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ON PEREZ DEL POZO’S LOWER BOUND

OF WEIERSTRASS WEIGHT

Nan Wangyu, Masumi Kawasaki and Fumio Sakai

Abstract

Let V be a smooth projective curve over the complex number field with genus

gb 2, and let s be an automorphism on V such that the quotient curve V=hsi has

genus 0. We write d (resp., b) for the order of s (resp., the number of fixed points

of s). When d and b are fixed, the lower bound of the (Weierstrass) weights of fixed

points of s was obtained by Perez del Pozo [7]. We obtain necessary and su‰cient

conditions for when the lower bound is attained.

1. Introduction

Let V be a smooth projective curve over the complex number field with
genus gb 2, let s be a nontrivial automorphism on V , and let d (resp., b) be the
order of s (resp., the number of fixed points of s). If ðn1; . . . ; ngÞ is the gap
sequence of a point P on V , the weight of P, denoted by wðPÞ, is defined by
wðPÞ ¼

Pg
i¼1ðni � iÞ. Take a fixed point P of s. According to A. L. Perez Del

Pozo [7], if bb 2, then we have wðPÞbw, where

w ¼

ðd � 1Þðb� 2Þðb� 4Þ
8

if bb 2 is even;

ðd � 1Þðb� 3Þ2

8
if bb 3 is odd:

8>>><
>>>:ð1:1Þ

In this paper, we consider the case where the genus of the quotient curve V=hsi
is 0. In §3, we provide

(1) necessary and su‰cient conditions (Proposition 5, Theorems 8, 10, 11,
and 15) for whether such curve V has a fixed point P of s with
wðPÞ ¼ w.

We will see that when bb 3, if s has a fixed point P such that wðPÞ ¼ w, then
the d-cyclic covering p : V ! V=hsiGP1 must satisfy the following condition:

all the ramification points of p are total ramifications;(*)
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i.e., around every ramification point of p, there is a local coordinate z such that p
is expressed by z 7! zd . As an intermediate result, in §2 we provide

(2) an algorithm (Theorem 3) to compute the gap sequences of the ram-
ification points of p under the condition (*).

Finally, in §4, we observe the case where b ¼ 1, and provide
(3) the classification (Proposition 17) of those curves V such that the unique

fixed point of s has weight 1, 2, or 3.

2. Gap sequences at the fixed points

Let V be a curve of genus gb 2 with an automorphism s of order d such
that V=hsi has genus 0. Let b be the number of fixed points of s, and p be the
d-cyclic covering V ! V=hsi. In this and next section, we assume that bb 2,
i.e., s fixes at least two points of V .

As we will see, for most part of our work, it su‰ces to consider the curve V
under the assumption (*). We write NðdÞ ¼ fi A N : 1a iad � 1; gcdðd; iÞ ¼ 1g.
It is well-known that the curve V satisfying the condition (*) has the following
plane model:

G1: yd ¼
Y

j ANðdÞ

Ysj
k¼1

ðx� lj;kÞ j
 !

;ð2:1Þ

where the lj;k’s are mutually distinct, sj b 0, and
P

j ANðdÞ jsj is divisible by d.

Thus, we can write sd ¼
P

j ANðdÞ jsj for some positive integer s. Under the
ðx; yÞ-coordinate of G1, the automorphism s is given by ðx; yÞ 7! ðx; eyÞ, and
the d-cyclic covering p : V ! P1 is given by ðx; yÞ 7! x, where e ¼ expð2p

ffiffiffiffiffiffiffi
�1

p
=

dÞ.
Note that for the curve given by (2.1), the number b of fixed points of s

is equal to the sum of the sj’s. Thus, by the Riemann-Hurwitz formula, we
have

g ¼ ðb� 2Þðd � 1Þ
2

:ð2:2Þ

Since gb 2, we always have bb 3. When b ¼ 3, we have db 5; and when
b ¼ 4 or 5, we have db 3.

For further discussions, we introduce some notations: for two integers i and
j, let qi; j and ri; j denote the quotient and remainder for the division of ij by d.
Namely, we have ij ¼ dqi; j þ ri; j and 0a ri; j a d � 1. The following well-known
fact will be used frequently in this paper:

Lemma 1 (see [6], Main Theorem for instance). Let r be an arbitrary projec-
tive transformation of P1, let mj;k ¼ rðlj;kÞ for j A NðdÞ and 1a ka sj , and let e

be an arbitrary integer relatively prime to d. Then there exists a birational map g
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from G1 to the following curve Ge

Ge: yd ¼
Y

j ANðdÞ

Ysj
k¼1

ðx� mj;kÞ
rj; e

 !
;

such that gðlj;kÞ ¼ mj;k for any j and k.

For j A NðdÞ and k A f1; . . . ; sjg, we write Pj;k for the point on V corre-
sponding to the lj;k in the equation (2.1), write Pj for the divisor

Psj
k¼1 Pj;k, and

write Q ¼ Q1 þ � � � þQd for the divisor on V over the point at infinite in P1,
i.e., Q ¼ p�1ðyÞ. Moreover, we write fj for the rational function ðx� lj;1Þ � � �
ðx� lj; sj Þ on V . Then we can compute the divisors of the following meromor-
phic functions and di¤erential 1-form on V

ðx� lj;kÞ ¼ dPj;k �Q; ð fjÞ ¼ dPj � sjQ;ð2:3Þ

ðyÞ ¼
X

j ANðdÞ
jPj � sQ; ðdxÞ ¼

X
j ANðdÞ

ðd � 1ÞPj � 2Q:

In what follows, we will construct a family of holomorphic 1-forms on V , and
show that they form a basis of H 0ðV ;KÞ, where K is a canonical divisor on V .
But we still need some materials: for i A f1; . . . ; d � 1g, we define

hi ¼
dx

yi
and oi ¼ hi

Y
j ANðdÞ

f
qi; j
j :

Note that h1 ¼ o1. Using (2.3), we can compute the divisors of hi and oi:

ðhiÞ ¼
X

j ANðdÞ
ðd � ij � 1ÞPj þ ðsi � 2ÞQ;

ðoiÞ ¼
X

j ANðdÞ
ððqi; j þ 1Þd � 1� ijÞPj þ si � 2�

X
j ANðdÞ

qi; jsj

0
@

1
AQ:

We observe the coe‰cients of Pj’s and Q in ðoiÞ:

cof : of Pj in ðoiÞ ¼ ðqi; j þ 1Þd � 1� ðqi; jd þ ri; jÞð2:4Þ
¼ d � ri; j � 1b 0;

cof : of Q in ðoiÞ ¼ �2þ
X

j ANðdÞ

ij

d
� qi; j

� �
sj

¼ �2þ
X

j ANðdÞ

ri; jsj

d
:
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Now we write

li ¼ 1þ cof : of Q in ðoiÞ ¼ �1þ
X

j ANðdÞ

ri; jsj

d
; 1a ia d � 1:

By definition, all the li’s are integers. Indeed, this can be checked directly:X
j ANðdÞ

ri; jsj 1
X

j ANðdÞ
ijsj 1 i

X
j ANðdÞ

jsj

0
@

1
A1 isd1 0 ðmod dÞ:

Moreover, the sj ’s are not all zero, so all of the li’s are nonnegative.

Lemma 2. Under the assumption (*), for any fixed j A NðdÞ and any fixed
k A f1; . . . ; sjg, the following di¤erential 1-forms give a basis of H 0ðV ;KÞ:

oiðx� lj;kÞm; 1a ia d � 1; 0ama li � 1:

Here, if li0 ¼ 0 for some i0, then the condition for m becomes 0ama�1. In
this case, we ignore the corresponding oi0ðx� lj;kÞm’s, since there does not exist
such m.

Proof. The divisor of ðx� lj;kÞm is equal to mdPj;k �mQ. We have seen
in (2.4) that all the coe‰cients of Pj’s are nonnegative in oi, so they remain
nonnegative in oiðx� lj;kÞm. On the other hand, since all the i’s with li ¼ 0
are ignored, the coe‰cient of Q is also nonnegative in oi. It remains non-
negative in oiðx� lj;kÞm under the condition 0ama li � 1. Therefore, the
di¤erential forms oiðx� lj;kÞm’s are all holomorphic. It is easy to see that they
are C-linearly independent. Hence, it su‰ces to show that the number of these
di¤erential forms is equal to the genus of V , i.e., to show

Pd�1
i¼1 li ¼ g. For any

integer k relatively prime to d, the remainders of k; 2k; . . . ; ðd � 1Þk divided by
d form a permutation of 1; 2; . . . ; d � 1. Thus, we have

Pd�1
i¼1 ri;k ¼

Pd�1
i¼1 i ¼

dðd � 1Þ=2. Therefore, from the definition of the li’s and (2.2), we deduce that

Xd�1

i¼1

li ¼ �ðd � 1Þ þ
Xd�1

i¼1

X
k ANðdÞ

ri;ksk

d
¼ �ðd � 1Þ þ

X
k ANðdÞ

Xd�1

i¼1

ri;k

 !
sk

d

¼ �ðd � 1Þ þ
X

k ANðdÞ

dðd � 1Þ
2

sk

d
¼ ðd � 1Þ �1þ

X
k ANðdÞ

sk=2

0
@

1
A¼ g;

which completes the proof. r

Theorem 3. Under the assumption (*), for any j A NðdÞ and any k A f1; . . . ;
sjg, the gap sequence at Pj;k consists of the following integers

ðmþ 1Þd � ri; j; 1a ia d � 1; 0ama li � 1:

That is, the gap sequence at Pj;k has the following form
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fd � r1; j; 2d � r1; j ; . . . ; l1d � r1; j;

d � r2; j; 2d � r2; j; . . . ; l2d � r2; j ;

..

.

d � rd�1; j; 2d � rd�1; j; . . . ; ld�1d � rd�1; jg:

Note that the lengths li of the rows above do not necessarily match each other. If
li0 ¼ 0 for some i0 A f1; 2; . . . ; d � 1g, then the length of the i0th rows is 0, i.e., that
rows does not occur. Moreover, we have

wðPj;kÞ ¼
1

2
gðd � g� 1Þ þ d

Xd�1

i¼1

l2i � 2
Xd�1

i¼1

liri; j

 !
:

Proof. On a smooth curve, a positive integer n is a gap at a point P if
and only if there exists a holomorphic 1-form o such that o has a zero of
degree n� 1 at P. By the computations in previous section, the holomorphic
form oiðx� lj;kÞm has a zero of order ðmþ 1Þd � ri; j � 1 at Pj;k. Since 0a
ri; j a d � 1 and since gcdðd; jÞ ¼ 1, for fixed j A NðdÞ and fixed k A f1; . . . ; skg,
when i runs over f1; 2; . . . ; d � 1g and m runs over f0; 1; . . . ; li � 1g, the orders
ððmþ 1Þd � ri; j � 1Þ’s are mutually distinct. In the proof of Lemma 2, we have
shown that the number of these mutually distinct orders is equal to g. Hence,
the ððmþ 1Þd � ri; j � 1Þ’s form the gap sequence at Pj;k, and a direct compu-
tation gives the weight at Pj;k. r

Remark 4. By Theorem 3, the gap sequences at Pj;k’s are independent of
the choice of the parameters lj;k’s in the equation (2.1). We see that two ram-
ification points with the same exponent always have the same gap sequence.

3. Fixed point whose weight attains the lower bound

Now we begin to discuss what kind of curves can attain the Perez Del Pozo’s
lower bound o. First of all, when b ¼ 2, 3 or 4, we have w ¼ 0, i.e., we are just
looking for the non-Weierstrass fixed points of s. In fact, when b ¼ 2, 3 or 4,
we have the following results of K. Yoshida [10]:

Proposition 5. Let V be a smooth curve of genus gb 2 with an automor-
phism s of order d such that V=hsi has genus 0. Assume that s has b ¼ 2, 3 or 4
fixed points. Then one of these fixed points is non-Weierstrass if and only if the
curve V is given by the following equations (up to transformations in Lemma 1):

(1) when b ¼ 2:

yd ¼ ðx2 � 1Þxd�2; db 6 is even;

in this case, both fixed points ðG1; 0Þ are non-Weierstrass;
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(2) when b ¼ 3:

yd ¼ ðx2 � 1Þxd�2; db 5 is odd;

in this case, the fixed points ðG1; 0Þ are non-Weierstrass;
(3) when b ¼ 4:

yd ¼ xðx� 1Þvðxþ 1Þd�vðx� lÞd�1; db 3 and gcdðd; vÞ ¼ 1;

in this case, all fixed points ð0; 0Þ, ðG1; 0Þ, ðl; 0Þ are non-Weierstrass.

Remark 6. In (2) of the theorem, the gap sequence at the third fixed point
ð0; 0Þ of s is ð1; 3; 5; . . . ; d � 2Þ, i.e., a hyperelliptic gap sequence. In fact, all of
the curves in (1) and (2) are hyperelliptic, i.e., have gonality 2, while the curves
in (3) have various gonalities (see [8] and [9]). Note that the curves in (2) and (3)
also satisfy the condition (*).

Proof. The ‘‘only if ’’ part follows from [10, Theorem 1] directly, so it
remains to check the ‘‘if ’’ part. When b ¼ 2, the genus of the curve given above
is d=2� 1. The holomorphic 1-forms xm�2 dx=ym ðd=2þ 1ama d � 1Þ give a
basis of H 0ðV ;KÞ, and their order at ðG1; 0Þ are 0; 1; . . . ; g� 1. When b ¼ 3 or
4, the assertion can be checked by Theorem 3 directly. r

Now we consider the case where bb 5. The next lemma follows from
[7, Theorems 1 and 2]:

Lemma 7. Let P be a fixed point of s. If bb 5, then we have wðPÞ ¼ w if
and only if the gap sequence of P has the following form:

Case (i). b is even (let l ¼ b=2� 1).

f1; 2; . . . ; d � 1;ð3:1Þ
d þ 1; d þ 2; . . . ; 2d � 1;

..

.

ðl � 1Þd þ 1; ðl � 1Þd þ 2; . . . ; ld � 1g

Case (ii). b is odd (let l ¼ ðb� 3Þ=2 and q ¼ ðd � 1Þ=2).

f1; 2; . . . ; d � 1;ð3:2Þ
d þ 1; d þ 2; . . . ; 2d � 1;

..

.

ðl � 1Þd þ 1; ðl � 1Þd þ 2; . . . ; ld � 1;

ld þ 1; ld þ 2; . . . ; ld þ qg
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In fact, it is implicit in Perez Del Pozo’s proof that when bb 5, if wðPÞ ¼ w,
then the condition (*) defined in §1 must be satisfied. Thus, we only discuss the
curves given in the form (2.1). Firstly, from the proof of Lemma 2 and (2.2), we
have seen that

Xd�1

i¼1

li ¼ g ¼ ðd � 1Þðb� 2Þ
2

:ð3:3Þ

That is, if d and b are fixed, then the genus g is determined, and so is
Pd�1

i¼1 li.
We also see from (3.3) that when b is odd, then so is d.

Theorem 8. Let V be a smooth curve V of genus gb 2 with an automor-
phism s of order d such that V=hsi has genus 0. Assume that s has b fixed
points and that bb 6 is even. If there is a fixed point P of s such that wðPÞ ¼ w,
then V is given in the form (2.1). Moreover, for a curve given in (2.1) with such d
and b, the following conditions are equivalent:

(a) one of Pj;k’s has the weight w;
(b) either d ¼ 2, or db 3 and sj ¼ sd�j for any j A NðdÞ;

Example 9. As an example, we take d ¼ 5 and b ¼ 6, and give all the
curves satisfying the equivalent conditions of Theorem 8. By the definition of
b and the si’s, we have s1 þ s2 þ s3 þ s4 ¼ b ¼ 6. By the condition (b), we
have s1 ¼ s4 and s2 ¼ s3. Thus, we obtain ðs1; s2; s3; s4Þ ¼ ð3; 0; 0; 3Þ, ð2; 1; 1; 2Þ,
ð1; 2; 2; 1Þ, or ð0; 3; 3; 0Þ. But a curve with ðs1; s2; s3; s4Þ ¼ ð3; 0; 0; 3Þ (resp.,
ð2; 1; 1; 2Þ) can be transformed to a curve with ðs1; s2; s3; s4Þ ¼ ð0; 2; 2; 0Þ (resp.,
ð1; 2; 2; 1Þ) by Lemma 1. Hence, when d ¼ 5 and b ¼ 6, there are two families
of curves satisfying the equivalent conditions of Theorem 8:

y5 ¼ xðx2 � 1Þðx� l1Þ4ðx� l2Þ4ðx� l3Þ4;

y5 ¼ xðx2 � 1Þ2ðx� l1Þ3ðx� l2Þ3ðx� l3Þ4:

Theorem 10. Using the notations and assumptions in Theorem 8, for a curve
given in (2.1) with such d and b, the following conditions are also equivalent to the
condition (a):

(a 0) all of Pj;k’s have the weight w;
(c) all of the lj’s are equal to each other;
(c 0) all of the lj’s are equal to l ¼ b=2� 1.

Proof of Theorems 8 and 10. The part before ‘‘moreover’’ in Theorem 8
follows from the discussions above, so it only remains to show the equivalence of
the conditions (a), (a 0), (b), (c) and (c 0).

Firstly, we see that (c) ) (c 0) follows from (3.3) directly, (c 0) ) (a 0) follows
from Theorem 3, and (a 0) ) (a) is obvious. Hence, it su‰ces to show (a) ) (b)
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and (b) ) (c). Moreover, when d ¼ 2, the assertion is just the well-known
fact about hyperelliptic curves. Hence, in what follows, we may assume that
db 3.

(a) ) (b). Suppose that wðPj0;kÞ ¼ w for some j0 A NðdÞ. Then by Lemma
7, the gap sequence of Pj0;k must have the form (3.1). Review that the d-cyclic
covering p : V ! P1 corresponds to an automorphism s : ðx; yÞ 7! ðx; eyÞ, where
e ¼ expð2p

ffiffiffiffiffiffiffi
�1

p
=dÞ. We want to observe the action of s on H 0ðV ;KÞ, which

is given by sðoÞ ¼ o � s�1. By a theorem of J. Lewittes ([4, Theorem 5]), this
action can be expressed by the gap sequence of any fixed point of s. More
precisely, since s�1 is expressed by ðx; yÞ 7! ðx; e�1yÞ, around the point Pj0;k,
there is a local coordinate z such that s�1ðzÞ ¼ e j

0
0z, where j0 j

0
0 1�1 ðmod dÞ

(cf. [6]). Note that ðe j 00 ; e2j 00 ; . . . ; eðd�1Þ j 0
0Þ is a permutation of ðe; e2; . . . ; ed�1Þ.

Hence, by taking the basis of H 0ðV ;KÞ given in Lemma 2, the representation of
s on H 0ðV ;KÞ is the following g� g diagonal matrix

M ¼ diagðe1; e1; . . . ; e1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
l

; e2; e2; . . . ; e2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
l

; . . . ; ed�1; ed�1; . . . ; ed�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
l

Þ:

In particular, the trace of M is given by

trðMÞ ¼ lðeþ e2 þ � � � þ ed�1Þ ¼ �l ¼ 1� 1

2

X
j ANðdÞ

sj:

On the other hand, around every point Pj;k, there is a local coordinate z such
that s�1ðzÞ ¼ e j

0
z, where j 0 is the integer with 1a j 0 a d � 1 and jj 0 1�1

ðmod dÞ (cf. [6]). Note that j 0 is also contained in NðdÞ. Hence, by the Eichler
trace formula (see [2, V.2.9], for instance), we have

trðMÞ ¼ 1þ
X

j ANðdÞ

e j
0
sj

1� e j
0 :

Combining the two formulas above, we deduce that

0 ¼
X

j ANðdÞ

e j
0

1� e j
0 þ

1

2

� �
sj ¼

X
j ANðdÞ

sjð1þ e j
0 Þ

2ð1� e j
0 Þ ¼

ffiffiffiffiffiffiffi
�1

p

2

X
j ANðdÞ

sj cot
j 0p

d
:

Let dd=2e be the smallest integer greater than d=2, and let MðdÞ ¼ f j A N :
1a ja dd=2e � 1; gcdðd; jÞ ¼ 1g. Since j A NðdÞ if and only if d � j A NðdÞ,
and since d=2 B NðdÞ when d is even, the set MðdÞ consists of a half of the
integers in NðdÞ, and we have

NðdÞ ¼ MðdÞ [ fd � j : j A MðdÞg:

If jj 0 1�1 ðmod dÞ, then ðd � jÞðd � j 0Þ1 jj 0 1�1 ðmod dÞ, so we have
ðd � jÞ0 ¼ d � j 0. From the above equation, we deduce that
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0 ¼
X

j AMðdÞ
sj cot

j 0p

d
þ
X

j AMðdÞ
sd�j cot

ðd � jÞ0p
d

ð3:4Þ

¼
X

j AMðdÞ
sj cot

j 0p

d
þ sd�j cot

ðd � j 0Þp
d

¼
X

j AMðdÞ
ðsj � sd�jÞ cot

j 0p

d
:

One knows that when j runs over NðdÞ, so does j 0. Furthermore, we have
j1 þ j2 ¼ d if and only if j 01 þ j 02 ¼ d, and if and only if cotð j1p=dÞ þ
cotð j2p=dÞ ¼ 0. Since the set MðdÞ does not contain two integers with the
sum d, neither does the set f j 0 : j A MðdÞg. Hence, for every j1; j2 A NðdÞ with
j1 þ j2 ¼ d, exactly one of cotð j1p=dÞ and cotð j2p=dÞ is contained in the set
fcotð j 0p=dÞgj AMðdÞ. Namely, the set fjcotð j 0p=dÞjgj AMðdÞ is a permutation of the

set fcotð jp=dÞgj AMðdÞ.
By Chowla’ theorem (see [1] for the original statement, and see [3] and the

references there for various generalizations), the set fcotð jp=dÞgj AMðdÞ is Q-linear
independent. Then from the discussions in the previous paragraph, we see
that the set fcotð j 0p=dÞgj AMðdÞ is also Q-linear independent. Since the sj ’s are

integers, we conclude from (3.4) that sj � sd�j ¼ 0 for any j A MðdÞ, i.e., sj ¼ sd�j

for any j A NðdÞ.
(b) ) (c). By the definition of the li’s, to prove that all of them are equal,

it su‰ces to show that
P

j ANðdÞðri1; j � ri2; jÞsj ¼ 0 for any i1; i2 A f1; . . . ; d � 1g.
Since sj ¼ sd�j, using the notation MðdÞ as above, we have

X
j ANðdÞ

ðri1; j � ri2; jÞsj ¼
X

j AMðdÞ
ððri1; j � ri2; jÞsj þ ðri1;d�j � ri2;d�jÞsjÞ:ð3:5Þ

Since ri;d�j ¼ d � ri; j for any integers i and j not divisible by d, we obtainX
j ANðdÞ

ðri1; j � ri2; jÞsj ¼
X

j AMðdÞ
ðri1; j � ri2; j þ ri1;d�j � ri2;d�jÞsjð3:6Þ

¼
X

j AMðdÞ
ðri1; j � ri2; j þ d � ri1; j � d þ ri2; jÞsj ¼ 0:

Hence, all the li’s are the same. r

Theorem 11. Let V be a smooth curve V of genus gb 2 with an automor-
phism s of order d such that V=hsi has genus 0. Assume that s has b fixed
points and that bb 5 is odd. If there is a fixed point P of s such that wðPÞ ¼ w,
then V is given in the form (2.1), and hence d is odd. Moreover, for a curve given
in (2.1) with such d and b, the following conditions are equivalent:

(a) one of Pj;k’s has the weight w;
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(b) when d ¼ 3, we have s1 ¼ s2 � 3 or s2 ¼ s1 � 3; when db 5, there exist
j1; j2 A NðdÞ such that j1 þ 2j2 ¼ d or 2d, and we have sj1 � 1 ¼ sd�j1 ,
sj2 � 2 ¼ sd�j2 and sj ¼ sd�j for j A NðdÞnf j1; j2; d � j1; d � j2g;

(b 0) when d ¼ 3, after a transformation given in Lemma 1, we have s1 ¼
s2 � 3; when db 5, after a transformation given in Lemma 1, we have
s1 ¼ sd�1 � 2, s2 ¼ sd�2 þ 1, and sj ¼ sd�j for any j A NðdÞnf1; 2; d � 2;
d � 1g.

Remark 12. Since d is odd, the set NðdÞ contains 1, 2, d � 2, d � 1, which
makes (b 0) of Theorem 11 meaningful. Moreover, when d ¼ 3 and s1 ¼ s2 � 3
(resp., s2 ¼ s1 � 3), the minimum weight w is taken by the P2;k’s (resp., P1;k’s).
When db 5, if V is given in the form of (b), then w is taken by the Pj2;k’s; and
if V is given in the form of (b 0), then w is taken by the Pd�1;k’s.

Remark 13. When the conditions of Theorem 11 hold, we have

wawðPj;kÞawþ ðd � 1Þ2

4

for any ramification point Pj;k. If the curve is written in the form of condition
(b 0), then the right equality holds when s1 > 0 and j ¼ 1.

Example 14. As another example, we take d ¼ 5 and b ¼ 5, and give all
the curves satisfying the equivalent conditions of Theorem 11. By the definition
of b and the si’s, we have s1 þ s2 þ s3 þ s4 ¼ b ¼ 5. By the condition (b 0), we
have s1 ¼ s4 � 2 and s2 ¼ s3 þ 1. Thus, we obtain ðs1; s2; s3; s4Þ ¼ ð1; 1; 0; 3Þ or
ð0; 2; 1; 2Þ. Hence, when d ¼ 5 and b ¼ 5, there are two families of curves
satisfying the equivalent conditions of Theorem 11:

y5 ¼ x4ðx2 � 1Þ4ðx� l1Þðx� l2Þ2;

y5 ¼ x3ðx2 � 1Þ4ðx� l1Þ2ðx� l2Þ2;

where the first family of curves takes the weight w ¼ 2 at ðG1; 0Þ and ð0; 0Þ, and
the second one at ðG1; 0Þ. And the second family of curves takes the weight
wþ ðd � 1Þ2=4 ¼ 6 at ðl1; 0Þ.

Theorem 15. Using the notations and assumptions in Theorem 11, for a curve
given in (2.1) with such d and b, the following conditions are also equivalent to the
condition (a):

(a 0) at least two of Pj;k’s have the weight w;
(c) there exists k A NðdÞ such that lr1; k ¼ � � � ¼ lrq; k ¼ l þ 1 and lrqþ1; k

¼ � � � ¼
lrd�1; k

¼ l, where l ¼ ðb� 3Þ=2 and q ¼ ðd � 1Þ=2;
(c 0) after a transformation given in Lemma 1, we have l1 ¼ � � � ¼ lq ¼ l þ 1

and lqþ1 ¼ � � � ¼ ld�1 ¼ l.
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Remark 16. The condition (c) or (c 0) of Theorem 15 implies that one half of
the li’s are equal to l, and the other half are equal to l þ 1. But unlike Theorem
8, the converse is not true. For instance, let V be the curve with d ¼ 7 and
ðs1; . . . ; s6Þ ¼ ð2; 1; 0; 1; 0; 1Þ. We can compute that ðl1; . . . ; l6Þ ¼ ð1; 1; 2; 1; 2; 2Þ,
and thereby the five fixed points have the weight 4, 4, 4, 4, 11, respectively. But
w ¼ 3 when d ¼ 7 and b ¼ 5.

Proof of Theorems 11 and 15. As Theorems 8 and 10, we only need to
show the equivalence of the conditions (a), (a 0), (b), (b 0), (c) and (c 0).

Firstly, we see that (a 0) ) (a), (b 0) ) (b), and (c 0) ) (c) are obvious, and
(c 0) ) (a) follows from Theorem 3 directly. Note that the transformation given
in Lemma 1 fixes every Pj;k. Hence, when d ¼ 3, by taking e ¼ 1 or 2 in
Lemma 1, we get (b) ) (b 0). Similarly, when db 5, by taking e to be the
integer such that ej2 1 d � 1 ðmod dÞ in Lemma 1, we still obtain (b) ) (b 0).
By taking e to be the integer such that ek1 d � 1 ðmod dÞ in Lemma 1, we
obtain (c)) (c 0). Hence, it su‰ces to show (a)) (b 0), (b 0)) (c 0), and (a)) (a 0).

(a) ) (b 0). If some wðPj0;kÞ ¼ w for some j0 A NðdÞ, then by taking the e in
Lemma 1 to be the integer such that ej0 1�1 ðmod dÞ, we can transform the
exponent of this Pj0;k from j0 to d � 1. We know that a birational transfor-
mation does not change the gap sequence and the weight of a point. Hence, we
may suppose that wðPd�1;kÞ ¼ w on V . Then by Lemma 7, the gap sequence at
this Pd�1;k must have the form (3.2).

We still write s for the automorphism ðx; yÞ 7! ðx; eyÞ on V . Note that the
local expression of s�1 around Pd�1;k is s�1ðzÞ ¼ ez (cf. [6]). Similarly as the
‘‘(a) ) (b)’’ part in the proof of Theorem 8, by taking the basis of H 0ðV ;KÞ
given in Lemma 2, the representation of s on H 0ðV ;KÞ is the following g� g
diagonal matrix

M ¼ diagðe1; . . . ; e1|fflfflfflfflffl{zfflfflfflfflffl}
lþ1

; . . . ; eq; . . . ; eq|fflfflfflfflfflffl{zfflfflfflfflfflffl}
lþ1

; eqþ1; . . . ; eqþ1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
l

; . . . ; e2q; . . . ; e2q|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
l

Þ:

In particular, the trace of M is equal to

trðMÞ ¼ lðeþ e2 þ � � � þ ed�1Þ þ eþ e2 þ � � � þ eq ¼ 3

2
� 1

2

X
j ANðdÞ

sj þ
Xq
j¼1

e j :

On the other hand, by the Eichler trace formula, we have

trðMÞ ¼ 1þ
X

j ANðdÞ

e j
0
sj

1� e j
0 ;

where j 0 expresses the integer such that 1a j 0 a d � 1 and jj 0 1�1 ðmod dÞ.
Combining the two above formulas, we deduce that

0 ¼ � 1

2
�
Xq
j¼1

e j þ
ffiffiffiffiffiffiffi
�1

p

2

X
j ANðdÞ

sj cot
j 0p

d
:ð3:7Þ
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When d ¼ 3, the equation (3.7) yields the condition (b 0) directly. When db 5,
we note that

Xq
j¼1

e j ¼ e

1� e
� eqþ1

1� e
¼ � 1

2
þ

ffiffiffiffiffiffiffi
�1

p

2
cot

p

d
þ csc

p

d

� �
:

We consider the twice of the imaginary part of the right side of (3.7). Using a
similar calculation as in (3.4), we obtain

0 ¼
X

j ANðdÞ
sj cot

j 0p

d
� cot

p

d
þ csc

p

d

� �

¼
X

j AMðdÞ
ðsj � sd�jÞ cot

j 0p

d
� cot

p

d
þ csc

p

d

� �
;

where MðdÞ is defined in the proof of Theorem 8. Since db 5, both 1 and 2 are
contained in MðdÞ, so we deduce from the above equation that

0 ¼
X

jb3; j AMðdÞ
ðsj � sd�jÞ cot

j 0p

d
þ ðs1 � sd�1Þ cot

1 0p

d
� 2 cot

p

d

� �
ð3:8Þ

þ ðs2 � sd�2Þ cot
2 0p

d
þ cot

p

d
� csc

p

d

� �
:

Since d � 11�1 ðmod dÞ, i.e., 1 ¼ ðd � 1Þ0, we have

ðs1 � sd�1Þ cot
1 0p

d
� 2 cot

p

d

¼ ðs1 � sd�1Þ cot
1 0p

d
þ 2 cot

ðd � 1Þp
d

¼ ðs1 � sd�1 þ 2Þ cot 1
0p

d
:

Since 2q ¼ d � 11�1 ðmod dÞ, i.e., 2 0 ¼ q, we have

ðs2 � sd�2Þ cot
2 0p

d
þ cot

p

d
� csc

p

d

¼ ðs2 � sd�2 � 1Þ cot 2
0p

d
þ cot

qp

d
þ cot

p

d
� csc

p

d

� �

¼ ðs2 � sd�2 � 1Þ cot 2
0p

d
þ cot

qp

d
� tan

p

2d
¼ ðs2 � sd�2 � 1Þ cot 2

0p

d
:

Substituting the above two equations into (3.8), we conclude that

0 ¼ ðs1 � sd�1 þ 2Þ cot 1
0p

d
þ ðs2 � sd�2 � 1Þ cot 2

0p

d
þ

X
jb3; j AMðdÞ

ðsj � sd�jÞ cot
j 0p

d
:

Now similarly as the ‘‘(a) ) (b)’’ part in the proof of Theorem 8, the Q-linear
independence of fcotð j 0p=dÞgj AMðdÞ yields the condition (b 0).
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(b 0) ) (c 0). When d ¼ 3, this can be checked directly, so we assume db 5.
Similarly as the ‘‘(b) ) (c)’’ part in the proof of Theorem 10, for two distinct
i1; i2 A NðdÞ, we need to compute

D :¼ ðli1 � li2Þd ¼
X

j ANðdÞ
ðri1; j � ri2; jÞsj:

Since sj ¼ sd�j for any j A f3; . . . ; d � 3g, using a similar calculation as (3.5) and
(3.6), we deduce that X

j ANðdÞnf1;2;d�2;d�1g
ðri1; j � ri2; jÞsj ¼ 0:

Since sd�1 ¼ s1 þ 2 and ri;d�1 ¼ d � i, we have

ðri1;1 � ri2;1Þs1 þ ðri1;d�1 � ri2;d�1Þsd�1

¼ ði1 � i2Þs1 þ ði2 � i1Þðs1 þ 2Þ ¼ 2i2 � 2i1:

Since sd�2 ¼ s2 � 1 and ri�;2 þ ri�;d�2 ¼ d, we have

ðri1;2 � ri2;2Þs2 þ ðri1;d�2 � ri2;d�2Þsd�2

¼ ðri1;2 � ri2;2Þs2 þ ðri1;d�2 � ri2;d�2Þðs2 � 1Þ ¼ ri1;2 � ri2;2:

Combining the three formulas above, we obtain

D ¼ 2i2 � 2i1 þ ri1;2 � ri2;2:

Now taking i1 ¼ 1 and i2 ¼ i, we have

dðl1 � liÞ ¼ 2i � 2þ r1;2 � ri;2 ¼ 2i � ri;2:

Since ri;2 is the remainder of 2i divided by d, we see that l1 � li ¼ 0 if 1a ia q
and l1 � li ¼ 1 if qþ 1a ia 2q. By (3.3), we must have l1 ¼ � � � ¼ lq ¼ l þ 1
and lqþ1 ¼ � � � ¼ l2q ¼ l.

(a) ) (a 0). We have shown (a) ) (b 0) ) (c 0) ) (a). By observing the con-
dition (b 0), we can see that the number of the Pj;k’s with the weight w is at least
2, which gives (a) ) (a 0). r

4. The case where b ¼ 1

We still consider a curve V of genus gb 2 with an automorphism s of order
d such that V=hsi has genus 0. In this section, we discuss the case where s has
a unique fixed point P. First of all, we conclude from [10, Theorem 1] that P
must be a Weierstrass point, i.e., wðPÞb 1.

Proposition 17. Let V be a smooth curve of genus gb 2 with an automor-
phism s of order d such that V=hsi has genus 0. Assume that s has a unique
fixed point P.
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(1) We have wðPÞ ¼ 1 if and only if the curve V is given by the following
equation (up to transformations in Lemma 1)

V0: y10 ¼ xðx� 1Þ4ðxþ 1Þ5:
(2) We have wðPÞ ¼ 2 if and only if the curve V is given by either of the

following two equations (up to transformations in Lemma 1)

V1: y6 ¼ xðx� 1Þ3ðxþ 1Þ4ðx� lÞ4;

V2: y12 ¼ xðx� 1Þ3ðxþ 1Þ8:

(3) We have wðPÞ ¼ 3 if and only if the curve V is given by either of the
following two equations (up to transformations in Lemma 1)

V3: y12 ¼ xðx� 1Þ2ðxþ 1Þ9;

V4: y14 ¼ xðx� 1Þ6ðxþ 1Þ7:

Proof. Suppose that wðPÞ ¼ 1, i.e., P is a normal Weierstrass point. We
see from [10, Theorem 2] that g ¼ 2 and d ¼ 10. Using the Riemann-Hurwitz
formula and computing the rotation numbers, the only possible curve is V0. We
can show that the weight of the fixed point ð0; 0Þ is indeed 1.

Now we suppose that wðPÞ ¼ 2. We see from [11] that ðg; dÞ ¼ ð3; 6Þ or
ð3; 12Þ. Using the Riemann-Hurwitz formula, we can obtain the curves V1 and
V2. It seems that the article [11] is not easily found, so we give a proof that
ðg; dÞ ¼ ð3; 6Þ or ð3; 12Þ.

Since wðPÞ ¼ 2, the gap sequence at P have two possible types: ð1; 2; . . . ;
g� 1; gþ 2Þ and ð1; 2; . . . ; g� 2; g; gþ 1Þ. We can compute the trace trðMÞ of
matrix representation M of s�1 on H 0ðV ;KÞ for both types.

Case 1: the gap sequence at P is ð1; 2; . . . ; g� 1; gþ 2Þ. By replacing s by
some sk with k relatively prime to d, we may assume that the rotation number of
s at P is equal to 1. By the Eichler trace formula, we have trðMÞ ¼ 1=ð1� eÞ,
where e ¼ expð2p

ffiffiffiffiffiffiffi
�1

p
=dÞ. On the other hand, by the theorem of J. Lewittes, we

have

trðMÞ ¼ eþ e2 þ � � � þ eg�1 þ egþ2 ¼ ðe� egÞ=ð1� eÞ þ egþ2:

Combining the two formulas of trðMÞ, we obtain

egþ3 � egþ2 þ eg � eþ 1 ¼ 0:

By taking the complex conjugate ðe ¼ e�1Þ, we have

egþ3 � egþ2 þ e3 � eþ 1 ¼ 0:

It follows that eg ¼ e3, so we obtain g1 3 ðmod dÞ. Substituting this in the
above equation, we have

e6 � e5 þ e3 � eþ 1 ¼ ðe4 � e2 þ 1Þðe2 � eþ 1Þ ¼ 0:
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Considering the roots of the equation ðx4 � x2 þ 1Þðx2 � xþ 1Þ ¼ 0, we see
that

d ¼ 6 and g1 3 ðmod 6Þ; or d ¼ 12 and g1 3 ðmod 12Þ:ð4:1Þ
We remark that d is a non-gap at P, since V=hsiGP1. Since the gap sequence
at P is ð1; 2; . . . ; g� 1; gþ 2Þ, we have

d ¼ g; or d ¼ gþ 1; or db gþ 3:ð4:2Þ

Combining (4.1) with (4.2), we obtain ðg; dÞ ¼ ð3; 6Þ or ð3; 12Þ. Using the
Riemann-Hurwitz formula, we see that there are only two curves V1 and V2.
We can show that the weight of the fixed point ð0; 0Þ on V1 and V2 is indeed 2.

Case 2: the gap sequence at P is ð1; 2; . . . ; g� 2; g; gþ 1Þ. Using the same
calculation as in the previous case, we deduce that ðg; dÞ ¼ ð2; 12Þ. But by the
Riemann-Hurwitz formula, we see that there does not exist such a curve.

Finally we suppose that wðPÞ ¼ 3. Either from [12] or from a similar calcu-
lation as that in the case where wðPÞ ¼ 2, we can conclude that ðg; dÞ ¼ ð4; 12Þ
or ð3; 14Þ, then the curve must be V3 or V4. r

Remark 18. In the following table, we give some examples for the case in
which b ¼ 1 and wðPÞb 4.

Curves g wðPÞ Gap seq. at P

y15 ¼ xðx� 1Þ5ðxþ 1Þ9
y5 ¼ xðx2 � 1Þ2ðx� lÞ3ðx� mÞ4

4
5

4
4

f1; 2; 4; 7g
f1; 2; 4; 5; 7g

y10 ¼ xðx� 1Þ5ðxþ 1Þ6ðx� lÞ 6 5 f1; 2; 3; 4; 7; 9g

y6 ¼ xðx� 1Þ2ðxþ 1Þ3ðx� lÞ3ðx� mÞ3 4 6 f1; 3; 5; 7g

y12 ¼ xðx� 1Þ4ðxþ 1Þ9ðx� lÞ10 8 7 f1; 2; 3; 4; 5; 7; 10; 11g

y16 ¼ xðx� 1Þ6ðxþ 1Þ9 7 8 f1; 2; 3; 4; 6; 9; 11g

y14 ¼ xðx� 1Þ7ðxþ 1Þ8ðx� lÞ12 9 9 f1; 2; 3; 4; 5; 6; 9; 11; 13g
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