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Abstract

Let M and N be connected and orientable, closed surfaces. For a stable map
¢ : M — N, denote by ¢(p) and n(p) the numbers of cusps and nodes of ¢ respectively.
In this paper, we determine the minimal number c¢(p)+ n(p) among the apparent
contours of degree d stable maps M — N whose singular points set consists of one
component.

1. Introduction

Let M be a closed and connected surface, N a connected surface, and
9p: M — N be a C* map. Define the set of singular points of ¢ as

S(p) = {p e M |rank dp, < 2}.

We call ¢(S(p)) the apparent contour (or contour for short) of ¢ and denote it
by y(p).
A C* map ¢: M — N is said to be stable if it satisfies the following two
properties.
(1) For each p e M, the map germ of ¢ at p e M is C* right-left equivalent
to one of the map germs at 0 € R? below:

* (a,x) — (a,x): a regular point,
* (a,x) — (a,x?): a fold point,
* (a,x) — (a,x> +ax): a cusp point.

Hence, S(p) is a finite disjoint union of circles.
(2) For each ¢gey(p), the map germ (¢|S(¢),(p’1(q)ﬂS((p)) is right-left
equivalent to one of the three multi-germs as depicted in Figure 1.
According to a classical result of Whitney [12], stable maps form an open
dense subset in the space of all C* maps M — N with respect to the Whitney
C* topology.
For a stable map ¢: M — N, the numbers of connected components of
S(p), cusps and nodes on y(p) are denoted by i(¢), c(p) and n(p) respectively.
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FIGURE 1. The multi-germs of ¢lg,.

In this paper, we study a stable map with singuldr points.

An oriented and closed surface of genus g is denoted by X,. The
2-dimensional sphere and the plane are denoted by S? and R? respectlvely

Pignoni [8] introduced the notion of a minimal contour of a C* map
between surfaces and studied that of a C* map M — R? of a closed surface into
the plane: Let ¢y: M — N be a C* map and ¢ : M — N a stable map which
is homotopic to ¢, and whose singular points set consists of one component.
The contour y(p) is called a minimal contour of ¢, if ¢(p) + n(p) is the smallest
among the contours of stable maps which are homotopic to ¢, and whose
singular points set consists of one component. Then, Demoto [1], Kamenosono
and the author [4] studied minimal contours of C* maps M — S? of closed
surfaces into the sphere. Furthermore, for each integer i > 1, the apparent
contours of stable maps of connected and closed, orientable surfaces into the
plane or the sphere whose singular points set consists i components were studied
by Fukuda and the author [3, 14]. The author [15] also studied a 5-tuple of
integers (g,d, i, c,n) such that there exists a degree d stable map £, — N, N = R?
or S?, whose singular points set consists of i components and whose contour has
¢ cusps and n nodes.

In this paper, we study the apparent contour of a stable map X, — X,
h > 1, whose singular points set consists of one component. To study apparent
contours, we generalize the formula obtained by Pignoni [8], Kamenosono and
the author [4]. By using the generalized formula, Proposition 2.6, we study a
minimal contour of degree d: Let ¢:X, — X, be a degree d stable map whose
singular points set consists of one component. Then, the contour y(¢) is called
a minimal contour of degree d if the number c(¢) + n(¢p) is the smallest among the
contours of degree d stable maps X, — X, whose singular points set consists of
one component.

The purpose of this paper is to determine the number ¢+ n of minimal
contour of degree d for each d > 0. Note that the contour of a minimal contour
of degree d is not unique.

Recall that two C* maps X, — X, are homotopic, then their degrees
coincide. Recall also that two C* maps %, — S? are homotopic if and only
if their degrees coincide, see [7] for example. Thus, for any degree d C* map
@y : Xy — Xp, the notion of minimal contour of degree d and that of minimal
contour of ¢, coincide if 4 = 0.

Note that the following proposition was obtained by Kneser—Edmonds’s
theorem ([5, 6, 2]), see [13] for example.
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ProposiTION 1.1 ([5, 6, 2, 13]). For integers g >0 and h > 1, we define

0 if g=0,h>1,

o0 if g=1,h=1,
ghy =42

g— - otherwise,

h—1

—1
where Z—l is the maximal integer which dose not exceed (g —1)/(h—1).

If h>1 and |d| > r(g,h), then there is no C* map ¢ :X, — %, of degree d.
The main theorem of this paper is the following.

THEOREM 1.2. Let g and h be non-negative integers with h > 1, and d a non-
negative integer satisfying d <r(g,h), ¢ :X; — X, a stable map whose singular
points set consists of one component. Then, the contour y(p) is a minimal contour
of degree d if and only if the pair (c(p)),n(p)) is one of the items below;

h=1:

(1) (0,0) if d=0 and g=0,
(2) (2,2) if d=0and g=1,
(e,n) =< (3) (2,0) if d#0 and g=1,
(4) (0,g—2) if g=2 is an even number and for any d,
(5) (2,9—3) if g=3 is an odd number and for any d,

(6) (2,2) if d=0 and g is an odd number satisfying 1 < g <2h — 1,
(7) (2,0) if d=0 and g is an odd number satisfying g > 2h+ 1 or,
if d>1and g>dh—-1),g#dh—1) (mod2),

(8) (0,0) otherwise.

Figures 2 (1), (2), (3), (4) and (5) show examples of minimal contours of the
cases (1), (2), (3), (4) and (5) respectively.
Theorem 1.2 shows the following corollary.

COROLLARY 1.3. Let ¢ : X, — X be a degree d stable map whose contour is
a minimal contour of degree d. Then, the number of nodes on y(p) is an even
number.

Remark that for a stable map ¢ : M — X, the number of cusps ¢(p) and the
Euler characteristic y(M) have the same parity by a classical result of Thom [10].
Remark that for a C* map ¢, : X, — R? or ¢, : £, — S?, the number of nodes
on a minimal contour of ¢, is an even number for each g, see [8] and [4] for
the details. Note that there is a stable map X, — X, whose singular points set
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(1) (2) 3)
O
g—2 O
O 0 9-3
(4) (5)

FIGURE 2. Minimal contours of degree d for C* maps £, — Z;.

consists of one component and whose contour has odd number of nodes for each
g=>0and h>0.

Remark 1.4. Theorem 1.2 makes the very first step toward classifying
generic C* maps between closed surfaces up to right-left equivalence.

This paper is organized as follows. In §2, we prepare some notions con-
cerning to stable maps ¢ : M — %, (h > 0), and generalize the formula obtained
by Pignoni [8], and Kamenosono and the author [4]. In §3, we construct stable
maps X, — %, (¢ =0, & > 1), which are in the list of Theorem 1.2. In §4, we
show the contours of stable maps constructed in §3 are minimal contours of
degree d. In §5, we study the case of the apparent contours of fold maps
p:2Xy—2%, (9g=0, h>1). In §6, we pose five problems which concern the
apparent contours of stable maps ¢ : M — %, (h>1).

Throughout this paper, all surfaces are connected and smooth of class C*,
and all maps are smooth of class C* unless stated otherwise. The symbols
d,g >0, h >0 denote integers. For a topological space X, idy denotes the
identity map of X. For a closed surface M, (M), denotes the surface obtained
by rezmoving ¢ open disks from M. The symbol D? denotes the closed disk
in R“.

2. Preliminaries

In the following, for a closed surface M, we prepare some notions con-
cerning the apparent contour of a stable map ¢: M — X, (h=0).
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Let M be a closed surface and ¢: M — X, a stable map with singular
points. Let S(p) =S U---US, be the decomposition of S(p) into the con-
nected components and set y; = ¢(S;), (i=1,...,/). Note that y(p) =y, U---U
7,. Let m(p) be the smallest number of elements in the set p~!(y), where y € ¥,
runs over all regular values of ¢. Fix a regular value oo such that ¢~!(o0)
consists of m(¢p) points. For each y;, denote by U; the component of X;\y;, which
contains co. Note that oU; C y,.

Orient y; so that at each fold point image, the surface is “folded to the left
hand side”. More precisely, for a point y € y; which is not a cusp or a node,
choose a normal vector v of y; at y such that ¢~'()’) contains more elements
than ¢~'(y), where y’ is a regular value of ¢ close to y in the direction of o.
Let 7 be a tangent vector of y; at y. It is easy to see that t gives a well-defined
orientation for y;.

DeriNITION 2.1. A point y € U;\{cusps,nodes} is said to be positive if
the normal orientation v at y points toward U;. Otherwise, it is said to be
negative.

A component p; is said to be positive if all points of JU;\{cusps,nodes}
are positive; otherwise, y; is said to be negative. The number of positive and
negative components is denoted by it and i~ respectively.

Note that if # = 0, then there is at least one negative component. Note also
that if #>1 and S(p) consists of one component, then y(¢) is the negative
component.

DeriNITION 2.2. A point y € dU;\{cusps,nodes} is called an admissible
starting point if y is a positive (or negative) point of a positive (resp. negative)
component y;. Note that for each 7, there always exists an admissible starting
point on y;.

DerINITION 2.3. Let y €y, be an admissible starting point and Q ey, is a
node. Let o:[0,1] — 7y, be a parameterization consistent with the orientation
which is singular only when the image is a cusp such that «~!(y) = {0,1}.
Then, there are two numbers 0 < #; < t, < 1 satisfying a(f)) = a(2) = Q.

We say that Q is positive if the orientation of X, at Q defined by the ordered
pair (a/(#1),0'(t2)) coincides with that of X at Q; negative, otherwise, see Figure
3 for the details.

The number of positive and negative nodes on y; is denoted by N/ (¢) and

N; (p) respectively. The definition of a positive (or negative) node on y; depends

on the choice of an admissible starting point y. However, it is known that the
algebraic number N;"(¢) — N, (p) does not depend on the choice of y, see [11]

1

for the details. Thus, the algebraic number N*(p) — N~ (p) = .1, (N;" (p) —
N; (p)) is well defined. Note that nodes arising from y; N y; (i # j) play no role

1
in the computation.
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A positive node A negative node

FIGURE 3. A positive node and a negative node.

Then, the following formula was obtained by Pignoni [8], Kamenosono and
the author [4]

PROPOSITION 2.4 ([8, 4]). For a stable map ¢ : M — S* of a closed surface of
genus ¢, we have

20 a=n () - N )+ L it =) o))

where ¢(M) is equal to one if M is orientable, two otherwise.

In the following, we generalize formula (2.1) for a stable map ¢ : M — %,
(h = 1), such that i(p) = 1.

LEmMA 2.5. Let 9 : M — %, (h>1) be a stable map such that i(p) = 1.
Then, there is a degree one stable map m:%, — S such that it satisfies the
Jfollowing conditions:

(1) n(o0) € S? is a regular value of n, and n~'(n(0)) = {0},

(2) S(n) consists of h components ST,...,SF, and y(n) has 4h cusps and no

nodes, and

(3) y(p) N S(m) = 0.

Proof. Let us consider ¥, is the sphere S with & 1-handles Hiy,..., H).
By modifying ¢ by a C* homotopy if necessry, we assume that S contains oo.
Define a stable map 7 :X, — S> by the projection of the I1-handles H;
(i=1,...,h) into S. Note that S(my) consists of & components and y(r)
has 4h cusps and no nodes. Let S(mp) =S U---S;° be the decomposition
of S(mp) into the connected components. Note that each S/, (i=1,...,h),
bounds a disk. Then, by shrinking S, (i=1,...,h), there exists a diffeo-
morphism ¥ : ¥, — ¥, such that ¥(S(z)) Ny(p) = . Then, define 7 = 7y o ¥~
The map 7 : %, — S? satisfies the conditions (1), (2) and (3). O
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For a stable map ¢ : M — %, (h > 1), such that i(p) =1 and a stable map
n:%, — S? as in Lemma 2.5, denote by &i(p,7m), (i=...,h), the number of
inverse image of S* C S(n), (i=1,...,h), by ¢. Then, the following formula is
obtained as an application of Proposition 2.4.

PropoSITION 2.6. Let ¢9: M — %, (h=1), be a stable map such that
i(p) =1 and n: %, — S* be a stable map as in Lemma 2.5. Then, we have

) h
22)  g=eM) ((N*(w) N o)+ > éilom) - m<¢>>

where g is the genus of M, ¢(M) is equal to one if M is orientable, or two
otherwise.

Proof. Let us consider the C* map mog: M — S?, see Figure 4. The
right bottom of Figure 4 shows the contour p(mo ). Note that in the right
bottom of Figure 4, the square y(z) overlaps &;(p, n)-fold. Then, by perturbing
o as the &(p,n)-fold square does not intersect each other, see the left bottom
of Figure 4, we obtain a stable map ®: M — S?. Then, for a fixed regular
value n(o0) € §2, we obtain the folloiwng.

h
p)+ > 4ilpm), iT(@) =0, i (®)=1+) &(pn).
i=1 i

Let us consider the number of nodes n(®).

the opposite sign

s

7T O QO
perturw

the opposite sign

m) Cy(mop)

FIGURE 4
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LemmA 2.7. Let us go along the contour y(¢) following the canonical
orientation. If the contour y(p) intersects transversely a longitude (or meridian)
circle, then y(p) intersects again the longitude (resp. meridian) circle in the opposite
direction.

Proof. For any point g e y(p), the difference between the number of
inverse-image of a regular value in the left-hand side of ¢ and that of a regular
value in the right-hand side of ¢ is two. It yeilds the conclusion. O

Lemma 2.7 yields that n(®) is of the form n(®) =n(p)+ 4k, (k=0).
Futhermore, we obtain the following lemma.

Lemma 2.8. (1) If a node q € y(p) is positive (or negative), then the corre-
sponding node q' € y(®) is also positive (resp. negative).

(2) The algebraic number Nt — N~ of new nodes which are born by
composing with © and perturbing mwo ¢ is zero.

Proof: (1) Tt is trivial.
(2) New nodes appear as a pair of two positive nodes and two negative
nodes, see the left bottom of Figure 4. O

Thus, we have
N™(p) =N (p) =N"(®) - N~ (D).
By applying formula (2.1) to ®, we obtain formula (2.2). O

Let p: M — %, (h>1) be a stable map such that i(p) =1

Lemma 2.9. If y(p) has a node, then it has at least one negative
node.

Proof. Let us go along y(p) starting from an admissible starting point y,
following the canonical orientation of y(¢). When we pass through a positive
node on y(p) for the first time, the number of points in the inverse-image
decreases by two. This is a contradiction. O

In general, if the negative component y(p) passes a positive (or negative)
node, then the number of points in the inverse-image decrease (resp. increase) by
two. Thus, we obtain the followin lemma.

LeMMA 2.10. If there exists a point q € %y, such that ¢~ (q) consists at least
m(p) + 4 points, then y(p) has at least (#¢p~'(q) — m(p) —2)/2 negative nodes,
where #¢p~'(q) denote the number of inverse image of q by g.
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3. Stable maps X, — %, in Theorem 1.2

In this section, we construct stable maps which are in the list of Theorem
1.2. Note that to construct such stable maps is a part of a proof of Theorem
1.2.

For any nonnegative integers d, g and &, we construct a degree d stable map
%, — X;, whose singular points set consists of one component. This map will be
denoted by ¢’(}1 g In Figures, the numbers in the components of X;\y denote the
numbers of inverse-images of a point in the components respectively.

3.1. Stable maps into £;. For each odd number g and each even number
g = 2, degree one stable maps (/JIO, g 2g S? whose contours are in Figure 5 (1)
with u=1, 4, =¢g+3 if g is odd and Figure 5 (2) with u=1, 4L =9g+2 if
g = 2 is even were obtained in [4] respectively. Then, by attaching five 1-handles
and one 1-handle to the source surface and the target surface of go?l , respec-
tively, we obtain ¢ g5 ¢ Zgps — X1 whose contour is in Figure 2 (4) if ¢ is odd,
that 1is in Figure 2 (5) if g > 2 is even respectively. Figure 6 shows the procedure
of ;6.

FIGURE 5. Apparent contours of stable maps X, — S2.

b Yo = X1#Xs
|
1
o)
g Attach
S2 = <@ —
ﬁ, handles

FIGURE 6. Procedure of %1?6 (Xe — 2.
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o — |

NN T

FIGURE 7. Making a pleat.

v S(‘P(l),z)
@(1),2
- 7(99(1),2)

FIGURE 8. Stable map ¢ ,.

By making a pleat to ids, :%; —X; and idg : S? — S%, we obtain
o1, :Z1 — 2 and @) :S* — S* whose pairs (c,n) are equal to (2,0) respec-
tively. See Figure 7. By attaching three 1-handles and one 1-handle to the
source source and the target surface of go?‘o respectively, we obtain (pll‘3 123 — X
whose contour is in Figure 2 (5). '

A degree zero stable map X; — S whose contour is in Figure 5 (2) with
u=0, /=2 was obtained in [4]. Then, by attaching four 1-handles and one
I-handle to the source surface and the target surface of the degree zero stable
map X; — S? respectively, we obtain ¢375 : X5 — X; whose contour is in Figure 2
(5).

By combining the projection S? — D? and the inclusion D? < X;, we obtain
¢é‘0:52—>21 whose contour is in Figure 2 (1). Similarly, by combining
¥, — D? whose contour is minimal in [4] and the inclusion D? — %, we obtain
¢l :Z1 — X whose contour is in Figure 2 (2).

" Figures 8 and 9 define degree zero stable maps ¢}, and ¢}, respec-
tively. ' '

Thus, we obtained the following maps:

PrROPOSITION 3.1. There are degree zero stable maps 49(()),0a (pé‘l, goéy 2 (p& 4 and
(P(%‘s and degree one stable maps gohg 12Xy — X with g=1,3 and g > 6 whose
singular points set consist of one component and whose pairs (c,n) are one of the
items below:
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(0,0) for %,0 and ¢ ,,

(2,0) for ¢ | and o 3,

(2,2) Jor @5, and g s,

(Cv n) = 1’ ’

(0,2) for v 4,

(0,g—2) for (0114,7 g > 6 is an even number,

(2,9—=3) for 9|, 9=7 is an odd number.

52 _ S2 24 = S%243,
Attach
handles

o

FIGURE 9. Procedure of ¢ ,.

Furthermore by applying the following modification to ¢1 s 990 5 O3,
(Po 4 goo s and (01 g (g = 6), we obtain degree d stable maps (pd y E\ — X, whose
contours are the same as y(¢] ), 7(0),), ¥(¢ls), 7(0h4), ¥(pls) and y(p! )
respectively for each d > 1 and g > 1: For a stable map ¢: X, — X, g > 1, as
the above, let 4 be a meridian circle in ¢((X,),) C £y, and C C (%,), a connected
component of ¢~'(u), where (Z,), denotes the closure of the set of regular points
whose neighborhoods are orientation preserved by the map. Then, by cutting
%, along C, we obtain two meridian kerfs 4 and B in (Z,) - Denote by Ny a
sufficiently small neighborhood of B C (%,),. Then, define ¢'|y, and ¢ \z AL
coiling Np d — 1 times along X; and ¢’ 5\Np = (p|zq\ w, Tespectively. Finally stick
the meridian kerfs 4 and B. Thus, we obtain a degree d stable map ¢’ : £, — %
whose contour is the same as y(¢). See Figure 10.
Similarly, for degree one stable maps (pll 3 and (pll (¢ = 6) in Proposition 3.1,
we obtain degree zero stable map <p0 ;3 and goo whose contours y((po ;) and ((po g)

are the same as y((p1 ;) and y(p] 4) respectrvely Thus, we obtain the following
maps.

ProrosITION 3.2. For each d >0, there is a degree d stable map
(p;‘ g Zg — X1 whose singular points set consists of one component and whose
pair (c,n) is in the list of Theorem 12, namely (c,n) is one of the
following:
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(0,0) if d=0 and g =0,

(1)
(2) (2,2) if d=0and g=1,
(e,n) =14 (3) (2,0) if d#0 and g=1,
(4) (0,g—2) if g=2 is an even number and for any d,
(5) (2,g—3) if g=3 is an odd number and for any d.

Sl

AVARP

FIGURE 10
A3 Bz Sl 1) P nyala Pinale @l
’C (
P
D —— N —
(Zp)1 (X1)1 h—1
FIGURE 11

3.2. Stable maps into X;, (2> 2). In the following, assume that triples
(d,g,h) satisfy the condition d < r(g,h).

Denote by (p{" P the degree one stable map X, — X, which is obtained by
making a pleat to ids,.

Figure 11 defines a degree one stable map X;,,; — X, whose singular points
set consists of one component and whose contour has no cusps and no nodes.
Denote by go{’ﬁ n1 this degree one stable map. Note that, in Figure 11, X, is
divided into three parts 4, B and C such that AUB = (%;); and C = (Z;),.
Similarly, we define a stable map go{" 12Xy — %, for each integers g and £
satisfying g >h+1 and g=h+1 (mod 2). More precisely, for an integer ¢
satisfying g>h+1 and g=h+1 (mod2), put g, =(@+hr—-1)/2, g_=
(g—h+1)/2. Then, note that there are integers A and u satisfying g, =
h+Ah—1)4u and g =1+A(h—1)+u where 1 >0 and O0<u<h-2.
Then, define the map from (%, ), (or (¥, ),) into X, as the similar way as
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%

Attach a handle

horizontally 1

m@

FIGURE 12. Attaching of a handle horizontally. The map is obtained when one projects these
surfaces to the horizontal plane.

oL, +1| aup (tesp. o, |c). Note that S(pf 4) consists of one component and
(o ;) has no cusps and no nodes.

Then, by attaching a 1-handle horizontally to the source surface, see Figure
12 for the details, of gp{z‘g with g >h+1 and g=h+1 (mod 2), we obtain a
degree one stable map X,.; — X, whose singular points set consists of one
component and whose contour has two cusps, no nodes. Denote by go{ﬁ g4+1 this
degree one stable map. Thus, we obtain the following:

PROPOSITION 3.3. For each h > 2 and each g > h+ 1, there is a degree one
stable map gol g1 Zg = whose singular points set consists of one component and
the pair (c,n) is one of the following items:

(cn) = (2,0) if g=h mod 2,
1= (0,0) otherwise.

LemMa 3.4. Let ¢:X, — X be a degree d stable map whose singular points
set consists of one component such that the genus of (X4), is greater than or equal
to one. Then, there is a degree d + 1 stable map ¢' : ;41 — X, whose contour
is diffeomorphic* to y(p).

Proof. For such C* map ¢:%; — %, divide X, into (1), U(Z4-1); such
that (X;), C (¥y).. Then, insert (X,_;), between (X;); and (X,_);, and define
¢ Zgin- 1—>E,, by ¢'=¢ on (%), ¢, ), is defined by Figure 13 and

?'|s S) = o9l 1, Where r:¥, — %, denotes the diffeomorphism which is
deﬁned by the half turn of ¥;. See Figures 13 and 14. Thus, we obtain the
desired degree d + 1 stable map X, ;-1 — Zp. O

!Let M; be smooth manifolds and 4; C M; be subsets, i =0,1. A continuous map g : 4y — 4,
is said to be smooth if for every qe Ay, there exists a smooth map §: V — M, defined on a
neighborhood V' of g e My such that g[yn,, = glyn,,- Furthermore, a smooth map g: Ag — 4, is
called a diffeomorphism if it is a homeomorphism and its inverse is also smooth. When there exists a
diffeomorphism between A4y and A4;, we say that they are diffeomorphic.
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FiGUure 13. Construction ¢’ : Zy-1 — Zj.

Y

N

—_—
h

FiGure 14. A diffeomorphism r: %, — ;.

By applying Lemma 3 4 inductively to (ﬂ1 y in Proposmon 3.3, we obtain a

degree d > 2 stable maps (od gHd—1)(h-1) whose contour is dlffeomorphlc to y(gol q)

For a stable map (of’ in Proposmon 33 w1th g £ h (mod 2), by connecting

Y, and X, by a horizontal 1-handle, we define ol gin : Zgrh = Zp by 90 genls, =

—idg, and % g +h|2 ¢. Note that S(goo ) consists of one component and
y(gpo g+n) has two cusps, no nodes. See F1gure 15.
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FIGURE 15. Attaching X, horizontally.

FIGURE 16

Figure 16 explains a construction of a degree zero stable map X, — X, whose
singular points set consists of one component and the contour has no cusps,
no nodes for each even number ¢ satisfying 24 < g <4h —4. Denote by go(’]” ; the
degree zero stable map. Similarly, for an even number g with 0 < g < 2h, we
have a degree zero stable map go(’{ g ¢ g — X whose singular points set consists of
one component and y(gog‘ ;) has no cusps and no nodes. Furthermore, we define
go{” g g — Xy for an even number g with g > 44 —4. More precisely, for an
even number g which satisfies g > 4h — 4, there are integers A and u which satisfy
g/2=h+A(h—1)4+u where A >0 and 0 <u <h—2. Then, define the map
from (), into =, as ¢ | in Figure 16. Note that S(gg ) consists of one
component and y((poz_uq) has no cusps and no nodes. '

For each integer # > 2 and each odd number g in 1 <g<2h—1, put
(G,05,03) =s(1,-2,1)+1/2(2h— g+ 1,9 — 1,0), where s is an integer in 0 < 5 <
(g—1)/4. Note that g =24 +4/+1 and h=74+ /> + (3. Then, we have a
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2 Doty tars+1 = Xy

J‘P(lu

L3

FIGURE 17

degree zero stable map go(’)’ﬁ s Zg — Zp as in Figure 17. This construction shows
that stable maps whose singular points set consists of one component and whose
pairs (¢,n) are in the list of Theorem 1.2 are not unique.

Thus we obtain the following maps.

PROPOSITION 3.5.  For each d > 0 and h > 2 which satisfies d < r(g,h), there
is a degree d stable map (p{’}‘ g 2g = 2 whose singular points set consists of one
component and whose pair (c¢,n) is in the list of Theorem 1.2, namely (c,n) is one

of the following:

(6) (2,2) if d=0 and g is an odd number satisfying 1 < g <2h—1,

(7) (2,0) if d=0 and g is an odd number satisfying g > 2h+1 or,
if d>=1and g>dh—1),g#dh—1) (mod2),

(8) (0,0) otherwise.

(Cv n) =

4. Proof of minimum of ¢ +»n in Theorem 1.2

In this section, we prove that the contours y((p(’i ;) constructed in §3 are
minimal contours of degree d, for each integers d >0 and g >0, h > 1.

The contours y(gp‘},’ ;) in Proposition 3.2 (1), (4) with g =2, and the contour
ok ;) in Proposition 3.5 (8) are trivially minimal contours of degree d respec-
tively. Thus, the cases Theorem 1.2 (1), (4) with g =2 and (8) are proved.

Lemma 4.1. Let ¢9:X, — %, be a degree d stable map such that i(p) = 1.
If the number d —dh+ g is odd, then y(p) has at least two cusps.

Proof. To prove this lemma, apply a result of Quine [9]: for a stable map
@ : M — N between oriented surfaces, we have

2(M) = 27(M_) + > sign(qx) = (deg p)z(N),

q:cusp
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where M_ denotes the closure of the set of regular points at which ¢ reverses
orientation, and sign(gx) = +1 the sign of a cusp ¢k, see [9] for details.
Apply our situation to the Quine’s formula:

> sign(gx) = 2(d — dh+ g — 2p),

gk :cusp

where (Z,)_ is homeomorphic to (X,);, (u=0,1,...,g). Then, this follows
immediately. O

Lemma 4.1 shows the contours of stable maps ¢, (d # 0) and ¢ ; (d # 0)
in Proposition 3.2 and the contours of stable maps go,’}) , In Proposition 3.5 (7) are
minimal contours of degree d respectively. Thus, the cases Theorem 1.2 (3), (5)
with g =3 and (7) are proved.

The rest cases of Theorem 1.2 (2) and (4) with g > 4, (5) with g > 5, (6) are
proved by each case A =1 and h > 2.

4.1. The case of 1 =1. Let us consider the case (4) with g >4 and (5)
with g > 5. Let ¢ : X, — X be a stable map such that i(p) = 1. Then, formula
(2.2) implies that

N
@) 9= v -8+ s &g - o)

Note that & (p,7) —m(p) > 0 is an even number. Let us divide the cases
for the value & (p,7) —m(p).

(i1) & (p,n) —m(p) <2: In this case, formula (4.1) implies that if y(¢) has
no node, then

(4.2) c(p) = 2(g —2).

If y(p) has a node, then formula (4.1) and Lemma 2.9 imply that ¢(¢) + n(p) >
¢(p)/2+g¢g. This inequality and Lemma 4.1 show that if g >4 is even, then

(43) c(p) +nlp) =g
otherwise,
(4.4) clp)+n(p) =g+ 1.

(i2) &1 (p,n) —m(p) = 4: In this case, formula (4.1) implies that c¢(¢) + n(p)
=c(p)/2+9g+2N" — (&(p,n) —m(p)). Then, Lemma 2.10 implies that N~ >
(&i1(p,m) —m(p) —2)/2. It yields that c(p)+n(p) =c(p)/2+g—2. This in-
equality and Lemma 4.1 shows that if g >4 is even, then
(4.5) c(p) +nlp) =g -2

otherwise

(4.6) clp)+nlp)=>g—1.
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FIGURE 18. Geometrical condition of cusps.

Thus, from the inequalities (4.2), (4.3) and (4.5), Theorem 1.2 (4) with g > 4
is proved. Similarly, from the inequalities (4.2), (4.4), and (4.6), Theorem 1.2 (5)
with g > 5 are proved.

Finally, let us consider the case (2). We will show that the contour (¢} |)
in Proposition 3.2 is a minimal contour of degree zero. Recall that the pair
(¢,n) of y(pj ) is equal to (2,2). Let ¢p:%; — X be a degree zero stable map
such that i(p) = 1.

LemMMaA 4.2. Assume h>1 and 0 < g <2h—1. Then, there is no degree
zero C* map ¢ : X, — X, whose singular points set consists of one component such
that m(gp) > 0.

Proof. 1If there is a such C* map ¢ : £, — X, then (Z,), and (%,)_ contain
(Z4),. It is a contradiction. O

Lemma 4.1 implies that the contour y(¢) has at least two cusps. Then,
Lemma 4.2 and the geometrical condition for cusps, the contour y(p) has at
least one negative node, see Figure 18 for details. Thus, we have c(¢) + n(p)
> 3.

Lemma 4.3. There is no degree zero stable map ¢ : X, — X; whose singular
points set consists of one component and has two cusps and one node.

Proof. Assume that there exists such stable map ¢ :X; — X;. Then, for-
mula (4.1) implies that

2
1= (0 1)+ +E(p.m) —mlp).
Note that & (p,n) — m(p) is an even number. It is a contradiction. O
Thus, we have ¢(p) +n(p) >4. It implies that the contour (g} ) is a

minimal contour of degree zero.
Therefore, we have completed the proof of Theorem 1.2 with & = 1.
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4.2. The case of 7 >2. Let us prove the case (6).

By Lemma 4.2, for each & > 2 and each odd number g with 0 < g <2/ — 1,
a degree zero C* map ¢ : X, — X, satisfies m(¢) =0. Then, we can prove the
contours y(p{! ;) n Proposition 3.5 (6) are minimal contour of degree zero by the
similarly way as the case of Theorem 1.2 (2). We omit the proof here.

Therefore, we have completed the proof of Theorem 1.2 with 4 > 2.

It completes a proof of Theorem 1.2.

5. Fold map case

Let M be a connected and closed surface, and N be a connected surface.
A stable map ¢ : M — N which has no cusp is called a fold map.

Let 9 : M — N be a degree d fold map such that i(p) = 1. Then, call the
contour y(¢) an F -minimal contour of degree d if the number n(p) is the smallest
among the contours of degree d fold maps whose singular points set consists of
one component.

Note that by Lemma 4.1, if d — dh + ¢ is odd, then there is no degree d fold
map X, — X, whose singular points set consists of one component.

Then, as a corollary of Theorem 1.2, we obtain the following.

THEOREM 5.1. Assume d —dh+g¢g be an even number and h>1. Let
¢:2; — 2%, be a degree d fold map such that i(p) =1. Then, y(p) is an
F -minimal contour of degree d if and only if the number of nodes n(p) is one
of the items below:

h=1:

{0 if d=0 and g=0,

n(p) = g—2 if g is an even number and for any d,

h>2:
n(p) = 0.

COROLLARY 5.2. Assume d —dh+ g be an even number. Let ¢:%, — %,
be a degree d fold map such that i(p) = 1. If the contour y(p) is an F-minimal
contour of degree d, then it is a minimal contour of degree d.

6. Problems

In this section, we pose some problems with respect to the apparent contour
of a stable map M — N between closed surfaces.

ProBLEM 6.1. For a degree d C* map ¢, :X, — X;, study the relation
between a minimal contour of ¢, and a minimal contour of degree d.

Pignoni [8], Kamenosono and the author [4] studied a minimal contour of a
C* map F — S? of a non-orientable surface.
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PrOBLEM 6.2. Let d»b =0 or 1, and F a non-orientable closed surface.
Study a minimal contour of modulo two degree d, for a C* map F — X.
Furthermore, for a non-orientable closed surface F with even genus, study an
Z -minimal contour of modulo two degree d, for a C* map F — X.

Let ¢: M — N be a degree d stable map whose singular points set consists
of one component. Then, the contour y(p) is an essential contour of degree d if
the pair (c,n) is the smallest with respect to the lexicographic order among the
stable maps M — N whose degrees are d and whose singular points set consists
of one component. Then, Theorem 1.2 yields the following theorem.

THEOREM 6.3. Let ¢:2;, — %;, (h=1) be a degree d stable map whose
singular points set consists of one component. Then, y(p) is a minimal contour of
degree d if and only if it is an essential contour of degree d.

Note that for C* map hy: RP?> — R? or hy: RP? — S? of modulo two
degree one, a minimal (or an essential) contour of 7y is not essential (resp.
minimal), see [8, 4] for the details. Thus, we pose the following problem.

PrOBLEM 6.4. Study essential contours of C* maps hy: F — %, (h > 1), of
non-orientable surfaces F. Then, compare minimal contours of A, and essential
contours of /.

The author [15] determined 5-tuples of integers (g,d,i,c,n) such that there
exists a degree d stable map X, — N, N = R? or S2?, whose singular points set
consists of i components and whose contour has ¢ cusps and »n nodes.

PROBLEM 6.5. Determine a 6-tuples of integers (g, 5, d, i, c,n) such that there
exists a degree d stable map X, — X, whose singular points set consists of i
components and whose contour has ¢ cusps and n nodes.
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