

and therefore

E

∫
Z

∣∣2N̂
(
fn1(· ≺π z)

)∣∣4
μ(dz)

=
∫

Z

E
∣∣2N̂

(
fn1(· ≺π z)

)∣∣4
μ(dz)

≤ 16
∫

Z

(∫
Z

fn(z, x)2μ(dx)

)2

μ(dz)

+ 16
∫

Z

∫
Z

fn(z, a)4μ(da)μ(dz) + 32
∫

Z

(∫
Z

fn(z, x)2μ(dx)

)2

μ(dz)

→ 0,

since Assumption N and (24) are in order. This concludes the proof of part 1.
(Proof of point 2.) To proof point 2, we use the product formula expansion (14) (from the term

with r = 0 to the terms with r = 2) to write

F 2
n = I3(fn)

2 = I4(
˜fn �0

0 fn) + 4I3(
˜fn �0

1 fn) + 4I2(fn �1
1 fn)

+ 2I2(fn �0
2 fn) + 2I1(fn �1

2 fn) + 2‖fn‖2
L2

s (μ
2)

and observe that since Assumption N holds and fn �0
2 fn(a, b) = fn(a, b)2 (by (11)), I2(fn �0

2
fn) → 0 in L2(P) by (23) and therefore the assumption E(F 4

n ) → 3 implies that

E
[(

F 2
n − 2I2(fn �0

2 fn)
)2] (46)

= E
[(

I4(
˜fn �0

0 fn) + 4I3(
˜fn �0

1 fn) + 4I2(fn �1
1 fn) + 2I1(fn �1

2 fn) + 2‖fn‖2
L2

s (μ
2)

)2]
→ 3. (47)

Now, due to (46),

E
[(

F 2
n − 2I2(fn �0

2 fn)
)2] (48)
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= E
(
I4(

˜fn �0
0 fn)

2) + E
(
16I3(

˜fn �0
1 fn)

2) + E
(
16I2(fn �1

1 fn)
2) (49)

+ E
(
4I1(fn �1

2 fn)
2) + (

2‖fn‖2
L2

s (μ
2)

)2
.

There are no cross terms because the multiple integrals have different orders and hence are

orthogonal. The most complicated term in the square bracket in (49) is E(I4(
˜fn �0

0 fn)
2). Since

we are dealing with second order moments, the computations are as in the Gaussian case. We
therefore obtain, using, for example, [20], formula (2), page 250, that

E
(
I4(

˜fn �0
0 fn)

2) = 4!‖ ˜fn �0
0 fn‖2

L2(μ2)
= 2

(
2‖fn‖2

L2
s (μ

2)

)2 + 16‖fn �1
1 fn‖2

L2(μ2)
.

As a consequence, (48) equals

[
2
(
2‖fn‖2

L2
s,0(μ

2)

)2 + 16‖fn �1
1 fn‖2

L2(μ2)

] + 16 × 3!‖fn �0
1 fn‖2

L2(μ3)

+ 16 × 2‖fn �1
1 fn‖2

L2(μ2)
+ 4‖fn �1

2 fn‖2
L2(μ)

+ (
2‖fn‖2

L2
s (μ

2)

)2 (50)

= 3
(
2‖fn‖2

L2
s (μ

2)

)2 + 48‖fn �1
1 fn‖2

L2(μ2)
+ 96‖fn �0

1 fn‖2
L2(μ3)

+ 4‖fn �1
2 fn‖2

L2(μ)
.

Since (50) converges to 3 by (47) and 2‖fn‖2
L2

s (μ
2)

→ 1 by Assumption (N-ii), we conclude that

‖fn �1
1 fn‖2

L2(μ2)
→ 0 and ‖fn �1

2 fn‖2
L2(μ)

→ 0, thus proving point 2.

(Proof of point 3.) If Fn
law→ N (0,1) and (F 4

n ) is uniformly integrable, then necessarily
E(F 4

n ) → E(N (0,1)4) = 3. We had (26) ⇒ (25) ⇒ (24) and we just showed that uniform in-
tegrability and (24) imply (26), proving the equivalence of the three statements under uniform
integrability. �

Example. We exhibit an elementary example of a sequence fn ∈ L2
s (μ

2), n ≥ 1, verifying con-
ditions (21), (22), (23) and (24). As discussed below, this example involves a sequence of i.i.d.
random variables of the type N̂(B). As such, it could be alternatively worked out by means of
a standard application of the usual CLT for i.i.d. random variables with second moments. How-
ever, it provides a first and simple illustration of our techniques, also showing that our results are
consistent with the classic limit results of probability theory. More sophisticated examples are
discussed in Section 4. Let Bj , j ≥ 1, be a sequence of disjoint subsets of Z such that μ(Bj ) = 1,
j ≥ 1, and set

B2
0,j = {(x, y) ∈ Bj × Bj :x �= y}, j ≥ 1.

Note that since μ is non-atomic, μ2(B2
0,j ) = μ2(Bj × Bj ) = 1. For n ≥ 1 and (x, y) ∈ Z2,

we define fn(x, y) = (2n)−1/2 ∑n
j=1 1B2

0,j
(x, y). Of course, fn ∈ L2

s (μ
2), by definition, and

we shall prove that (fn) also satisfies (21), (22), (23) and (24). Indeed,
∫
Z

fn(z, ·)2μ(dz) =
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2n−1 ∑n
j=1 1Bj

(·) ∈ L2(μ) and

2‖fn‖2 = 2(2n)−1
n∑

j=1

μ2(B2
0,j ) = 1,

so (fn) satisfies (21) and (22). On the other hand,∫
Z

∫
Z

fn(x, y)4μ2(dx,dy) = 1

4n2

∫
Z

∫
Z

(
n∑

j=1

1B2
0,j

(x, y)

)4

μ2(dx,dy) = 1

4n
→ 0

and therefore (23) is satisfied. Finally,∫
Z

(∫
Z

fn(z, x)4μ(dz)

)1/2

μ(dx) ≤ √
n/2 < ∞, (51)

∫
Z

(∫
Z

fn(z, x)2μ(dz)

)2

μ(dx) = 1/4n → 0 (52)

and ∫
Z

(∫
Z

fn(x, z)fn(y, z)μ(dz)

)2

μ2(dx,dy)

= 1

4n2

∫
Z

∫
Z

(
n∑

j=1

1B2
0,j

(x, y)

)2

μ2(dx,dy) = 1

4n
→ 0,

thus yielding that (fn) satisfies (24), by (27) and (28). To see (51), recall that μ(Bj ) = 1 and
write ∫

Z

(∫
Z

fn(z, x)4μ(dz)

)1/2

μ(dx) ≤ 1

2n
μ

(
n⋃

j=1

Bj

)1/2 ∫
Z

(
n∑

j=1

1Bj
(x)

)1/2

μ(dx)

= 1

2n
μ

(
n⋃

j=1

Bj

)3/2

(we used the fact that (
∑n

j=1 1Bj
(x))1/2 = ∑n

j=1 1Bj
(x)). As anticipated, since (due to, e.g.,

(14))

I2(fn) = n−1/2
n∑

j=1

2−1/2(N̂(Bj )
2 − N̂(Bj ) − 1

)
,

the central limit result I2(fn)
law→ N (0,1) can be verified directly by using a standard version of

the central limit theorem, as well as the fact that N̂ is independently scattered and the Bj ’s are
disjoint, with μ(Bj ) = 1.
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By combining the results of [19] and Theorem 2, we can also characterize the joint (weak)
convergence of a single and a double Poisson integral toward a bivariate Gaussian vector.

Theorem 3. (A) Consider a sequence

Gn = I1(gn) =
∫

Z

gn(z)N̂(dz), n ≥ 1, (53)

where gn ∈ L2(μ) ∩ L3(μ), and suppose that as n → ∞,

‖gn‖2
L2(μ)

→ 1 and
∫

Z

|gn(z)|3μ(dz) → 0. (54)

Then Gn
law→ X, where X is a centered standard Gaussian random variable.

(B) Consider a sequence Fn = I2(fn), n ≥ 1, with fn ∈ L2
s,0(μ

2) as in (19), and a sequence
Gn = I1(gn), n ≥ 1, as in part (A) above. Suppose, moreover, that:

(i) the sequence (fn) verifies Assumption N and satisfies condition (24);
(ii) the sequence (gn) satisfies (54).

Then as n → ∞,

(Fn,Gn)
law→ (X,X′), (55)

where X,X′ are two independent, centered standard Gaussian random variables.

Remark. Roughly speaking, Theorem 3 tells us that for sequences of random variables such
as (Fn) and (Gn), the (componentwise) weak convergence of Fn and Gn toward a Gaussian
distribution always implies the joint convergence of the vector (Fn,Gn). As proved in [20], an
analogous property holds for vectors of multiple Wiener–Itô integrals with respect to general
Gaussian processes.

Proof of Theorem 3. (A) By using (7), for every λ ∈ R,

E[exp(iλGn)]

= exp

{∫
Z

[exp(iλgn(z)) − 1 − iλgn(z)]μ(dz)

}
= exp

(
−λ2

2
‖gn‖2

L2(μ)

)
exp

(∫
Z

[
exp(iλgn(z)) − 1 − iλgn(z) + λ2

2
gn(z)

2
]
μ(dz)

)
.

To conclude, observe that by (54), ‖gn‖2
L2(μ)

→ 1 and the integral in the second exponential is
bounded by∫

Z

∣∣∣∣ exp(iλgn(z)) − 1 − iλgn(z) + λ2

2
gn(z)

2
∣∣∣∣μ(dz) ≤ |λ|3

6

∫
Z

|gn(z)|3μ(dz) → 0,



CLT for double Poisson integrals 809

thus yielding E[exp(iλGn)] → exp(−λ2/2), as required.
(B) To prove (55), it is sufficient to show that for every α,β ∈ R,

T (α,β)
n � αFn + βGn

law→ αX + βX′ law=
√

α2 + β2 × X. (56)

We shall prove relation (56) by using [19] Theorem 7, as well as some estimates appearing
in the proof of Theorem 2. To do this, define XN̂(h) �

∫
Z

h(z)N̂(dz) = I1(h) for every h ∈
L2(Z,Z,μ) � Hμ and consider the random field

XN̂ = {XN̂(h) :h ∈ Hμ}.
Note that XN̂ belongs to the class of random fields studied in [19]. Now, for every n, denote by
π the resolution of the identity over the Hilbert space Hμ given by

πth(z) = 1Zt (z)h(z), h ∈ Hμ, t ∈ [0,1],
where the sets Zt appear in (15), and further define

u(α,β)
n (z) = 2αI1

(
fn(·, z)1(· ≺π z)

) + βgn(z)

= αhπ(fn)(z) + βgn(z) ∈ L2
π (Hμ,XN̂ ),

where the class L2
π (Hμ,XN̂ ) of π -adapted random functions is defined in Section 3.2 of [17]

and the process z �→ hπ(fn)(z) ∈ L2
π (Hμ,XN̂ ) is defined as hπ(fn)(z) = 2I1(fn(·, z)1(· ≺π z)).

By using [19] Proposition 5, we can write

T (α,β)
n = Jπ

XN̂

(
u(α,β)

n

) = αJπ
XN̂

(hπ (fn)) + βJπ
XN̂

(gn),

where the generalized stochastic integral Jπ
XN̂

is defined in Section 3.2 of [17] and the second
equality is a consequence of the linearity of the operator Jπ

XN̂
. From [17] Theorem 7, in we

deduce that (56) is proved, once it is shown that∫
Z

[
exp

(
iλu(α,β)

n (z)
) − 1 − iλu(α,β)

n (z)
]
μ(dz)

P→ −λ2

2
(α2 + β2). (57)

To prove (57), we adopt the same strategy as in the proof of Theorem 2, that is, we write∫
Z

[
exp

(
iλu(α,β)

n (z)
) − 1 − iλu(α,β)

n (z)
]
μ(dz)

= −λ2

2

∫
Z

(
u(α,β)

n (z)
)2

μ(dz)

+
∫

Z

[
exp

(
iλu(α,β)

n (z)
) − 1 − iλu(α,β)

n (z) + λ2

2

(
u(α,β)

n (z)
)2

]
μ(dz)

� An + Bn
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and show that under Assumptions (i)–(iii) in the statement, An
P→ −λ2

2 (α2 + β2) and Bn
P→ 0.

We start by considering Bn, writing

|Bn|1/3 =
∣∣∣∣ ∫

Z

[
exp

(
iλu(α,β)

n (z)
) − 1 − iλu(α,β)

n (z) + λ2

2

(
u(α,β)

n (z)
)2

]
μ(dz)|1/3

≤ |λ|
61/3

(∫
Z

∣∣u(α,β)
n (z)

∣∣3
μ(dz)

)1/3

= |λ|
61/3

(∫
Z

|αhπ(fn)(z) + βgn(z)|3μ(dz)

)1/3

≤ |αλ|
61/3

(∫
Z

|hπ(fn)(z)|3μ(dz)

)1/3

+ |βλ|
61/3

(∫
Z

|gn(z)|3μ(dz)

)1/3

.

Now recall that in the proof of Theorem 2, we already verified in (45) that under Assumption N
and (24), ∫

Z

|hπ(fn)(z)|3μ(dz)
P→ 0.

Since (
∫
Z

|gn(z)|3μ(dz))1/3 → 0 (due to (54)), we deduce that Bn
P→ 0. To prove the conver-

gence of the sequence An, we write∫
Z

(
u(α,β)

n (z)
)2

μ(dz)

= α2
∫

Z

hπ(fn)(z)
2μ(dz) + β2

∫
Z

gn(z)
2μ(dz)

+ 2αβ

∫
Z

hπ(fn)(z)gn(z)μ(dz).

In the proof of Theorem 2, we showed that when Assumption N and (24) hold,
∫
Z

hπ(fn)(z)
2 ×

μ(dz)
P→ 1 (see (31)). Since

∫
Z

gn(z)
2μ(dz) → 1 by (54), to prove that An

P→ −λ2

2 (α2 + β2),
we have only to show that ∫

Z

hπ(fn)(z)gn(z)μ(dz)
P→ 0.

To this end, we use the definition of hπ(fn) and apply Fubini’s theorem to obtain that

E

[∫
Z

|hπ(fn)(z)gn(z)|μ(dz)

]2

≤
∫

Z2

{∫
Z

fn(a, z)21(a ≺π z)μ(da)

∫
Z

fn(b, z′)21(b ≺π z′)μ(db)

}1/2

× |gn(z
′)gn(z)|μ(dz)μ(dz′)

=
(∫

Z

|gn(z)|
{∫

Z

fn(b, z)21(b ≺π z)μ(db)

}1/2

μ(dz)

)2
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≤
∫

Z

gn(z)
2μ(dz) ×

∫
Z

{∫
Z

fn(b, z′)21(b ≺π z′)μ(db)

}
μ(dz′) < ∞.

As a consequence, by once again using the isometric properties of the random measure N̂ , Fu-
bini’s theorem and Cauchy–Schwarz,

1
4E

[(∫
Z

hπ(fn)(z)gn(z)μ(dz)

)2]
=

∫
Z2

E
[
I1(fn(·, z)1(· ≺π z))gn(z)I1

(
fn(·, z′)1(· ≺π z′)

)
gn(z

′)
]
μ(dz)μ(dz′)

=
∫

Z

(∫
Z

fn(a, z)1(a ≺π z)gn(z)μ(dz)

)2

μ(da)

=
∫

Z

(∫
Z

fn(a, z)1(a ≺π z)gn(z)μ(dz)

)
×

(∫
Z

fn(a, z′)1(a ≺π z′)gn(z
′)μ(dz′)

)
μ(da)

=
∫

Z2
gn(z)gn(z

′)
(∫

Z

fn(a, z)fn(a, z′)1(a ≺π z ∧ z′)
)

μ2(dz,dz′)

≤
(∫

Z2
gn(z)

2gn(z
′)2μ2(dz,dz′)

)1/2

×
(∫

Z2

(∫
Z

fn(a, z)fn(a, z′)1(a ≺π z ∧ z′)μ(da)

)2

μ2(dz,dz′)
)1/2

.

Note that (
∫
Z2 gn(z)

2gn(z
′)2μ2(dz,dz′))1/2 = ∫

Z
gn(z)

2μ(dz) → 1, by (54). Moreover,

∫
Z2

(∫
Z

fn(a, z)fn(a, z′)1(a ≺π z ∧ z′)μ(da)

)2

μ2(dz,dz′)

=
∫

Z2

(∫
Z

fn(a, z)fn(b, z)1(a ∨ b ≺π z)μ(dz)

)2

μ2(da,db)

=
∫

Z2
hn(a, b)2μ2(da,db) → 0,

where we again applied Fubini’s theorem, hn is given by (36) and we used (44). It follows that

An
P→ −λ2

2 (α2 + β2) and therefore that (56) holds, thus concluding the proof of Theorem 3. �
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4. Applications

This section contains two illustrations of our techniques. Both involve generalized Volterra
processes, that is, random processes having the form (5), where N̂ is a Poisson measure over
R × R (e.g., with control measure ν(du)ds) and h is a deterministic bivariate kernel. In Sec-
tion 4.1, we prove CLTs involving linear and quadratic functionals of Ornstein–Uhlenbeck Lévy
processes, obtained from (5) by setting

h(t, s) = √
2λ exp

(−λ(t − s)
)
1t>s, λ > 0.

See [3], [10] and [26], respectively, for applications of Ornstein–Uhlenbeck Lévy processes to
finance, survival analysis and network modeling. Section 4.2 contains a concise description of
the applications of the theory of this paper developed in [5] and [15], where Theorem 2 and The-
orem 3 are applied in order to obtain CLTs involving random hazard rates in Bayesian survival
analysis.

4.1. Ornstein–Uhlenbeck Lévy processes

Fix λ > 0. We consider the Ornstein–Uhlenbeck Lévy process given by

Yλ
t = √

2λ

∫ t

−∞

∫
R

u exp
(−λ(t − x)

)
N̂(du,dx), t ≥ 0, (58)

where N̂ is a centered Poisson measure over R × R with control measure given by ν(du)dx,
where ν(·) is positive and normalized in such a way that

∫
R

u2ν(du) = 1. We also assume that∫
R

|u|3ν(du) < ∞. Note that Yλ
t is a stationary moving average Lévy process. We shall use part

A of Theorem 3 to prove the following result involving linear functionals of Yλ.

Theorem 4. As T → ∞,

1√
T

∫ T

0
Yλ

t dt
law→ N (0, σ 2(λ)), (59)

where N (0, σ 2(λ)) stands for a centered Gaussian random variable with variance σ 2(λ) =
2λ−1.

Proof. First, put the integral in the form (53). Applying Fubini’s theorem, we have

1√
T

∫ T

0
Yλ

t dt

=
∫ T

−∞

∫
R

u

[(
2λ

T

)1/2 ∫ T

x∨0
exp

(−λ(t − x)
)

dt

]
N̂(du,dx).
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We need to verify (54). First

E

[(
1√
T

∫ T

0
Yλ

t dt

)2]

=
∫ 0

−∞

∫
R

u2
[(

2λ

T

)1/2

λ−1 exp(λx)
(
1 − exp(−λT )

)]2

ν(du)dx

+
∫ T

0

∫
R

u2
[(

2λ

T

)1/2

λ−1 exp(λx)
(
exp(−λx) − exp(−λT )

)]2

ν(du)dx

= 2λ−1

T

∫ 0

−∞
[
exp(λx)

(
1 − exp(−λT )

)]2 dx

+ 2λ−1

T

∫ T

0

[
exp(λx)

(
exp(−λx) − exp(−λT )

)]2 dx

→ 2λ−1, as T → ∞.

According to Theorem 3, to prove (59) it is now sufficient to show that as T → ∞,∫ T

−∞

∫
R

|u|3
∣∣∣∣(2λ

T

)1/2 ∫ T

x∨0
exp

(−λ(t − x)
)

dt

∣∣∣∣3

ν(du)dx → 0.

But, ∫ T

−∞

∫
R

|u|3
∣∣∣∣(2λ

T

)1/2 ∫ T

x∨0
exp

(−λ(t − x)
)

dt

∣∣∣∣3

ν(du)dx

=
∫

R

|u|3ν(du) ×
(

2λ−1

T

)3/2[∫ 0

−∞
[
exp(λx)

(
1 − exp(−λT )

)]3dx (60)

+
∫ T

0

[
exp(λx)

(
exp(−λx) − exp(−λT )

)]3 dx

]

≤
∫

R

|u|3ν(du) ×
(

2λ−1

T

)3/2[ 1

3λ
+ T

]
→ 0, (61)

thus concluding the proof. �

A CLT analogous to (59) also holds in the more general case of an extended Ornstein–
Uhlenbeck Lévy process Y

φ,λ
t , defined as

Y
φ,λ
t = √

2λ

∫ t

−∞

∫
R

u exp
(−λ(t − x)

)
φ(t, x)N̂(du,dx), t ≥ 0, (62)

where λ > 0 and the kernel φ(t, x), from R+ × R to R+, is such that 0 < ε < φ(t, x) < η < ∞
for some strictly positive finite constants ε and η. Indeed, in this case, one can easily show that the



814 G. Peccati and M. Taqqu

variance of the random variable
∫ T

0 Y
φ,λ
t dt , denoted Vφ,λ(T ), is an increasing function (whose

explicit expression depends on the choice of λ and φ) such that

a(ε, η,λ) ≤ Vφ,λ(T )

T
≤ b(ε, η,λ), T > 0, (63)

where a(ε, η,λ) and b(ε, η,λ) are two positive constants not depending on T . Finally, the com-
bination of the estimate (63) and of the arguments displayed in formulae (60) and (61) yields the
CLT

1

Vφ,λ(T )1/2

∫ T

0
Y

φ,λ
t dt

law→N (0,1), T → ∞.

We now turn to quadratic functionals. We shall now suppose that the measure ν(·) is such that∫
ujν(du) < ∞ for j = 2,4,6, and

∫
u2ν(du) = 1. Plainly, these assumptions yield that

E[(Y λ
t )2] = 2λ

∫ t

−∞

∫
R

u2e−2λ(t−x)ν(du)dx = 1.

Theorem 5. For every λ > 0, define

ĥλ
t (u, x;u′, x′) = 2λuu′ exp

(−λ(t − x) − λ(t − x′)
)
1(−∞,t]2(x, x′). (64)

Then as T → ∞:

1.

√
T

{
1

T

∫ T

0
I2(ĥ

λ
t )dt ,

1

T

∫ T

0

[∫ t

−∞

∫
R

2λu2e−2λ(t−x)N̂(du,dx)

]
dt

}
(65)

law→ (N (0, λ−1),N ′(0, c2
ν)), (66)

where I2 is a double Poisson integral with respect to N̂ , and N and N ′ are two independent
centered Gaussian random variables with variances given, respectively, by λ−1 and c2

ν =∫
u4ν(du);

2.

√
T

{
1

T

∫ T

0
(Y λ

t )2 dt − 1

}
law→

√
1

λ
+ c2

ν ×N (0,1), (67)

where N (0,1) indicates a centered standard Gaussian random variable.

Proof. We introduce the notation

Hλ,T (u, x;u′, x′) = (u × u′)
1(−∞,T ]2(x, x′)

T

{
eλ(x+x′)(1 − e−2T )1(x∨x′≤0)

+ eλ(x+x′)(e−2λ(x∨x′) − e−2λT
)
1(x∨x′>0)

}
, (68)

H ∗
λ,T (u, x) = u2 1(−∞,T ](x)

T

{
e2λx(1 − e−2T )1(x≤0) + e2λx(e−2λx − e−2λT )1(x>0)

}
.
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A standard interchange of deterministic and stochastic integration yields that

√
T

{
1

T

∫ T

0
I2(ĥ

λ
t )dt ,

1

T

∫ T

0

[∫ t

−∞

∫
R

2λu2e−2λ(t−x)N̂(du,dx)

]
dt

}
= {

I2
(√

T Hλ,T

)
, I1

(√
T Hλ,T

)}
� {K2(T ),K1(T )},

where I2 and I1 denote, respectively, a double and a single Wiener–Itô integral with respect to N̂

(observe that, since in (65) the parameter t is integrated with respect to a finite measure, the inter-
change of deterministic and stochastic integrals can be justified by means of a standard stochastic
Fubini theorem – one can, e.g., mimic the proof of [16] Lemma 13, by first approximating the
kernels ĥλ

t and u2e−2λ(t−x) by means of piecewise constant integrands and then by using the iso-
metric properties of single and double Wiener–Itô integrals). Since for every T , K1(T ) is a single
integral and K2(T ) is a double integral, the joint convergence of the vector {K2(T ),K1(T )} can
be studied by means of Theorem 3. By using the same kind of calculations as in the proof of
Theorem 4, one easily verifies that

E[K1(T )2] = T

∫
R×R

H ∗
λ,T (u, x)2ν(du)dx → c2

ν

and ∫
R×R

∣∣√T H ∗
λ,T (u, x)

∣∣3
ν(du)dx = T 3/2

∫
R×R

|H ∗
λ,T (u, x)|3ν(du)dx ∼ T −1/2 → 0.

We therefore deduce from part A of Theorem 3 that K1(T )
law→ N(0, c2

ν). In view of part B of
Theorem 3, the CLT (66) holds if the kernel

JT (u, x;u′, x′) �
√

T Hλ,T (u, x;u′, x′) (69)

verifies Assumption N (i.e., relations (21)–(23)) and (24). Start by observing that (N-ii) = (22)
holds (up to a different normalization) because

2‖JT ‖2
L2((R×R)2,(dν×dx)2)

= 2T ‖Hλ,T ‖2
L2((R×R)2,(dν×dx)2)

=
(∫

R

u2ν(du)

)2 ∫
R×R

1(−∞,T ]2(x, x′)
T 2

{
eλ(x+x′)(1 − e−2T )1(x∨x′≤0)

× eλ(x+x′)(e−2λ(x∨x′) − e−2λT
)
1(x∨x′>0)

}2 dx dx′

−→ λ−1.

It is therefore sufficient to verify that kernel JT defined in (69) verifies conditions (N-i) = (21),
(N-i) = (23) and the contraction condition (24), namely that∫

R×R

JT (·;u,x)2ν(du)dx ∈ L2(R × R,dν dx) ∀T > 0, (70)
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R×R

JT (·;u,x)4ν(du)dx

}1/2

∈ L1(R × R,dν dx) ∀T > 0, (71)∫
(R×R)2

JT (u, x;u′, x′)4ν(du)dxν(du′)dx′ → 0, T → ∞, (72)

‖JT �1
2 JT ‖2

L2(R×R,dν dx)
→ 0, T → ∞, (73)

‖JT �1
1 JT ‖2

L2((R×R)2,(dν dx)2)
→ 0, T → ∞. (74)

In view of (69), (70) and (71) are implied by the definition of Hλ,T . Relation (72) can be
deduced from the relation

T 2 × ‖H 2
λ,T ‖2

L2(R×R,dν dx)
∼ 1

T
→ 0. (75)

Relations (73) and (74) are a consequence of the two asymptotic relations

T 2 ×
∫

R×R

(∫
R×R

Hλ,T (u, x;u′, x′)2ν(du)dx

)2

ν(du′)dx′

(76)

∼ 1

T
→ 0,

T 2
∫

(R×R)2

(∫
R×R

Hλ,T (v, z;u,x)Hλ,T (v, z;u′, x′)ν(dv)dz

)2

ν(du)dxν(du′)dx′

(77)

∼ 1

T
→ 0.

Note that (75)–(77) can be easily checked by resorting to the explicit definition of Hλ,T , as given
in (68). The conclusion of point 1 now follows. Point 2 can be deduced from the relation

√
T

{
1

T

∫ T

0
(Y λ

t )2 dt − 1

}
= √

T

{
1

T

∫ T

0
I2(ĥ

λ
t )dt + 1

T

∫ T

0

[∫ t

−∞

∫
R

2λu2e−2λ(t−x)N̂(du,dx)

]
dt

}
,

which is a consequence of the multiplication formula (14) (in the case p = q = 1), applied for
every t to the variable (Y λ

t )2. �

Remark. In the Poisson case considered here, the double and single integrals in (66) both con-
verge to a non-degenerate Gaussian distribution. This situation is different when the random
measure is Gaussian. In that case, the single integral – which corresponds to the contribution of
the diagonal – is deterministic.

We can also prove the following CLT for the sample variance of Yλ
t .
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Corollary 6. With the same notation as in Theorem 5, for every λ > 0,

√
T

{
1

T

∫ T

0

(
Yλ

t − 1

T

∫ T

0
Yλ

u du

)2

dt − 1

}
law→

√
1

λ
+ c2

ν ×N (0,1).

Proof. We simply write 1
T

∫ T

0 (Y λ
t − 1

T

∫ T

0 Yλ
u du)2 dt = 1

T

∫ T

0 (Y λ
t )2 dt − ( 1

T

∫ T

0 Yλ
t dt)2 and ob-

serve that by (59),
√

T ( 1
T

∫ T

0 Yλ
t dt)2 = OP(T −1/2). �

4.2. Functionals of random hazard rates in nonparametric Bayesian
survival analysis

We shall now discuss some applications to random hazard rate models in nonparametric
Bayesian survival analysis. These random hazard rates are often represented as generalized
Volterra processes of the kind described above. In [5] and [15], the linear and quadratic func-
tionals associated with random hazard rates in some popular Bayesian models are studied by
means of the techniques developed in this paper. In what follows, we present the main elements
of a Bayesian random hazard rate model, as well as some crucial examples and motivations taken
from [5] and [15]. The reader is referred to [5], [10], [15] and the references therein for more
details about Bayesian models of survival analysis.

Let (Z,Z) be a measurable space and let μ be a σ -finite measure over (Z,Z). As before, we
use the notation Zμ = {B ∈ Z :μ(B) < ∞}. A collection of random variables N = {N(B) :B ∈
Zμ} is called a non-compensated Poisson measure with control measure μ if there exists a com-
pensated Poisson measure N̂ = {N̂(B) :B ∈Zμ} (see Section 2) such that

N(B) = N̂(B) + μ(B) ∀B ∈Zμ. (78)

In other words, N = {N(B) :B ∈ Zμ} is a non-compensated Poisson measure if and only if (i)
for every B,C ∈ Zμ such that B ∩ C = ∅, N(B) and N(C) are independent, and (ii) for every
B ∈ Zμ,

N(B)
law= P(B),

where P(B) is a Poisson random variable with parameter μ(B).
The basic ingredients of a Bayesian random hazard rate model are the following:

• a random hazard rate h̃, which is a positive generalized Volterra process of the type

h̃(t) =
∫

R

∫
R+

uk(t, x)N(du,dx), t ≥ 0, (79)

where k(t, x) ≥ 0 and N is a suitable non-compensated Poisson measure over R × R+,
verifying

lim
T →∞

∫ T

0
h̃(t)dt = +∞, a.s.-P;



818 G. Peccati and M. Taqqu

• a random density with support in R+, given by

f (t) = h̃(t) exp

{
−

∫ t

0
h̃(s)ds

}
= h̃(t) exp{−H̃ (t)}, t ≥ 0, (80)

where

H̃ (t) =
∫ t

0
h̃(s)ds, t ≥ 0;

• a sequence of positive absolutely continuous exchangeable random variables U = {Un :n ≥
1}, representing the lifetimes associated with a given population, such that, conditionally
on the density f in (80), U is composed of i.i.d. random variables with common law given
by f .

Plainly, the initial choice of the law of h̃ and f (which, in Bayesian terms, is the prior speci-
fication of the model) is completely encoded by the choices of the control measure of N and of
the kernel k. Note that (80) gives the following heuristic characterization of h̃(t):

h̃(t)dt = P(t ≤ U1 ≤ t + dt |U1 ≥ t, f ),

meaning that given f , the quantity h̃(t)dt is the probability that the lifetime U1 (or, for that
matter, Un) falls in the interval [t, t + dt], conditionally on the fact that U1 is greater than t .

Popular choices for k are the following: (a) the Dykstra–Laud kernel k(t, x) = 10≤x≤t ; (b) the
rectangular kernel k(t, x) = 1|x−t |≤τ , where τ > 0 is called the ‘bandwith’ of the kernel; (c) the
Ornstein–Uhlenbeck kernel k(t, x) = √

2λ exp{−λ(t − x)}10≤x≤t (note the difference with (58),
where the kernel is indeed

√
2λ exp{−λ(t − x)}1−∞<x≤t ).

Popular choices for the control measure of N are:

(i) generalized Gamma controls of the type

μ(du,dx) = �(1 − σ)−1 exp(−γ u)u−1−σ 1u,x>0 dudx, (81)

where σ ∈ (0,1), γ > 0 and � is the usual Gamma function;
(ii) extended Gamma controls of the kind

μ(du,dx) = exp(−β(x)u)u−11u,x>0 dudx, (82)

where β is a strictly positive function on R;
(iii) Beta controls of the type

μ(du,dx) = (1 − u)c(x)−1c(x)1u∈(0,1)1x>0 dudx, (83)

where c is a strictly positive function on R.

Note that, in general, extended Gamma controls and Beta controls are non-homogeneous, in
the sense that they cannot be represented in the form μ(du,dx) = ν(du)dx, for some σ -finite
measure ν on R+.
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The crucial point is that due to the very complex nature of an object such as (79), very little
is known about the effect that different parametric choices in (81)–(83) may have on the dis-
tributional behavior of h̃, in particular with respect to functionals of statistical relevance. The
idea developed in [15] and, later, in [5], is that one can always represent h̃ in terms of some
underlying compensated Poisson measure (via relation (78)) so that Theorem 2 and Theorem 3
of the present paper can be applied in order to obtain CLTs for linear and quadratic functionals
of h̃. The key step is, of course, to represent linear and quadratic functionals as a sum of a single
and a double Wiener–Itô integral, a task that can be easily performed by using, for example, the
multiplication formula (14). It turns out that in most cases, the constants involved in the CLTs
obtained in this way can be expressed very neatly in terms of the different parameters composing
the control measure of N and the kernel k, thus giving a rough description of the overall ‘shape’
of the hazard rate h̃ as a function of the prior specification of the model. As argued in [15] and
[5], these kind of results may serve as a guide in the prior analysis since they provide a quite
direct way to incorporate prior knowledge into the specification of the law of h̃.

As an example, we present some results, proved in [15] by means of Theorem 2 and Theorem
3, involving linear and quadratic functionals of the rectangular kernel, under different parametric
choices of the control measure associated with N . The first statement concerns linear functionals.
Recall that the random variables H̃ (T ) = ∫ T

0 h̃(s)ds, T > 0, have been defined in (80); the
symbol N (0, c) denotes a centered Gaussian random variable with variance c.

Theorem 7 (See [15]). (1) Let N have a homogeneous control measure of the type μ(du,dx) =
ν(du)dx, where the σ -finite measure ν is such that K

(i)
ν = ∫

R+ uiν(du) < ∞, i = 1,2. Let h̃(t)

be defined via (79), with the rectangular kernel k(t, x) = 1|t−x|≤τ , for some τ > 0. Then

1√
T

[
H̃ (T ) − 2τK(1)

ν T
] law−→ N

(
0,4τ 2K(2)

ν

)
.

(2) Let N have a non-homogeneous control measure of the type (82), with β(x) = 1+x1/2. Let
h̃(t) be defined via (79), with the rectangular kernel of bandwith one given by k(t, x) = 1|t−x|≤1.
Then

1√
logT

[H̃ (T ) − 4T 1/2] law−→ N (0,4).

(3) Let N have a non-homogeneous control measure of the type (83), with c(x) ∼ x1/2 as
x → ∞. Let h̃(t) be defined via (79) with the rectangular kernel k(t, x) = 1|t−x|≤1. Then

1

T 1/4
[H̃ (T ) − 2T ] law−→ N (0,8).

The following statement involves quadratic functionals of rectangular random hazard rates,
under a homogeneous assumption on the control measure of N . Further results, involving non-
homogeneous random measures, are contained at the end of [15] Section 4.2.

Theorem 8 (See [15], Section 4.2). Let N have a homogeneous control measure of the type
μ(du,dx) = ν(du)dx, where the σ -finite measure ν is such that K

(i)
ν = ∫

R+ uiν(du) < ∞, i =



820 G. Peccati and M. Taqqu

1, . . . ,4. Let h̃(t) be defined via (79), with the rectangular kernel k(t, x) = 1|t−x|≤τ , for some
τ > 0. Then

√
T

[
1

T

∫ T

0
h̃(t)2 dt − (

2τK(2)
ν + 4τ 2(K(1)

ν

)2)] law−→ N (0, c1)

with c1 = 16τ 2[K(4)
ν /4 + τK

(1)
ν K

(3)
ν + 2τ [K(2)

ν ]2/3 + τ 2[K(2)
ν ]2K

(1)
ν ]. Moreover,

√
T

[
1

T

∫ T

0

(
h̃(t) − H̃ (T )

T

)2

dt − 2τK(2)
ν

]
law−→N (0, c2),

where c2 = 4τ 2[K(4)
ν + 8τ [K(2)

ν ]2/3].

Remark. The paper [5] continues the analysis contained in [15] by establishing posterior CLTs
for linear and quadratic functionals of random hazard rates, that is, limit theorems involving the
law obtained by conditioning on an arbitrary sample of observations (U1, . . . ,Un). One of the
main findings in [5] is that the posterior CLTs coincide with the prior ones for most models
commonly used in Bayesian analysis. These results are then compared with another asymptotic
characterization of Bayesian models, known as consistency (see, e.g., Drăghici and Ramamoorthi
[7]).
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