A. KODAMA
KODAI MATH. 1.
40 (2017), 421-449

ON PROPER HOLOMORPHIC SELF-MAPPINGS
OF GENERALIZED COMPLEX ELLIPSOIDS AND
GENERALIZED HARTOGS TRIANGLES

Axki0 Kobpama

Abstract

In this paper, we study proper holomorphic self-mappings of generalized complex
ellipsoids and generalized Hartogs triangles. By making use of our previous result on
the holomorphic automorphism group of a generalized complex ellipsoid and Monti-
Morbidelli’s result on the extendability of a local CR-diffeomorphism between open
subsets contained in the strictly pseudoconvex part of the boundary of a generalized
complex ellipsoid, we obtain natural generalizations of some results due to Landucci,
Chen-Xu and Zapalowski.

1. Introduction and results

Let D; and D, be two domains in C". A continuous mapping f : D; — D,
is said to be proper if f~'(K) is compact in D; for every compact subset K of
D,. Proper holomorphic mappings between bounded domains have been studied
from various points of view. (See, for instance, Bedford [5], Jarnicki-Pflug [13].)
In connection with this, there is a fundamental question as follows:

QUESTION. Let D be a bounded domain in C" with n > 1. Then, is it true
that every proper holomorphic mapping f : D — D must be biholomorphic?

The answer to this question is negative, in general, without any other assumptions
on the domain D or on the mapping f. However, there already exist articles
solving this question affirmatively.

In this paper, we would like to study this question in the case where D is a
generalized complex ellipsoid or a generalized Hartogs triangle. In order to state
our precise results, let us start with defining our generalized complex ellipsoids
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and generalized Hartogs triangles. For any positive integers ¢4, m; and any
positive real numbers p;, ¢; with 1 <i</I, 1 <j<J, we set

/:(/17"'7/1)7 m:(ml,...,l’}’l]), p:<p17"'ap1)7 q:(917-~~76]1)

and define a generalized complex ellipsoid &' and a generalized Hartogs triangle
%I’ 4 by

/,m

I
& = {ZGC/;Z [EA RS 1} and

=1
I J
AL = (2w) e VY27 <D il < 1,
i1 =1
respectively, where
z=(z1,...,21) €eCl x --.xChr=CVl |f|=ti+--- 414,

w=(wp,...,w;)eC™ x-..x C" =CI"_~|\m|=m +-- +my,

and C¥N=CVlxc" —N=|/+|m|
For convenience and no loss of generality, in this paper we always assume that

pz,...,pjil, qz,...,qj7£1

if 7 >2orJ>2 Hence, if I =1, then &/ = B, the unit ball in C”', whether
p1 =1 or not; and if 7 > 2, then (5/” is dlfferent from the unit ball B/ in C/.
In general, both the domalns &/ and 7/1’ 4" are not geometrically convex and
thglr boundaries are not smooth. Notlce that 8#" 4" contains the origin 0 of
C".

Let us now return to our question above in the case where D is a genera-
lized complex ellipsoid or a generalized Hartogs triangle. Then we have already
known the following: If all the exponents p; are positive integers, then &7 is a
bounded pseudoconvex domain with real-analytic boundary. Hence, by a direct
consequence of Bedford-Bell [6], every proper holomorphic self-mapping of &7
is a biholomorphic mapping. Independently, Landucci [18] studied the structure
of proper holomorphic mappings between generalized complex ellipsoids &7 and
o)@p with 4,// =1, pi,pleN (1 <i<I), and proved that every proper holo-
morphlc self—mappmg of such a generahzed complex ellipsoid & must be a
biholomorphic mapping. If some of p;’s are not integers, then the boundary
of & is no longer real-analytic. However, as is shown by Dini-Primicerio [11],
even in such a case the same conclusion holds for &7, provided that all the
4’s are equal to 1. On the other hand, for the generalized Hartogs triangles,
Landucci also studied in [19] the structure of proper holomorphic mappings

between generalized Hartogs triangles #/,! and e}’f/'f:;;’,/ with 4,4/ =1, pi, pl eN
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(I<i<I) and mym' =1, q,q' e N. In particular, he found the existence of
a generalized Hartogs triangle /! admitting a proper non-biholomorphic
self-mapping. Landucci’s result was later extended by Chen-Xu [9], [10] and
Zapalowski [22] to the class of generalized Hartogs triangles /! with 4, m; = 1,
0< pi, ggeR for all i, j and J > 1. '

In view of these results, it would be naturally expected that the same
conclusion as in the case where £, m; =1 for all i, j is also valid for our
generalized complex ellipsoids &7 with /4 > 1 or generalized Hartogs triangles
AF,! with 4, mj > 1. This cannot be achieved in full generality at this moment.
However, under the assumption that all the exponents p; and ¢; are greater than
or equal to 1, we can give an affirmative answer to this. Before stating our
results, observe that the boundary of &/ is C?-smooth if and only if p; > 1 for all

i=1,...,1. Therefore, in connection with our question, it would be the class of
generalized complex ellipsoids &/ with p; > 1 for all i=1,...,I that we should
study first.

The main purpose of this paper is to establish the following theorems. (For
the explicit descriptions of holomorphic automorphisms of &/, see Section 2.)

THEOREM 1. Let & be a generalized complex ellipsoid in Cll with |/] > 2.
Assume that 1 < p;eR for all i=1,...,1. Then every proper holomorphic map-
ping f: & — & is necessarily a holomorphic automorphism of & .

It should be emphasized that if 1 < p; €R for all i, then &’ is a geomet-
rically convex bounded domain with C2-smooth (but not C*-smooth) boundary
06/, in general, and our &/ in Theorem 1 admits the case where some of ¢’s are
greater than 1. Therefore our theorem is not an immediate consequence of any
other papers.

The structure of proper holomorphic self-mappings of #/,! with |/||m| =1,
that is, #/;! C C?, is already discussed in [19], [22], in detail. = So, in this paper,
we would like to study our question in the case where D is a generalized Hartogs
triangle /! with |/||m| > 1.  Then, our Theorem 1 can be applied to prove the
following theorems:

THEOREM 2. Let #/,! be a generalized Hartogs triangle in Cll s e with
|| =2, |m| =2 Assume that 1 < p;, g;eR for all i=1,...,1, j=1,...,J.
Then a holomorphic mapping ® : A/l — A/ is proper if and only if ® can be
written in the form

(O (Zl,...,ZI,Wl,...,WJ) = (21,...721,W1,...,WJ),

Zi=Aizoq) (L<i<I), wy=Bwy (1<j<J)
(think of z;, w; as column vectors), where A; € U(¢;), Bje U(m;) and o, T are
permutations of {1,..., I}, {1,... J} respectively, satisfying the condition: o(i) = s,

©(j) =t can only happen when (4, p;) = (45, ps), (my,q;) = (my, qq).
In particular, ® is a holomorphic automorphism of #7,!.
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THEOREM 3. Let A/} be a generalized Hartogs triangle in Cll s el with
|| =1, |m| >2. Assume that 1 < g;eR for all j=1,...,J. Then a holomor-
phic mapping ® : A}, — A1 is proper if and only if ® can be written in the
form

D:(z,wy,...,wy) = (Z,W1,...,Wy),

=dz, W= Bwy) (1<j<J),

[N

where A € C with |A| =1, B; € U(m;) and t is a permutation of {1,...,J} satisfy-
ing the condition: t(j) =t can only happen when (mj,q;) = (my,q;).

In particular, ® is a holomorphic automorphism of J//’ i

THEOREM 4. Let #/,! be a generalized Hartogs triangle in Cll s el with
|£] =2, |m|=1. Assume that 1 < p;eR for all i=1,...,1. Then a holomor-
phic mapping ® : A/, — A} is proper if and only if ® is a transformation

(S (Z],...,Z[,W) = (21,...,2],W)
of the following form:

Case . I=1
(I.1) g/p e N:  In this case, putting r = q/p, we have

z21 =wkH(zy /w"), W= Bwk,
where k e N, H € Aut(B") and Be C with |B| = 1.
(1.2) q/p ¢ N:  In this case, putting r = q/p, we have
Zi=wk gz = Bwk,

where keN, Ae U(4), (k—1)reZ and Be C with |B| = 1.

Case II. I >2.
(IL1) p1=1, geN: In this case, we have

z = whH(z /w9), 2= w(k’l)q/p"yi(zl/wq)A,-zﬁ(g 2<i<I), Ww=Bwk
where

(1) H e Aut(B");
(2) y;’s are nowhere vanishing holomorphic functions on B defined by

L= (a2 )"
. S N | e | B — g 4
y(z1) ((1_<Zha>)2> . a=H"(0)e B,

where o € B is the origin of C*;
(3) keN, A;e U(4), (k—1)q/pieZ (2<i<I) and Be C with |B] =1;
(4) o is a permutation of {2,...,1} satisfying the following: (i) = s can only
happen when (4, p;) = (4, ps)-
(IL2) p1=1, q¢N: In this case, we have

H=whkDigz 7= w(k’l)q/p"A,-zo.(i) 2<i<lI), Ww=Bwk,
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where keN, AeU(4), (k—1)qeZ, A;eU(4), (k—1)g/pieZ 2<i<]I),
Be C with |B| =1, and o is a permutation of {2,...,1} satisfying the condition:
o(i) = s can only happen when (4;, p;) = (45, ps)-

(IL3) p1 # 11 In this case, we have

z = wk Vg2, (1<i<I), Ww=Bwk,

where keN, 4; e U(4;), (k—1)q/pieZ (1 <i<I), BeC with |B|=1, and o is
a permutation of {1,... I} satisfying the condition: a(i) = s can only happen when
(o pi) = (s, ).

In particular, ® is a holomorphic automorphism of #7,! if and only if k =1
in any cases. '

Considering the general case where 4, m; > 1 in this paper, we obtain natural
generalizations of some results due to Landucci [18], [19], Chen-Xu [9], [10] and
Zapalowski [22]. Here it should be remarked that some of their techniques used
n [9], [10], [18], [19] and [22] are not applicable to our case where 4 > 1 or
m; > 1. In fact, for instance, there is no several-variable analogue of the func-
tion 1+— A? (LeC*, 0 <aeR) that plays crucial roles in their papers.

Finally, we would llke to point out the following: Let #/,/ be a generalized
Hartogs triangle in C x C"! with m; =--- =my =1 and J >'2. Then, accord-
ing to [22; Theorem 3, (b)], one obtams the following result which contradicts
our Theorem 3: A4 holomorphic mapping ® : AL — AL is proper if and only
if ® has the form '

(T) (D(Z7 W) = (ézkvh(w))v (27 W) *}f/pnza

where { € C with |{| =1, keN and h: &} — &1 is a proper holomorphic mapping
such that h(0) =0. In particular, there are non-trivial proper holomorphic self-
mappings in such a JF” 4. But, this is obviously incorrect. In fact, consider, for
instance, the generahzed Hartogs triangle # := #/, and the holomorphic
mapping @ : # — # defined by

#H ={(z,w) e Cx Clz| < |w|* <1}, @(z,w) = (22, w), (z,w)e A,

thatis, p=1/2, ¢ = (1,1), { =1, k =2 and h = id, the identity mapping, in ().
Then @ is holomorphic on C* (D #) and, for the boundary point (z,,w,) €
oA given by z, = 1/2, w, = (1//2,0), we have ®(z,,w,) = (1/4,1//2,0) € #.
Consequently, @ is not proper, though it satisfies all the requirements of ({).
From this, the assertion in [22; Corollary 8] may also be corrected.

Our proof of Theorem 1 above is based on our previous result on the
structure of holomorphic automorphism groups of generalized complex ellipsoids
[15] and an extension theorem of local CR-diffeomorphisms defined near a C*-
smooth strictly pseudoconvex boundary point of a generalized complex ellipsoid
due to Monti-Morbidelli [20]. Once Theorem 1 is proved, we can apply the
same method used in our previous paper [16] to prove Theorems 2, 3 and 4.
After some preparations in Sections 2 and 3, we prove our theorems in Section 4.
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NortaTioN. Throughout this paper we use the following notation: For

given points z = (Zl,...,zl)eCW, W— (wl,...,wj)eC"”‘ and p=(p1,.... p1),
q=(q1,...,qs) as above, we set
Zi:(zil,"'7zi/;) (1 SZSI), W]:(W117,Wlmj) (1 S]SJ)7

Z::(Cla"'vCN) = (Z,W)ECW X C‘ml :CN’
{'= (gl»-..,gm) =z, ("= (C‘/‘_,_],...,CN) =w and

1

J

2pi 24

pr(z) = llzll, p(w) = w9
=1

i=1
As usual, we write
=0 Ly forC:(Cl,...,CN)eCN, oc:(ocl,...,ocN)eZN.

For a given n e N, we denote by U(n) the unitary group of degree n, and for
a set SCC” 0S (resp. S) stands for the boundary (resp. closure) of S. We
denote by {-,-> the standard Hermitian inner product on C”, that is,

<Ca77>:Zéjﬁj for {=(C1,....6), m=(m,....m,) € C".
)

Let W be a domain in C". Then we denote by Aut(W) the group of all
holomorphic automorphisms of W equipped with the compact-open topology.
For a given holomorphic mapping F : W — C", we denote by Jr({) the Jacobian
determinant of F at (e W and put Vr = {{e W;Jr({) =0}.

2. Some known facts

In this section, for later purpose, we collect some known facts on the
holomorphic automorphisms of generalized complex ellipsoids &/ in cll =
Chx...xCT.

If =1, then &’ is the unit ball BY in C" and the structure of the
holomorphic automorphism group Aut(Bt) of B” is well-known. And, if 7 > 2
(hence, p; # 1 for all i=2,...,I by our assumption), we have the following:

THEOREM A (Kodama [15]). The holomorphic automorphism group Aut(é})
consists of all transformations
O (217"'721) = (217"'521)

of the following form:
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Case . py=1. In this case, we have
L =H(z), Zi=y(2)dizeq) 2<i<T),

(think of z; as column vectors), where
(1) H € Aut(B");
(2) 9;'s are nowhere vanishing holomorphic functions on B defined by

L e\
— # _ g1 4
y,-<zl><(l_<w>)z> . a=H'(0)e B,

where o € B/ is the origin of C’;

(3) A;i € U(4), the unitary group of degree (;;

(4) o is a permutation of {2,...,1I} satisfying the following: a(i) = s can only
happen when (4, pi) = (s, py).

Case II. py # 1. In this case, we have
Zi=Aizoqy (1 <i<I),

where A; € U(4) and o is a permutation of {1,... I} satisfying the condition:
o(i) = s can only happen when (4;, p;) = (45, ps)-

Let &' be a generalized complex ellipsoid in Cl'=C% x---x C" with
I > 2 and assume that the exponents p; and the integers ¢ satlsfy the condition

1) pr=1, A=>=1 and Rap;>1, (4=2(2<i<]I).
Define here a subset & of d&/ by
s ={(z1,22,-..,21) € 067; ||za| - - - ||1 ]| # O}

By routine computations, it then follows that % is just the set consisting of
all C®-smooth strictly pseudoconvex boundary pomts of &’. Note that & is a
simply connected, connected real hypersurface in C/, since 4 >2 for all i=
2,...,1. For this C®-smooth strictly pseudoconvex real hypersurface &, we
have the following:

THEOREM B (Monti-Morbidelli [20]). Let &' be a generalized complex
ellipsoid in c satisfying the condition (). Let O, O’ be connected open subsets
of & and let [ : 0O — O'" be a CR-diffeomorhism between O and O'. Then f
extends to a global biholomorphic mapping f : & — &7

In [20] they proved more: the extension f can be written as a composite
mapping of four standard holomorphic automorphisms of &/, provided that
all the exponents p; are positive integers. Here, observe that they do not use
essentially the fact that all the p;’s are positive integers except for the proofs of
Propositions 3.4 and 5.1 in [20]. Moreover, if the condition (}) is satisfied, one
can see that their proofs remain valid for these propositions even in the case
where some of p;’s are not integers. Therefore, Theorem B has already been
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proved implicitly in [20]. Using power series expansion technique, Hayashimoto
[12] gave an alternative proof of Monti-Morbidelli’s theorem with some weaker
conditions on the dimensions 4 and the exponents p; e N. However it seems
difficult to apply the same technique to our general case where some of p;’s are
not integers.

3. Some lemmas

In this section, we shall prove several lemmas which will play crucial roles in
our proofs of the theorems.

3.1. A Lemma for &”. In this Subsection, we write & = &/ for the sake
of 51mp1101ty, and f :& — & denotes an arbitrarily given proper holomorphic
mapping.

First of all, since & is a bounded complete Reinhardt domain in C!, by a
result of Bell [8 ] there exists a connected open neighborhood D of & such that f
extends to a holomorphic mapping f D — C. Therefore, replacing f by f if
necessary, we may assume that f itself is a holomorphic mapping defined on D.

Under this assumption, we wish to prove the following:

LEMMA 1. Let & be a generalized complex ellipsoid in Cl with 1> 2.
Assume that p; > 1 and ¢; > 2 for all i=1,...,1. Then the proper holomorphic
mapping [ :& — & is an automorphism of &.

Proof. Once it is shown that V; =0, then f:& — & is an unbranched
covering; and hence, it must be a biholomorphic mapping, since & is a simply
connected domain. Assuming to the contrary that ¥, # @, we wish to derive
a contradiction. To this end, let us consider the functions r(z) and R(z) defined
by

r(z) =pP(z) =1, zeCVl| and R(z)=r(f(z)), zeD.

It then follows from the Hopf lemma that R(z) is a C*-smooth defining function
for & as well as r(z). Thus, if we set

D,={zeD;R(z) <&} and D! ={zeClr(z)<e}

for a sufficiently small ¢ > 0, then we have & C D,N D), D,UD] C D and f gives
rise to a proper holomorphlc mapping, say again f, from D, onto D). Hence,
for any irreducible component V' of Vy N D,, it follows from Remmert’s proper
mapping theorem that f(7’) is a complex analytic subvariety of D] and the
restriction f := f|V : V' — f(V) is also proper. In particular, V" and f(}’) both
have pure C-dimension |/| —1 and f~!(Sing f(V)) is nowhere dense in V.
Therefore, by repeating exactly the same argument as in [4; p. 479], one can
see that there exists a connected complex manifold M of C-dimension |/| —1
such that M is open dense in V' and f gives rise to a local biholomorphic
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mapping from M onto f(M). Accordingly, both M Nd& and f(M)Nd& are
C2-differentiable submanifolds of d& with the same R-dimension 2|/| — 3. Now
let us set

S ={(z1,...,21) € 0&; ||z1]| - - |z1]] #0} and
Wi ={(z1,...,21) €06z, =0} (1<i<I).

Then & is the set of all C?-smooth strictly pseudoconvex boundary points of &
and 06\& = Ul | Wi is the set of all weakly pseudoconvex boundary points of &.
Note that each #; is a C2-differentiable submanifold of & with dimg #; =
2|14 =24 — 1 <2|/] =5, because 4 >2 by our assumption. Thus UiI:1 Wi is
too small to contain M N d&; so that there exists a point z° € SN (M NJE) C
M C Vy. On the other hand, by using the same method as in the proof of
[8; Theorem 3], it can be checked that J;(z°) # 0 and f cannot be branched at
the strictly pseudoconvex boundary point z° € .%; so that z° ¢ V,. This is a
contradiction; thereby, the proof is completed. O

3.2. Lemmas for #/;!. Throughout this Subsection, we write # = #/!,
where #/)1 is a generahzéd Hartogs trlangle in C"l'x "l = ¢V with |/ \m| > 1
And, @ Jf — A denotes an arbitrarily given proper holomorphic mapping.

Our proofs of the following lemmas will be carried out along the same lines

n [19], [9], [16], [22]; and some of them will be presented only in outline.

Let Sw ={ae Z";* € O(A), ||| 24 < 0}, Where O(A#’) denotes the set

of all holomorphic functions on # and A?(#) is the Bergman space of # with

the norm | - 24). Then it is known [3] that the Bergman kernel function
K = Ky for # can be expressed as
(3.1) K(Cn) =Y el Lne,

O(ESy/

with ¢, > 0 for each € S. By making use of this special form of K({,7), we
can show the following (cf. [16; Lemma 1]):

LeMMA 2. The Bergman kernel function K({,n) extends holomorphically in {
and anti-holomorphically in n to an open neighborhood of (#\{0}) x # in C*".

Thanks to this lemma, we can prove the following:

LemMa 3. Let {, be an arbitrary point of 0A#\{0}. Then there exists
a connected open neighborhood Uy, of CO in C¥\{0} such that ® extends to a
holomorphic mapping ® : # U Uy, — cy

Proof. Let P: L*(#) — A*(#) be the Bergman projection defined by

PF(C) = j K@Gmfn) dvy,  feL2().
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It then follows from Lemma 2 that Pf can be extended to a holomorphic
function, say Pf, defined on some domain # U O;,, where O, is a connected
open neighborhood of ¢, contained in CV\{0}.

Let ¢e C°(#) be a non-negative function such that ¢((,..., 0 y) =
(1], .-, Cy]) and [, ¢(0) dV: =1. For any o = (a,...,0n) € Z" with o; > 0
(1<j<N), we set

$,(0) = (c,o) (=D p0) ol - aCY, Ce

where ¢, is the same constant appearing in (3.1) and a! =oy!---opy!, |of =
o) + -+ +oay. Then, thanks to the concrete description of the expansion of K
as in (3.1), we can compute explicitly Pg, as Pg,({) = (% (e #. Consequently,
by analytic continuation

(3.2) Py, (0)=(" CeAnUO;,.

Now, express ® = (®y,...,Dy) with respect to the {-coordinate system in
CV. Then, applying the transformation law by the Bergman projection under
proper holomorphic mapping (cf. [7]) and using the fact (3.2), we have that

o - (@) -+ (@n)™) () = (Jo - Pg, 0 D)({)

— PUs- 4,0 )0 = | KLn)Uo- 4, 0®)n) d,

Vs
for (€ #. Here, since the last term extends holomorphically to the function
P(Jp - ¢,0®) on A# U O, we may assume that Jg - (7)™ - (Qy)™ is also a
holomorphic function defined on s# U O;,. In partiqular, considering the special
case where o; =0 for all j, we may assume that Jp is also a holomorphic
function defined on # U O;,. Then, by the argument in the proof of [7;
Theorem 1] using the fact that the ring ¢y, of germs of holomorphic functions
at {, is a unique factorization domain, it can be shown that every component
function ®@; of ® is actually holomorphic on some small open neighborhood U,
of {,, as desired. O

By Lemma 3 there exists a connected open neighborhood D of #\{0} in
C" such that @ extends to a holomorphic mapping ®: D — CY. So, in the
following part of this paper, we assume that @ itself is holomorphic on D and
Vo is a complex analytic subvariety of D (of dimc Vg = N — 1 if Vg #0).
We now define the subsets %), %, and %3 of the boundary 0.# by setting
B :={(z,w) € 0A;p"(z) < p?(w) =1},
By = {(z,w) € 04,0 < p?(z) = pl(w) < 1},
By = {(z,w) € 0A;pP(z) = p¥(w) = 1}.
Then 0# = {0} U %, U %, U %3 (disjoint union) and %), %, are open in 0%,
while %5 is closed and nowhere dense in 0.
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LEmMMmA 4. In the notation above, we have

@(ﬂl) N%, = @, (D(e@z) N% =0 and (D(.@]) C 9?1, (D(e@z) C e@z.

Proof. To prove the first assertion, assuming the existence of a point
(a,b) € B, such that (a,b) := ®(a,b) € #,, we wish to derive a contradiction.
To this end, notice that Vg No# is nowhere dense in 0. Thus, taking a
nearby point of (a,b) if necessary, we may assume that Jo(a,b) # 0 and every
component of (a,b) is non-zero:

al #0 (1<i<I1<a<#); b'#0 (1<j<J1<pu<m).

Accordingly, we can choose a small connected open neighborhood O of (a,b)
in such a way that ® gives rise to a biholomorphic mapping, say again, ® : O —
®(0) =: 0 C CY with ®(ON#)=0NH and ®(ON %) = ONH,. Without
loss of generality, we may further assume that O N d# C %, and OU O c (C*)".

Here define the functions y(z,w) and r(z,w) by
pzw) =piw) =1, (z,w)e O0; r(z,w) =pP(z) —pi(w), (z,w)eO.

It then follows that y(z,w) (resp. r(z,w)) is a C®-smooth defining function for .#
on the open neighborhood O (resp. O) of the point (a,b) (resp. (a,b)). And, by
direct calculations we obtain that the complex tangent space T(‘('L b)(ﬂl) to 4, at
(a,b) and the Levi form L,((a,b);(s,t)) of y for (s,1) e T(‘;Lb)r(,%) are given,
respectively, as follows: '

J
Tl (%) = {(S’ 1) e C s S gk |29ty by = 0}7

J=1

J
Ly((a,b); (5,0) =Y g5 — DIIBI* @2 [<t, b>)
=

J
+ gl Vg1 =0 for all (s,1) € T(, (%)
j=1

by Schwarz’s inequality. Thus O N # is Levi pseudoconvex at (a,b) € ON %) C
oon ). ~

On the other hand, the corresponding objects at the point ®(a,b) = (a,b) are
given as follows: To simplify discussion, we change notation and write (a,b) in
place of (a,b). Then

1
(3.3) Té (%) = {(s, 1) e s "N pillail*P Vs ar
i=1

J
=S gl by = o},
J=1
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1

(34) Li((a.b); (s,0) = pilpi — Dllail|*" | <si, aip)

i=1

1
2(pi—1 i 2
+ > pillad 7V i) Zq] DR KON
i=1

J
2g—1 2 :
= gllB Vgl for all (s,1) € T(, ;) (%2).
=1
We have now two cases to consider:

Case 1. |m|=1: For the defining function y(z,w) = p4(w) — 1 = |w|* — 1
for # on the open neighborhood O of the point (a,b), it is easily seen that, for
every point (z,w) e ON %

TE (%) =C" 5 {0} and L,((z,w);(s,0) =0, (s,0) e T( (%),

that is, ON %, is a Leviflat real hypersurface in CY in this case.

Once it is shown that ON %, is not Levi-flat at ®(a,b) = (4, b) e 0N B,
we arrive at a_contradiction, since ® : O — O is a biholomorphic mapping with
O(ONH)=0NnH, and ONH, is Leviflat at (a,b) € ONH. Therefore we
have only to prove that ON%, is not Levi-flat at (a,b). To this end, we
again use the notation (a,b) instead of (a,b) for a while.

Consider first the case / = 1. Then, putting p = p1, / =4 and r = ¢q/p, we
have

H ={(z,w) e C" x C;||z]|* < |w]* < 1} (as sets);

accordingly, we may assume that p = 1 from the beginning. Hence the deﬁmng
function r(z,w) for # on O has the simple form r(z,w) = ||z||* — |w|*. Note
that 7/ > 2 by our assumption |/| |m| > 1. Thus there exists a non-zero element
s e C’ such that |{s,a| < ||s||||a||. Choose an element ¢ € C in such a way that

(s,ay = qb)*“ Vb, Tt then follows from (3.3) and (3.4) that (s,7) € T(, »)(%2)
and

Li((a,b); (s,1)) = {lIsl*lall” = [<s, a>|*}/|b** > 0;

which implies that O N %, is not Levi-flat at (a,b), as desired. ’
Consider next the case / > 2. In this case, we choose two elements s € C!
and ¢ e C in such a way that

s=(s1,5,...,51) = (a1,0,...,0) and = p|la|*" /{q|b|*“"Vb}.

Then it is obvious that (s,7) is a non-zero element of T @ )(932) by (3.3). More-
over, since 1, ||lai||*" = |b|*, we obtain by (3.4) that

Li((a,b); (5.0) = pillan|*" (Naall* + -~ + llas||*") /b > 0;
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accordingly, O N %, is not Levi-flat at (a,b), as required. Therefore we have
shown that there does not exist a point (a,b) € %, such that ®(a,b) € B, in
Case 1.

CaSE 2. |m| =2: If m > 2, one can choose a non-zero element ¢; € C™ in
such a way that <r;,b;>=0. Puts=(1,,0,...,0)eC". Then (0,7) € T(Ca,b)(gﬁ
by (3.3) and

Li((a,0); (0,0)) = —q||ba |7 V)11 > < 0

by (3.4). Thus ON# is not Levi pseudoconvex at the point ®(a,b). How-
ever, this is a contradiction, since ®: O — O is a biholomorphic mapping
with ®(ONA#)=0NH and ON # is Levi pseudoconvex at (a,h) e ON %) C
0(0ON ), as shown before.

If m; =1, then my; > 1 by our assumption |m| > 2. Hence there exists a
non-trivial solution (#1,7}) e (C 2 of the equation

")
1151 Vbt + ga|bo ]| X Vb1eE = 0.

Put 1= (,,0,...,00eC" with n= (£1,0,...,0)e C™. Then (0,1)¢
T(Z,b)(gz) by (3.3) and

Li((a,b); (0,1)) = —qi(q1 — Db P21 | = qo|by 7|0 )?
— @a(g2 = DIIb2lP =215y 37 — qalba V)
= —qi b V0 = g3 1] b3 7 1))
— @bl (12| - (B3] 23]
< =gt lbr PV = g3k )P PP < 0

by (3.4); which says that O N # is not Levi pseudoconvex at the point ®(a, b), as
desired. Therefore we arrive at the same contradiction as above. Eventually,
we have shown the first assertion ®(%;) N %, =0 in any cases.

To prove the second assertion, assume that there exists a point (a,b) € %,
such that ®(a,b) € #,. Then, interchanging the role of %, and %, and repeating
exactly the same argument as in the proof of the first assertion, we obtain a
contradiction; proving ®(%,) N %, = 0. In particular, we see that ®(%,) C {0} U
By U B3 = ,@2.

Finally we claim that ®(#;) # 0. Indeed, assume to the contrary that there
exists a point (a,b) € %, such that ®(a,b) =0. Let O be an open neighborhood
of 0 e CV so small that ON %, = 0. Since ® is continuous at (a,b) by Lemma
3, there is an open neighborhood U of (a, b) such that ®(U) C O. Take a point
(a,b) e UN % with Jo(a,b) # 0. Then there exists a small open neighborhood
V of (a,b) such that ¥V C U and ® induces a biholomorphic mapping, say
again, ®: V — ®(V) with ®(VNH)=0(V)NoA#. Then, since (VN %)
is now a non-empty open subset of ONo#, we have ®(V N%)N%, #0.
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But, this contradicts the first assertion; proving our claim. Therefore, taking the
first assertion into account, we conclude that ® (%) C % U %3 = #; and hence
®(%#,) C %, by the continuity of ® on #\{0}. O

LeMMA 5. Let us write ® = (f,g) with respect to the coordinate system
(z,w) in C'lxx C" = C¥. Then g: # — C" does not depend on the variables
z; accordingly it has the form g(z,w) = g(w) on H.

Proof. By the proof of Lemma 4, we can choose a point (a,b) € % N (cH™
satisfying the following: Jo(a,b) # 0, (@,b) :== ®(a,b) e %, N (C*)" and there
exist ~connected open neighborhoods O, O of (a,b), (a, l;), respectively, with
ouocC (C )N such that O N oA C %, ONoA# C %, and ® defines a biholomor-
phic mapping, say again, ®: O — O with (D(Oﬂ%”) onNns and ®(ON %)
=0N%,. Let P, (resp. Pb) be a polydisc in C! (resp. Cl”’) with center «
(resp. b) so small that P, 5 := P, X P, has the compact closure in O. The proof
is now divided into two cases as follows:

Case 1. J=1: As a defining function for %4, one can choose p(z,w) :=

|w]|* = 1 in this case. Taking a pomt we Py w1th ||w|\ =1 arbitrarily, we put
gw(z) == g(z, w) z e P,, and define p({) := ||gu(2)||%, ¢’ =z € P,. Then p({’) =1
whenever ||w\| = 1. Therefore, representing g = (gjs|+1,---,9gn) With respect to

the coordinate system ¢’ = (g5 -+, Cy) In " and differentiating the both
sides of the equation p({') =1 by (i, (i (1 <k < |/]), we obtain that, for every
point (" =we P, with ||C"|* =1,

il Ok
Hence, putting H := {({',{") € Py p); 71> =1}, we have agj(C/,C”)/ﬁék =0 on
H for every ], k. Since g is holomorphic on P, and H is a real-analytic
hypersurface in P, ), it is obvious that every 0g;(¢',¢")]05 =0 on P p).
Therefore g(¢’,{") does not depend on z={" on P and hence on # by
analytic continuation, as desired.

2
("

=0 forall {'eP, 1<k<|/

Casg 2. J >2: In this case, taking a pomt we Py with p?(w) =1 arbi-
trarily, we set g,,(z) = g(z,w), z € P,. Then, since g,,(P,) C (C” )" by our choice
of O, we can define a C®-smooth plurisubharmonic function p on P, by setting
p(z) == pi(gw(z)), z€ P,. Tt then follows that p(z) =1 on P,, since

O(P, x {w}) C D(ONA) C {(u,v) € 0;p(v) = 1}.

This combined with the strictly plurisubharmonicity of p? on (C*)"! implies that
gw(z) is a constant mapping on P,. As a result, defining the real-analytic hyper-
surface H in P, by H :={w e Py;p?(w) =1}, we have shown that

(3.5) gw(z) = g(z,w) is constant on P, for any we H.
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Now, the holomorphic mapping g can be expanded uniquely as

g(zw) = g(. ) = a2, (L") € Py,

v/

which converges absolutely and uniformly on P, ;), where (! =a and

ay((") = (al("),...,al"(")

are |m\ -tuples of holomorphic functions on P,, and the summation is taken over
all v\ = (vi,...,v) e 2" with vi,. .sVy) =2 0. Then the assertion (3.5) tells us
that

a, (") =0, ("eH, forv #£0.

Since a,/({") are holomorphic on P, and H is a real-analytic hypersurface in Py,
we have that a,/({") = 0 on P, for v/ # 0; consequently, g(z,w) = ao({") does not
depend on z = globally by analytic continuation.

Eventually, we have proved that g(z,w) does not depend on z in any cases;
thereby, completing the proof. O

4. Proofs of Theorems

Throughout this section, we denote by &/ the generahzed complex ellipsoid
in € as in Theorem 1 and write & = &L Also A L1 denotes the generalized
Hartogs triangle in C/ x C" = C" as in Theorems 2, 3 and 4 with |Z] |m] > 1
and we write # = #/,! for the sake of simplicity.

The proofs of our theorems will be carried out in the following four
Subsections.

4.1. Proof of Theorem 1. Before undertaking the proof, we need a prepa-

ration. Let p,...,p; =1 be the real numbers appearing in Theorem 1. As-
suming that / >2 and /4, =---=¢,=1 (2 <s <) for a while, we consider the
correspondence 7 p, .. p.1..,1) defined by

2 (z1,(22),. .., (Z_Y)p",zsﬂ, cz), z=(z1,...,z1)eCV.

If all the p;’s are integers, this is a single-valued holomorphic mapping from
C onto itself. However, if some of them are irrationals, then it prov1des an
infinitely-many-valued holomorphic mapping from C% x (C )g_] X CO X - x
C’ onto itself. Thus, for later use, we need to introduce the concept of principal
branch of 7y, ., 1..1)- For this purpose, let us fix an arbitrary point

20 =(z0,...,20) e CYl with z§--.z2 #0.
Write each z7 (2 <i<ys) in the form

z! =r{ exp(V—107) with r{ >0,0<0/ <2n
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and set

VVI(ZO) = {Zl' =17 exp(v —10,');}",' > 07 |H, - Hla| < 7'[} = C\{ZZ,-O;[S 0},

W(2%) = € X Wa(25) x - x Wi(z)) X €1 x o x €1
H,‘(Z,') = (ri)”" exp(v —1[),0,‘), Zi =T; exp(v —10[) € I/V,(ZIO),
O, psvpt,ea)(2) = (21, 102(22), - T(2), 2415 -+, 21)

for z = (z1,...,z1) € W(z°). Then W(z°) is a connected open dense subset of
(old containing z° and Il ,, . . 1..1) s a single-valued holomorphic mapping
from W(z°) into CYl. Moreover, it is injective on a small open neighborhood
of z° since its Jacobian determinant does not vanish at z°.

DeriNITION.  We call this mapping Ty ,, . po1,.1) 0 W(z%) — C the prin-
cipal branch of (1, ooy pyy 1,y 1) OF W(z°).

Of course, in the case where £ =1 as well as /», =--- =/, = 1, one can define
the principal branch T, ,, ., 1.1 W(z°) — cllof T p1 poeps L 1) 01 W(29)
in exactly the same manner as above.

Now we are ready to prove Theorem 1. If / =1, then & is the unit ball
B/ in C” with 4 >2. Thus Theorem 1 is nothing but the main theorem of
Alexander [1]. So, we assume that / > 2 in the following part. Accordingly, &
is different from the unit ball and p; > 1 for every i = 2,...,I. Moreover, in the
cases where ;=1 foralli=1,...,lor py=1,¢4=1fori=2,...,1, Theorem 1
is an immediate consequence of Dini-Primicerio [11]. Therefore, in order to
complete the proof, we have to consider the following five cases:

Case (a). pi=1land ;=2 (2<i<I): In this case, & satisfies the condi-
tion (i) in Section 2. On the other hand, by a result of Bell [8], our proper
holomorphic mapping f:& — & extends to a holomorphic mapping defined
on an open neighborhood D of §. Choose a C®-smooth strictly pseudoconvex
boundary point z° of &. Then, since Jr(z°) #0 and f is unbranched at z°
(cf. [8]), one can find an open neighborhood V.. of z° such that f gives rise to a
biholomorphic mapping, say again f, from V.. onto f(V..) with (V.. Nd&) =
f(V.)noé&. Shrinking V.. if necessary, we may assume that O := V.. N d¢& is a
connected open subset of 0& consisting of strictly pseudoconvex boundary points.
Thus, if we define a connected open subset O’ of 08 by setting O’ := f(V,.) N 08,
then O, O’ and f satisfy all the requirements of Theorem B in Section 2;
consequently, f is, in fact, a holomorphic automorphism of &.

Case (b). pi=1and t; =1, {; >2 for some 2 <i,j<I: In this case, we
may rename the indices so that for some integer s with 2 < s < I, one has

(H=---={(=1, while £, >2 for s+1<i<]I.
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Choose a point

o

20 = (2, z7) €06 with [z3] - 2] |20 - [lz7]] # 0.

Then z° is a C“-smooth strictly pseudoconvex boundary point of & and f is
unbranched at z°. Hence there exist a connected open neighborhood V.. of z°
and a connected open neighborhood V.. of w®:= f(z°) such that f gives rise
to a biholomorphic mapping, say again f, from V.. onto V,.. In particular,
w? is also a C®-smooth strictly pseudoconvex boundary point of &. Therefore,
without loss of generality, we may assume that

VeeUVye C{ze CV'? |za| -+ |zs| |zgsa ] - - - [|zr]] # OF.
Consider here the principal branches
T ppoty  W(ED) = € Tty s W(w?) — €V
and a generalized complex ellipsoid & in C defined by
& = {ue Cflun|* + [fugia |7 4+ [Jur |7 < 1},

where u = (uy,sy1,...,U7) € CHts=l ¢t x ... x ¢ =l Then, shrinking
V.. if necessary, we may further assume that V.. C W(z°), Vo C W(w°) and
both the restrictions

I, := H(],pz ..... Dsy Lyoesy 1)|Vz‘7 Ve — HZ”(VZ“) and

Hw" =11 (L, p2yesy pss Lt |Vn<’ : n” g Hn (Vw")
are biholomorphic mappings. Since |TI;(z;)|? = |z:|? for i=2,...,s, we now
have
o(Veo N0E) = TLo(V2) N0€ and Ty (Vipo N 0E) = Mo (Vo) N OE.

Thus, putting 0.0 := I..(V..)N 08, O, = Iyo (Vo) N dé&, we obtain a biholo-
morphic mapping

f = Hwo (e} f o} H:ol . HZ“(VZU) — Hwo(l/wo)

with f (O-U) = O,.. Notice that the connected open subsets 0—0 O, of 0&
are contained in the strictly pseudoconvex part of 6(5‘) and f induces a CR-
dlffeomorphlsm from O.. onto O,.. Also, note that (5 satisfies the condition ()
in Section 2. It then follows from Theorem B that f extends to a holomorphic
automorphism, say again f of &. Thus we have

4.1)  f(Lo(z) = M (f(z)) for all ze &N W ()N £~ (W (w°))

by analytic continuation. Recall here that by Theorem A the holomorphic
automorphism f has the form

Fu) = (H(), ppr ) Agitigisys -7 (@) Arto(r)),

u=(uy,g1,-..,u;) €€ C CHts=l ot x ... x €T =Vl
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(think of u; as column vectors), where H e Aut(B“**~!), y’s are nowhere van-
ishing holomorphic functions on B 1*~! 4;e U(4) and ¢ is a permutation of
{s+1,...,I} satisfying the same conditions as in Theorem A. Now, represent-
ing f = (f1,...,fr) with respect to the given coordinate system z = (z,...,z)
in C"x - xCT=Cl we put

Z/:(le'-azs)a ZN:(ZSJrla--wZI); fl:(ﬁ7'--7f;'>7 ”:<f;‘+17"'aﬁ);

so that z= (z/,z") and f = (f",f"). Putting @ = (z1,a(22),...,(zy)), we
then obtain by (4.1) that

(4.2) N1(2), a(£2(2)), -, Ts(f(2))) = H(#)  and
f”(Z) = (ys+1 (ﬁl)ASJrlZo(Hlb SRR yl(ﬁl)AIZU(I))

for all ze &N W(z°) N f~1(W(w?)). Consequently, it follows from the first
equation in (4.2) that f’(z) does not depend on the variables z” on the non-
empty open subset & N W (z°) N £~ (W (w?)) of &; and hence, f'(z) has the form
f'(z) = f'(z') on & by analytic continuation. Moreover, notice that the set
{z=(z',2") € W(z°);z" = 0} is open dense in C**~! x {0} = C™! where we
have put 0 = 0" for simplicity. Then by the second equation in (4.2) we have
f"(z) =0 for all points ze€ & of the form z = (z/,0). Therefore, if we put

W = {/ e CO N )P + [z 4 2 < 1)
and define £ : &M - ¢htsl by
fHE) = () = f(z',0) for 2/ e &1,

then &M is a generalized complex ellipsoid in C 7! with 4 4+s—1>2,
f M(@@M) =&V, and 78 .68 — &V is a proper holomorphic mapping; so that
/1 has to be a holomorphic automorphism of &/ by Dini-Primicerio [11]. This
combined with the fact (4.2) guarantees that the proper holomorphic mapping
=" f" = (f¥, f") is injective on &; and hence, it is necessarily a holomor-
phic automorphism of &, as desired.

Case (c). p1>land ;22 2<i<I): If 4 =1, in the proof of Case (b)

we replace z°, Tl(y p, . p.1,..1) and & by a point
2% =(2),%3,...,Zz7) e o0& with |Z7][|Z3]] - -- [|Z7 ]| # O,
the principal branch I1(, i . 1): W(Z°) — CV‘, and

& = {ue O fun P + el + - + |7 < 13,

where u = (uy,uz,...,u;) € Cx C? x ... x C" = Cl!. Then, by repeating the
same argument as in Case (b), we see that there exists a holomorphic auto-
morphism

S(u) = (H(ur),y,(ur) Asttg(ay, - -,y (ur) Artigry)
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of & such that
(4.3) I (fi(z)) = H(@#) with @y :=TI;(z;), and
(f2(2), -5 f1(2)) = (o(@1)A2z602), - -, 71 (1) A1Zg(r)

for all ze &N W(Z°) N f~H(W(Ww°)), where w°:= f(2°). Thus fi(z) does not
depend on the variables (22, ...,zr) and so it has the form fi(z) = fi(z;). Here,
observe that the correspondence

@ :(z1,22,...,21) = (21, 422525 - - -, A1Z6(1))

defines an automorphism of & and the proper holomorphic self-mapping ¥ :=
“lo f of & has the form

(4.4) W(z1,22,...,21) = (fi(z1), 22(Ti (21))22, -,y (T (21))z1)

on the non-empty open subset & N W(2°) N f~1(W(Ww°)) of &, since Yoty (U1) =
y;(uy) for i=2,..., 1. Thus we may assume from the beginning that f(z) has
the form on the right-hand side of (4.4) on &N W (z°) N f~'(W(w°)). Under
this assumption, we assert that f can be written in the form

(4.5) f(2) = (fi(z1), 4a(z1)z2y - - -, A1(21)z1) on &,
where 4;’s are nowhere vanishing holomorphic functions on A such that
)u,'(Zl):yi(Hl(Zl)), zZ1eEAN Wl(ff), 2<i<lI.

Indeed, this can be seen as follows. First of all, write f; = (fY,..., £ with
respect to the coordinate system z; = (zll,...,z,"') in C% for i=2,...,1. Being

a holomorphic function on the complete Reinhardt domain &, every component
function f;* can now be expanded uniquely as

0
Z):ZP]((Z];ZQ,...,ZI), 2657
k=0

which converges absolutely and uniformly on compact subsets of &, where
Pi(z1;22,...,27) is a homogeneous polynomial of degree k in (z3,...,z7) =
(z3,...,2]") whose coefficients are all holomorphic functions of z; defined on A.
Then, the fact (4.4) tells us that, for every k # 1, we have Py(z1;z2,...,z1) =0
on & by analytic continuation. Clearly this implies that f can be described as
in (4.5) by using some functions A; defined on A. Moreover, since f is proper,
every /; cannot vanish at any point of A; proving our assertion.

Now, we put
&P = (z1,23) e C%; |21|2p1 + |23 7 1}

and regard this as a complex submanifold of & in the canonical manner. Then
f(&%) = &P by (4.5) and the correspondence

B (z,2) = (@), Aae)z),  (21,2) e 6P,
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gives a proper holomorphic self-mapping of . It then follows from a result of
Dini-Primicerio [11] that f?/ is a holomorphic automorphism of &%/ and it is, in
fact, a linear automorphism of &%/, In particular, f; € Aut(A) and f: 6 — & is
injective by (4.5); consequently, f is a holomorphic automorphism of &.

If /{ > 2, then we have that p; > 1 and 4, >2 forall i=1,...,I. Hence f
is a holomorphic automorphism of & by Lemma 1.

Case (d). p1>1and t;=1, {; =2 for some 2 <i,j<I: As in Case (b)
we may assume that

=1 2<i<s) and ¢4 >2 (s+1<i<I)

for some integer s with 2 < s < [.
If /4 =1, in the proof of Case (b) we replace z° and Il(; ,, ,.1,..1) by a
point

20 =2, .,27) €06 with |Z7]--- 20|20 ] - [127]] # O

and the principal branch T, , 1..1): W(Z°) — C"!. Then, by a small change
of the proof in Case (b), one can see that f is a holomorphic automorphism of &.

If /{ >2, then we consider a holomorphic automorphism ¢(z) = u of C!!
induced by the change of coordinates

u= (u17~~-7”3'71;uS;us+la"'au1) = (Z2a"'7ZS7ZIaZS+17"'aZI)‘
Then the image domain &* = ¢(&) is given by
& = {ue O |2 - Juug [P 4 g7 a7 - [l | < 13

Thus, the proof of showing f € Aut(&) in the case s =2 (resp. s > 3) can be
reduced to that in the Case (c), £ =1 (resp. Case (d), 4 = 1, above).

Cast (e). p1>1, 422 and =1 (2<i<I): In this case, after the
change of coordinates

u= (ula"'aul—lvul) = (227"'721521)a
our & can be represented as
& ={ueCl|w |+ + lur | + ug | < 1}

in the new coordinates (u;,...,u;). Thus, in the case I =2 (resp. I > 3), by the
same argument as in the Case (c), 4 = 1 (resp. Case (d)), we can check that f is
a holomorphic automorphism of &; proving the theorem in Case (e).
Eventually, we have proved that f is necessarily a holomorphic automor-
phism of & in any cases; thereby, completing the proof of Theorem 1. O

4.2. Proof of Theorem 2. It is obvious that the mapping @ written in the
form as in Theorem 2 is a holomorphic automorphism (and hence, proper
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holomorphic self-mapping) of #. Conversly, take an arbitrary proper holo-
morphic self-mapping ® of #. Once it is shown that ® is a holomorphic
automorphism of s, then Theorem 2 is an immediate consequence of our
previous result [16; Theorem 2]. Therefore we have only to prove that @ is
a holomorphic automorphism of #. To this end, write ® = (®y,...,®y) with
respect to the coordinate system (= ({;,...,(y) in CV. Since |m| > 2, we see
that the Reinhardt domain # satisfies the condition that # N {{eC";{; =0}
# @ for each 1 <i<N. Hence every component function ®; extends to a
unique holomorphic function ®; defined on &/ x & (cf. [21; p. 15]). Accord-

ingly, we obtain a holomorphic extension ® := (®y,...,®y) : & x £ — CY of
®. Let us now represent again ® = (f,¢g) and f = (f1,...,f1), 9= (91,---,97)
by coordinates (z,w) = (z1,...,z, wi,...,wy) in Cl’l'x ¢" = CN and denote by

f, g the holomorphic extensions of f, g to &/ x &2, respectively. Since g(z,w)
does not depend on the variables z by Lemma 5, § has the form g(z,w) = g(w).
Moreover, §(&4) C &4, §(0&%) C 061 by Lemma 4 and §(0) ¢ 067 by the
maximum principle for the continuous plurisubharmonic function p?(g(w)) on &1
Thus g(&7) C &1 and g: &F — &1 is a proper holomorphic mapping. Hence,
by Theorem 1 § is a holomorphic automorphism of &Z with §(0) =0; and by
Theorem A it can be written in the form

(4.6) gw) = (Biwe(ty, -+, Byweyy),  w= (w1,...,ws) € 81,

where B; € U(mj) and 7 is a permutation of {1,...,J} such that 7(j) = ¢ if and
only if (m;,q;) = (ms, qu).

Now we wish to prove that @ is, in fact, a holomorphic automorphism of
. To this end, let us introduce a holomorphic automorphism ¥ of # defined
by W(z,w):= (z,§ ' (w)). Then, replacing ® by ¥ o® if necessary, we may
assume that ® has the form ®(z,w) = (f(z,w),w) on #. Therefore, if we set

&y ={zeCVlpP(2) < p(w)} and f,(z) = f(z,w), z € &y,

for an arbitrarily given point w e £J\{0}, then it is obvious that f, induces a
proper holomorphic self-mapping of &,. On the other hand, putting

= 1/(ptw) (1 <i<),
we have a biholomorphic mapping A : &, — & defined by
Aiz) = (rz1,...,rizr), z=1(21,...,21) € .

Recall that &7 is the unit ball Bl or a generalized complex ellipsoid in old
with [/|>2, Rap;>1 (1 <i<]I) according to / =1 or I >2. Then, being
a proper holomorphic self-mapping of &/, the composite mapping A o f, o A
&7 — &' must be a holomorphic automorphism of &/ by Alexander [1] or
Theorem 1. In particular, we see that f, : &, — &, is injective for any we
6I\{0}; accordingly, ®(z,w) = (fi.(z),w) itself is injective on #. Therefore
we conclude that @ is actually a holomorphic automorphism of J#, as desired.

U
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4.3. Proof of Theorem 3. Clearly, the mapping ® having the form as
in Theorem 3 is a holomorphic automorphism (and hence, proper holomorphic
self-mapping) of #. Therefore, taking an arbitrary proper holomorphic self-
mapping ® of #, we would like to prove that ® can be written in the form as
in Theorem 3. For this purpose, we begin with noting the following: Since
lm| > 2, by the same reasoning as in the proof of Theorem 2, every holomorphic
function h(C) on # extends uniquely to a holomorphic function h(C) on A x &1,
where A is the unit disc in C. Since ¢; >1 (1<j</J), Ax &} is a geomet-
rically convex domain in CV; and hence, it is a pseudoconvex domaln Thus
A x &1 is just the envelope of holomorphy of #; accordingly, \h( )] <K on
A x (“"f if [A({)] <K on # (cf. [21; p. 93]). In particular, our proper holo-
morphic mapping ® = (®y,...,dOy) = (f,g) extends to a unique holomorphic
mapping @ := (®,...,dy) = (f,§) from A x &7 to CV with |(i)](C)| <1 on
A x &% for every j=1,...,N. Moreover, since § has the form §(z,w) = g(w)
by Lemma 35, in exactly the same way as in the proof of Theorem 2, one can
prove that g is a holomorphic automorphism of &, of the form (4.6); and so @
is a holomorphic self-mapping of A x &, with ®(0,0) = (0,0), as seen by taking
the limit (z,w) — (0,0) through #. In particular, we have f(0,0) =0. Any-
way, in order to prove Theorem 3, we may again assume that @ has the form
DO(z,w) = (f(z,w),w) on H#.

Under the situation above, the only thing which has to be proved now is
that f(z,w) can be written in the form f(z,w) = Az on #, where 4 € C with
|4 = 1. To verify this, we need a few preparation. First of all, since our
®(z,w) = (f(z,w),w) is holomorphic on some open neighborhood of .#\{0} by
Lemma 3, one can choose a small ¢ > 0 in such a way that ® is holomorphic on
the Reinhardt domain I, defined by

L= {(z,w) eCx CM": |zl < 1461 —e<pi(w) <1+e} D %,.

Since |m| =2, T, also satisfies the condition that T, N{(eC;{;=0}#0
for each 1 <i< N; and hence, ® extends to a unique holomorph1c mappmg
®: 0, — C", where 0, is the bounded Reinhardt domain in C x C" given by

0,={(z,w) e Cx CM:|z| < 142 pI(w) <14} DAX &l

Therefore we may assume that our extension ®(z,w) = (f(z,w),w) is holomor-
phic on O,. Then, being a holomorph1c function on the Reinhardt domain O,
containing the origin 0 = (0,0) in C x chl = ¢V, f can be expanded uniquely as
a power series

P ()
@7 Fem=fO =3 AL A= am o

which converges absolutely and uniformly on compact subsets of O, (in partic-
ular, on A x &J), where the summation is taken over all v= (v,...,vy) € VA
with vy, ..., vy > 0.
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Now, recall that ®(%,) C %, by Lemma 4; and so ®(%,) C %,. Accord-
ingly

1/ (z,w)|¥ = p?(w) whenever |z|¥ = p?(w) < I;

and so
(4.8) | ((p?0) 2 w1 exp(V=101), ..., wy exp(v/=160,))” = (p*(w))'"”
for any (z,w) e %, and 0; = (0].1, . ..,HJ'.”’) e R™, where we have put

wj exp(V=16;) = (w} exp(vV'=10}),...,w" exp(V=16}"))

for j=1,...,J. Notice that this equation (4.8) holds also for any point w € C"
with p?(w) < 1, because one can always find a point z € C such that (z,w) € %.
Therefore, writting A, = A, for v = (a,u) € Z x ZI" in (4.7), we obtain that

(P17 =37 Aagdp(pt(w) PP w7 |

a,b,o

|m|

which converges absolutely and uniformly on &7, where

m>

o= (o,...,0y) with oj = (o;]!,...,ocm’),

m;

W)= (W) () for 1< /<,

and the summation is taken over all 0 <a,beZ, o= (x,...,0) e Z" with
oc/k >0 (1<j<J,1<k<m;). Hence, considering the special case where

w=(wi,wy,...,wy) = (wy,0,...,0) with w; = (£,0,...,0), £€C;
o= (ar,00,...,00) = (21,0,...,0) with oy = (4,0,...,0), LeZ

and writting A,, = c,;, we obtain that, for any & e C with |¢] <1,

49) [P =D eIl + Y 2 Re(endion) €] 77 + |ero] 11707

Ax>1 n=>1
+ > canCho P + > Carlpp |,
a+b=k>3 A=1,a+b=k>2
since cgo = f(0) =0. Thus
(4.10) lim (the right-hand side of (4.9)) /|07 = 1.

Note that if we define the holomorphic function /(z,&) by
h(z,&) = f(2,,0,...,0) on {(z,&) e C%|z| < 1 +&]¢ < 1 +¢},

then the Taylor expansion of A(z,&) is given by h(z,&) = Za’ ﬂcaiz"éﬂ', which
converges absolutely and uniformly on A%, Moreover it should be remarked
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that, since |h(z,&)| <1 on A2, Gutzmer’s inequality assures us that

o0 [ee}
@11 D el <1, 0<rp<1; and so > eyt <1

a,2=0 a, A=0
Now we assert that
(4.12) ¢, =0 for all (a,2)# (1,0), and
h(z,&) = ez with |eyo| = |0£(0)/0z] = 1.

For the verification of this, we have two cases to consider:

1) q1/p ¢ N: Notice that 24 # 2q;/p and ¢q;/p + 2u # 2q; /p for any A, ue N
in this case. Hence, it follows from (4.9) and (4.10) that |cjo|* =1. This
combined with the inequality (4.11) yields at once that ¢,; =0 for all (a, 1) #
(1,0) and so Ah(z,&) = c¢joz with |cjo| = 1, as asserted.

2) q1/peN: 1If q1/(2p) ¢ N, then the term of |£]*"/? does not appear in
the second summation on the right-hand side of (4.9). Hence, by (4.9) and (4.10)
we obtain that |cyo|* + \Cozo|2 =1 with 4, = ¢q1/p; and so ¢, =0 for all (a, 1) #
(1,0), (0, ,) by (4.11). A

If q1/(2p) €N, then we put u, =q/(2p). Note that the terms of |¢|*
(A<pu,) do not appear in the second summation, since ¢;/p+2u=>q\/p+2
for any g eN. Then |co;|* =0 for all 2 < g, by (4.9) and (4.10); consequently,
2 Re(clﬂnéoﬂn)\ﬂqu/p =0 and the second summation does not contain the term of
|£]*2/7 " Thus, by the same reasoning as above, we obtain that |cy|® + |co, |* = 1
and c¢,; =0 for all (a,4) # (1,0),(0,4,). Therefore, in any cases, & can be
written in the form

h(Z7 f) = C10z + Co,{(}fi" with \c10|2 —+ |c0).(, 2 1.

Recall that |cioz + coz, ¢™| = |h(z,E)| < 1 for any (z,&) e A% Clearly this can
only happen when |cio| + |cos,| < 1; and so |cio||cos,| =0. Here assume that
Clo = 0. Then

(i)(z, wll,O7 5 0)= (co/zu(wll)i”, w%,O, .. 0)
does not depend on the variables z. But, this is absurd, because if we put
AP = {(z,w)) e CH |2 < |wl P! < 1},

which is regarded as a complex submanifold of »# in the canonical manner, and
consider the correspondence o (z,w}) — é)(z, wi,0,...,0), then @ induces
a proper holomorphic self-mapping of #. Therefore cp;, =0, |cjo] =1 and
h(z,&) = c1oz.  As a result, we have verified our assertion (4.12) in any cases.

Finally, we shall complete the proof by showing that f(z,w) has the form
required in the theorem. For this purpose, recall that @ is a holomorphic self-
mapping of the bounded Reinhardt domain A x & with ®(0,0) = (0,0). In
addition to this, we have

175(0,0)] = 10/(0,0)/2z] = [e1o] = 1
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by (4.12). Consequently, by well-known theorems of H. Cartan, ® is a holomor-
phic automorphism of A x & and it is, in fact, linear (cf. [14; pp. 268-270]).
Moreover, by considering the holomorphic automorphism A : =¥ 'o® of
Ax &1, where ¥ is a holomorphic automorphism of A x & defined by
Y(z,w) := (c10z,w), it is easily seen that A is a linear automorphism of

A x &% having the form
A = +M" "), (=)= (zw)eAx &L,

(think of { as column vectors), where M is a certain 1 x |m| matrix. Thus,
denoting by A" the n-th iteration of A, we have

A =" +nMC" ("), (eAx &L n=12,....

Hence M has to be the zero matrix, that is, A is the identity transformation of
A x &%, since {A"},~, is contained in the isotropy subgroup Kj of Aut(A x &)
at the origin 0 = (0,0) e A x &, and K, is compact, as is well-known.
Eventually, we have shown that ® has the form required in Theorem 3;
thereby completing the proof. O

4.4. Proof of Theorem 4. By routine computations we can check that
the transformation ® appearing in Theorem 4 induces a proper holomorphic
self-mapping of J# in any cases (cf. [13; p. 212]). Conversly, we take an
arbitrary proper holomorphic mapping ® : # — # and write ® = (f,g) with
respect to the coordinate system (z,w) in C’'x C. Then g does not depend
on the variables z by Lemma 5; and so it has the form g(z,w) = g(w). Since
g is a holomorphic function defined on some open neighborhood of A\{0} with
g(0A) C A by Lemma 4 and since g is bounded on A", g now extends to a
holomorphic function § defined on some open neighborhood of A with G(A) C A.
Moreover, §(0) ¢ A by the maximum principle. Accordingly, § gives rise to a
proper holomorphic self-mapping of A and it is a finite Blaschke product. Since
g =g on A", it is easily checked that §(w,) = 0 only when w, =0. Thus § must
be of the form

g(w) = Bw* for some ke N, Be C with |B| = 1.

Therefore, taking the composite mapping ¥ o ®@ instead of ® if necessary, where
WV is the automorphism of # defined by ¥(z,w) = (z, B~'w), we may assume
that ® has the form ®(z,w) = (f(z,w),w*) on #. We have two cases to
consider:

Case I. I =1: In this case, putting r = ¢/p, we have
AT ={(z,w) € €1 x G|z < w|* < 1}
/ . 2 2r _ 1,r
={(z,w) e C" x G ||z]|” < w|”" < 1} = A,

Taking this into account, we shall divide the proof into two subcases as follows:
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Case (I.1). reN: We have a biholomorphic mapping A : # — B/ x A*
defined by

Alz,w) = (z/w",w), (z,w)e H.
Thus the composite mapping
¥:=AodoA': BT x A" — B x A¥

gives a proper holomorphic self-mapping of B x A*. Recall that /4 > 2.
Then W can be written in the form

(& n) = (H(E),Gn), (&n)eB" x A,

by making use of some proper holomorphic mappings H : B’ — B/ and
G: A" — A" (cf. [21; p. 77])). Therefore, by the main theorem of Alexander
[1], H is a holomorphic automorphism of B and ® can be described as

O(z,w) = W H(z/w"), wh),  (z,w) € #;

which proves our assertion in (I.1) of Theorem 4.

Case (I1.2). r¢N: We set
& ={zeCli|z|I* < W*Y, fulz) = flz,w), z €&y,

for an arbitrarily given point we A*. Then f,, induces a proper holomorphic
mapping from &, onto &,«. On the other hand, we have a biholomorphic
mapping A, : &, — B/ defined by

Ay(z)=z/w', z€é&,,

where w” stands for the branch of the power function w” such that 1” = 1 when
we consider it as a function of w. Hence the composite mapping

Y, :=A0f,o0 A‘;l : B — B

is a proper holomorphic self-mapping of B/ with 7 > 2; consequently, it follows
again from the main theorem of Alexander [1] that ¥, is a holomorphic
automorphism of B”'. Moreover, since W, depends holomorphically on w,
Y, does not depend on the choice of w by the proof of [2; Theorem 2].
Therefore f,, can be written in the form

fu@) =wFH(z/W), zeéb,,

by using some element H € Aut(B”). Once it is shown that H(0) = 0, H must
be a unitary transformation, i.e., H has the form H(¢) = A¢ on BY with some
AeU(4). Then

flz,w) = filz) =w* D4z on .

Moreover, since f(z,w) is a single-valued holomorphic function on #, it is easily
seen that (k — 1)r € Z; proving our assertion in (I.2) of Theorem 4. Therefore
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we have only to verify that H(0) =0. To this end, we assume that H(0) # 0.
Then, since

1(0,exp(V—=10)w,) = exp(V—1kr@)w* H(0), —n <0<,
where w, is a fixed real number with 0 < w, < 1, and

01}{11 £(0,exp(vV=10)w,) = £(0, —w,) :101?1 £(0,exp(v=10)w,),

it follows at once that kre N. Moreover, choose a point z, € &, z, # 0, in
such a way that H(z,/w") #0 for all 1/2 <|w| <1 and consider the function
f(z0,exp(v/—10)w,) of 0 € (—n, 7r), where w, is a real number such that (z,,w,) €
%;l'l and 1/2 <w, < 1. Then, noting the facts that kr e N and H e Aut(B"),
we obtain that

zo/{exp(V—1ar)w!} = z,/{exp(—V—1mr)w’}

by taking the limit § — +7 as above; so that r € N. But, this contradicts our
assumption r ¢ N. Thus H(0) =0 and ® has to be of the form required in (I.2)
of Theorem 4.

Casg II. I >2: In this case, if we set
v ={zeCVipr(z) < W™}, fu(2) = f(z,w), z € &,

for an arbitrarily given point w e A", then f,, induces a proper holomorphic
mapping from &, onto &,«. On the other hand, we have a biholomorphic
mapping A, : &, — &7 defined by

A(2) = (21 /WP, .z /WP, 2= (z1,...,z1) € 6.
Thus the composite mapping
¥, =AgofyoAl: &8 — &7

is a proper holomorphic self-mapping of the generalized complex ellipsoid &7
with 1 < p; e R (1 <i <I); consequently, ¥, is a holomorphic automorphism of
&7 by Theorem 1. Moreover, by the same reasoning as in Case (1.2), ¥, does
not depend on w. Therefore, according to Theorem A, we shall consider two
cases where p; =1 and p; # 1 separately.

Consider first the case where p; = 1. Then, applying Theorem A, Case I
to the holomorphic automorphism ¥ := ¥, of &7, we can see that f, has the
form

(4.13) fu(2) = (WH (z) /w), w(k’l)q/pzyz(zl/wq)AzzaQ), ce
w(k_l)"/”’y,(z1/wq)AIZg(I)),

since py(;) = pi (2<i<I), where H € Aut(B"), A;e U(¢), o is a permutation
of {2,...,1} and y;’s are nowhere vanishing holomorphic functions on B” given
as in Theorem A, Case I. Hence we obtain the following:
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Case (IL1). py =1, geN: In this case, wkH(z;/w?) and y;(z;/w¥) are
single-valued holomorphic functions on # as well as f(z,w). Therefore we have
(k—1)q/pieZ for all i=2,...,I; proving our assertion (II.1) of Theorem 4.

Case (IL.2). p; =1, g¢ N: In this case, we put
AP = {(z1,w) e C x C;||z1||* < w* < 1}

and regard this as a complex submanifold of /# in the canonical manner. Then
O(#) = #P by (4.13) and the restriction ®|#12 : #2 — #P gives a proper
holomorphic mapping. Consequently, by the proof of (I.2) above, H € Aut(B")
appearing in (4.13) has to satisfy the condition H(0) =0 and it reduces to a
unitary transformation H(¢) = A¢ on B given by some 4 € U(#). Notice that
every function ;(¢) =1 on B” in this case. Thus we conclude that f,, has the
form

fu(z) = (W(k—l)qAZl7 W(k_l>q/pzA2Zg(2), e W<k_l)q/plA]Zg([)>

with (k — 1)q/p; € Z for all i = 1,...,I; thereby, @ has the form required in (II.2)
of Theorem 4.

Consider next the case where p; # 1. Then, applying Theorem A, Case II
to the holomorphic automorphism W, we can see that f,, has the form

fulz) = (W(kfl)q/mAlzam7 . _7W(k*1)q/mA]Zg<I)),

since p,(j = p; for every i =1,...,1, where 4; € U(/) and ¢ is a permutation of
{1,...,I} as in Theorem A, Case II. Moreover, since f(z,w) is a single-valued
holomorphic function on #, it is obvious that (k — l)g/p;e Z for alli=1,...,1I,
which proves our assersion (I1.3) of Theorem 4.

Finally, by recalling our previous results [16], [17] on the structure of
holomorphic automorphism groups of generalized Hartogs triangles, it is easy
to see that the proper holomorphic self-mapping ® of # appearing in Theorem 4
is a holomorphic automorphism of # if and only if Kk =1 in any cases.

Therefore the proof of Theorem 4 is now completed. O
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