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ON PROPER HOLOMORPHIC SELF-MAPPINGS

OF GENERALIZED COMPLEX ELLIPSOIDS AND

GENERALIZED HARTOGS TRIANGLES

Akio Kodama

Abstract

In this paper, we study proper holomorphic self-mappings of generalized complex

ellipsoids and generalized Hartogs triangles. By making use of our previous result on

the holomorphic automorphism group of a generalized complex ellipsoid and Monti-

Morbidelli’s result on the extendability of a local CR-di¤eomorphism between open

subsets contained in the strictly pseudoconvex part of the boundary of a generalized

complex ellipsoid, we obtain natural generalizations of some results due to Landucci,

Chen-Xu and Zapalowski.

1. Introduction and results

Let D1 and D2 be two domains in Cn. A continuous mapping f : D1 ! D2

is said to be proper if f �1ðKÞ is compact in D1 for every compact subset K of
D2. Proper holomorphic mappings between bounded domains have been studied
from various points of view. (See, for instance, Bedford [5], Jarnicki-Pflug [13].)
In connection with this, there is a fundamental question as follows:

Question. Let D be a bounded domain in Cn with n > 1. Then, is it true
that every proper holomorphic mapping f : D ! D must be biholomorphic?

The answer to this question is negative, in general, without any other assumptions
on the domain D or on the mapping f . However, there already exist articles
solving this question a‰rmatively.

In this paper, we would like to study this question in the case where D is a
generalized complex ellipsoid or a generalized Hartogs triangle. In order to state
our precise results, let us start with defining our generalized complex ellipsoids
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and generalized Hartogs triangles. For any positive integers li, mj and any
positive real numbers pi, qj with 1a ia I , 1a ja J, we set

l ¼ ðl1; . . . ; lI Þ; m ¼ ðm1; . . . ;mJÞ; p ¼ ðp1; . . . ; pI Þ; q ¼ ðq1; . . . ; qJÞ

and define a generalized complex ellipsoid E
p
l and a generalized Hartogs triangle

H
p;q
l;m by

E
p
l ¼ z A Cjlj;

XI
i¼1

kzik2pi < 1

( )
and

H
p;q
l;m ¼ ðz;wÞ A CN ;

XI
i¼1

kzik2pi <
XJ
j¼1

kwjk2qj < 1

( )
;

respectively, where

z ¼ ðz1; . . . ; zI Þ A Cl1 � � � � � ClI ¼ Cjlj; jlj ¼ l1 þ � � � þ lI ;

w ¼ ðw1; . . . ;wJÞ A Cm1 � � � � � CmJ ¼ Cjmj; jmj ¼ m1 þ � � � þmJ ;

and CN ¼ Cjlj � Cjmj; N ¼ jlj þ jmj:

For convenience and no loss of generality, in this paper we always assume that

p2; . . . ; pI 0 1; q2; . . . ; qJ 0 1

if I b 2 or Jb 2. Hence, if I ¼ 1, then E
p
l ¼ Bl1 , the unit ball in Cl1 , whether

p1 ¼ 1 or not; and if I b 2, then E
p
l is di¤erent from the unit ball Bjlj in Cjlj.

In general, both the domains E
p
l and H

p;q
l;m are not geometrically convex and

their boundaries are not smooth. Notice that qH
p;q
l;m contains the origin 0 of

CN .
Let us now return to our question above in the case where D is a genera-

lized complex ellipsoid or a generalized Hartogs triangle. Then we have already
known the following: If all the exponents pi are positive integers, then E

p
l is a

bounded pseudoconvex domain with real-analytic boundary. Hence, by a direct
consequence of Bedford-Bell [6], every proper holomorphic self-mapping of E

p
l

is a biholomorphic mapping. Independently, Landucci [18] studied the structure
of proper holomorphic mappings between generalized complex ellipsoids E

p
l and

E
p 0

l 0 with li; l
0
i ¼ 1, pi; p

0
i A N ð1a ia IÞ, and proved that every proper holo-

morphic self-mapping of such a generalized complex ellipsoid E
p
l must be a

biholomorphic mapping. If some of pi’s are not integers, then the boundary
of Ep

l is no longer real-analytic. However, as is shown by Dini-Primicerio [11],
even in such a case the same conclusion holds for E

p
l , provided that all the

li’s are equal to 1. On the other hand, for the generalized Hartogs triangles,
Landucci also studied in [19] the structure of proper holomorphic mappings

between generalized Hartogs triangles H
p;q
l;m and H

p 0;q 0

l 0;m 0 with li; l
0
i ¼ 1, pi; p

0
i A N
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ð1a ia IÞ and m;m 0 ¼ 1, q; q 0 A N. In particular, he found the existence of
a generalized Hartogs triangle H

p;q
l;m admitting a proper non-biholomorphic

self-mapping. Landucci’s result was later extended by Chen-Xu [9], [10] and
Zapalowski [22] to the class of generalized Hartogs triangles Hp;q

l;m with li, mj ¼ 1,
0 < pi, qj A R for all i, j and J > 1.

In view of these results, it would be naturally expected that the same
conclusion as in the case where li, mj ¼ 1 for all i, j is also valid for our
generalized complex ellipsoids E

p
l with li b 1 or generalized Hartogs triangles

H
p;q
l;m with li, mj b 1. This cannot be achieved in full generality at this moment.

However, under the assumption that all the exponents pi and qj are greater than
or equal to 1, we can give an a‰rmative answer to this. Before stating our
results, observe that the boundary of Ep

l is C2-smooth if and only if pi b 1 for all
i ¼ 1; . . . ; I . Therefore, in connection with our question, it would be the class of
generalized complex ellipsoids E

p
l with pi b 1 for all i ¼ 1; . . . ; I that we should

study first.
The main purpose of this paper is to establish the following theorems. (For

the explicit descriptions of holomorphic automorphisms of E
p
l , see Section 2.)

Theorem 1. Let E
p
l be a generalized complex ellipsoid in Cjlj with jljb 2.

Assume that 1a pi A R for all i ¼ 1; . . . ; I . Then every proper holomorphic map-
ping f : Ep

l ! E
p
l is necessarily a holomorphic automorphism of E

p
l .

It should be emphasized that if 1a pi A R for all i, then E
p
l is a geomet-

rically convex bounded domain with C 2-smooth (but not C3-smooth) boundary
qE

p
l , in general, and our E

p
l in Theorem 1 admits the case where some of li’s are

greater than 1. Therefore our theorem is not an immediate consequence of any
other papers.

The structure of proper holomorphic self-mappings of Hp;q
l;m with jlj jmj ¼ 1,

that is, Hp;q
l;m � C2, is already discussed in [19], [22], in detail. So, in this paper,

we would like to study our question in the case where D is a generalized Hartogs
triangle H

p;q
l;m with jlj jmj > 1. Then, our Theorem 1 can be applied to prove the

following theorems:

Theorem 2. Let H
p;q
l;m be a generalized Hartogs triangle in Cjlj � Cjmj with

jljb 2, jmjb 2. Assume that 1a pi, qj A R for all i ¼ 1; . . . ; I , j ¼ 1; . . . ; J.
Then a holomorphic mapping F : Hp;q

l;m ! H
p;q
l;m is proper if and only if F can be

written in the form

F : ðz1; . . . ; zI ;w1; . . . ;wJÞ 7! ð~zz1; . . . ; ~zzI ; ~ww1; . . . ; ~wwJÞ;
~zzi ¼ AizsðiÞ ð1a ia IÞ; ~wwj ¼ Bjwtð jÞ ð1a ja JÞ

(think of zi, wj as column vectors), where Ai A UðliÞ, Bj A UðmjÞ and s, t are
permutations of f1; . . . ; Ig, f1; . . . ; Jg respectively, satisfying the condition: sðiÞ ¼ s,
tð jÞ ¼ t can only happen when ðli; piÞ ¼ ðls; psÞ, ðmj; qjÞ ¼ ðmt; qtÞ.

In particular, F is a holomorphic automorphism of H
p;q
l;m .
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Theorem 3. Let H
p;q
l;m be a generalized Hartogs triangle in Cjlj � Cjmj with

jlj ¼ 1, jmjb 2. Assume that 1a qj A R for all j ¼ 1; . . . ; J. Then a holomor-
phic mapping F : Hp;q

l;m ! H
p;q
l;m is proper if and only if F can be written in the

form

F : ðz;w1; . . . ;wJÞ 7! ð~zz; ~ww1; . . . ; ~wwJÞ;
~zz ¼ Az; ~wwj ¼ Bjwtð jÞ ð1a ja JÞ;

where A A C with jAj ¼ 1, Bj A UðmjÞ and t is a permutation of f1; . . . ; Jg satisfy-
ing the condition: tð jÞ ¼ t can only happen when ðmj; qjÞ ¼ ðmt; qtÞ.

In particular, F is a holomorphic automorphism of H
p;q
l;m .

Theorem 4. Let H
p;q
l;m be a generalized Hartogs triangle in Cjlj � Cjmj with

jljb 2, jmj ¼ 1. Assume that 1a pi A R for all i ¼ 1; . . . ; I . Then a holomor-
phic mapping F : Hp;q

l;m ! H
p;q
l;m is proper if and only if F is a transformation

F : ðz1; . . . ; zI ;wÞ 7! ð~zz1; . . . ; ~zzI ; ~wwÞ
of the following form:

Case I. I ¼ 1.
(I.1) q=p A N: In this case, putting r ¼ q=p, we have

~zz1 ¼ wkrHðz1=wrÞ; ~ww ¼ Bwk;

where k A N, H A AutðBl1Þ and B A C with jBj ¼ 1.
(I.2) q=p B N: In this case, putting r ¼ q=p, we have

~zz1 ¼ wðk�1ÞrAz1; ~ww ¼ Bwk;

where k A N, A A Uðl1Þ, ðk � 1Þr A Z and B A C with jBj ¼ 1.

Case II. I b 2.
(II.1) p1 ¼ 1, q A N: In this case, we have

~zz1 ¼ wkqHðz1=wqÞ; ~zzi ¼ wðk�1Þq=pigiðz1=wqÞAizsðiÞ ð2a ia IÞ; ~ww ¼ Bwk;

where
(1) H A AutðBl1Þ;
(2) gi’s are nowhere vanishing holomorphic functions on Bl1 defined by

giðz1Þ ¼
1� kak2

ð1� hz1; aiÞ2

 !1=2pi
; a ¼ H�1ðoÞ A Bl1 ;

where o A Bl1 is the origin of Cl1 ;
(3) k A N, Ai A UðliÞ, ðk � 1Þq=pi A Z ð2a ia IÞ and B A C with jBj ¼ 1;
(4) s is a permutation of f2; . . . ; Ig satisfying the following: sðiÞ ¼ s can only

happen when ðli; piÞ ¼ ðls; psÞ.
(II.2) p1 ¼ 1, q B N: In this case, we have

~zz1 ¼ wðk�1ÞqAz1; ~zzi ¼ wðk�1Þq=piAizsðiÞ ð2a ia IÞ; ~ww ¼ Bwk;
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where k A N, A A Uðl1Þ, ðk � 1Þq A Z, Ai A UðliÞ, ðk � 1Þq=pi A Z ð2a ia IÞ,
B A C with jBj ¼ 1, and s is a permutation of f2; . . . ; Ig satisfying the condition:
sðiÞ ¼ s can only happen when ðli; piÞ ¼ ðls; psÞ.

(II.3) p1 0 1: In this case, we have

~zzi ¼ wðk�1Þq=piAizsðiÞ ð1a ia IÞ; ~ww ¼ Bwk;

where k A N, Ai A UðliÞ, ðk � 1Þq=pi A Z ð1a ia IÞ, B A C with jBj ¼ 1, and s is
a permutation of f1; . . . ; Ig satisfying the condition: sðiÞ ¼ s can only happen when
ðli; piÞ ¼ ðls; psÞ.

In particular, F is a holomorphic automorphism of H
p;q
l;m if and only if k ¼ 1

in any cases.

Considering the general case where li, mj b 1 in this paper, we obtain natural
generalizations of some results due to Landucci [18], [19], Chen-Xu [9], [10] and
Zapalowski [22]. Here it should be remarked that some of their techniques used
in [9], [10], [18], [19] and [22] are not applicable to our case where li b 1 or
mj b 1. In fact, for instance, there is no several-variable analogue of the func-
tion l 7! la ðl A C�, 0 < a A RÞ that plays crucial roles in their papers.

Finally, we would like to point out the following: Let Hp;q
l;m be a generalized

Hartogs triangle in C� Cjmj with m1 ¼ � � � ¼ mJ ¼ 1 and Jb 2. Then, accord-
ing to [22; Theorem 3, (b)], one obtains the following result which contradicts
our Theorem 3: A holomorphic mapping F : Hp;q

l;m ! H
p;q
l;m is proper if and only

if F has the form

Fðz;wÞ ¼ ðzzk; hðwÞÞ; ðz;wÞ A H
p;q
l;m ;ðyÞ

where z A C with jzj ¼ 1, k A N and h : Eq
m ! Eq

m is a proper holomorphic mapping
such that hð0Þ ¼ 0. In particular, there are non-trivial proper holomorphic self-
mappings in such a H

p;q
l;m . But, this is obviously incorrect. In fact, consider, for

instance, the generalized Hartogs triangle H :¼ H
p;q
l;m and the holomorphic

mapping F : H ! H defined by

H ¼ fðz;wÞ A C� C2; jzj < kwk2 < 1g; Fðz;wÞ ¼ ðz2;wÞ; ðz;wÞ A H;

that is, p ¼ 1=2, q ¼ ð1; 1Þ, z ¼ 1, k ¼ 2 and h ¼ id, the identity mapping, in ðyÞ.
Then F is holomorphic on C3 ð� HÞ and, for the boundary point ðzo;woÞ A
qH given by zo ¼ 1=2, wo ¼ ð1=

ffiffiffi
2

p
; 0Þ, we have Fðzo;woÞ ¼ ð1=4; 1=

ffiffiffi
2

p
; 0Þ A H.

Consequently, F is not proper, though it satisfies all the requirements of ðyÞ.
From this, the assertion in [22; Corollary 8] may also be corrected.

Our proof of Theorem 1 above is based on our previous result on the
structure of holomorphic automorphism groups of generalized complex ellipsoids
[15] and an extension theorem of local CR-di¤eomorphisms defined near a Co-
smooth strictly pseudoconvex boundary point of a generalized complex ellipsoid
due to Monti-Morbidelli [20]. Once Theorem 1 is proved, we can apply the
same method used in our previous paper [16] to prove Theorems 2, 3 and 4.
After some preparations in Sections 2 and 3, we prove our theorems in Section 4.
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Notation. Throughout this paper we use the following notation: For
given points z ¼ ðz1; . . . ; zI Þ A Cjlj, w ¼ ðw1; . . . ;wJÞ A Cjmj and p ¼ ðp1; . . . ; pI Þ,
q ¼ ðq1; . . . ; qJÞ as above, we set

zi ¼ ðz1i ; . . . ; z
li
i Þ ð1a ia IÞ; wj ¼ ðw1

j ; . . . ;w
mj

j Þ ð1a ja JÞ;

z ¼ ðz1; . . . ; zNÞ ¼ ðz;wÞ A Cjlj � Cjmj ¼ CN ;

z 0 ¼ ðz1; . . . ; zjljÞ ¼ z; z 00 ¼ ðzjljþ1; . . . ; zNÞ ¼ w and

rpðzÞ ¼
XI
i¼1

kzik2pi ; rqðwÞ ¼
XJ
j¼1

kwjk2qj :

As usual, we write

za ¼ za11 � � � zaNN for z ¼ ðz1; . . . ; zNÞ A CN ; a ¼ ða1; . . . ; aNÞ A ZN :

For a given n A N, we denote by UðnÞ the unitary group of degree n, and for
a set S � Cn, qS (resp. S) stands for the boundary (resp. closure) of S. We
denote by h� ; �i the standard Hermitian inner product on Cn, that is,

hz; hi ¼
Xn
j¼1

zjhj for z ¼ ðz1; . . . ; znÞ; h ¼ ðh1; . . . ; hnÞ A Cn:

Let W be a domain in Cn. Then we denote by AutðWÞ the group of all
holomorphic automorphisms of W equipped with the compact-open topology.
For a given holomorphic mapping F : W ! Cn, we denote by JF ðzÞ the Jacobian
determinant of F at z A W and put VF ¼ fz A W ; JF ðzÞ ¼ 0g.

2. Some known facts

In this section, for later purpose, we collect some known facts on the
holomorphic automorphisms of generalized complex ellipsoids E

p
l in Cjlj ¼

Cl1 � � � � � ClI .
If I ¼ 1, then E

p
l is the unit ball Bl1 in Cl1 and the structure of the

holomorphic automorphism group AutðBl1Þ of Bl1 is well-known. And, if I b 2
(hence, pi 0 1 for all i ¼ 2; . . . ; I by our assumption), we have the following:

Theorem A (Kodama [15]). The holomorphic automorphism group AutðEp
l Þ

consists of all transformations

F : ðz1; . . . ; zI Þ 7! ð~zz1; . . . ; ~zzI Þ
of the following form:
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Case I. p1 ¼ 1. In this case, we have

~zz1 ¼ Hðz1Þ; ~zzi ¼ giðz1ÞAizsðiÞ ð2a ia IÞ;
(think of zi as column vectors), where

(1) H A AutðBl1Þ;
(2) gi’s are nowhere vanishing holomorphic functions on Bl1 defined by

giðz1Þ ¼
1� kak2

ð1� hz1; aiÞ2

 !1=2pi
; a ¼ H�1ðoÞ A Bl1 ;

where o A Bl1 is the origin of Cl1 ;
(3) Ai A UðliÞ, the unitary group of degree li;
(4) s is a permutation of f2; . . . ; Ig satisfying the following: sðiÞ ¼ s can only

happen when ðli; piÞ ¼ ðls; psÞ.

Case II. p1 0 1. In this case, we have

~zzi ¼ AizsðiÞ ð1a ia IÞ;
where Ai A UðliÞ and s is a permutation of f1; . . . ; Ig satisfying the condition:
sðiÞ ¼ s can only happen when ðli; piÞ ¼ ðls; psÞ.

Let E
p
l be a generalized complex ellipsoid in Cjlj ¼ Cl1 � � � � � ClI with

I b 2 and assume that the exponents pi and the integers li satisfy the condition

p1 ¼ 1; l1 b 1 and R C pi > 1; li b 2 ð2a ia IÞ:ðzÞ
Define here a subset S of qE

p
l by

S ¼ fðz1; z2; . . . ; zI Þ A qE
p
l ; kz2k � � � kzIk0 0g:

By routine computations, it then follows that S is just the set consisting of
all Co-smooth strictly pseudoconvex boundary points of E

p
l . Note that S is a

simply connected, connected real hypersurface in Cjlj, since li b 2 for all i ¼
2; . . . ; I . For this Co-smooth strictly pseudoconvex real hypersurface S, we
have the following:

Theorem B (Monti-Morbidelli [20]). Let E
p
l be a generalized complex

ellipsoid in Cjlj satisfying the condition ðzÞ. Let O, O 0 be connected open subsets
of S and let f : O ! O 0 be a CR-di¤eomorhism between O and O 0. Then f
extends to a global biholomorphic mapping f̂f : Ep

l ! E
p
l .

In [20] they proved more: the extension f̂f can be written as a composite
mapping of four standard holomorphic automorphisms of E

p
l , provided that

all the exponents pi are positive integers. Here, observe that they do not use
essentially the fact that all the pi’s are positive integers except for the proofs of
Propositions 3.4 and 5.1 in [20]. Moreover, if the condition ðzÞ is satisfied, one
can see that their proofs remain valid for these propositions even in the case
where some of pi’s are not integers. Therefore, Theorem B has already been
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proved implicitly in [20]. Using power series expansion technique, Hayashimoto
[12] gave an alternative proof of Monti-Morbidelli’s theorem with some weaker
conditions on the dimensions li and the exponents pi A N. However it seems
di‰cult to apply the same technique to our general case where some of pi’s are
not integers.

3. Some lemmas

In this section, we shall prove several lemmas which will play crucial roles in
our proofs of the theorems.

3.1. A Lemma for E
p
l . In this Subsection, we write E ¼ E

p
l for the sake

of simplicity, and f : E ! E denotes an arbitrarily given proper holomorphic
mapping.

First of all, since E is a bounded complete Reinhardt domain in Cjlj, by a
result of Bell [8] there exists a connected open neighborhood D of E such that f
extends to a holomorphic mapping f̂f : D ! Cjlj. Therefore, replacing f by f̂f if
necessary, we may assume that f itself is a holomorphic mapping defined on D.

Under this assumption, we wish to prove the following:

Lemma 1. Let E be a generalized complex ellipsoid in Cjlj with I b 2.
Assume that pi > 1 and li b 2 for all i ¼ 1; . . . ; I . Then the proper holomorphic
mapping f : E ! E is an automorphism of E.

Proof. Once it is shown that Vf ¼ j, then f : E ! E is an unbranched
covering; and hence, it must be a biholomorphic mapping, since E is a simply
connected domain. Assuming to the contrary that Vf 0j, we wish to derive
a contradiction. To this end, let us consider the functions rðzÞ and RðzÞ defined
by

rðzÞ ¼ rpðzÞ � 1; z A Cjlj; and RðzÞ ¼ rð f ðzÞÞ; z A D:

It then follows from the Hopf lemma that RðzÞ is a C2-smooth defining function
for E as well as rðzÞ. Thus, if we set

De ¼ fz A D;RðzÞ < eg and D 0
e ¼ fz A Cjlj; rðzÞ < eg

for a su‰ciently small e > 0, then we have E � De \D 0
e, De [D 0

e � D and f gives
rise to a proper holomorphic mapping, say again f , from De onto D 0

e. Hence,
for any irreducible component V of Vf \De, it follows from Remmert’s proper
mapping theorem that f ðVÞ is a complex analytic subvariety of D 0

e and the
restriction ~ff :¼ f jV : V ! f ðVÞ is also proper. In particular, V and f ðVÞ both
have pure C-dimension jlj � 1 and ~ff �1ðSing f ðVÞÞ is nowhere dense in V .
Therefore, by repeating exactly the same argument as in [4; p. 479], one can
see that there exists a connected complex manifold M of C-dimension jlj � 1
such that M is open dense in V and ~ff gives rise to a local biholomorphic
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mapping from M onto ~ff ðMÞ. Accordingly, both M \ qE and ~ff ðMÞ \ qE are
C2-di¤erentiable submanifolds of qE with the same R-dimension 2jlj � 3. Now
let us set

S ¼ fðz1; . . . ; zI Þ A qE; kz1k � � � kzIk0 0g and

Wi ¼ fðz1; . . . ; zI Þ A qE; zi ¼ 0g ð1a ia IÞ:

Then S is the set of all C2-smooth strictly pseudoconvex boundary points of E
and qEnS ¼

SI
i¼1 Wi is the set of all weakly pseudoconvex boundary points of E.

Note that each Wi is a C2-di¤erentiable submanifold of qE with dimR Wi ¼
2jlj � 2li � 1a 2jlj � 5, because li b 2 by our assumption. Thus

SI
i¼1 Wi is

too small to contain M \ qE; so that there exists a point zo A S \ ðM \ qEÞ �
M � Vf . On the other hand, by using the same method as in the proof of
[8; Theorem 3], it can be checked that Jf ðzoÞ0 0 and f cannot be branched at
the strictly pseudoconvex boundary point zo A S; so that zo B Vf . This is a
contradiction; thereby, the proof is completed. r

3.2. Lemmas for H
p;q
l;m . Throughout this Subsection, we write H ¼ H

p;q
l;m ,

where H
p;q
l;m is a generalized Hartogs triangle in Cjlj � Cjmj ¼ CN with jlj jmj > 1.

And, F : H ! H denotes an arbitrarily given proper holomorphic mapping.
Our proofs of the following lemmas will be carried out along the same lines

as in [19], [9], [16], [22]; and some of them will be presented only in outline.
Let SH ¼ fa A ZN ; za A OðHÞ; kzakA2ðHÞ < yg, where OðHÞ denotes the set

of all holomorphic functions on H and A2ðHÞ is the Bergman space of H with
the norm k � kA2ðHÞ. Then it is known [3] that the Bergman kernel function
K ¼ KH for H can be expressed as

Kðz; hÞ ¼
X
a ASH

caz
aha; z; h A H;ð3:1Þ

with ca > 0 for each a A SH. By making use of this special form of Kðz; hÞ, we
can show the following (cf. [16; Lemma 1]):

Lemma 2. The Bergman kernel function Kðz; hÞ extends holomorphically in z
and anti-holomorphically in h to an open neighborhood of ðHnf0gÞ �H in C2N.

Thanks to this lemma, we can prove the following:

Lemma 3. Let zo be an arbitrary point of qHnf0g. Then there exists
a connected open neighborhood Uzo of zo in CNnf0g such that F extends to a
holomorphic mapping F̂F : H [Uzo ! CN.

Proof. Let P : L2ðHÞ ! A2ðHÞ be the Bergman projection defined by

Pf ðzÞ ¼
ð
H

Kðz; hÞ f ðhÞ dVh; f A L2ðHÞ:
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It then follows from Lemma 2 that Pf can be extended to a holomorphic
function, say P̂Pf , defined on some domain H [Ozo , where Ozo is a connected
open neighborhood of zo contained in CNnf0g.

Let f A Cy
0 ðHÞ be a non-negative function such that fðz1; . . . ; zNÞ ¼

fðjz1j; . . . ; jzN jÞ and
Ð
H fðzÞ dVz ¼ 1. For any a ¼ ða1; . . . ; aNÞ A ZN with aj b 0

ð1a jaNÞ, we set

faðzÞ ¼ ðcaa!Þ�1ð�1ÞjajqjajfðzÞ=qza11 � � � qzaNN ; z A H;

where ca is the same constant appearing in (3.1) and a! ¼ a1! � � � aN !, jaj ¼
a1 þ � � � þ aN . Then, thanks to the concrete description of the expansion of K
as in (3.1), we can compute explicitly Pfa as PfaðzÞ ¼ za, z A H. Consequently,
by analytic continuation

P̂PfaðzÞ ¼ za; z A H [Ozo :ð3:2Þ

Now, express F ¼ ðF1; . . . ;FNÞ with respect to the z-coordinate system in
CN . Then, applying the transformation law by the Bergman projection under
proper holomorphic mapping (cf. [7]) and using the fact (3.2), we have that

ðJF � ðF1Þa1 � � � ðFNÞaN ÞðzÞ ¼ ðJF � Pfa �FÞðzÞ

¼ PðJF � fa �FÞðzÞ ¼
ð
H

Kðz; hÞðJF � fa �FÞðhÞ dVh

for z A H. Here, since the last term extends holomorphically to the function
P̂PðJF � fa �FÞ on H [Ozo , we may assume that JF � ðF1Þa1 � � � ðFNÞaN is also a
holomorphic function defined on H [Ozo . In partiqular, considering the special
case where aj ¼ 0 for all j, we may assume that JF is also a holomorphic
function defined on H [Ozo . Then, by the argument in the proof of [7;
Theorem 1] using the fact that the ring Ozo of germs of holomorphic functions
at zo is a unique factorization domain, it can be shown that every component
function Fj of F is actually holomorphic on some small open neighborhood Uzo

of zo, as desired. r

By Lemma 3 there exists a connected open neighborhood D of Hnf0g in
CN such that F extends to a holomorphic mapping F̂F : D ! CN . So, in the
following part of this paper, we assume that F itself is holomorphic on D and
VF is a complex analytic subvariety of D (of dimC VF ¼ N � 1 if VF 0j).

We now define the subsets B1, B2 and B3 of the boundary qH by setting

B1 :¼ fðz;wÞ A qH; rpðzÞ < rqðwÞ ¼ 1g;
B2 :¼ fðz;wÞ A qH; 0 < rpðzÞ ¼ rqðwÞ < 1g;
B3 :¼ fðz;wÞ A qH; rpðzÞ ¼ rqðwÞ ¼ 1g:

Then qH ¼ f0g [B1 [B2 [B3 (disjoint union) and B1, B2 are open in qH,
while B3 is closed and nowhere dense in qH.
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Lemma 4. In the notation above, we have

FðB1Þ \B2 ¼ j; FðB2Þ \B1 ¼ j and FðB1Þ � B1; FðB2Þ � B2:

Proof. To prove the first assertion, assuming the existence of a point
ða; bÞ A B1 such that ð~aa; ~bbÞ :¼ Fða; bÞ A B2, we wish to derive a contradiction.
To this end, notice that VF \ qH is nowhere dense in qH. Thus, taking a
nearby point of ða; bÞ if necessary, we may assume that JFða; bÞ0 0 and every
component of ða; bÞ is non-zero:

aa
i 0 0 ð1a ia I ; 1a aa liÞ; b

m
j 0 0 ð1a ja J; 1a mamjÞ:

Accordingly, we can choose a small connected open neighborhood O of ða; bÞ
in such a way that F gives rise to a biholomorphic mapping, say again, F : O !
FðOÞ ¼: ~OO � CN with FðO \HÞ ¼ ~OO \H and FðO \B1Þ ¼ ~OO \B2. Without
loss of generality, we may further assume that O \ qH � B1 and O [ ~OO � ðC�ÞN .
Here define the functions gðz;wÞ and rðz;wÞ by

gðz;wÞ ¼ rqðwÞ � 1; ðz;wÞ A O; rðz;wÞ ¼ rpðzÞ � rqðwÞ; ðz;wÞ A ~OO:

It then follows that gðz;wÞ (resp. rðz;wÞ) is a Co-smooth defining function for H
on the open neighborhood O (resp. ~OO) of the point ða; bÞ (resp. ð~aa; ~bbÞ). And, by
direct calculations we obtain that the complex tangent space T c

ða;bÞðB1Þ to B1 at

ða; bÞ and the Levi form Lgðða; bÞ; ðs; tÞÞ of g for ðs; tÞ A T c
ða;bÞðB1Þ are given,

respectively, as follows:

T c
ða;bÞðB1Þ ¼ ðs; tÞ A Cjlj � Cjmj;

XJ
j¼1

qjkbjk2ðqj�1Þhtj; bji ¼ 0

( )
;

Lgðða; bÞ; ðs; tÞÞ ¼
XJ
j¼1

qjðqj � 1Þkbjk2ðqj�2Þjhtj; bjij2

þ
XJ
j¼1

qjkbjk2ðqj�1Þktjk2 b 0 for all ðs; tÞ A T c
ða;bÞðB1Þ

by Schwarz’s inequality. Thus O \H is Levi pseudoconvex at ða; bÞ A O \B1 �
qðO \HÞ.

On the other hand, the corresponding objects at the point Fða; bÞ ¼ ð~aa; ~bbÞ are
given as follows: To simplify discussion, we change notation and write ða; bÞ in
place of ð~aa; ~bbÞ. Then

T c
ða;bÞðB2Þ ¼

(
ðs; tÞ A Cjlj � Cjmj;

XI
i¼1

pikaik2ðpi�1Þhsi; aiið3:3Þ

�
XJ
j¼1

qjkbjk2ðqj�1Þhtj; bji ¼ 0

)
;
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Lrðða; bÞ; ðs; tÞÞ ¼
XI
i¼1

piðpi � 1Þkaik2ðpi�2Þjhsi; aiij2ð3:4Þ

þ
XI
i¼1

pikaik2ðpi�1Þksik2 �
XJ
j¼1

qjðqj � 1Þkbjk2ðqj�2Þjhtj; bjij2

�
XJ
j¼1

qjkbjk2ðqj�1Þktjk2 for all ðs; tÞ A T c
ða;bÞðB2Þ:

We have now two cases to consider:

Case 1. jmj ¼ 1: For the defining function gðz;wÞ ¼ rqðwÞ � 1 ¼ jwj2q � 1
for H on the open neighborhood O of the point ða; bÞ, it is easily seen that, for
every point ðz;wÞ A O \B1,

T c
ðz;wÞðB1Þ ¼ Cjlj � f0g and Lgððz;wÞ; ðs; tÞÞ ¼ 0; ðs; tÞ A T c

ðz;wÞðB1Þ;

that is, O \B1 is a Levi-flat real hypersurface in CN in this case.
Once it is shown that ~OO \B2 is not Levi-flat at Fða; bÞ ¼ ð~aa; ~bbÞ A ~OO \B2,

we arrive at a contradiction, since F : O ! ~OO is a biholomorphic mapping with
FðO \B1Þ ¼ ~OO \B2 and O \B1 is Levi-flat at ða; bÞ A O \B1. Therefore we
have only to prove that ~OO \B2 is not Levi-flat at ð~aa; ~bbÞ. To this end, we
again use the notation ða; bÞ instead of ð~aa; ~bbÞ for a while.

Consider first the case I ¼ 1. Then, putting p ¼ p1, l ¼ l1 and r ¼ q=p, we
have

H ¼ fðz;wÞ A Cl � C; kzk2 < jwj2r < 1g ðas setsÞ;

accordingly, we may assume that p ¼ 1 from the beginning. Hence the defining
function rðz;wÞ for H on ~OO has the simple form rðz;wÞ ¼ kzk2 � jwj2q. Note
that lb 2 by our assumption jlj jmj > 1. Thus there exists a non-zero element
s A Cl such that jhs; aij < ksk kak. Choose an element t A C in such a way that

hs; ai ¼ qjbj2ðq�1Þ
bt. It then follows from (3.3) and (3.4) that ðs; tÞ A T c

ða;bÞðB2Þ
and

Lrðða; bÞ; ðs; tÞÞ ¼ fksk2kak2 � jhs; aij2g=jbj2q > 0;

which implies that ~OO \B2 is not Levi-flat at ða; bÞ, as desired.
Consider next the case I b 2. In this case, we choose two elements s A Cjlj

and t A C in such a way that

s ¼ ðs1; s2; . . . ; sI Þ ¼ ða1; 0; . . . ; 0Þ and t ¼ p1ka1k2p1=fqjbj2ðq�1Þ
bg:

Then it is obvious that ðs; tÞ is a non-zero element of T c
ða;bÞðB2Þ by (3.3). More-

over, since
PI

i¼1 kaik
2pi ¼ jbj2q, we obtain by (3.4) that

Lrðða; bÞ; ðs; tÞÞ ¼ p21ka1k
2p1ðka2k2p2 þ � � � þ kaIk2pI Þ=jbj2q > 0;
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accordingly, ~OO \B2 is not Levi-flat at ða; bÞ, as required. Therefore we have
shown that there does not exist a point ða; bÞ A B1 such that Fða; bÞ A B2 in
Case 1.

Case 2. jmjb 2: If m1 b 2, one can choose a non-zero element t1 A Cm1 in
such a way that ht1; b1i ¼ 0. Put t¼ ðt1; 0; . . . ; 0Þ A Cjmj. Then ð0; tÞ A T c

ða;bÞðB2Þ
by (3.3) and

Lrðða; bÞ; ð0; tÞÞ ¼ �q1kb1k2ðq1�1Þkt1k2 < 0

by (3.4). Thus ~OO \H is not Levi pseudoconvex at the point Fða; bÞ. How-
ever, this is a contradiction, since F : O ! ~OO is a biholomorphic mapping
with FðO \HÞ ¼ ~OO \H and O \H is Levi pseudoconvex at ða; bÞ A O \B1 �
qðO \HÞ, as shown before.

If m1 ¼ 1, then m2 b 1 by our assumption jmjb 2. Hence there exists a
non-trivial solution ðt1; t12Þ A ðC�Þ2 of the equation

q1jb1j2ðq1�1Þ
b1t1 þ q2kb2k2ðq2�1Þ

b12 t
1
2 ¼ 0:

Put t ¼ ðt1; t2; 0; . . . ; 0Þ A Cjmj with t2 ¼ ðt12 ; 0; . . . ; 0Þ A Cm2 . Then ð0; tÞ A
T c
ða;bÞðB2Þ by (3.3) and

Lrðða; bÞ; ð0; tÞÞ ¼ �q1ðq1 � 1Þjb1j2ðq1�2Þjb1t1j2 � q1jb1j2ðq1�1Þjt1j2

� q2ðq2 � 1Þkb2k2ðq2�2Þjb12 t12 j
2 � q2kb2k2ðq2�1Þjt12 j

2

¼ �q21 jb1j
2ðq1�1Þjt1j2 � q22kb2k

2ðq2�2Þjb12 j
2jt12 j

2

� q2kb2k2ðq2�2Þðkb2k2 � jb12 j
2Þjt12 j

2

a�q21 jb1j
2ðq1�1Þjt1j2 � q22kb2k

2ðq2�2Þjb12 j
2jt12 j

2 < 0

by (3.4); which says that ~OO \H is not Levi pseudoconvex at the point Fða; bÞ, as
desired. Therefore we arrive at the same contradiction as above. Eventually,
we have shown the first assertion FðB1Þ \B2 ¼ j in any cases.

To prove the second assertion, assume that there exists a point ða; bÞ A B2

such that Fða; bÞ A B1. Then, interchanging the role of B1 and B2 and repeating
exactly the same argument as in the proof of the first assertion, we obtain a
contradiction; proving FðB2Þ \B1 ¼ j. In particular, we see that FðB2Þ � f0g [
B2 [B3 ¼ B2.

Finally we claim that FðB1Þ d 0. Indeed, assume to the contrary that there
exists a point ða; bÞ A B1 such that Fða; bÞ ¼ 0. Let ÔO be an open neighborhood

of 0 A CN so small that ÔO \B1 ¼ j. Since F is continuous at ða; bÞ by Lemma
3, there is an open neighborhood U of ða; bÞ such that FðUÞ � ÔO. Take a point
ðâa; b̂bÞ A U \B1 with JFðâa; b̂bÞ0 0. Then there exists a small open neighborhood
V of ðâa; b̂bÞ such that V � U and F induces a biholomorphic mapping, say
again, F : V ! FðVÞ with FðV \B1Þ ¼ FðVÞ \ qH. Then, since FðV \B1Þ
is now a non-empty open subset of ÔO \ qH, we have FðV \B1Þ \B2 0j.
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But, this contradicts the first assertion; proving our claim. Therefore, taking the
first assertion into account, we conclude that FðB1Þ � B1 [B3 ¼ B1 and hence
FðB1Þ � B1 by the continuity of F on Hnf0g. r

Lemma 5. Let us write F ¼ ð f ; gÞ with respect to the coordinate system
ðz;wÞ in Cjlj � Cjmj ¼ CN. Then g : H ! Cjmj does not depend on the variables
z; accordingly it has the form gðz;wÞ ¼ gðwÞ on H.

Proof. By the proof of Lemma 4, we can choose a point ða; bÞ A B1 \ ðC�ÞN
satisfying the following: JFða; bÞ0 0, ð~aa; ~bbÞ :¼ Fða; bÞ A B1 \ ðC�ÞN and there

exist connected open neighborhoods O, ~OO of ða; bÞ, ð~aa; ~bbÞ, respectively, with
O [ ~OO � ðC�ÞN such that O \ qH � B1, ~OO \ qH � B1 and F defines a biholomor-
phic mapping, say again, F : O ! ~OO with FðO \HÞ ¼ ~OO \H and FðO \B1Þ
¼ ~OO \B1. Let Pa (resp. Pb) be a polydisc in Cjlj (resp. Cjmj) with center a
(resp. b) so small that Pða;bÞ :¼ Pa � Pb has the compact closure in O. The proof
is now divided into two cases as follows:

Case 1. J ¼ 1: As a defining function for B1, one can choose rðz;wÞ :¼
kwk2 � 1 in this case. Taking a point w A Pb with kwk2 ¼ 1 arbitrarily, we put
gwðzÞ :¼ gðz;wÞ, z A Pa, and define r̂rðz 0Þ :¼ kgwðzÞk2, z 0 ¼ z A Pa. Then r̂rðz 0Þ ¼ 1

whenever kwk2 ¼ 1. Therefore, representing g ¼ ðgjljþ1; . . . ; gNÞ with respect to

the coordinate system z 00 ¼ ðzjljþ1; . . . ; zNÞ in Cjmj and di¤erentiating the both
sides of the equation r̂rðz 0Þ ¼ 1 by zk, zk ð1a ka jljÞ, we obtain that, for every
point z 00 ¼ w A Pb with kz 00k2 ¼ 1,

XN
j¼jljþ1

qgj

qzk
ðz 0; z 00Þ

����
����
2

¼ 0 for all z 0 A Pa; 1a ka jlj:

Hence, putting H :¼ fðz 0; z 00Þ A Pða;bÞ; kz 00k2 ¼ 1g, we have qgjðz 0; z 00Þ=qzk ¼ 0 on
H for every j, k. Since g is holomorphic on Pða;bÞ and H is a real-analytic
hypersurface in Pða;bÞ, it is obvious that every qgjðz 0; z 00Þ=qzk ¼ 0 on Pða;bÞ.
Therefore gðz 0; z 00Þ does not depend on z ¼ z 0 on Pða;bÞ and hence on H by
analytic continuation, as desired.

Case 2. Jb 2: In this case, taking a point w A Pb with rqðwÞ ¼ 1 arbi-
trarily, we set gwðzÞ ¼ gðz;wÞ, z A Pa. Then, since gwðPaÞ � ðC�Þjmj by our choice
of ~OO, we can define a Co-smooth plurisubharmonic function r̂r on Pa by setting
r̂rðzÞ :¼ rqðgwðzÞÞ, z A Pa. It then follows that r̂rðzÞ ¼ 1 on Pa, since

FðPa � fwgÞ � FðO \B1Þ � fðu; vÞ A ~OO; rqðvÞ ¼ 1g:

This combined with the strictly plurisubharmonicity of rq on ðC�Þjmj implies that
gwðzÞ is a constant mapping on Pa. As a result, defining the real-analytic hyper-
surface H in Pb by H :¼ fw A Pb; r

qðwÞ ¼ 1g, we have shown that

gwðzÞ ¼ gðz;wÞ is constant on Pa for any w A H:ð3:5Þ

434 akio kodama



Now, the holomorphic mapping g can be expanded uniquely as

gðz;wÞ ¼ gðz 0; z 00Þ ¼
X
n 0

an 0 ðz 00Þðz 0 � z 0oÞ
n 0 ; ðz 0; z 00Þ A Pða;bÞ;

which converges absolutely and uniformly on Pða;bÞ, where z 0o ¼ a and

an 0 ðz 00Þ ¼ ða1n 0 ðz 00Þ; . . . ; a
jmj
n 0 ðz

00ÞÞ

are jmj-tuples of holomorphic functions on Pb, and the summation is taken over
all n 0 ¼ ðn1; . . . ; njljÞ A Zjlj with n1; . . . ; njlj b 0. Then the assertion (3.5) tells us
that

an 0 ðz 00Þ ¼ 0; z 00 A H; for n 0 0 0:

Since an 0 ðz 00Þ are holomorphic on Pb and H is a real-analytic hypersurface in Pb,
we have that an 0 ðz 00Þ ¼ 0 on Pb for n 0 0 0; consequently, gðz;wÞ ¼ a0ðz 00Þ does not
depend on z ¼ z 0 globally by analytic continuation.

Eventually, we have proved that gðz;wÞ does not depend on z in any cases;
thereby, completing the proof. r

4. Proofs of Theorems

Throughout this section, we denote by E
p
l the generalized complex ellipsoid

in Cjlj as in Theorem 1 and write E ¼ E
p
l . Also, Hp;q

l;m denotes the generalized

Hartogs triangle in Cjlj � Cjmj ¼ CN as in Theorems 2, 3 and 4 with jlj jmj > 1
and we write H ¼ H

p;q
l;m for the sake of simplicity.

The proofs of our theorems will be carried out in the following four
Subsections.

4.1. Proof of Theorem 1. Before undertaking the proof, we need a prepa-
ration. Let p1; . . . ; pI b 1 be the real numbers appearing in Theorem 1. As-
suming that I b 2 and l2 ¼ � � � ¼ ls ¼ 1 ð2a sa IÞ for a while, we consider the
correspondence pð1; p2;...; ps;1;...;1Þ defined by

z 7! ðz1; ðz2Þp2 ; . . . ; ðzsÞps ; zsþ1; . . . ; zI Þ; z ¼ ðz1; . . . ; zI Þ A Cjlj:

If all the pi’s are integers, this is a single-valued holomorphic mapping from
Cjlj onto itself. However, if some of them are irrationals, then it provides an
infinitely-many-valued holomorphic mapping from Cl1 � ðC�Þs�1 � Clsþ1 � � � � �
ClI onto itself. Thus, for later use, we need to introduce the concept of principal
branch of pð1; p2;...; ps;1;...;1Þ. For this purpose, let us fix an arbitrary point

zo ¼ ðzo1 ; . . . ; zoI Þ A Cjlj with zo2 � � � zos 0 0:

Write each zoi ð2a ia sÞ in the form

zoi ¼ roi expð
ffiffiffiffiffiffiffi
�1

p
yo
i Þ with roi > 0; 0a yo

i < 2p
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and set

Wiðzoi Þ ¼ fzi ¼ ri expð
ffiffiffiffiffiffiffi
�1

p
yiÞ; ri > 0; jyi � yo

i j < pg ¼ Cnftzoi ; ta 0g;

WðzoÞ ¼ Cl1 �W2ðzo2 Þ � � � � �Wsðzos Þ � Clsþ1 � � � � � ClI ;

PiðziÞ ¼ ðriÞpi expð
ffiffiffiffiffiffiffi
�1

p
piyiÞ; zi ¼ ri expð

ffiffiffiffiffiffiffi
�1

p
yiÞ A Wiðzoi Þ;

Pð1; p2;...; ps;1;...;1ÞðzÞ ¼ ðz1;P2ðz2Þ; . . . ;PsðzsÞ; zsþ1; . . . ; zI Þ

for z ¼ ðz1; . . . ; zI Þ A WðzoÞ. Then WðzoÞ is a connected open dense subset of
Cjlj containing zo and Pð1; p2;...; ps;1;...;1Þ is a single-valued holomorphic mapping
from WðzoÞ into Cjlj. Moreover, it is injective on a small open neighborhood
of zo, since its Jacobian determinant does not vanish at zo.

Definition. We call this mapping Pð1; p2;...; ps;1;...;1Þ : WðzoÞ ! Cjlj the prin-
cipal branch of pð1; p2;...; ps;1;...;1Þ on WðzoÞ.

Of course, in the case where l1 ¼ 1 as well as l2 ¼ � � � ¼ ls ¼ 1, one can define
the principal branch Pðp1;p2;...;ps;1;...;1Þ : WðzoÞ ! Cjlj of pðp1;p2;...;ps;1;...;1Þ on WðzoÞ
in exactly the same manner as above.

Now we are ready to prove Theorem 1. If I ¼ 1, then E is the unit ball
Bl1 in Cl1 with l1 b 2. Thus Theorem 1 is nothing but the main theorem of
Alexander [1]. So, we assume that I b 2 in the following part. Accordingly, E
is di¤erent from the unit ball and pi > 1 for every i ¼ 2; . . . ; I . Moreover, in the
cases where li ¼ 1 for all i ¼ 1; . . . ; I or p1 ¼ 1, li ¼ 1 for i ¼ 2; . . . ; I , Theorem 1
is an immediate consequence of Dini-Primicerio [11]. Therefore, in order to
complete the proof, we have to consider the following five cases:

Case (a). p1 ¼ 1 and li b 2 ð2a ia IÞ: In this case, E satisfies the condi-
tion ðzÞ in Section 2. On the other hand, by a result of Bell [8], our proper
holomorphic mapping f : E ! E extends to a holomorphic mapping defined
on an open neighborhood D of E. Choose a Co-smooth strictly pseudoconvex
boundary point zo of E. Then, since Jf ðzoÞ0 0 and f is unbranched at zo

(cf. [8]), one can find an open neighborhood Vzo of zo such that f gives rise to a
biholomorphic mapping, say again f , from Vzo onto f ðVzoÞ with f ðVzo \ qEÞ ¼
f ðVzoÞ \ qE. Shrinking Vzo if necessary, we may assume that O :¼ Vzo \ qE is a
connected open subset of qE consisting of strictly pseudoconvex boundary points.
Thus, if we define a connected open subset O 0 of qE by setting O 0 :¼ f ðVzoÞ \ qE,
then O, O 0 and f satisfy all the requirements of Theorem B in Section 2;
consequently, f is, in fact, a holomorphic automorphism of E.

Case (b). p1 ¼ 1 and li ¼ 1, lj b 2 for some 2a i; ja I : In this case, we
may rename the indices so that for some integer s with 2a s < I , one has

l2 ¼ � � � ¼ ls ¼ 1; while li b 2 for sþ 1a ia I :
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Choose a point

zo ¼ ðzo1 ; . . . ; zoI Þ A qE with jzo2 j � � � jzos j kzosþ1k � � � kzoI k0 0:

Then zo is a Co-smooth strictly pseudoconvex boundary point of E and f is
unbranched at zo. Hence there exist a connected open neighborhood Vzo of zo

and a connected open neighborhood Vwo of wo :¼ f ðzoÞ such that f gives rise
to a biholomorphic mapping, say again f , from Vzo onto Vwo . In particular,
wo is also a Co-smooth strictly pseudoconvex boundary point of E. Therefore,
without loss of generality, we may assume that

Vzo [ Vwo � fz A Cjlj; jz2j � � � jzsj kzsþ1k � � � kzIk0 0g:

Consider here the principal branches

Pð1; p2;...; ps;1;...;1Þ : WðzoÞ ! Cjlj; Pð1; p2;...; ps;1;...;1Þ : WðwoÞ ! Cjlj

and a generalized complex ellipsoid ÊE in Cjlj defined by

ÊE ¼ fu A Cjlj; ku1k2 þ kusþ1k2psþ1 þ � � � þ kuIk2pI < 1g;

where u ¼ ðu1; usþ1; . . . ; uI Þ A Cl1þs�1 � Clsþ1 � � � � � ClI ¼ Cjlj: Then, shrinking
Vzo if necessary, we may further assume that Vzo � WðzoÞ, Vwo � WðwoÞ and
both the restrictions

Pzo :¼ Pð1; p2;...; ps;1;...;1ÞjVzo : Vzo ! PzoðVzoÞ and

Pwo :¼ Pð1; p2;...; ps;1;...;1ÞjVwo : Vwo ! PwoðVwoÞ

are biholomorphic mappings. Since jPiðziÞj2 ¼ jzij2pi for i ¼ 2; . . . ; s, we now
have

PzoðVzo \ qEÞ ¼ PzoðVzoÞ \ qÊE and PwoðVwo \ qEÞ ¼ PwoðVwoÞ \ qÊE:

Thus, putting ÔOzo :¼ PzoðVzoÞ \ qÊE, ÔOwo :¼ PwoðVwoÞ \ qÊE, we obtain a biholo-
morphic mapping

f̂f :¼ Pwo � f �P�1
zo : PzoðVzoÞ ! PwoðVwoÞ

with f̂f ðÔOzoÞ ¼ ÔOwo . Notice that the connected open subsets ÔOzo , ÔOwo of qÊE
are contained in the strictly pseudoconvex part of qÊE and f̂f induces a CR-
di¤eomorphism from ÔOzo onto ÔOwo . Also, note that ÊE satisfies the condition ðzÞ
in Section 2. It then follows from Theorem B that f̂f extends to a holomorphic
automorphism, say again f̂f , of ÊE. Thus we have

f̂f ðPzoðzÞÞ ¼ Pwoð f ðzÞÞ for all z A E \WðzoÞ \ f �1ðWðwoÞÞð4:1Þ

by analytic continuation. Recall here that by Theorem A the holomorphic
automorphism f̂f has the form

f̂f ðuÞ ¼ ðHðu1Þ; gsþ1ðu1ÞAsþ1usðsþ1Þ; . . . ; gI ðu1ÞAIusðIÞÞ;
u ¼ ðu1; usþ1; . . . ; uI Þ A ÊE � Cl1þs�1 � Clsþ1 � � � � � ClI ¼ Cjlj

437proper holomorphic self-mappings



(think of ui as column vectors), where H A AutðBl1þs�1Þ, gi’s are nowhere van-
ishing holomorphic functions on Bl1þs�1, Ai A UðliÞ and s is a permutation of
fsþ 1; . . . ; Ig satisfying the same conditions as in Theorem A. Now, represent-
ing f ¼ ð f1; . . . ; fI Þ with respect to the given coordinate system z ¼ ðz1; . . . ; zI Þ
in Cl1 � � � � � ClI ¼ Cjlj, we put

z 0 ¼ ðz1; . . . ; zsÞ; z 00 ¼ ðzsþ1; . . . ; zI Þ; f 0 ¼ ð f1; . . . ; fsÞ; f 00 ¼ ð fsþ1; . . . ; fI Þ;

so that z ¼ ðz 0; z 00Þ and f ¼ ð f 0; f 00Þ. Putting ûu1 ¼ ðz1;P2ðz2Þ; . . . ;PsðzsÞÞ, we
then obtain by (4.1) that

ð f1ðzÞ;P2ð f2ðzÞÞ; . . . ;Psð fsðzÞÞÞ ¼ Hðûu1Þ andð4:2Þ
f 00ðzÞ ¼ ðgsþ1ðûu1ÞAsþ1zsðsþ1Þ; . . . ; gI ðûu1ÞAIzsðIÞÞ

for all z A E \WðzoÞ \ f �1ðWðwoÞÞ. Consequently, it follows from the first
equation in (4.2) that f 0ðzÞ does not depend on the variables z 00 on the non-
empty open subset E \WðzoÞ \ f �1ðWðwoÞÞ of E; and hence, f 0ðzÞ has the form
f 0ðzÞ ¼ f 0ðz 0Þ on E by analytic continuation. Moreover, notice that the set
fz ¼ ðz 0; z 00Þ A WðzoÞ; z 00 ¼ 0g is open dense in Cl1þs�1 � f0g1Cl1þs�1, where we
have put 0 ¼ 0 00 for simplicity. Then by the second equation in (4.2) we have
f 00ðzÞ ¼ 0 for all points z A E of the form z ¼ ðz 0; 0Þ. Therefore, if we put

E½s� ¼ fz 0 A Cl1þs�1; kz1k2 þ jz2j2p2 þ � � � þ jzsj2ps < 1g

and define f ½s� : E½s� ! Cl1þs�1 by

f ½s�ðz 0Þ ¼ f 0ðz 0Þ ¼ f 0ðz 0; 0Þ for z 0 A E½s�;

then E½s� is a generalized complex ellipsoid in Cl1þs�1 with l1 þ s� 1b 2,
f ½s�ðE½s�Þ ¼ E½s�, and f ½s� : E½s� ! E½s� is a proper holomorphic mapping; so that
f ½s� has to be a holomorphic automorphism of E½s� by Dini-Primicerio [11]. This
combined with the fact (4.2) guarantees that the proper holomorphic mapping
f ¼ ð f 0; f 00Þ ¼ ð f ½s�; f 00Þ is injective on E; and hence, it is necessarily a holomor-
phic automorphism of E, as desired.

Case (c). p1 > 1 and li b 2 ð2a ia IÞ: If l1 ¼ 1, in the proof of Case (b)
we replace zo, Pð1; p2;...; ps;1;...;1Þ and ÊE by a point

~zzo ¼ ð~zzo1 ; ~zzo2 ; . . . ; ~zzoI Þ A qE with j~zzo1 j k~zzo2k � � � k~zzoI k0 0;

the principal branch Pðp1;1;...;1Þ : Wð~zzoÞ ! Cjlj, and

~EE ¼ fu A Cjlj; ju1j2 þ ku2k2p2 þ � � � þ kuIk2pI < 1g;

where u ¼ ðu1; u2; . . . ; uI Þ A C� Cl2 � � � � � ClI ¼ Cjlj: Then, by repeating the
same argument as in Case (b), we see that there exists a holomorphic auto-
morphism

~ff ðuÞ ¼ ðHðu1Þ; g2ðu1ÞA2usð2Þ; . . . ; gI ðu1ÞAIusðIÞÞ
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of ~EE such that

P1ð f1ðzÞÞ ¼ Hð~uu1Þ with ~uu1 :¼ P1ðz1Þ; andð4:3Þ
ð f2ðzÞ; . . . ; fI ðzÞÞ ¼ ðg2ð~uu1ÞA2zsð2Þ; . . . ; gI ð~uu1ÞAIzsðIÞÞ

for all z A E \Wð~zzoÞ \ f �1ðWð~wwoÞÞ, where ~wwo :¼ f ð~zzoÞ. Thus f1ðzÞ does not
depend on the variables ðz2; . . . ; zI Þ and so it has the form f1ðzÞ ¼ f1ðz1Þ. Here,
observe that the correspondence

F : ðz1; z2; . . . ; zI Þ 7! ðz1;A2zsð2Þ; . . . ;AIzsðIÞÞ

defines an automorphism of E and the proper holomorphic self-mapping C :¼
F�1 � f of E has the form

Cðz1; z2; . . . ; zI Þ ¼ ð f1ðz1Þ; g2ðP1ðz1ÞÞz2; . . . ; gI ðP1ðz1ÞÞzI Þð4:4Þ

on the non-empty open subset E \Wð~zzoÞ \ f �1ðWð~wwoÞÞ of E, since gsðiÞðu1Þ ¼
giðu1Þ for i ¼ 2; . . . ; I . Thus we may assume from the beginning that f ðzÞ has
the form on the right-hand side of (4.4) on E \Wð~zzoÞ \ f �1ðWð~wwoÞÞ. Under
this assumption, we assert that f can be written in the form

f ðzÞ ¼ ð f1ðz1Þ; l2ðz1Þz2; . . . ; lI ðz1ÞzI Þ on E;ð4:5Þ

where li’s are nowhere vanishing holomorphic functions on D such that

liðz1Þ ¼ giðP1ðz1ÞÞ; z1 A D \W1ð~zzo1 Þ; 2a ia I :

Indeed, this can be seen as follows. First of all, write fi ¼ ð f 1i ; . . . ; f
li
i Þ with

respect to the coordinate system zi ¼ ðz1i ; . . . ; z
li
i Þ in Cli for i ¼ 2; . . . ; I . Being

a holomorphic function on the complete Reinhardt domain E, every component
function f a

i can now be expanded uniquely as

f a
i ðzÞ ¼

Xy
k¼0

Pkðz1; z2; . . . ; zI Þ; z A E;

which converges absolutely and uniformly on compact subsets of E, where
Pkðz1; z2; . . . ; zI Þ is a homogeneous polynomial of degree k in ðz2; . . . ; zI Þ ¼
ðz12 ; . . . ; z

lI
I Þ whose coe‰cients are all holomorphic functions of z1 defined on D.

Then, the fact (4.4) tells us that, for every k0 1, we have Pkðz1; z2; . . . ; zI Þ ¼ 0
on E by analytic continuation. Clearly this implies that f can be described as
in (4.5) by using some functions li defined on D. Moreover, since f is proper,
every li cannot vanish at any point of D; proving our assertion.

Now, we put

E½2� ¼ fðz1; z12Þ A C2; jz1j2p1 þ jz12 j
2p2 < 1g

and regard this as a complex submanifold of E in the canonical manner. Then
f ðE½2�Þ ¼ E½2� by (4.5) and the correspondence

f ½2� : ðz1; z12Þ 7! ð f1ðz1Þ; l2ðz1Þz12Þ; ðz1; z12Þ A E½2�;
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gives a proper holomorphic self-mapping of E½2�. It then follows from a result of
Dini-Primicerio [11] that f ½2� is a holomorphic automorphism of E½2� and it is, in
fact, a linear automorphism of E½2�. In particular, f1 A AutðDÞ and f : E ! E is
injective by (4.5); consequently, f is a holomorphic automorphism of E.

If l1 b 2, then we have that pi > 1 and li b 2 for all i ¼ 1; . . . ; I . Hence f
is a holomorphic automorphism of E by Lemma 1.

Case (d). p1 > 1 and li ¼ 1, lj b 2 for some 2a i; ja I : As in Case (b)
we may assume that

li ¼ 1 ð2a ia sÞ and lj b 2 ðsþ 1a ia IÞ

for some integer s with 2a s < I .
If l1 ¼ 1, in the proof of Case (b) we replace zo and Pð1; p2;...; ps;1;...;1Þ by a

point

~zzo ¼ ð~zzo1 ; ~zzo2 ; . . . ; ~zzoI Þ A qE with j~zzo1 j � � � j~zzos j k~zzosþ1k � � � k~zzoI k0 0

and the principal branch Pðp1;...;ps;1;...;1Þ : Wð~zzoÞ ! Cjlj. Then, by a small change
of the proof in Case (b), one can see that f is a holomorphic automorphism of E.

If l1 b 2, then we consider a holomorphic automorphism jðzÞ ¼ u of Cjlj

induced by the change of coordinates

u ¼ ðu1; . . . ; us�1; us; usþ1; . . . ; uI Þ ¼ ðz2; . . . ; zs; z1; zsþ1; . . . ; zI Þ:

Then the image domain E� ¼ jðEÞ is given by

E� ¼ fu A Cjlj; ju1j2p2 þ � � � þ jus�1j2ps þ kusk2p1 þ kusþ1k2psþ1 þ � � � þ kuIk2pI < 1g:

Thus, the proof of showing f A AutðEÞ in the case s ¼ 2 (resp. sb 3) can be
reduced to that in the Case (c), l1 ¼ 1 (resp. Case (d), l1 ¼ 1, above).

Case (e). p1 > 1, l1 b 2 and li ¼ 1 ð2a ia IÞ: In this case, after the
change of coordinates

u ¼ ðu1; . . . ; uI�1; uI Þ ¼ ðz2; . . . ; zI ; z1Þ;

our E can be represented as

E ¼ fu A Cjlj; ju1j2p2 þ � � � þ juI�1j2pI þ kuIk2p1 < 1g

in the new coordinates ðu1; . . . ; uI Þ. Thus, in the case I ¼ 2 (resp. I b 3), by the
same argument as in the Case (c), l1 ¼ 1 (resp. Case (d)), we can check that f is
a holomorphic automorphism of E; proving the theorem in Case (e).

Eventually, we have proved that f is necessarily a holomorphic automor-
phism of E in any cases; thereby, completing the proof of Theorem 1. r

4.2. Proof of Theorem 2. It is obvious that the mapping F written in the
form as in Theorem 2 is a holomorphic automorphism (and hence, proper
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holomorphic self-mapping) of H. Conversly, take an arbitrary proper holo-
morphic self-mapping F of H. Once it is shown that F is a holomorphic
automorphism of H, then Theorem 2 is an immediate consequence of our
previous result [16; Theorem 2]. Therefore we have only to prove that F is
a holomorphic automorphism of H. To this end, write F ¼ ðF1; . . . ;FNÞ with
respect to the coordinate system z ¼ ðz1; . . . ; zNÞ in CN . Since jmjb 2, we see
that the Reinhardt domain H satisfies the condition that H \ fz A CN ; zi ¼ 0g
0j for each 1a iaN. Hence every component function Fi extends to a
unique holomorphic function F̂Fi defined on E

p
l � Eq

m (cf. [21; p. 15]). Accord-
ingly, we obtain a holomorphic extension F̂F :¼ ðF̂F1; . . . ; F̂FNÞ : Ep

l � Eq
m ! CN of

F. Let us now represent again F ¼ ð f ; gÞ and f ¼ ð f1; . . . ; fI Þ, g ¼ ðg1; . . . ; gJÞ
by coordinates ðz;wÞ ¼ ðz1; . . . ; zI ;w1; . . . ;wJÞ in Cjlj � Cjmj ¼ CN and denote by

f̂f , ĝg the holomorphic extensions of f , g to E
p
l � Eq

m, respectively. Since gðz;wÞ
does not depend on the variables z by Lemma 5, ĝg has the form ĝgðz;wÞ ¼ ĝgðwÞ.
Moreover, ĝgðEq

mÞ � Eq
m, ĝgðqEq

mÞ � qEq
m by Lemma 4 and ĝgð0Þ B qEq

m by the
maximum principle for the continuous plurisubharmonic function rqðĝgðwÞÞ on Eq

m.
Thus ĝgðEq

mÞ � Eq
m and ĝg : Eq

m ! Eq
m is a proper holomorphic mapping. Hence,

by Theorem 1 ĝg is a holomorphic automorphism of Eq
m with ĝgð0Þ ¼ 0; and by

Theorem A it can be written in the form

ĝgðwÞ ¼ ðB1wtð1Þ; . . . ;BJwtðJÞÞ; w ¼ ðw1; . . . ;wJÞ A Eq
m;ð4:6Þ

where Bj A UðmjÞ and t is a permutation of f1; . . . ; Jg such that tð jÞ ¼ t if and
only if ðmj; qjÞ ¼ ðmt; qtÞ.

Now we wish to prove that F is, in fact, a holomorphic automorphism of
H. To this end, let us introduce a holomorphic automorphism C of H defined
by Cðz;wÞ :¼ ðz; ĝg�1ðwÞÞ. Then, replacing F by C �F if necessary, we may
assume that F has the form Fðz;wÞ ¼ ð f ðz;wÞ;wÞ on H. Therefore, if we set

Ew ¼ fz A Cjlj; rpðzÞ < rqðwÞg and fwðzÞ ¼ f ðz;wÞ; z A Ew;

for an arbitrarily given point w A Eq
mnf0g, then it is obvious that fw induces a

proper holomorphic self-mapping of Ew. On the other hand, putting

ri ¼ 1=ðrqðwÞÞ1=ð2piÞ ð1a ia IÞ;

we have a biholomorphic mapping L : Ew ! E
p
l defined by

LðzÞ ¼ ðr1z1; . . . ; rI zI Þ; z ¼ ðz1; . . . ; zI Þ A Ew:

Recall that E
p
l is the unit ball Bjlj or a generalized complex ellipsoid in Cjlj

with jljb 2, R C pi b 1 ð1a ia IÞ according to I ¼ 1 or I b 2. Then, being
a proper holomorphic self-mapping of Ep

l , the composite mapping L � fw �L�1 :
E

p
l ! E

p
l must be a holomorphic automorphism of E

p
l by Alexander [1] or

Theorem 1. In particular, we see that fw : Ew ! Ew is injective for any w A
Eq
mnf0g; accordingly, Fðz;wÞ ¼ ð fwðzÞ;wÞ itself is injective on H. Therefore

we conclude that F is actually a holomorphic automorphism of H, as desired.
r
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4.3. Proof of Theorem 3. Clearly, the mapping F having the form as
in Theorem 3 is a holomorphic automorphism (and hence, proper holomorphic
self-mapping) of H. Therefore, taking an arbitrary proper holomorphic self-
mapping F of H, we would like to prove that F can be written in the form as
in Theorem 3. For this purpose, we begin with noting the following: Since
jmjb 2, by the same reasoning as in the proof of Theorem 2, every holomorphic
function hðzÞ on H extends uniquely to a holomorphic function ĥhðzÞ on D� Eq

m,
where D is the unit disc in C. Since qj b 1 ð1a ja JÞ, D� Eq

m is a geomet-
rically convex domain in CN ; and hence, it is a pseudoconvex domain. Thus
D� Eq

m is just the envelope of holomorphy of H; accordingly, jĥhðzÞjaK on
D� Eq

m if jhðzÞjaK on H (cf. [21; p. 93]). In particular, our proper holo-
morphic mapping F ¼ ðF1; . . . ;FNÞ ¼ ð f ; gÞ extends to a unique holomorphic

mapping F̂F :¼ ðF̂F1; . . . ; F̂FNÞ ¼ ð f̂f ; ĝgÞ from D� Eq
m to CN with jF̂FjðzÞja 1 on

D� Eq
m for every j ¼ 1; . . . ;N. Moreover, since ĝg has the form ĝgðz;wÞ ¼ ĝgðwÞ

by Lemma 5, in exactly the same way as in the proof of Theorem 2, one can
prove that ĝg is a holomorphic automorphism of Eq

m of the form (4.6); and so F̂F
is a holomorphic self-mapping of D� Eq

m with F̂Fð0; 0Þ ¼ ð0; 0Þ, as seen by taking
the limit ðz;wÞ ! ð0; 0Þ through H. In particular, we have f̂f ð0; 0Þ ¼ 0. Any-
way, in order to prove Theorem 3, we may again assume that F has the form
Fðz;wÞ ¼ ð f ðz;wÞ;wÞ on H.

Under the situation above, the only thing which has to be proved now is
that f ðz;wÞ can be written in the form f ðz;wÞ ¼ Az on H, where A A C with
jAj ¼ 1. To verify this, we need a few preparation. First of all, since our
Fðz;wÞ ¼ ð f ðz;wÞ;wÞ is holomorphic on some open neighborhood of Hnf0g by
Lemma 3, one can choose a small e > 0 in such a way that F is holomorphic on
the Reinhardt domain Ge defined by

Ge ¼ fðz;wÞ A C� Cjmj; jzj < 1þ e; 1� e < rqðwÞ < 1þ eg � B2:

Since jmjb 2, Ge also satisfies the condition that Ge \ fz A CN ; zi ¼ 0g0j
for each 1a iaN; and hence, F extends to a unique holomorphic mapping
~FF : Oe ! CN , where Oe is the bounded Reinhardt domain in C� Cjmj given by

Oe ¼ fðz;wÞ A C� Cjmj; jzj < 1þ e; rqðwÞ < 1þ eg � D� Eq
m:

Therefore we may assume that our extension F̂Fðz;wÞ ¼ ð f̂f ðz;wÞ;wÞ is holomor-
phic on Oe. Then, being a holomorphic function on the Reinhardt domain Oe

containing the origin 0 ¼ ð0; 0Þ in C� Cjmj ¼ CN , f̂f can be expanded uniquely as
a power series

f̂f ðz;wÞ ¼ f̂f ðzÞ ¼
X
n

Anz
n; An ¼

1

n!

qjnj f̂f ð0Þ
qzn11 � � � qznNN

;ð4:7Þ

which converges absolutely and uniformly on compact subsets of Oe (in partic-
ular, on D� Eq

m), where the summation is taken over all n ¼ ðn1; . . . ; nNÞ A ZN

with n1; . . . ; nN b 0.
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Now, recall that FðB2Þ � B2 by Lemma 4; and so F̂FðB2Þ � B2. Accord-
ingly

j f̂f ðz;wÞj2p ¼ rqðwÞ whenever jzj2p ¼ rqðwÞa 1;

and so

j f̂f ððrqðwÞÞ1=2p;w1 expð
ffiffiffiffiffiffiffi
�1

p
y1Þ; . . . ;wJ expð

ffiffiffiffiffiffiffi
�1

p
yJÞÞj2 ¼ ðrqðwÞÞ1=pð4:8Þ

for any ðz;wÞ A B2 and yj ¼ ðy1j ; . . . ; y
mj

j Þ A Rmj , where we have put

wj expð
ffiffiffiffiffiffiffi
�1

p
yjÞ ¼ ðw1

j expð
ffiffiffiffiffiffiffi
�1

p
y1j Þ; . . . ;w

mj

j expð
ffiffiffiffiffiffiffi
�1

p
y
mj

j ÞÞ

for j ¼ 1; . . . ; J. Notice that this equation (4.8) holds also for any point w A Cjmj

with rqðwÞa 1, because one can always find a point z A C such that ðz;wÞ A B2.
Therefore, writting An ¼ Aaa for n ¼ ða; aÞ A Z� Zjmj in (4.7), we obtain that

ðrqðwÞÞ1=p ¼
X
a;b;a

AaaAbaðrqðwÞÞðaþbÞ=2pjwa1
1 j2 � � � jwaJ

J j2;

which converges absolutely and uniformly on Eq
m, where

a ¼ ða1; . . . ; aJÞ with aj ¼ ða1j ; . . . ; a
mj

j Þ;

w
aj
j ¼ ðw1

j Þ
a1
j � � � ðwmj

j Þa
mj
j for 1a ja J;

and the summation is taken over all 0a a; b A Z, a ¼ ða1; . . . ; aJÞ A Zjmj with
ak
j b 0 ð1a ja J; 1a kamjÞ. Hence, considering the special case where

w ¼ ðw1;w2; . . . ;wJÞ ¼ ðw1; 0; . . . ; 0Þ with w1 ¼ ðx; 0; . . . ; 0Þ; x A C;

a ¼ ða1; a2; . . . ; aJÞ ¼ ða1; 0; . . . ; 0Þ with a1 ¼ ðl; 0; . . . ; 0Þ; l A Z

and writting Aaa ¼ cal, we obtain that, for any x A C with jxja 1,

jxj2q1=p ¼
X
lb1

jc0lj2jxj2l þ
X
mb1

2 Reðc1mc0mÞjxjq1=pþ2m þ jc10j2jxj2q1=pð4:9Þ

þ
X

aþb¼kb3

ca0cb0jxjkq1=p þ
X

lb1;aþb¼kb2

calcbljxjkq1=pþ2l;

since c00 ¼ f̂f ð0Þ ¼ 0. Thus

lim
x!0

ðthe right-hand side of ð4:9ÞÞ=jxj2q1=p ¼ 1:ð4:10Þ

Note that if we define the holomorphic function hðz; xÞ by

hðz; xÞ ¼ f̂f ðz; x; 0; . . . ; 0Þ on fðz; xÞ A C2; jzj < 1þ e; jxj < 1þ eg;

then the Taylor expansion of hðz; xÞ is given by hðz; xÞ ¼
P

a;l calz
axl, which

converges absolutely and uniformly on D2. Moreover it should be remarked
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that, since jhðz; xÞja 1 on D2, Gutzmer’s inequality assures us that

Xy
a;l¼0

jcalj2r2ar2l a 1; 0a r; ra 1; and so
Xy
a;l¼0

jcalj2 a 1:ð4:11Þ

Now we assert that

cal ¼ 0 for all ða; lÞ0 ð1; 0Þ; andð4:12Þ

hðz; xÞ ¼ c10z with jc10j ¼ jq f̂f ð0Þ=qzj ¼ 1:

For the verification of this, we have two cases to consider:
1) q1=p B N: Notice that 2l02q1=p and q1=pþ 2m02q1=p for any l; m A N

in this case. Hence, it follows from (4.9) and (4.10) that jc10j2 ¼ 1. This
combined with the inequality (4.11) yields at once that cal ¼ 0 for all ða; lÞ0
ð1; 0Þ and so hðz; xÞ ¼ c10z with jc10j ¼ 1, as asserted.

2) q1=p A N: If q1=ð2pÞ B N, then the term of jxj2q1=p does not appear in
the second summation on the right-hand side of (4.9). Hence, by (4.9) and (4.10)
we obtain that jc10j2 þ jc0lo j

2 ¼ 1 with lo ¼ q1=p; and so cal ¼ 0 for all ða; lÞ0
ð1; 0Þ; ð0; loÞ by (4.11).

If q1=ð2pÞ A N, then we put mo ¼ q1=ð2pÞ. Note that the terms of jxj2l
ðla moÞ do not appear in the second summation, since q1=pþ 2mb q1=pþ 2
for any m A N. Then jc0lj2 ¼ 0 for all la mo by (4.9) and (4.10); consequently,
2 Reðc1moc0moÞjxj

2q1=p ¼ 0 and the second summation does not contain the term of

jxj2q1=p. Thus, by the same reasoning as above, we obtain that jc10j2 þ jc0lo j
2 ¼ 1

and cal ¼ 0 for all ða; lÞ0 ð1; 0Þ; ð0; loÞ. Therefore, in any cases, h can be
written in the form

hðz; xÞ ¼ c10zþ c0lox
lo with jc10j2 þ jc0lo j

2 ¼ 1:

Recall that jc10zþ c0lox
lo j ¼ jhðz; xÞja 1 for any ðz; xÞ A D2. Clearly this can

only happen when jc10j þ jc0lo ja 1; and so jc10j jc0lo j ¼ 0. Here assume that
c10 ¼ 0. Then

F̂Fðz;w1
1 ; 0; . . . ; 0Þ ¼ ðc0loðw1

1Þ
lo ;w1

1 ; 0; . . . ; 0Þ
does not depend on the variables z. But, this is absurd, because if we put

H½2� ¼ fðz;w1
1Þ A C2; jzj2p < jw1

1 j
2q1 < 1g;

which is regarded as a complex submanifold of H in the canonical manner, and
consider the correspondence F½2� : ðz;w1

1Þ 7! F̂Fðz;w1
1 ; 0; . . . ; 0Þ, then F½2� induces

a proper holomorphic self-mapping of H½2�. Therefore c0lo ¼ 0, jc10j ¼ 1 and
hðz; xÞ ¼ c10z. As a result, we have verified our assertion (4.12) in any cases.

Finally, we shall complete the proof by showing that f ðz;wÞ has the form
required in the theorem. For this purpose, recall that F̂F is a holomorphic self-
mapping of the bounded Reinhardt domain D� Eq

m with F̂Fð0; 0Þ ¼ ð0; 0Þ. In
addition to this, we have

jJF̂Fð0; 0Þj ¼ jqf̂f ð0; 0Þ=qzj ¼ jc10j ¼ 1
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by (4.12). Consequently, by well-known theorems of H. Cartan, F̂F is a holomor-
phic automorphism of D� Eq

m and it is, in fact, linear (cf. [14; pp. 268–270]).
Moreover, by considering the holomorphic automorphism L :¼ C�1 � F̂F of
D� Eq

m, where C is a holomorphic automorphism of D� Eq
m defined by

Cðz;wÞ :¼ ðc10z;wÞ, it is easily seen that L is a linear automorphism of
D� Eq

m having the form

LðzÞ ¼ ðz 0 þMz 00; z 00Þ; z ¼ ðz 0; z 00Þ ¼ ðz;wÞ A D� Eq
m;

(think of z as column vectors), where M is a certain 1� jmj matrix. Thus,
denoting by Ln the n-th iteration of L, we have

LnðzÞ ¼ ðz 0 þ nMz 00; z 00Þ; z A D� Eq
m; n ¼ 1; 2; . . . :

Hence M has to be the zero matrix, that is, L is the identity transformation of
D� Eq

m, since fLngyn¼1 is contained in the isotropy subgroup K0 of AutðD� Eq
mÞ

at the origin 0 ¼ ð0; 0Þ A D� Eq
m and K0 is compact, as is well-known.

Eventually, we have shown that F̂F has the form required in Theorem 3;
thereby completing the proof. r

4.4. Proof of Theorem 4. By routine computations we can check that
the transformation F appearing in Theorem 4 induces a proper holomorphic
self-mapping of H in any cases (cf. [13; p. 212]). Conversly, we take an
arbitrary proper holomorphic mapping F : H ! H and write F ¼ ð f ; gÞ with
respect to the coordinate system ðz;wÞ in Cjlj � C. Then g does not depend
on the variables z by Lemma 5; and so it has the form gðz;wÞ ¼ gðwÞ. Since

g is a holomorphic function defined on some open neighborhood of Dnf0g with
gðqDÞ � qD by Lemma 4 and since g is bounded on D�, g now extends to a
holomorphic function ĝg defined on some open neighborhood of D with ĝgðDÞ � D.
Moreover, ĝgð0Þ B qD by the maximum principle. Accordingly, ĝg gives rise to a
proper holomorphic self-mapping of D and it is a finite Blaschke product. Since
ĝg ¼ g on D�, it is easily checked that ĝgðwoÞ ¼ 0 only when wo ¼ 0. Thus ĝg must
be of the form

ĝgðwÞ ¼ Bwk for some k A N; B A C with jBj ¼ 1:

Therefore, taking the composite mapping C �F instead of F if necessary, where
C is the automorphism of H defined by Cðz;wÞ ¼ ðz;B�1wÞ, we may assume
that F has the form Fðz;wÞ ¼ ð f ðz;wÞ;wkÞ on H. We have two cases to
consider:

Case I. I ¼ 1: In this case, putting r ¼ q=p, we have

H
p;q
l1;1

¼ fðz;wÞ A Cl1 � C; kzk2p < jwj2q < 1g

¼ fðz;wÞ A Cl1 � C; kzk2 < jwj2r < 1g ¼ H1; r
l1;1

:

Taking this into account, we shall divide the proof into two subcases as follows:
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Case (I.1). r A N: We have a biholomorphic mapping L : H ! Bl1 � D�

defined by

Lðz;wÞ ¼ ðz=wr;wÞ; ðz;wÞ A H:

Thus the composite mapping

C :¼ L �F �L�1 : Bl1 � D� ! Bl1 � D�

gives a proper holomorphic self-mapping of Bl1 � D�. Recall that l1 b 2.
Then C can be written in the form

Cðx; hÞ ¼ ðHðxÞ;GðhÞÞ; ðx; hÞ A Bl1 � D�;

by making use of some proper holomorphic mappings H : Bl1 ! Bl1 and
G : D� ! D� (cf. [21; p. 77]). Therefore, by the main theorem of Alexander
[1], H is a holomorphic automorphism of Bl1 and F can be described as

Fðz;wÞ ¼ ðwkrHðz=wrÞ;wkÞ; ðz;wÞ A H;

which proves our assertion in (I.1) of Theorem 4.

Case (I.2). r B N: We set

Ew ¼ fz A Cl1 ; kzk2 < jwj2rg; fwðzÞ ¼ f ðz;wÞ; z A Ew;

for an arbitrarily given point w A D�. Then fw induces a proper holomorphic
mapping from Ew onto Ewk . On the other hand, we have a biholomorphic
mapping Lw : Ew ! Bl1 defined by

LwðzÞ ¼ z=wr; z A Ew;

where wr stands for the branch of the power function wr such that 1 r ¼ 1 when
we consider it as a function of w. Hence the composite mapping

Cw :¼ Lwk � fw �L�1
w : Bl1 ! Bl1

is a proper holomorphic self-mapping of Bl1 with l1 b 2; consequently, it follows
again from the main theorem of Alexander [1] that Cw is a holomorphic
automorphism of Bl1 . Moreover, since Cw depends holomorphically on w,
Cw does not depend on the choice of w by the proof of [2; Theorem 2].
Therefore fw can be written in the form

fwðzÞ ¼ wkrHðz=wrÞ; z A Ew;

by using some element H A AutðBl1Þ. Once it is shown that Hð0Þ ¼ 0, H must
be a unitary transformation, i.e., H has the form HðxÞ ¼ Ax on Bl1 with some
A A Uðl1Þ. Then

f ðz;wÞ ¼ fwðzÞ ¼ wðk�1ÞrAz on H:

Moreover, since f ðz;wÞ is a single-valued holomorphic function on H, it is easily
seen that ðk � 1Þr A Z; proving our assertion in (I.2) of Theorem 4. Therefore
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we have only to verify that Hð0Þ ¼ 0. To this end, we assume that Hð0Þ0 0.
Then, since

f ð0; expð
ffiffiffiffiffiffiffi
�1

p
yÞwoÞ ¼ expð

ffiffiffiffiffiffiffi
�1

p
kryÞwkr

o Hð0Þ; �p < y < p;

where wo is a fixed real number with 0 < wo < 1, and

lim
y#�p

f ð0; expð
ffiffiffiffiffiffiffi
�1

p
yÞwoÞ ¼ f ð0;�woÞ ¼ lim

y"p
f ð0; expð

ffiffiffiffiffiffiffi
�1

p
yÞwoÞ;

it follows at once that kr A N. Moreover, choose a point zo A Ew, zo 0 0, in
such a way that Hðzo=wrÞ0 0 for all 1=2a jwj < 1 and consider the function
f ðzo; expð

ffiffiffiffiffiffiffi
�1

p
yÞwoÞ of y A ð�p; pÞ, where wo is a real number such that ðzo;woÞ A

H1; r
l1;1

and 1=2awo < 1. Then, noting the facts that kr A N and H A AutðBl1Þ,
we obtain that

zo=fexpð
ffiffiffiffiffiffiffi
�1

p
prÞwr

og ¼ zo=fexpð�
ffiffiffiffiffiffiffi
�1

p
prÞwr

og

by taking the limit y !Gp as above; so that r A N. But, this contradicts our
assumption r B N. Thus Hð0Þ ¼ 0 and F has to be of the form required in (I.2)
of Theorem 4.

Case II. I b 2: In this case, if we set

Ew ¼ fz A Cjlj; rpðzÞ < jwj2qg; fwðzÞ ¼ f ðz;wÞ; z A Ew;

for an arbitrarily given point w A D�, then fw induces a proper holomorphic
mapping from Ew onto Ewk . On the other hand, we have a biholomorphic
mapping Lw : Ew ! E

p
l defined by

LwðzÞ ¼ ðz1=wq=p1 ; . . . ; zI=w
q=pI Þ; z ¼ ðz1; . . . ; zI Þ A Ew:

Thus the composite mapping

Cw :¼ Lwk � fw �L�1
w : Ep

l ! E
p
l

is a proper holomorphic self-mapping of the generalized complex ellipsoid E
p
l

with 1a pi A R ð1a ia IÞ; consequently, Cw is a holomorphic automorphism of
E

p
l by Theorem 1. Moreover, by the same reasoning as in Case (I.2), Cw does

not depend on w. Therefore, according to Theorem A, we shall consider two
cases where p1 ¼ 1 and p1 0 1 separately.

Consider first the case where p1 ¼ 1. Then, applying Theorem A, Case I
to the holomorphic automorphism C :¼ Cw of E

p
l , we can see that fw has the

form

fwðzÞ ¼ ðwkqHðz1=wqÞ;wðk�1Þq=p2g2ðz1=wqÞA2zsð2Þ; . . . ;ð4:13Þ

wðk�1Þq=pI gI ðz1=wqÞAIzsðIÞÞ;

since psðiÞ ¼ pi ð2a ia IÞ, where H A AutðBl1Þ, Ai A UðliÞ, s is a permutation
of f2; . . . ; Ig and gi’s are nowhere vanishing holomorphic functions on Bl1 given
as in Theorem A, Case I. Hence we obtain the following:
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Case (II.1). p1 ¼ 1, q A N: In this case, wkqHðz1=wqÞ and giðz1=wqÞ are
single-valued holomorphic functions on H as well as f ðz;wÞ. Therefore we have
ðk � 1Þq=pi A Z for all i ¼ 2; . . . ; I ; proving our assertion (II.1) of Theorem 4.

Case (II.2). p1 ¼ 1, q B N: In this case, we put

H½2� ¼ fðz1;wÞ A Cl1 � C; kz1k2 < jwj2q < 1g

and regard this as a complex submanifold of H in the canonical manner. Then

FðH½2�Þ ¼ H½2� by (4.13) and the restriction FjH½2� : H½2� ! H½2� gives a proper
holomorphic mapping. Consequently, by the proof of (I.2) above, H A AutðBl1Þ
appearing in (4.13) has to satisfy the condition Hð0Þ ¼ 0 and it reduces to a
unitary transformation HðxÞ ¼ Ax on Bl1 given by some A A Uðl1Þ. Notice that
every function giðxÞ ¼ 1 on Bl1 in this case. Thus we conclude that fw has the
form

fwðzÞ ¼ ðwðk�1ÞqAz1;w
ðk�1Þq=p2A2zsð2Þ; . . . ;w

ðk�1Þq=pI AI zsðIÞÞ

with ðk � 1Þq=pi A Z for all i ¼ 1; . . . ; I ; thereby, F has the form required in (II.2)
of Theorem 4.

Consider next the case where p1 0 1. Then, applying Theorem A, Case II
to the holomorphic automorphism C, we can see that fw has the form

fwðzÞ ¼ ðwðk�1Þq=p1A1zsð1Þ; . . . ;w
ðk�1Þq=pI AI zsðIÞÞ;

since psðiÞ ¼ pi for every i ¼ 1; . . . ; I , where Ai A UðliÞ and s is a permutation of
f1; . . . ; Ig as in Theorem A, Case II. Moreover, since f ðz;wÞ is a single-valued
holomorphic function on H, it is obvious that ðk � 1Þq=pi A Z for all i ¼ 1; . . . ; I ;
which proves our assersion (II.3) of Theorem 4.

Finally, by recalling our previous results [16], [17] on the structure of
holomorphic automorphism groups of generalized Hartogs triangles, it is easy
to see that the proper holomorphic self-mapping F of H appearing in Theorem 4
is a holomorphic automorphism of H if and only if k ¼ 1 in any cases.

Therefore the proof of Theorem 4 is now completed. r
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