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VOJTA’S CONJECTURE, SINGULARITIES AND

MULTIPLIER-TYPE IDEALS

Takehiko Yasuda

Abstract

We formulate a generalization of Vojta’s conjecture in terms of log pairs and

variants of multiplier ideals.

1. Introduction

Vojta’s famous conjecture in Diophantine geometry was originally stated for
a smooth projective variety X over a number field and a simple normal cross-
ing divisor D on X . This conjecture is important, since it provides a general
framework unifying various deep arithmetic results and conjectures; for instance,
in dimension one, the conjecture incorporates celebrated finiteness results of Roth,
Siegel and Faltings. In [8], Vojta generalized it further, replacing D with an
arbitrary proper closed subscheme Z � X . This generalized conjecture says that
if A is a big divisor on X and e > 0 is a real number, then all rational points x in
an open dense subset of X satisfies the inequality

hKX
ðxÞ þmZðxÞ �mI�ðX ;ZÞðxÞa ehAðxÞ þOð1Þ:

Here I�ðX ;ZÞ is the multiplier ideal sheaf of the pair ðX ; ð1� dÞZÞ for
0 < df 1.

In this paper, we further generalize Vojta’s conjecture from the viewpoint
of the minimal model program, allowing X to have (not necessarily normal)
Q-Gorenstein singularities (Conjecture 5.2). In this generalization, the inequality
becomes

hKXþZðxÞ �NHðX ;ZÞðxÞ �mI�ðX ;ZÞðxÞa ehAðxÞ þOð1Þ:

Here HðX ;ZÞ is a new variant of the multiplier ideal sheaf which we will intro-
duce. It turns out that the new conjecture is equivalent to the original one.
In the last inequality, the first term hKXþZðxÞ is clearly the contribution of the
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canonical ‘‘divisor’’ KX þ Z. The second term NHðX ;ZÞðxÞ and the third term
mI�ðX ;ZÞðxÞ should be viewed as the contribution of singularities of the log pair
ðX ;ZÞ.

When X is normal, the ideal sheaf HðX ;ZÞ is defined as f�OY ðbKY=X �
f �ZcÞ for a log resolution f : Y ! X with b�c denoting the round down, while
the usual multiplier ideal uses the round up. The author finds it interesting that
Diophantine geometry leads us to this new sheaf. The sheaf would be of inde-
pendent interest and should be studied further from the purely algebro-geometric
viewpoint.

Our generalization of Vojta’s conjecture has some interesting consequences as
the original conjecture does. We can derive a slight generalization of a conjec-
ture of Lang and Vojta on the non-density of integral points (Proposition 6.3).
Another consequence, which is more geometric, roughly says that given a log pair
ðX ;ZÞ, most of the closed subsets Y � X having dense rational points intersect
the locus of bad singularities of ðX ;ZÞ (Proposition 6.4).

This paper is a substantially changed and shortened version of the pre-
print [9]. The outline of the paper is as follows. In Section 2 we recall basic
facts on singularities of log pairs. Section 3 is devoted to define the sheaves
I�ðX ;ZÞ and HðX ;ZÞ and to prove their basic properties. In Section 4, we
recall Weil functions, height functions, counting functions and proximity func-
tions. Section 5 is the main part of the paper. Here we formulate the gen-
eralization of Vojta’s conjecture and prove that it is equivalent to the original
conjecture. In Section 6, we derive two consequences of our generalization of
Vojta’s conjecture.

Throughout the paper, we fix a number field k. A variety means a sepa-
rated integral scheme of finite type over k. We suppose that every morphism of
varieties is a morphism of k-schemes. From Section 4 on, we fix a finite set S of
places of k which includes all the infinite places.

The author would like to thank Yoshinori Gongyo, Katsutoshi Yamanoi and
Yu Yasufuku for helpful discussion.

2. Singularities of log pairs

Definition 2.1. A variety X is said to be Q-Gorenstein if
(1) X satisfies Serre’s condition S2,
(2) X is Gorenstein in codimension one, and
(3) a canonical divisor KX is Q-Cartier.

For instance, a variety having only local complete intersection singularities is
Gorenstein, hence Q-Gorenstein. From the first two conditions, which are auto-
matic if X is normal, a canonical divisor KX exists, is unique up to linear equiv-
alence and is Cartier in codimension one (see [1, Def. 1.6]). Therefore the last
condition makes sense and is equivalent to that for some m A Z>0, the reflexive
power o

½m�
X :¼ ðonm

X Þ�� of the canonical sheaf oX is invertible.
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Definition 2.2. A Q-subscheme of a variety X is a formal linear combi-
nation Z ¼

Pn
i¼1 ciZi of proper closed subschemes Zi � X with ci A Q. The

support of Z, denoted by SuppðZÞ, is defined to be the closed subset
S

ci00 Zi.
We say that a Q-subscheme

Pn
i¼1 ciZi is e¤ective if ci b 0 for every i. A log pair

is the pair ðX ;ZÞ of a Q-Gorenstein variety X and an e¤ective Q-subscheme Z
of X .

Remark 2.3. One may introduce the following equivalence relation on
Q-subschemes: two Q-subschemes

P
i ciZi and

P
j c

0
jZ

0
j of the same variety X are

equivalent if there exists a positive integer r such that rci and rc 0j are all integers
and the genuine subschemes

P
i rciZi and

P
j rc

0
jZ

0
j are identical, where we mean

by rciZi the closed subscheme defined by the rci-th power of the defining ideal
sheaf of Zi and by

P
i rciZi the closed subscheme defined by the product of

the ideal sheafs of rciZi and we define
P

j rc
0
jZ

0
j similarly. Replacing the given

Q-subscheme Z with an equivalent one does not change classes of singularities
to which the log pair ðX ;ZÞ belong or does not change multiplier-type ideals
discussed in the next section (cf. Remark 2.7).

Remark 2.4. If X is a normal Q-Gorenstein variety and D is an e¤ective
Q-Cartier Q-Weil divisor, then D is written as bE with E an e¤ective Cartier
divisor and b A Qb0; this allows us to regard the pair ðX ;DÞ as a log pair in
the sense defined above. The log pair defined in this way is unique modulo the
equivalence relation in the last remark.

Definition 2.5. A resolution of a variety X is a projective birational mor-
phism f : Y ! X such that Y is smooth over k. Let ðX ;Z ¼

Pn
i¼1 ciZiÞ be

a log pair. A log resolution of ðX ;ZÞ is a resolution f : Y ! X of X such
that

(1) for every i, the scheme-theoretic inverse image f �1ðZiÞ is a Cartier
divisor (that is, if IZi

is the defining ideal sheaf of Zi, then the pull-back
f �1IZi

as an ideal sheaf is locally principal),
(2) if we denote by Excð f Þ the exceptional set of f , then the closed subset

Excð f Þ [
Sn

i¼1 f �1ðZiÞred of Y is a simple normal crossing divisor.

From Hironaka’s theorem, every variety has a resolution and every log pair
has a log resolution.

Definition 2.6. For a Q-Gorenstein variety X and a resolution f : Y ! X
of X , the relative canonical divisor KY=X of Y over X is defined as a Q-Weil
divisor of Y supported in Excð f Þ as follows. If m is a positive integer such that

o
½m�
X is invertible, then the image of the natural morphism f �o

½m�
X ! onm

Y nOY

KðY Þ is written as onm
Y ðDÞ for some (Z-)divisor D. We define

KY=X :¼ � 1

m
D:
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For a log resolution f : Y ! X of a log pair ðX ;ZÞ, we define the relative
canonical divisor KY=ðX ;ZÞ of Y over ðX ;ZÞ as the Q-Weil divisor KY=X � f �Z.

Here, if we write Z ¼
P l

i¼1 ciZi, then we define the pull-back f �Z as the Q-Weil
divisor

Remark 2.7. If Z 0 is another Q-subscheme equivalent to Z and f : Y ! X
is a log resolution of both ðX ;ZÞ and ðX ;Z 0Þ, then the Q-Weil divisors f �Z and
f �Z 0 are identical, and so are KY=ðX ;ZÞ and KY=ðX ;Z 0Þ.

Definition 2.8. Let ðX ;ZÞ be a log pair, let f : Y ! X be a log resolution
of it and let us write

KY=ðX ;DÞ ¼
X

F

aF � F ;

F running over all prime divisors of Y . We say that ðX ;ZÞ is strongly canon-
ical1 (resp. Kawamata log terminal, log canonical) if aF b 0 (resp. aF > �1,
aF b�1) for every F .

As is well-known, these notions are independent of the choice of a log
resolution. These are also local; a log pair ðX ;ZÞ is strongly canonical (resp.
Kawamata log terminal, log canonical) if and only if every point x A X has
an open neighborhood U � X such that ðU ;ZjU Þ is so. This is just because for
an open subset U � X and a log resolution f : Y ! X of ðX ;ZÞ, we have
Kf �1ðUÞ=ðU ;ZjU Þ ¼ KY=ðX ;ZÞjf �1ðUÞ. We define the non-sc locus (resp. non-klt locus,

non-lc locus) of ðX ;ZÞ to be the smallest closed subset W � X such that
ðXnW ;ZjXnW Þ is strongly canonical (resp. Kawamata log terminal, log canon-
ical). We write it as NonSCðX ;ZÞ (resp. NonKLTðX ;ZÞ, NonLCðX ;ZÞ).
Clearly we have

NonLCðX ;ZÞ � NonKLTðX ;ZÞ � NonSCðX ;ZÞ:ð2:1Þ

3. Multiplier-type ideal sheaves

In this section, we define two variants I� and H of multiplier ideals, which
will be necessary to formulate our generalization of Vojta’s conjecture. We
denote by ðX ;ZÞ a log pair throughout the section.

When X is normal, the multiplier ideal sheaf IðX ;ZÞ is usually defined
to be f�OY ðdKY=ðX ;ZÞeÞ for a log resolution f : Y ! X of ðX ;ZÞ (see [4, Def.
9.3.56]). Here d�e denotes the round up of a Q-Weil divisor, that is, for a
Q-Weil divisor E ¼

P
i ciEi with ci A Q and Ei prime divisors, we define dEe :¼

1A log pair ðX ;ZÞ is said to be canonical if aF b 0 for every exceptional prime divisor F of f (see

[1, Def. 2.8]).
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P
idcieEi. The round down bEc is similarly defined and will be used below.

When X is not normal, f�OY ðdKY=ðX ;ZÞeÞ is no longer an ideal sheaf. To handle
this trouble, we replace f� with f| defined as follows: for a resolution f : Y ! X
and a divisor E of Y (with Z-coe‰cients), we define f|OY ðEÞ as the largest ideal
sheaf I � OX such that the ideal pull-back f �1I is contained in OY ðEÞ as an
OY -submodule of the function field constant sheaf. We now define the multiplier
ideal sheaf IðX ;ZÞ of a log pair ðX ;ZÞ to be f|OY ðdKY=ðX ;ZÞeÞ for a log resolu-
tion f : Y ! X of ðX ;ZÞ.

Lemma 3.1. The ideal sheaf IðX ;ZÞ defined above is independent of the
choice of a log resolution f .

Proof. This is well-known, when X is smooth. In the general case, the
lemma follows from the following two facts. The first one is that if g : Y 0 ! Y
and f : Y ! X are projective birational morphisms such that Y and Y 0 are
smooth, then for a divisor E on Z, we have f|ðg�OY 0 ðEÞÞ ¼ ð f � gÞ|OY 0 ðEÞ:
The second one is that if f and f � g as above are log resolutions of ðX ;ZÞ, then
g�OY 0 ðdKY 0=ðX ;ZÞeÞ ¼ OY ðdKY=ðX ;ZÞeÞ, which follows from [4, Lem. 9.2.19]. r

It is easy to see that there exists d0 > 0 such that for every d A Q with
0 < da d0, we have IðX ; ð1� dÞZÞ ¼ IðX ; ð1� d0ÞZÞ. We define

I�ðX ;ZÞ :¼ IðX ; ð1� dÞZÞ ð0 < df 1Þ:

Proposition 3.2 (cf. [4, Def. 9.3.9]). We have

NonLCðX ;ZÞ � SuppðOX=I
�ðX ;ZÞÞ � NonKLTðX ;ZÞ:ð3:1Þ

Moreover, if ðXnSuppðZÞ; 0Þ is Kawamata log terminal, then

NonLCðX ;ZÞ ¼ SuppðOX=I
�ðX ;ZÞÞ:ð3:2Þ

Proof. Let f : Y ! X be a log resolution of ðX ;ZÞ. For 0 < df 1 and a
prime divisor F of Y , we have

multF ðKY=ðX ;ZÞÞ < �1 ) multF ðdKY=ðX ;ZÞ þ df �ZeÞ < 0 ) multF ðKY=ðX ;ZÞÞa�1:

Here multF ðEÞ denotes the multiplicity of F in the divisor E. This shows the
first assertion.

To show the second assertion, it su‰ces to show that if ðXnSuppðZÞ; 0Þ is
Kawamata log terminal, then

multF ðKY=ðX ;ZÞÞb�1 ) multF ðdKY=ðX ;ZÞ þ df �ZeÞb 0:

If multF ðKY=ðX ;ZÞÞ > �1, then we obviously have multF ðdKY=ðX ;ZÞ þ df �ZeÞb 0.
If multF ðKY=ðX ;ZÞÞ ¼ �1, then, since ðXnSuppðZÞ; 0Þ is Kawamata log termi-
nal, F is contained in Suppð f �ZÞ. Hence multF ðKY=ðX ;ZÞ þ df �ZÞ > �1 and
multF ðdKY=ðX ;ZÞ þ df �ZeÞb 0. r
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Lemma 3.3. Let f : Y ! X be a projective birational morphism of smooth
varieties and E a (not necessarily e¤ective) Q-Weil divisor on X. Then

f�OY ðbKY=X þ f �EcÞ ¼ OX ðbEcÞ:

Proof. First suppose that bEc ¼ 0. To show the lemma in this case, it
su‰ces to show that bKY=X þ f �Ec is an e¤ective divisor supported in Excð f Þ.
Since KY=X and E are e¤ective, so is bKY=X þ f �Ec. On the locus where f is an
isomorphism, the two divisors bKY=X þ f �Ec and bEc coincide, the latter being
zero by the assumption. This proves the lemma in this case.

For the general case, we write fEg :¼ E � bEc. Obviously, bfEgc ¼ 0.
From the projection formula and the case considered above, we have

f�OY ðbKY=X þ f �EcÞ ¼ f�OY ðbKY=X þ f �fEg þ f �bEccÞ
¼ f�OY ðbKY=X þ f �fEgc þ f �bEcÞ
¼ f�ðOY ðbKY=X þ f �fEgcÞnOY

f �OX ðbEcÞÞ
¼ OX nOX

OX ðbEcÞ
¼ OX ðbEcÞ: r

Proposition 3.4. For a log pair ðX ;ZÞ, the ideal sheaf f|OY ðbKY=ðX ;ZÞcÞ is
independent of a log resolution f : Y ! X of ðX ;ZÞ.

Proof. Let f : Y ! X and f 0 : Y 0 ! X be log resolutions of ðX ;ZÞ.
Without loss of generality, we may suppose that f 0 factors as Y 0 !g Y !f X .
Then

KY 0=ðX ;ZÞ ¼ KY 0=Y þ g�KY=ðX ;ZÞ:

From the above lemma,

f 0
|OY 0 ðbKY 0=ðX ;ZÞcÞ ¼ f|ðg�OY 0 ðbKY 0=Y þ g�KY=ðX ;ZÞcÞÞ

¼ f|OY ðbKY=ðX ;ZÞcÞ: r

For a log pair ðX ;ZÞ, taking a log resolution f : Y ! X of ðX ;ZÞ, we
define an ideal sheaf HðX ;ZÞ on X as

HðX ;ZÞ :¼ f|OY ðbKY=ðX ;ZÞcÞ:

Remark 3.5. As far as the definition of HðX ;ZÞ is concerned, we do
not need the ‘‘simple normal crossing’’ assumption in the definition of log
resolutions.

Proposition 3.6. For a log pair ðX ;ZÞ, we have

SuppðOX=HðX ;ZÞÞ ¼ NonSCðX ;ZÞ:
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Proof. Let f : Y ! X be a log resolution of ðX ;ZÞ. If ðX ;ZÞ is strongly
canonical, then KY=ðX ;ZÞ b 0 and bKY=ðX ;ZÞcb 0. By the definition of f|, we
have

HðX ;ZÞ ¼ f|OY ðbKY=ðX ;ZÞcÞ ¼ OX :

This shows SuppðOX=HðX ;ZÞÞ � NonSCðX ;ZÞ:
If ðX ;ZÞ is not strongly canonical around x A X , then there exists a prime

divisor F on Y such that x A f ðF Þ and multF ðKY=ðX ;ZÞÞ < 0. Therefore,

OY 6� OY ðbKY=ðX ;ZÞcÞ:
This remains true even if we replace X with any open neighborhood of x. This
shows SuppðOX=HðX ;ZÞÞ � NonSCðX ;ZÞ: r

Corollary 3.7. If ðX ;ZÞ is log canonical, then HðX ;ZÞ is the defining
ideal sheaf of NonSCðX ;ZÞ regarded as the reduced closed subscheme, that is,
OX=HðX ;ZÞ is reduced.

Proof. Let N be the defining ideal of NonSCðX ;ZÞ. From Proposition
3.6, we have H � N. To see the opposite inclusion, let U � X be an open
subset and g A NðUÞ. For a log resolution f : Y ! X of ðX ;ZÞ, f �g vanishes
along the closed set f �1ðNonSCðX ;ZÞÞ. The last set contains every prime
divisor F on Y having a negative coe‰cient in bKY=ðX ;ZÞc, which is equal to �1
since ðX ;ZÞ is log canonical. Therefore, f �g A OY ðbKY=ðX ;ZÞcÞð f �1UÞ and hence
g A HðUÞ and N � H. r

4. Weil functions

We denote by Mk the set of places of k. From now on, we fix a finite set
S � Mk containing all infinite places. Let X be a projective variety over k. To
a proper closed subscheme Z � X , we associate a Weil function

lZ : X ðkÞ 	Mk ! ½0;þy�;

following [5], which is unique up to addition of Mk-bounded functions. Weil
functions have the following properties [5, Th. 2.1]:

(1) For a morphism f : Y ! X of projective varieties and a proper closed
subscheme Z � X , we have lZ � f ¼ lf �1Z.

(2) For Z � Z 0 � X , we have lZ a lZ 0 .
(3) For proper closed subschemes Z;Z 0 � X , we have lZþZ 0 ¼ lZ þ lZ 0 :

Here Z þ Z 0 is the closed subscheme defined by the product of the
defining ideals of Z and Z 0.

Here comparisons of Weil functions are made up to addition of Mk-bounded
functions. When Z is an e¤ective Cartier divisor locally defined by a regular
function f , then a Weil function lZ of Z should be locally of the form

lZðx; vÞ ¼ �logk f ðxÞkv þ aðxÞ
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for a locally Mk-bounded function a. Here, if p is the place of Q with vjp and
j � jp denotes the p-adic absolute value, then the norm k � kv is defined by kakv :¼
jNkv=Qp

ðaÞjp.

Definition 4.1. For a proper closed subscheme Z � X , we define the
height function hZ, the counting function NZ ¼ NZ;S and the proximity function
mZ ¼ mZ;S on XðkÞ relative to l and k by

hZðxÞ :¼
X

v AMk

lZðx; vÞ; NZðxÞ :¼
X

v AMknS
lZðx; vÞ; mZðxÞ :¼

X

w AS

lZðx; vÞ:

These are functions on X ðkÞ with values in ½0;þy� and taking value þy exactly
on ZðkÞ. When I is the defining ideal sheaf of Z, we denote these functions
also by hI, NI and mI respectively. If Z ¼

P
i ciZi is a Q-subscheme, then we

define

hZ :¼
X

i

cihZi
; NZ :¼

X

i

ciNZi
; mZ :¼

X

i

cimZi

as R-valued functions on ðXnSuppðZÞÞðkÞ.

For a (not necessarily e¤ective) Cartier divisor D, the height function hD on
ðXnSuppðDÞÞðkÞ defined as above extends to an R-valued function on the whole
set XðkÞ and defines a unique function hD up to addition of bounded functions.
The function class hD modulo bounded functions depends only on the linear
equivalence class of D. Furthermore, we can easily generalize this to Q-Cartier
Q-Weil divisors; if D is a Q-Cartier Q-Weil divisor and if n is a positive integer

such that nD is Cartier, then a height function hD is defined as
1

n
hnD. In

particular, for a Q-Gorenstein projective variety X , we can define a height
function hKX

of a canonical divisor KX up to addition of bounded functions.
For a log pair ðX ;ZÞ, we define the height function hKðX ;ZÞ of KðX ;ZÞ ¼ KX þ Z to
be hKX

þ hZ.

5. Vojta’s conjecture for log pairs

The original form of Vojta’s conjecture is as follows:

Conjecture 5.1 ([6]). Let X be a smooth projective variety, A a big divisor
on X , D a reduced simple normal crossing divisor on X and e a positive real
number. Then there exists a proper closed subset W � X such that for all x A
ðXnWÞðkÞ, we have

hKX
ðxÞ þmDðxÞa ehAðxÞ þOð1Þ:

Using log pairs and multiplier-type ideals introduced in Section 3, we for-
mulate a generalization of this conjecture as follows:
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Conjecture 5.2. Let ðX ;ZÞ be a log pair with X projective, A a big divisor
on X and e a positive real number. Then there exists a proper closed subset
W � X such that for all x A ðXnWÞðkÞ, we have

hKðX ;ZÞ ðxÞ �NHðX ;ZÞðxÞ �mI�ðX ;ZÞðxÞa ehAðxÞ þOð1Þ:ð5:1Þ

We can view the left hand side of this inequality as follows. The main term
is hKðX ;ZÞ ðxÞ and the other two terms are correction terms arising from singularities
of ðX ;ZÞ. Indeed, from Proposition 3.6, the term NHðX ;ZÞðxÞ can be thought
of as the contribution of the non-sc locus NonSCðX ;ZÞ. From Proposition
3.2, mI�ðX ;ZÞðxÞ can be thought of as the contribution of NonKLTðX ;ZÞ (or
NonLCðX ;ZÞ if ðXnSuppðZÞ; 0Þ is Kawamata log terminal).

Example 5.3. Let X be a smooth projective variety and D a reduced
simple normal crossing divisor on X . Then ðX ;DÞ is log canonical. From
Propositions 3.2 and 3.6 and Corollary 3.7, the left hand side of (5.1) is equal
to

hKðX ;DÞ ðxÞ �NDðxÞ ¼ hKX
þmD:

Thus Conjecture 5.2 is the same as Conjecture 5.1 in this case.

Although Conjecture 5.2 deals with a more general setting than Conjecture
5.1 does, they are in fact equivalent:

Proposition 5.4. Let ðX ;ZÞ be a log pair with X projective and f : Y ! X
a log resolution of ðX ;ZÞ. Suppose that Conjecture 5.1 holds for Y and the
reduced simple normal crossing divisor

dKY=ðX ;ZÞ þ df �Ze � bKY=ðX ;ZÞc

for 0 < df 1. Then Conjecture 5.2 holds for ðX ;ZÞ. In particular, Conjectures
5.1 and 5.2 are equivalent.

Proof. The proof is similar to the one of Vojta’s similar result [8, Prop.
4.3]. By definition,

f �1HðX ;ZÞ � OY ðbKY=ðX ;ZÞcÞ
and for 0 < df 1,

f �1I�ðX ;ZÞ � OY ðdKY=ðX ;ZÞ þ df �ZeÞ:
These imply

NHðX ;ZÞ � f bN�bKY=ðX ;ZÞc;

mI�ðX ;ZÞ � f bm�dKY=ðX ;ZÞþdf �Ze:

We have
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ðhKðX ;ZÞ �NHðX ;ZÞ �mI�ðX ;ZÞÞ � f

a hKY
� hKY=ðX ;ZÞ �N�bKY=ðX ;ZÞc �m�dKY=ðX ;ZÞþdf �Ze

a hKY
þ h�bKY=ðX ;ZÞc �N�bKY=ðX ;ZÞc �m�dKY=ðX ;ZÞþdf �Ze

¼ hKY
þmdKY=ðX ;ZÞþdf �Ze�bKY=ðX ;ZÞc:

The proposition follows from the fact that the pullback f �A of a big divisor A
on X is big. r

Remark 5.5. If X is smooth and Z � X is a genuine closed subscheme,
then mI�ðX ;ZÞ is the same correction term as the one used in [8, Conj. 4.2]. In
this case, for a log resolution f : Y ! X of ðX ;ZÞ, KY=ðX ;ZÞ ¼ KY=X � f �1Z is a
Z-divisor. Since KY=X b 0,

HðX ;ZÞ ¼ f�OY ðKY=X � f �1ZÞ � f�OY ð�f �1ZÞ � IZ;

where IZ is the defining ideal sheaf of Z. Therefore,

hKðX ;ZÞ �NHðX ;ZÞ �mI�ðX ;ZÞ b hKX
þ hZ �NZ �mI�ðX ;ZÞ

¼ hKX
þmZ �mI�ðX ;ZÞ:

Example 5.6. There exists a normal projective rational surface X such that
ðX ; 0Þ is Kawamata log terminal and KX is ample. For instance, consider the
Fermat hypersurface F ¼ Vðxn

0 þ xn
1 þ xn

2 þ xn
3 Þ � P3

k for nb 5 and suppose that
k contains a primitive n-th root z of 1. The quotient variety X :¼ F=hgi for the
action gððx0 : x1 : x2 : x3ÞÞ ¼ ðzx0 : zx1 : x2 : x3Þ is such a surface. This example
shows the necessity of the correction term NHðX ;ZÞ in Conjecture 5.2. Indeed,
for such an X , if we set Z ¼ 0 and A ¼ KX , then inequality (5.1) is written as

ð1� eÞhKX
ðxÞ �NNonSCðX ;0ÞðxÞaOð1Þ:ð5:2Þ

One can prove that X is rational (that is, birational to P2
k) [9, Sec. 7], hence the

k-point set XðkÞ is Zariski dense. If there were no correction term NNonSCðX ;0Þ,
this would contradict Northcott’s theorem.

6. Log pairs of general type

Definition 6.1. We say that ðX ;ZÞ is of general type if X is projective and
for a resolution f : Y ! X , the Q-divisor f �KðX ;ZÞ is big.

For a proper birational morphism f : Y ! X of normal varieties and a
Q-Cartier Q-Weil divisor D on X , D is big if and only if f �D is so [3, Lem.
2.1.13]. Hence the above definition is independent of the choice of f . If ðX ;ZÞ
is a log pair of general type, then for any big divisor A on X , there exist e > 0

575vojta’s conjecture, singularities and multiplier-type ideals



and a proper closed subset W � X such that for x A ðXnWÞðkÞ, we have

ehAðxÞa hKðX ;ZÞ ðxÞ þOð1Þ:

This follows from [7, Prop. 10.11].

Definition 6.2. For a variety U over k, a subset set C � UðkÞ is said
to be S-integral if for a projective compactification X of U , the counting func-
tion NXnU ;S ¼ NXnU of XnU with the reduced scheme structure is bounded
on C.

From the functoriality of Weil functions, the above definition is independent
of the choice of the projective compactification.

Proposition 6.3. Let ðX ;ZÞ be a log pair of general type. Suppose that
ðX ;ZÞ is log canonical and ðXnSuppðZÞ; 0Þ is Kawamata log terminal. Suppose
also that Conjecture 5.2 holds. Then no S-integral subset of ðXnNonSCðX ;ZÞÞðkÞ
is Zariski dense.

Proof. From Proposition 3.2, I�ðX ;ZÞ ¼ OX . From Conjecture 5.2, for
0 < ef e 0 < 1 and a big divisor A on X , there exists a proper closed subset
W � X such that for x A ðXnWÞðkÞ, we have

ð1� e 0ÞhKðX ;ZÞ ðxÞa hKðX ;ZÞ ðxÞ � ehAðxÞ þOð1Þ

aNHðX ;ZÞðxÞ þOð1Þ:

From Proposition 3.6, NHðX ;ZÞ is bounded on any S-integral subset of
ðXnNonSCðX ;ZÞÞðkÞ, and the assertion follows from Northcott’s theorem. r

When X is smooth and Z is a reduced simple normal crossing divisor,
then the assumption on singularities in the proposition is automatic and we have
NonSCðX ;ZÞ ¼ SuppðZÞ. In this case, the proposition is a well-known conjec-
ture due to Lang and Vojta (see [2, p. 17, p. 223], [6, Prop. 4.1.2]).

Proposition 6.4. Let ðX ;ZÞ be a log pair of general type. Suppose that
Conjecture 5.2 holds. Then there exists a proper closed subset W � X such that if
Y � X is a closed subset with Y ðkÞ � Y Zariski dense, then either Y � W or
Y \NonSCðX ;ZÞ0j.

Proof. From Conjecture 5.2, Propositions 3.2 and 3.6, and (2.1), there exist
a proper closed subset W � X and a constant c > 0 such that for all x A
ðXnWÞðkÞ, we have

1

2
hKðX ;ZÞ ðxÞaNHðX ;ZÞðxÞ þmI�ðX ;ZÞðxÞ þOð1Þ

a chNonSCðX ;ZÞðxÞ þOð1Þ:
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For a log resolution f : ~XX ! X , since f �KðX ;ZÞ is big, it is Q-linearly equivalent
to Aþ E such that A is an ample Q-divisor and E is an e¤ective Q-divisor.
Since hE is bounded below on ~XXnSuppðEÞ, from Northcott’s theorem, for
any B > 0, there are only finitely many x A ~XXnSuppðEÞ with hf �KðX ;ZÞ ðxÞaB.
Replacing W with W [ f ðSuppðEÞÞ, we may suppose that for any B > 0, there
are only finitely many x A ðXnWÞðkÞ with hKðX ;ZÞ ðxÞaB.

Let Y � X be a closed subset such that Y 6� W and Y \NonSCðX ;ZÞ
¼ j. The last condition and the functoriality of Weil functions imply that
hNonSCðX ;ZÞjYðkÞ is equal to the height function h0 of the zero divisor on Y ,
in particular, hNonSCðX ;ZÞ is bounded on YðkÞ. Hence hKðX ;ZÞ is bounded on
ðYnWÞðkÞ. It follows that Y ðkÞ is not Zariski dense in Y . r

Example 6.5. Consider a rational surface as in Example 5.6. Since it is
rational, it contains infinitely many irreducible curves which are rational over k.
If Conjecture 5.2 holds, then all but finitely many of these curves must pass
through one of the non-canonical singular points of the surface.

A variety V over k is said to be potentially dense if for some finite extension
L=k, VðLÞ is Zariski dense in V . Lang [2, p. 17] conjectured that a variety over
k of positive dimension is potentially dense if and only if the union of the images
of all non-constant rational maps from abelian varieties to V nk k over k is
Zariski dense. He also conjectured that a smooth projective variety of general
type is not potentially dense. Combining these conjectures, we get the conjecture
that for a smooth projective variety X of general type, the union of all potentially
dense closed subsets Y � X is not Zariski dense. Proposition 6.4 is an an-
alogue of this conjecture. Indeed, if in the proposition we only assume Y to be
potentially dense instead of Y ðkÞ being dense, then the proposition becomes a
generalization of this conjecture. If we can take the closed subset W in Con-
jecture 5.2 to be stable under the base change to every finite extension L=k, then
this stronger version of the proposition also follows.
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