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VOJTA’S CONJECTURE, SINGULARITIES AND
MULTIPLIER-TYPE IDEALS

TAKEHIKO YASUDA

Abstract

We formulate a generalization of Vojta’s conjecture in terms of log pairs and
variants of multiplier ideals.

1. Introduction

Vojta’s famous conjecture in Diophantine geometry was originally stated for
a smooth projective variety X over a number field and a simple normal cross-
ing divisor D on X. This conjecture is important, since it provides a general
framework unifying various deep arithmetic results and conjectures; for instance,
in dimension one, the conjecture incorporates celebrated finiteness results of Roth,
Siegel and Faltings. In [8], Vojta generalized it further, replacing D with an
arbitrary proper closed subscheme Z C X. This generalized conjecture says that
if 4 is a big divisor on X and ¢ > 0 is a real number, then all rational points x in
an open dense subset of X satisfies the inequality

hi, (x) +mz(x) —my-(x, 7)(x) < ehy(x) + O(1).

Here /7 (X,Z) is the multiplier ideal sheaf of the pair (X,(1—-9)Z) for
0<o«1.

In this paper, we further generalize Vojta’s conjecture from the viewpoint
of the minimal model program, allowing X to have (not necessarily normal)
Q-Gorenstein singularities (Conjecture 5.2). In this generalization, the inequality
becomes

hiyerz(X) = Nopx,2)(X) — my-(x,2)(x) < ehq(x) + O(1).

Here #(X,Z) is a new variant of the multiplier ideal sheaf which we will intro-
duce. It turns out that the new conjecture is equivalent to the original one.
In the last inequality, the first term /g, z(x) is clearly the contribution of the
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canonical “divisor” Ky + Z. The second term N, (x z)(x) and the third term
my-(x,z)(x) should be viewed as the contribution of singularities of the log pair
(X, 2).

When X is normal, the ideal sheaf #'(X,Z) is defined as f.Oy(|Ky/x —
f*Z]) for a log resolution f: ¥ — X with || denoting the round down, while
the usual multiplier ideal uses the round up. The author finds it interesting that
Diophantine geometry leads us to this new sheaf. The sheaf would be of inde-
pendent interest and should be studied further from the purely algebro-geometric
viewpoint.

Our generalization of Vojta’s conjecture has some interesting consequences as
the original conjecture does. We can derive a slight generalization of a conjec-
ture of Lang and Vojta on the non-density of integral points (Proposition 6.3).
Another consequence, which is more geometric, roughly says that given a log pair
(X,Z), most of the closed subsets ¥ C X having dense rational points intersect
the locus of bad singularities of (X,Z) (Proposition 6.4).

This paper is a substantially changed and shortened version of the pre-
print [9]. The outline of the paper is as follows. In Section 2 we recall basic
facts on singularities of log pairs. Section 3 is devoted to define the sheaves
J(X,Z) and #(X,Z) and to prove their basic properties. In Section 4, we
recall Weil functions, height functions, counting functions and proximity func-
tions. Section 5 is the main part of the paper. Here we formulate the gen-
eralization of Vojta’s conjecture and prove that it is equivalent to the original
conjecture. In Section 6, we derive two consequences of our generalization of
Vojta’s conjecture.

Throughout the paper, we fix a number field k. A variety means a sepa-
rated integral scheme of finite type over k. We suppose that every morphism of
varieties is a morphism of k-schemes. From Section 4 on, we fix a finite set S of
places of k which includes all the infinite places.

The author would like to thank Yoshinori Gongyo, Katsutoshi Yamanoi and
Yu Yasufuku for helpful discussion.

2. Singularities of log pairs

DEeFmNITION 2.1. A variety X is said to be Q-Gorenstein if
(1) X satisfies Serre’s condition S,

(2) X is Gorenstein in codimension one, and

(3) a canonical divisor Ky is Q-Cartier.

For instance, a variety having only local complete intersection singularities is
Gorenstein, hence Q-Gorenstein. From the first two conditions, which are auto-
matic if X is normal, a canonical divisor Ky exists, is unique up to linear equiv-
alence and is Cartier in codimension one (see [1, Def. 1.6]). Therefore the last
condition makes sense and is equivalent to that for some m € Z, the reflexive

power ) := (w$™)** of the canonical sheaf wy is invertible.



568 TAKEHIKO YASUDA

DEerINITION 2.2. A Q-subscheme of a variety X is a formal linear combi-
nation Z =" ¢;Z; of proper closed subschemes Z; C X with ¢; € Q. The
support of Z, denoted by Supp(Z), is defined to be the closed subset |, .o Zi-
We say that a Q-subscheme >, ¢;Z; is effective if ¢; > 0 for every i. A log pair
is the pair (X,Z) of a Q-Gorenstein variety X and an effective Q-subscheme Z
of X.

Remark 2.3. One may introduce the following equivalence relation on
Q-subschemes: two Q-subschemes >, ¢;Z; and >, ¢/Z] of the same variety X are
equivalent if there exists a positive integer r such that r¢; and rc/ are all integers
and the genuine subschemes ), r¢;Z; and > rc/Z; are identical, where we mean
by rc;Z; the closed subscheme defined by the re;-th power of the defining ideal
sheaf of Z; and by ) ,rc;Z; the closed subscheme defined by the product of
the ideal sheafs of r¢;Z; and we define ) r¢/Z] similarly. Replacing the given
Q-subscheme Z with an equivalent one does not change classes of singularities
to which the log pair (X,Z) belong or does not change multiplier-type ideals
discussed in the next section (cf. Remark 2.7).

Remark 2.4. 1If X is a normal Q-Gorenstein variety and D is an effective
Q-Cartier Q-Weil divisor, then D is written as bE with E an effective Cartier
divisor and b € Q+; this allows us to regard the pair (X, D) as a log pair in
the sense defined above. The log pair defined in this way is unique modulo the
equivalence relation in the last remark.

DEerINITION 2.5. A resolution of a variety X is a projective birational mor-
phism f:Y — X such that Y is smooth over k. Let (X,Z=3", ¢Z;) be
a log pair. A log resolution of (X,Z) is a resolution f:Y — X of X such
that

(1) for every i, the scheme-theoretic inverse image f~!(Z;) is a Cartier

divisor (that is, if .#z, is the defining ideal sheaf of Z;, then the pull-back
f~1.97 as an ideal sheaf is locally principal),

(2) if we denote by Exc(f) the exceptional set of f, then the closed subset

Exc(f)UUL, f (Z),eq Of Y is a simple normal crossing divisor.

From Hironaka’s theorem, every variety has a resolution and every log pair
has a log resolution.

DEerINITION 2.6. For a Q-Gorenstein variety X and a resolution f: ¥ — X
of X, the relative canonical divisor Ky;x of Y over X is defined as a Q-Weil
divisor of Y supported in Exc(f) as follows. If m is a positive integer such that
wg'(n] is invertible, then the image of the natural morphism f *w[Xm] — w%’” R,

K(Y) is written as w%$"(A) for some (Z-)divisor A. We define

1
KY/X = ——A
m
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For a log resolution f: Y — X of a log pair (X,Z), we define the relative
canonical divisor Kyx z) of Y over (X,Z) as the Q-Weil divisor Ky/x — f*Z.
Here, if we write Z = 25:1 ¢;Z;, then we define the pull-back f*Z as the Q-Weil
divisor

Remark 2.7. 1If Z' is another Q-subscheme equivalent to Z and f: ¥ — X
is a log resolution of both (X, Z) and (X, Z’), then the Q-Weil divisors f*Z and
f*Z' are identical, and so are Ky,x,z and Ky x z/).

DEerINITION 2.8, Let (X, Z) be a log pair, let f: ¥ — X be a log resolution
of it and let us write

Ky;x,p)= ZCIF - F,
F

F running over all prime divisors of Y. We say that (X,Z) is strongly canon-
ical' (resp. Kawamata log terminal, log canonical) if ap >0 (resp. ar > —1,
ar > —1) for every F.

As is well-known, these notions are independent of the choice of a log
resolution. These are also local; a log pair (X,Z) is strongly canonical (resp.
Kawamata log terminal, log canonical) if and only if every point x € X has
an open neighborhood U C X such that (U, Z|,) is so. This is just because for
an open subset U C X and a log resolution f:Y — X of (X,Z), we have
Krvy)w.z),) = Ky/x,z)l-1v)-  We define the non-sc locus (resp. non-klt locus,
non-lc locus) of (X,Z) to be the smallest closed subset W C X such that
(X\W,Z|y\y) is strongly canonical (resp. Kawamata log terminal, log canon-
ical). We write it as NonSC(X,Z) (resp. NonKLT(X,Z), NonLC(X,Z)).
Clearly we have

(2.1) NonLC(X,Z) € NonKLT(X,Z) C NonSC(X, Z).

3. Multiplier-type ideal sheaves

In this section, we define two variants .# ~ and # of multiplier ideals, which
will be necessary to formulate our generalization of Vojta’s conjecture. We
denote by (X,Z) a log pair throughout the section.

When X is normal, the multiplier ideal sheaf .#(X,Z) is usually defined
to be f.0y([Ky/x,z]) for a log resolution f:Y — X of (X,Z) (see [4, Def.
9.3.56]). Here [-] denotes the round up of a Q-Weil divisor, that is, for a
Q-Weil divisor E =), ¢;E; with ¢; € Q and E; prime divisors, we define [E] :=

1A log pair (X, Z) is said to be canonical if ar > 0 for every exceptional prime divisor F of f (see
(1, Def. 2.8]).
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>:[cilEi. The round down |E| is similarly defined and will be used below.
When X is not normal, f.0y([Ky/x,z)]) is no longer an ideal sheaf. To handle
this trouble, we replace f, with fg defined as follows: for a resolution f: ¥ — X
and a divisor E of Y (with Z-coefficients), we define fgqOy(E) as the largest ideal
sheaf .# C Oy such that the ideal pull-back f~!'.# is contained in Oy(E) as an
Oy-submodule of the function field constant sheaf. We now define the multiplier
ideal sheaf .9(X,Z) of a log pair (X,Z) to be foOy([Ky,x,2)]) for a log resolu-
tion f:Y — X of (X,2).

Lemma 3.1. The ideal sheaf ¥ (X,Z) defined above is independent of the
choice of a log resolution f.

Proof. This is well-known, when X is smooth. In the general case, the
lemma follows from the following two facts. The first one is thatif g: Y/ — Y
and f:Y — X are projective birational morphisms such that Y and Y’ are
smooth, then for a divisor E on Z, we have fg(9.0y/(E)) = (f0g)aCy (E).
The second one is that if / and f o g as above are log resolutions of (X, Z), then
9Oy ([Ky'yx,2)1) = Oy([Ky/(x,z)]), which follows from [4, Lem. 9.2.19]. [

It is easy to see that there exists dy > 0 such that for every ¢ € Q with
0 <0 <dy, we have #(X,(1 —0)Z) = F(X,(1 —09)Z). We define
I (X, Z2)=9X,1-0)Z) (0<do«1).

ProposITION 3.2 (cf. [4, Def. 9.3.9]). We have
(3.1) NonLC(X,Z) C Supp(Ox/¥~(X,Z)) C NonKLT(X, Z).
Moreover, if (X\Supp(Z),0) is Kawamata log terminal, then
(3.2) NonLC(X, Z) = Supp(Ox /S~ (X, Z)).
Proof. Let f:Y — X be a log resolution of (X,Z). For 0 <d<« 1 and a
prime divisor F of Y, we have
multr(Ky,(x,z)) < —1 = multy([Ky/(x,z) +0f"Z]) <0 = multr(Ky/x,z) < —1.

Here multp(E) denotes the multiplicity of F in the divisor E. This shows the
first assertion.

To show the second assertion, it suffices to show that if (X\Supp(Z),0) is
Kawamata log terminal, then

multF(Ky/(X Z) ) >—-1= multF([Ky/ X,Z) +5f Z-‘) > 0.

If multz(Ky/(x,z) > —1, then we obviously have multr([Kyx,z) +Jf*Z]) = 0.
If multF(Ky/<XZ ) = —1 then, since (X\Supp(Z),0) is Kawamata log termi-
nal, F is contained in Supp(f*Z). Hence multy(Ky/(x,z) +0f*Z) > —1 and
multp([Ky/(Xﬂa +9f*Z]) = 0. (]
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LemMA 3.3. Let f:Y — X be a projective birational morphism of smooth
varieties and E a (not necessarily effective) Q-Weil divisor on X. Then

SOy(|Ky)x + [TE]) = Ox(|E]).

Proof. First suppose that |[E] =0. To show the lemma in this case, it
suffices to show that |Ky,x + f*E]| is an effective divisor supported in Exc(f).
Since Ky,x and E are effective, so is |Ky/x + f*E|. On the locus where f is an
isomorphism, the two divisors |Ky,x + f*E| and |E] coincide, the latter being
zero by the assumption. This proves the lemma in this case.

For the general case, we write {E}:=E — |E|. Obviously, [{E}]=0.
From the projection formula and the case considered above, we have

fO0y(|Ky)x + fTE]) = fLOy(|Ky/x + [{E} + f7E]))
= fOy([Ky/x + [{EH + f7|E])
= fi(Oy(|Ky)x + [{E}]) ®¢, /" Ox(LE)))
= Ox ®q, Ux(LE])
= Ox(LE)). U

PROPOSITION 3.4.  For a log pair (X,Z), the ideal sheaf fgOy(|Kyx,z)]) is
independent of a log resolution :Y — X of (X,Z2).

Proof Let f:Y —X and f':Y' — X be log resolutions of (X,Z).

Without loss of generality, we may suppose that f’ factors as Y’ &R YL X.
Then

Kyix,z)y = Kyjy + 9" Ky (x,2)-

From the above lemma,
f.yl.@Y'(LKY//(X,Z)J) = fa(9:Oy (| Ky )y +9"Kyx,2)]))
= fa0y(|Ky/x.2)])- O

For a log pair (X,Z), taking a log resolution f:Y — X of (X,Z), we
define an ideal sheaf J#(X,Z) on X as

H(X,Z) = fa0y(|Ky)x,2)])

Remark 3.5. As far as the definition of #(X,Z) is concerned, we do
not need the “simple normal crossing” assumption in the definition of log
resolutions.

PRrROPOSITION 3.6.  For a log pair (X,Z), we have

Supp(Ox/#(X,Z)) = NonSC(X, Z).
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Proof. Let f: Y — X be a log resolution of (X,Z). If (X,Z) is strongly
canonical, then Ky, z) >0 and [Ky,x, 7] =0. By the definition of fg, we
have

H(X,Z) = fa0y([Ky)x,2)]) = Ox.

This shows Supp(Ox/#(X,Z)) C NonSC(X, Z).
If (X,Z) is not strongly canonical around x € X, then there exists a prime
divisor F' on Y such that x e f(F) and multz(Ky,x, ) <0. Therefore,

Oy ¢ Oy([Ky)x.2)))-

This remains true even if we replace X with any open neighborhood of x. This
shows Supp(Ox/#(X,Z)) D NonSC(X, Z). O

CorOLLARY 3.7. If (X,Z) is log canonical, then #(X,Z) is the defining
ideal sheaf of NonSC(X,Z) regarded as the reduced closed subscheme, that is,
Ox/H(X,Z) is reduced.

Proof. Let A be the defining ideal of NonSC(X,Z). From Proposition
3.6, we have # C A". To see the opposite inclusion, let U C X be an open
subset and g € A'(U). For a log resolution f: ¥ — X of (X,Z), f*g vanishes
along the closed set f~!'(NonSC(X,Z)). The last set contains every prime
divisor F' on Y having a negative coefficient in |Ky/(y,z)], which is equal to —1
since (X, Z) is log canonical. Therefore, f*g € Oy(|Ky/(x,z])(f~'U) and hence
ge A (U) and N C K. O

4. Weil functions

We denote by M, the set of places of k. From now on, we fix a finite set
S C M containing all infinite places. Let X be a projective variety over k. To
a proper closed subscheme Z C X, we associate a Weil function

Az X (k) x My — [0,+0o0],

following [5], which is unique up to addition of Mj-bounded functions. Weil
functions have the following properties [5, Th. 2.1]:

(1) For a morphism f: Y — X of projective varieties and a proper closed
subscheme Z C X, we have Azo f =i,

(2) For ZC Z' C X, we have iz < Az.

(3) For proper closed subschemes Z,Z’ C X, we have Az,z = Az + Az.
Here Z + Z’ is the closed subscheme defined by the product of the
defining ideals of Z and Z'.

Here comparisons of Weil functions are made up to addition of Mj-bounded
functions. When Z is an effective Cartier divisor locally defined by a regular
function f, then a Weil function 1z of Z should be locally of the form

Az(x,v) = —log||f (), + a(x)
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for a locally Mj-bounded function «. Here, if p is the place of Q with v|p and
| - |, denotes the p-adic absolute value, then the norm || - ||, is defined by [|af|, :=

|N/(U/Qp (a)|p‘

DermiTiON 4.1. For a proper closed subscheme Z C X, we define the
height function hz, the counting function Nz = Nz s and the proximity function
mz =mz.s on X(k) relative to A and k by

hz(x) := Z Az(x,0), Nz(x):= Z Az(x,0), mz(x):= Z)tz(x, v).

ve My ve Mi\S weS

These are functions on X (k) with values in [0, +00] and taking value +co exactly
on Z(k). When .# is the defining ideal sheaf of Z, we denote these functions
also by hy, Ny and m, respectively. If Z =3, c;Z; is a Q-subscheme, then we

define
hy = Zcihz,7 Nz = ZCiNZu mz = Zc;mz,

as R-valued functions on (X\Supp(Z))(k).

For a (not necessarily effective) Cartier divisor D, the height function /p on
(X\Supp(D))(k) defined as above extends to an R-valued function on the whole
set X (k) and defines a unique function /p up to addition of bounded functions.
The function class 4p modulo bounded functions depends only on the linear
equivalence class of D. Furthermore, we can easily generalize this to Q-Cartier
Q-Weil divisors; if D is a Q-Cartier Q-Weil divisor and if n is a positive integer

. . . . . 1
such that nD is Cartier, then a height function /Ap is defined as —/4,p. In
n

particular, for a Q-Gorenstein projective variety X, we can define a height
function /g, of a canonical divisor Ky up to addition of bounded functions.
For a log pair (X, Z), we define the height function hk , of Kix,zy = Kx +Z to
be hx, + hz.

X,Z)

5. Vojta’s conjecture for log pairs

The original form of Vojta’s conjecture is as follows:

CONJECTURE 5.1 ([6]). Let X be a smooth projective variety, A a big divisor
on X, D a reduced simple normal crossing divisor on X and & a positive real

number.  Then there exists a proper closed subset W C X such that for all x €
(X\W)(k), we have

hKX(X) +mD(x) < ShA(x) + 0(1)

Using log pairs and multiplier-type ideals introduced in Section 3, we for-
mulate a generalization of this conjecture as follows:
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CONIECTURE 5.2. Let (X,Z) be a log pair with X projective, A a big divisor
on X and ¢ a positive real number. Then there exists a proper closed subset
W C X such that for all x e (X\W)(k), we have

(5.1) iy 5 (X) = Now(x, 2)(X) = ms=x.2) (%) < eha(x) + O(1).

We can view the left hand side of this inequality as follows. The main term
is Ak, , (x) and the other two terms are correction terms arising from singularities
of (X,Z). Indeed, from Proposition 3.6, the term N,y z)(x) can be thought
of as the contribution of the non-sc locus NonSC(X,Z). From Proposition
3.2, my-(x,7)(x) can be thought of as the contribution of NonKLT(X,Z) (or
NonLC(X, Z) if (X\Supp(Z),0) is Kawamata log terminal).

Example 5.3. Let X be a smooth projective variety and D a reduced
simple normal crossing divisor on X. Then (X,D) is log canonical. From
Propositions 3.2 and 3.6 and Corollary 3.7, the left hand side of (5.1) is equal
to

hK(X,D) (X) — ND(X) = hKX +mp.

Thus Conjecture 5.2 is the same as Conjecture 5.1 in this case.

Although Conjecture 5.2 deals with a more general setting than Conjecture
5.1 does, they are in fact equivalent:

PROPOSITION 5.4. Let (X,Z) be a log pair with X projective and f: Y — X
a log resolution of (X,Z). Suppose that Conjecture 5.1 holds for Y and the
reduced simple normal crossing divisor

[Ky/x,2) +0f " Z] — |Ky)x.2)]
for 0 <6« 1. Then Conjecture 5.2 holds for (X,Z). In particular, Conjectures
5.1 and 5.2 are equivalent.

Proof. The proof is similar to the one of Vojta’s similar result [8, Prop.
4.3]. By definition,

f'H(X,Z) C Oy([Ky)x.2)))
and for 0 <o« 1,
f'I(X,Z) C Oy([Kyyx,z) +0f " Z]).
These imply
N#’(X,Z) of > N—LKY/(X.Z)J’

Mmy-(x,z)° f = M_TKyx, 2+ *Z]-
We have
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(hky, — Nw(x.z) =My (x.z)) © f
< hiy = hky ) = Nolky i) = M=Ky v, 2401 2]
< hiy + 1ok 0] = NolKyjwon) = M=Ky +0f 2]
= iy F MKy 100 2]~ Ky r, )

The proposition follows from the fact that the pullback f*A of a big divisor 4
on X is big. O

Remark 5.5. If X is smooth and Z C X is a genuine closed subscheme,
then m,-(y z) is the same correction term as the one used in [8, Conj. 4.2]. In
this case, for a log resolution f: ¥ — X of (X,Z), Ky/x,z) = Ky/x — f'Zisa
Z-divisor. Since Ky y =0,

H(X,Z) = f.Oy(Ky/x — [T'Z) D f.Oy(=f7'2) D 42,
where .#; is the defining ideal sheaf of Z. Therefore,

hiy s — Nwx,z) =My (x,z) = hgy + hz — Nz —my-(x z)

=hg, +mz —my-(x 7).

Example 5.6. There exists a normal projective rational surface X such that
(X,0) is Kawamata log terminal and Ky is ample. For instance, consider the
Fermat hypersurface F = V' (x{! + xJ' + x} + x}) C P{ for n > 5 and suppose that
k contains a primitive n-th root { of 1. The quotient variety X := F/{g) for the
action g((xo : x1 : X2 : x3)) = ({xp : {x1 : X3 : x3) is such a surface. This example
shows the necessity of the correction term N (x z) in Conjecture 5.2. Indeed,
for such an X, if we set Z =0 and 4 = Ky, then inequality (5.1) is written as

(5.2) (1 = &)hg, (x) — NNonsc(x,0)(X) < O(1).

One can prove that X is rational (that is, birational to P}) [9, Sec. 7], hence the
k-point set X (k) is Zariski dense. If there were no correction term Nyonsc(x,0),
this would contradict Northcott’s theorem.

6. Log pairs of general type

DEFINITION 6.1.  We say that (X, Z) is of general type if X is projective and
for a resolution f:Y — X, the Q-divisor f*Kx 7 is big.

For a proper birational morphism f: Y — X of normal varieties and a
Q-Cartier Q-Weil divisor D on X, D is big if and only if f*D is so [3, Lem.
2.1.13].  Hence the above definition is independent of the choice of f. If (X,2Z)
is a log pair of general type, then for any big divisor 4 on X, there exist ¢ > 0
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and a proper closed subset W C X such that for x e (X\W)(k), we have
eha(x) < hg, , (x) + O(1).

This follows from [7, Prop. 10.11].

DEerINITION 6.2, For a variety U over k, a subset set C C U(k) is said
to be S-integral if for a projective compactification X of U, the counting func-
tion Ny\y,s = Nx\y of X\U with the reduced scheme structure is bounded
on C.

From the functoriality of Weil functions, the above definition is independent
of the choice of the projective compactification.

PropPOSITION 6.3. Let (X,Z) be a log pair of general type. Suppose that
(X, Z2) is log canonical and (X\Supp(Z),0) is Kawamata log terminal. Suppose
also that Conjecture 5.2 holds. Then no S-integral subset of (X\NonSC(X, Z))(k)
is Zariski dense.

Proof. From Proposition 3.2, ¥~ (X,Z) = Oy. From Conjecture 5.2, for
0<e«xe <1 and a big divisor 4 on X, there exists a proper closed subset
W C X such that for x e (X\W)(k), we have

(1 - al)hK(X.Z) (X) = hK(x.z) (X) —¢ehy (X) + 0(1)

From Proposition 3.6, N,(y,z) is bounded on any S-integral subset of
(X\NonSC(X,Z))(k), and the assertion follows from Northcott’s theorem. [

When X is smooth and Z is a reduced simple normal crossing divisor,
then the assumption on singularities in the proposition is automatic and we have
NonSC(X, Z) = Supp(Z). In this case, the proposition is a well-known conjec-
ture due to Lang and Vojta (see [2, p. 17, p. 223], [6, Prop. 4.1.2]).

PrOPOSITION 6.4. Let (X,Z) be a log pair of general type. Suppose that
Conjecture 5.2 holds. Then there exists a proper closed subset W C X such that if
Y C X is a closed subset with Y (k) C Y Zariski dense, then either Y C W or
Y NNonSC(X, Z) # 0.

Proof. From Conjecture 5.2, Propositions 3.2 and 3.6, and (2.1), there exist
a proper closed subset W C X and a constant ¢ > 0 such that for all xe
(X\W)(k), we have

1
ihK(X‘z) (x) < Nop(x,2)(x) + my—x,z)(x) + O(1)

< ¢hnonsc(x, z)(X) + O(1).
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For a log resolution f: X — X, since f "K(x,z) is big, it is Q-linearly equivalent
to A+ E such that 4 is an ample Q-divisor and E is an effective Q-divisor.
Since /g is bounded below on X\Supp(E), from Northcott’s theorem, for
any B >0, there are only finitely many xe X\Supp(E) with Ak, , (x) < B.
Replacing W with W U f(Supp(E)), we may suppose that for any B > 0, there
are only finitely many x e (X\W)(k) with hg, , (x) < B.

Let Y C X be a closed subset such that Y ¢ W and Y N NonSC(X,Z)
= (. The last condition and the functoriality of Weil functions imply that
hNonsc(x, Z)|Y(k) is equal to the height function /4y of the zero divisor on Y,
in particular, /inonsc(x,z) is bounded on Y(k). Hence hk, , is bounded on
(Y\W)(k). It follows that Y (k) is not Zariski dense in Y. O

Example 6.5. Consider a rational surface as in Example 5.6. Since it is
rational, it contains infinitely many irreducible curves which are rational over k.
If Conjecture 5.2 holds, then all but finitely many of these curves must pass
through one of the non-canonical singular points of the surface.

A variety V over k is said to be potentially dense if for some finite extension
L/k, V(L) is Zariski dense in V. Lang [2, p. 17] conjectured that a variety over
k of positive dimension is potentially dense if and only if the union of the images
of all non-constant rational maps from abelian varieties to V ®; k over k is
Zariski dense. He also conjectured that a smooth projective variety of general
type is not potentially dense. Combining these conjectures, we get the conjecture
that for a smooth projective variety X of general type, the union of all potentially
dense closed subsets Y C X is not Zariski dense. Proposition 6.4 is an an-
alogue of this conjecture. Indeed, if in the proposition we only assume Y to be
potentially dense instead of Y (k) being dense, then the proposition becomes a
generalization of this conjecture. If we can take the closed subset ' in Con-
jecture 5.2 to be stable under the base change to every finite extension L/k, then
this stronger version of the proposition also follows.
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