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A NOTE ON THE ASYMPTOTIC BEHAVIOR OF CONFORMAL
METRICS WITH NEGATIVE CURVATURES NEAR ISOLATED
SINGULARITIES

TANRAN ZHANG

Abstract

The asymptotic behavior of conformal metrics with negative curvatures near an
isolated singularity was described up to the second order derivatives by Kraus and
Roth, 2008. We refine Kraus and Roth’s result for the second order mixed derivatives
and give estimates for higher order derivatives near an isolated singularity. We also
compute the Minda-type limits for SK-metrics near the singularity. Combining these
limits with Ahlfors’ lemma, we provide two observations for SK-metrics.

1. Introduction

Let D be the open unit disk in the complex plane C, D* := D\{0}, Dy :=
{zeC:|z| <R} and Dy :=Dg\{0} for R>0. If GCC is a domain, then
every positive, upper semi-continuous function 4: G — (0,+00) on G induces a
conformal metric A(z)|dz| (see [3, 4]), and A(z) is called the density of A(z)|dz|. If
A(z)|dz| is a regular conformal metric on G, i.e. A(z) is strictly positive and twice
continuously differentiable on G, then the Gaussian curvature «;(z) of the density
A(z) is defined by
~ Alog A(2)

Mz)?
where A denotes the Laplace operator (see [11]).

Let u(z) :==log A(z). If x,(z) =0, then u(z) satisfies the Laplace equation
Au =0, which means u(z) is harmonic on G, so that the property of u(z) can
be studied by means of potential theory (see, e.g. [10]). If k;(z) = —4, and if

A(z)|dz| is complete, then A(z)|dz| is the hyperbolic metric on G and (1.1) becomes
the Liouville equation

(1.2) Au = 4e.

(1.1) K;(z) =

i
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The asymptotic behavior of a solution u(z) to (1.2) near a singularity was
described by Nitsche [9]. If x,(z) is not a constant but a strictly negative, locally
Holder continuous function, (1.2) becomes the more general equation

(1.3) Au = —x(z)e™.

Kraus and Roth [5] studied the asymptotic behavior of u(z) near an isolated
singularity. Each solution to (1.3) belongs to a class of subharmonic functions
and it is corresponding to a special metric, called the SK-metric, according to
Heins [3].

The existence and the uniqueness of the solutions to (1.3) are subject to
suitable boundary conditions. In this article we are concerned with the asymp-
totic behavior of the solution to (1.3) near an isolated singularity, so it is
sufficient to consider the behavior on D*, where the origin is an isolated
singularity of order o < 1.

We denote

o " 0"

_ n_
oz’ ozn

for n > 1. The following theorem was proved by Kraus and Roth [5].

THEOREM A [5]. Let x:D — R be a (locally) Hélder continuous function
with k(0) < 0. If u:D* — R is a C*-solution to Au = —r(z)e* in D*, then u has
an order o € (—o0, 1] at the origin. Define the remainder functions v(z) and w(z)
by

u(z) = —alogl|z| + v(z), if o<1,
u(z) = —loglz| —log log(1/|2)) + w(z), if «=1,

according to the value of o. Then v(z) and w(z) are continuous in D.  Moreover,
the first partial derivatives with respect to z and Z,

A

0v(z), Ov(z) are continuous at z=0 if o <1/2;

and

ov(z), 0v(z) = O(1) if a=1/2;
dv(z), dv(z) = O(|z]'*) if 12<a<l,
ow(z),0mw(z) = O(|2] ' (log(1/[z])) %) if a=1,

when z approaches 0, with O being the Landau symbols. In addition, the second
partial derivatives,

d%v(z), d0v(z) and 0*v(z) are continuous at z =0 if o <0;
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(14)  %v(z),000(z), 0*v(z) = O(|z| ™) if 0<a<l,
(1.5) *w(z), 00w(z), 0*w(z) = O(|z] (log(1/|z])) ) if a=1,

when z tends to 0.

Our first result gives estimates for higher order derivatives of v(z), w(z)
near the singularity, and then improve the estimate of the mixed derivatives in
Theorem A when the order o = 1. The Holder space C™"(Dg) consists of
functions whose m-th order partial derivatives are locally Holder continuous in
Dy with exponent v, 0 < v < 1, which is defined as a subspace of C™(Dg).

THEOREM 1.1. Let x(z), u(z), v(z), w(z) and o be the same as in Theorem A.
If. in addition, x € C"">"(D) for an integer n > 2, and a real number 0 < v <1,
then for ny,ny > 1, ny +ny = n, near the origin, v(z) and w(z) satisfy

(1.6) 3"v(z),0"v(z), 8" 3" v(z) = O(|z)* ™) if 0<a< I;
(1.7) "w(z),0"w(z) = O(|z| " (log(1/|z])) %) if a=1,
(1.8) " 3" w(z) = O(|z| ™"(log(1/|z])) ) if o=1

The higher order estimates in Theorem 1.1 are best. It can be verified by
the generalized hyperbolic metric on the thrice-punctured sphere, see [12]. This
article is a continuation of [12].

The hyperbolic metric is a complete metric with the negative constant
Gaussian curvature, here we take the constant to be —4. Minda [8] investigated
the behavior of the density of the hyperbolic metric in a neighborhood of a
puncture of a plane domain using the uniformization theorem in 1997. Kraus
and Roth extended Minda’s limit for the case of variable curvature and obtained
the following theorem for a conformal metric in 2008, where the limit for cusps is
related to Minda’s work.

THEOREM B [5, 8]. Let A(z)|dz| be a regular conformal metric on D* with an
isolated singularity at z = 0. Suppose that its curvature x : D* — R has a Holder
continuous extension to D such that k(0) < 0. Then log A has an order o <1 at
z=0 and

0 if a<l1
tig | log(1/2042) =4 _ 1oy

v/ —1(0)

Our second result extends Theorem B and gives limits of Minda type.
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TueOREM 1.2. Let x:D — R be of class C">'(D) for an integer n > 2,
0<v<1 with k(0)<0. If u:D*— R is a C"™-solution to Au= —xk(z)e** in
D*, then u has an order o€ (—co0,1]. If the order of u is o=1, then for
ni,ny >0, ny+ny <n, the limit

1 : ny sy AN ANy
(1.9) oy my —W!Lmo |z| log(1/|z])z™z™ 0™ 0™ A(z)

exists. Moreover, the numbers I, ,, are given by
1N\ /-1
= (DG A
: ny ) \n —x(0)

() =1 (e=j+ 1)

J!

where

is the binomial coefficient.

In Section 2 we give a short survey of the hyperbolic metrics and the SK-
metrics, and introduce some notations and definitions. The proof of Theorem
1.1 for corners and cusps is given in Section 3 by the use of potential theory. In
Section 4 we first give a lemma for u(z), then prove Theorem 1.2, and list several
results of Minda-type for special metrics.

2. Preliminaries

Let X be a Riemann surface and Q be a subdomain of X. For a point
p € Q, let z be local coordinates such that z(p) = 0. We say a conformal metric
A(z)|dz| on the punctured domain Q" := Q\{p} has a singularity of order o < 1
at the point p, if, in local coordinates z,

—o log|z| + O(1) if o<1

(2.1) log A(z) = { —log|z[ — log log(1/[z[) + O(1) if a=1,

as z(p) — 0. We call the point p a conical singularity (or corner) of order o
if <1 and a cusp if « =1. The generalized Gaussian curvature x,(z) of the
density function A(z) is defined by

N e W .
(2.2) K,(z) = ——— lim inf — <2—J log A(z 4 re") dt — log )»(z)).
. 7)o
When /(z) is a regular function, the Gaussian curvature r,(z) is equivalent to
definition (1.1) (see [12]). The Gaussian curvature defined by (2.2) is a con-
formal invariant. Suppose that A(z)|dz| is a conformal metric on a domain
GeC and f:Q — G is a holomorphic mapping of a Riemann surface Q into
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G. Then we can define the pullback f*A(w)|dw| of A(z)|dz| by
S aw)ldw| == A(f (w))If" (w)] |dw].

It is easy to see that f*A(w)|dw| is a conformal metric on Q\{critical points
of f} with Gaussian curvature xs-;(w) =x;(f(w)). Using this conformal
invariance, we can easily establish the relation between Riemann surfaces with
conformal metrics. Here we can see that, on the punctured domain Q\{critical
points of f}, the critical points of f are the source of the singularities of
negative integer orders.

We call an upper semi-continuous metric A(z)|dz| on a Riemann surface Q
an SK-metric if its Gaussian curvature is bounded above by —4 at every z € Q.
The hyperbolic metric on the unit disk D is given by

|dz]
L=z
The following result is a fundamental theorem about SK-metrics by Ahlfors [1],

also discussed by Heins [3], which claims that the hyperbolic metric Ap(z)|dz| on
the unit disk D is the unique maximal SK-metric on D.

(2.3) n(2)|dz] =

THEOREM C [1]. Let Ap(z)|dz| be the hyperbolic metric on D given in (2.3)
and A(z)|dz| be an SK-metric on D. Then the inequality A(z) < Ap(z) holds
throughout the disk.

On the punctured unit disk D*, the hyperbolic metric is expressed by
|dz|
2|z| log(1/1z])

with the constant curvature —4. On the punctured disk Dy, the hyperbolic
metric with a conical singularity at the origin is given as follows, which is the
conical version of Theorem C.

I (2)|dz| =

THEOREM D [6, 11]. For R> 0, let

(1 —o)R"™z[* 1 -«

R0 — [z~ 2[e[ sinh((T = ) Tog(R/[])
1

2|z log(R/|z])

for zeDy.  Then given an arbitrary SK-metric o(z) on Dy with a singularity at
z=0 of order o, we have o(z) < l, r(2).

if a<l,

la,R(Z) =
if a=1

3. Proof of Theorem 1.1

We shall use potential theory as employed by Kraus and Roth [5]. Here we
recall elementary facts without proof (see [2, 10] for details).
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If equation (1.3) has a C?-solution u(z), then higher differentiability of u(z)
may follow from smoothness of x(z) according to the regularity of elliptic
differential equations, see [2, p. 109]. For a bounded, integrable function f(z)
on a domain Q C C, the integral

1
| Lz=07r
3 |, Lz = 01(0) o
is called the logarithmic potential of f, where
L(z) = log|z],

do¢ is the area element on the domain Q. Write z = x1 +ixy, { = y; + iy, and
let 0 <r<1. The following lemma was mentioned in [5]. It is a consequence
of the Riesz decomposition theorem, and can be obtained from Theorem 4.5.1
and Exercise 3.7.3 in [10].

Lemma E [5]. Let u be a subharmonic function on D. Suppose that
ue C*(D*) and Au is integrable in D* and
fim supy.—, u(z)
—0 log(1/r)
Then u=h+w on D, where h is a harmonic function on D and w is the
logarithmic potential of Au.

To describe the higher order derivatives of the logarithmic potential, we

use a multi-index j= (ji, /), [jl=7+j, ji,2=012,..., so ((-z) =
(y1 —x1)" (32 — x2)", j'= jiljp!. For z = x| + ixy, denote
0 0 ; o
— =0, —=210 ol = o0'6.
axl b 6)(2 > 172

For a given multi-index j = (ji,/2), we can choose e, = (0,1) or (1,0) for
t=1,2,... such that j = e; + e+ --- + e, with n = |j|. For a function f e Cl!,
write { = y; +iy,, and define P,[f] by

(- z)"aa _ '
f(z) if n>1

PG = 2w Y@
f(Z) lf n —= 0’

where a is a multi-index. For m = 1,2, we obtain that

0
a—Pn[f](Cv Z) = PIFI[am.f](Ca Z)v
Vm
see [11] for more details.
Now we introduce a function class H,"'(M). For an integer n, two
numbers v, 4 with 0 <v <1 and a given M,
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wl”

H;’V(M) — {f = C”(D*) : |(3af(Z + W) - aaf(2)| = M|Z|)~+n

whenever 2|w| < |z| <1 for all a with |a|] = n}.

We can estimate the error term in the Taylor expansion for f e H"'(M).
LemMA 3.1. Suppose that feH;'(M). Then for a fixed point z,

0<lzl <1,

. =g 2

(3.1) |f(C)_Pn[f](€7Z)|SCW7 Jor |C—Z|<?7

where C is a positive constant depending only on M and n.

; Proof. Let g(t)= f(z+1t({{—2)), 0<t<1. Then g(1)= f(), g(0) = f(z2),
an

(32) 990 = Y e+ i)
la|=k "

for k <n. By Taylor’s theorem, there exists ¢ € [0, 1] such that

Substitute (3.2) and obtain that

A (= 2)%0%(2) N g™ (&) — g (0) + g™ (0)
al n!

fQ) =

= UG+ Y L @z e - 2) - 0.

|a|=n
Since f e H"'(M),
-2

|Z|/1+n !

0°f(z+E((—2) -0 () <M

Thus

S oot e - o) < C%
a=n & )

and (3.1) holds when | —z| < |z]/2. O
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Using the multi-index, we can present the following result (see [2, p. 54] for
the case m =0 and [11] for others).

Lemma F [2, 11]. Let 0<r<R, feC"2"D,) with 0<v<1, and let
n>2, o be the logarithmic potential of f. Then we C"(D,) and for a multi-
index j, |j| = n,

(33)  do() = %JD IL(z=0) - (f(0) = Pual f1(L, 2)) do

T

n—1
- iZJ O L(z =) - P10, 2) - N, e DN,

where 0, :=e; +---+e;, ¢p,:=e2+--+e, for t=1,....n—1 and ¢, | :=
(0,0).  Further, N({) = (N1(0),N2({)) is the unit outward normal at the point
(e dDg with R>r, {,) is the inner product and the function f is extended to
vanish outside of D,.

Now Theorem 1.1 can be divided into two parts, the case 0 < o < 1 and the
case o = 1. We prove it separately. First we consider v(z).

Proof of Theorem 1.1 when 0 < a < 1. Let

4(z) = —k(2)e*), f(2) = q(z)lz1 .
We use induction on n to prove (1.6) and that ge H/;’fz’ "(M,), where =
max{0,2x — 2 + v}, M, is a positive constant depending on n. When n =2, (1.6)
follows from Theorem A. For z and s with 0 < 2|s| < |z] < 1/2, by Theorem A
we have

(3.4) gz +5) = q(z)] < |x(z +5) = ()] ] 4 2 — 2] |ie(2)]

M, - |s|"
sl _ Mol

<Clsl"+C—> < ;
EK EY

where B’ =max{0,20 — 1}, M, C; and C, are positive constants. Thus
0,v
qe H/} (Mz)

Forn < K —1, K > 3, we assume that (1.6) holds, and ¢ € Hﬂ"_2’V(M). We
consider |0“g(z + s) — 0“q(z)| for a, |a| = K — 2, and (1.6) for n = K. Since (1.6)
is true for K — 1, the same technique as in (3.4) leads to
My - |s|"

(3.5) 0°g(z +5) — 0“q(2)| < Wa

la| = K — 2.

We denote max{M,,..., Mg} by Mg without loss of generality. Then (3.5)
shows that ¢ e HﬁKfz’v(MK). It is easy to verify that, by induction,

a z4 - 0%¢(z)
’fE = > Cave = e

|a1 |[+]az|=|al
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where C,, 4, is a constant. Let

Za

ga(z)zw, 0<|a| <K-2.

Thus for z and s, 0 < |z| < 1/2, |s] < |z|/2,

Cals|
|9a(z +5) — ga(z)| < MZJIW

We know the function 0%¢(z) is a linear combination of the terms
—0%k(2)0“(e®)), a;+ay=a and |aj|,|a;] = 0. Since xe CX2V(D), then
|0“'k(z)| is bounded above on D. By Theorem A and the assumption of the
induction, as z — 0, 3°2(e*)) is continuous if |a;| =0 or |ay| =1, 0 < a < 1/2,
and
O(1 if |ap]=1,0=1/2,
aaz(eZL’(Z)) _ { O( )7217|a2|+2 || ' /
(|2| ) otherwise.

Since —2042 >0, 0%g(z) = O(]z] ) as z — 0, with 0 <|a| < K —2. Then
(3.6) 0% (z +5) — 0°f (2)]

Cay.ar (Jay (2 +5)0°q(z + 5) — gay (2)0q(2))

|a1|+[az|=]a|

Y Cawl  {da (2 4 9)10%q(z + 5) — 9%¢(2)|

|a1|+|az|=|al

IA

+10%4(2) 90, (2 + 5) — g (2)[}

My -|s|”
- |Z|2a+v+\a|’
for some positive constant M. Therefore f e H} +3 1(M )-

For any multi-index b |b| < K —2, we know that 8°f(z) is a linear com-
bination of the terms 0% ( V0% (|| %), by + by = b, |by],|bs] > 0, and 3% ¢(z) =
O(]zZ| ™) as z— 0. Note that 0*(|z]7>*) = O(|z|>*™®!) as z— 0, then we
have

(3.7) |07/ (2)] = 0(z )

as z — 0.
We choose R, 0 < R <1 and consider the case 0 <o <1 on Dg. Let
0<z<R/2 re(|z|/3,]z|/2) and Q,:={{:|{—z| <r}. We need to show

1 dO’( C
(3.8) | o< S
brar 12— P > ]
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for a positive constant C. Let { = wz. Denote D :={w: || < R/|z|,|w — 1] >
r/lzl},  Di={w:|o| <2lo-1/>1/3} and D;:={w:2<|o|<R/|z|}.
Obviously D C D;UD,. Note that |w—1|>|w|—1>|w|/2 is valid when
weD,. Then

1 do; 1 |2? do,,
2 20 = 2 20
Daa, |2 = {7 (] plwz —z|" |wz|
= 129: (J +J ) ! 2 do-(Zuoz = C;oc +J 4d2i12
1217 N,/ o — 17 o] 2] D, ||

2n R/|z|
C1+ij d(gj dl<C1+C2<2 R)<£
2

- |Z|2fx |Z|2a 0 Z2fx+1 - |Z|2a |Z|205 7|7| - |Z|21X'

Thus (3.8) is true.
Since x € CX=2V(Dg), we have ue CX"(D}), 0 <v<1f. Due to Riesz’
decomposition theorem (see, e.g. [5]), we have

1
(39) @) = he) o | L= 0110 do
T Dx
for a harmonic function # on Dg and 0 < z < R/2. Now let r € (|z|/3,]|z|/2) and

Q, :={(:|{—z| <r}. Then for a multi-index j, |j|=K >3, (3.9) and (3.3)
lead to

(3.10) () = PH(2) + - ( jg_ + jD \Q) IL(z = Q) - Pxalf1(C,2)) do

~5-> J " L(z = §) - Pea[0f)(8,2) - AN, ecs D]

for z = x; + ix, and a harmonic function /# on Dg, with the same symbols 6., ¢,
as in (3.3). We apply Green’s identity as in [12] and obtain

(3.11) JD \QlﬁjL(z — O Pk f1(C,2) do;
1 K—1

2n =1 Dp\Q,

fIf K =2, from Theorem A we have ue C>¥(Dj;). If K =3, xe C'"(Dg) and —x(z)e* €
C'"(Dy). We consider the equation AU = —«(z)e?. By the standard regularity theorem (see, e.g.
[2, Theorem 6.17]), Ue C*'(D;). In our case, u(z) is the solution of Au = —x(z)e*. Thus
ue C>'(Dy). By repeating this process, we have ue CX'(Dy) if CK'(Dy) if xe CK-2"(Dpg)
for K > 2.
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Then (3.10) becomes

(3.12) (=) = () JF%L2

Lz = O)(f () = Px—2lf1((,2)) doy

1 .
gy g, HE DI O do;

—322 J " L(z— ) - Pl £1(C,2) - N (D), ewsn Dl

oQ,
It is known that [2, p. 17]
(3.13) |07L(z - 0)| < it
|Z _ §||1|
Since feHK_2‘V(M,’<), by Lemma 3.1, for ze D* and (€ Q,,

2o0+v

L FL(z—O)(f(Q) = Pk alf(C,2)) doy

_ J Kl M| — 25 J
or
Q |C o Z|K ‘Z|21+V+K72 ¢
dO‘( 1 C1
sc| o < .
Q |C _ Z|271 |Z|20(+v+K72 |Z|2M+K72
When (eDg\Q,, we have |z|/3<|{—z|<2+4|z|<3. Then by (3.7) for
(¢ 2)]

(eDR\Q, |((—2)"0"f(z)] = O(]z2| ™) as z— 0. That means |PK,2([f]
3

= O(\z|72“) for (e DR\Q,, as z — 0. Thus for z, 0 <z < R/2, from (3.8),

K!

J K q(gz do

DR\Qr |€_Z‘ |C| )

C J 1 dO‘g C3
2

|Z|K— DR\Q, M_le ‘C|2fx - |Z|23<+K—2'

To estimate 0" 0™uv(z), we note that L(z — () is a harmonic function with
respect to z when z # {, so in the expression of 0" 0™v(z), ny,ny > 1, ny +ny = n,
the first two integrals in (3.12) cancel, we have only the last term in (3.12).
Writing { =z +re” and taking e..; = (0,1) without loss of generality, we
have

j IL(z— O)f () do
DR\Q,

0| .
19 || -0 av@.eanlad| < [ Lo
D o |{ — 2|
2n |0T‘! ) C
= JO oY |sin O]r d6 < —|Z|‘0’H .
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Since

(3.15) Potfica) = 3 oD ey,

la| <7—1

then for { =z +re, by using (3.7), it yields

(ld
> B ety

|Pe_i[0%](C,2)] <
la| <71
- __cC
- | |<Z,1a!|2|2“+‘a‘+‘¢r‘ - |Z|2“+|¢T\‘

Combining the above formula with (3.14), we obtain

1
G16) || -0 Pt <N<c>,ef+1>|dc\ - 0<||2+K2>
as z— 0, because |0.|+ ¢, =K—1 for t=1,2,...,K—1. Therefore (1.6)
holds for n = K. By induction, q € H;f ""(M,), and (1.6) holds for all n, n > 2.

U
The proof for w(z) in Theorem 1.1 is based on the following lemma.

LemMa G [5]. Let k:D — R be a continuous function with 1x(0) <0 and

1
x(z) = k(0 o| ——
&) =x0+ <<1og(1/|z|)>2>

as z— 0. If u:D* — R is a solution to Au= —x(z)e* with u(z) = —log|z| —
log log(1/|z|) + w(z) where w(z) = O(1) for z — 0, then there exists 0 < p <1
such that

C
3.17 —r(z)e?) <——, zeD],
> @ N = oty 22
for a constant C > 0.
Proof of Theorem 1.1 when oo =1. Let
(3.18) 4(2) = —k(2)e™D — 1, f(z) = q(z)

2| (log(1/]2)))*

We use induction to prove (1.7), (1.8) and that
C- sl

3.19 q(z+s) —0° T
(19 0%+ = 0O S ot

l1<l|a|<n-2
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holds for a positive constant C, when z € D}, |s| < |z[/2, where p is selected such
that Lemma G holds in Dj.

When n = 2, (1.5) includes (1.7). Now let R < 1/e? and p := min{R/2, 5},
let re(|z]/3,]z]/2) and Q, = {{:|{ —z| <r}. Kraus and Roth gave the follow-
ing expression for 0;0,w(z) in [5], /,j=1,2 and zeD/’:,

1
) = AHE) | B0 do;

o J AGL(z = O)(f(0) = £(2)) o
T Jo,

1 A
S LQ, O L(z — ON(O)dL],

where N({) = (N1({), N2()) is the unit outward normal at the point { € 6Q,. As
for 00w(z), the first two integrals are canceled. From (3.14) we have

| o am@a \ <c
Q,

then by Lemma G,

Ci
z 6~Lz—CN;CdC‘S )G £ —5————.
16 e~ oMl | < 17GIE < Tt
Therefore ddw(z) = O(|z| *(log(1/|z])) ) as z — 0. Thus (1.7), (1.8) hold when
n=2. Since Au= —x(z)-exp{—2 log|z| — 2 log log(1/|z]) + 2w(z)}, by calcula-
tion we know that there exists 0 < p < 1 such that

2w(z

|—r(z)e zeD),

) _ 1| > L7
log(1/l2])
for a constant C > 0. Combined with Lemma G, we have

—A A B —B

3.20 = <|q(2)| < = , zeD},

B2 16 "ot/ = O Tegtii T ze 25

where A, B are positive constants. For z and s, ze D, |s| <|z[/2,
1 1

(3.21) lg(z+s) —q(z)| < C

L(z+s) L(2)

) o

< ] V[——— ) dr < V[ ——
Al Jo <L(z+ts)> <l sup, <L(z+m)>.

oMl
™ [el(log(1/]21))?

Jlg¥d[
0 dt L(Z+ts)
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Thus (3.19) is true when n =2. Now suppose that (1.7), (1.8) and (3.19) hold
for n<K—1, K>3, and consider them for n =K. It can be verified by
induction that,

C(p) s eD*
(log(1/]z]))*’ !

and the same technique as in (3.21) leads to

(3.22) 0%/ (2)] < P

M, - |s]
0% (z +5) — 0%(2)| < — K,
|2/ Tog(1/]z])

Thus (3.19) is true, and, similar to (3.6),

when |a| = K — 2.

a y C- sl
0f(z45) = 0f(2)| < 7
| f( s) f( )‘< |Z|\a\+1(10g(1/|z|))3
then,
K-1
(3.23) 10 - Prol G < e

|2 log(1/12))*
when [( —z| < z[/2, zeD,.
Since x € CXk=2"(D), ue CX(D*). We will show that

(3.24) w(z) = h(z) + % L L(z - O)f(0) do:

*

for z e D),

where /4 is harmonic on D,. Let

() == —log log(1/|2]),  p(z) := w(z) + 1(2) = u(z) + logl-]

for zeD,. Since on D,

_ 2w(z)
Ap(z) = —w(D)ed = T,
|z["(log(1/1z1))
p(z) is subharmonic on D; and lim. .,y p(z) = —o0, p(z) is subharmonic on D,.
As Ap(z) is integrable over D,, by Lemma E,
1 k(e
p(z) = hy(2) +_J L(z—{)—5—*———do;, zeD,
Tl €1 (log(1/121))? ’
where /,(z) is harmonic on D,. For #(z), we also have
1 1
t(z) = hy(z2) —|——J Lz—{)———————do;, zeD],
27 Jo, 1<% (log(1/1¢1)) ’

where /,(z) is harmonic on D,. Letting w(z) = p(z) —1(z) gives (3.24) with
h(z) = hy(z) — h(z2).
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From (3.3) and (3.11), for a multi-index j, |j| = K >3, we have
(.25 i) = hE) 45 | L= O(Q) - PralfI(E.2) doc
T )o,

1 .
gy g, PLE DS do

3 |, P 0 PG Nl

=1

for a harmonic function # on D,. From (3.23), for zeD; and (e Q,,

(3.26)

L_ IL(z— O)(f(Q) — Pralf)(C.2)) do:

< J - C|Z_C|K_] doy < ;
T o 02 |2 (log(1/]2]))° o |z (log(1/12]))*

When (€ Dg\Q,, we have |z|/3<|{—z] < R+]z|] < (3R)/2. By (3.22), for
zeD,, {eDr\Q,

C
(L= 2)"0"f () < m
and then
Cs
|Px—2[f1({,2)] < m-
Similar to (3.8), we have
1 1 C
3.27 dor < ——————
(327 JDR\QV = =17 ¢ o1/ 7 = ¥ (log(1/]2)))”

for a positive constant C. Thus for { € Dg\Q,, from (3.27),

J K! q({)
b, [¢ = 2| ¢ (log(1/12]))
< J K! Cs
= e 12 10 (log(1/12]))

< —C7 J ! ! do,
T baa 0= 2 0P (og(L/))?

J ML(z—=0)f () doy > do;
Dz\Q.

3 dO‘g

R R
= =l (og(1/]20))?
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Note that 0 < |¢,| < K —2, for { € 0Q,, from (3.15) and (3.22) we have

A

Lyl
(3.28) PG = S BT gern o)

la| <71 al
- rldl C(p)
T @ (g (1/12)))
Co
#2 (log(1/12]))*

|z

Then for { =z + re',

[ L= Pl 162 V@ el \

Kl ¢ rdo 1
= ;Jo |z = 1% |29 2 (1og(1/12]))° - 0<IZK(10g(1/ZI))3>

as z— 0. So (1.7), (1.8) hold for n =K. Thus we obtain (1.7) for n=K.
Since the first three terms in (3.25) vanish for mixed partial derivatives, (3.28)
yields (1.8) for n = K. By induction (1.7) and (1.8) hold for all n, n >2. O

The second order derivative of w(z) in Theorem A is contained in Theorem
1.1. However, for the mixed partial derivative, the estimate (1.8) is more
accurate than (1.5).

COROLLARY 3.2. Let i : D — R be a locally Hélder continuous function with
x(0) < 0. Ifu:D* — R is a C*solution to Au= —x(z)e* in D* with the order
o= 1 at the point z = 0, then for the remainder function w(z) as in Theorem A, the
second partial derivatives satisfy

20w(z) = O(|z| (log(1/12])) ).

Remark 3.2. The sharpness of Theorem 1.1 can be verified by the hyper-
bolic metric given by Theorem D when 0 < o < 1. However, the remainder
function w(z) =0 when « = 1, that means it is trivial for our estimate. So we
use the generalized hyperbolic metric A, g ,(z)|dz| on the thrice-punctured sphere
P\{z1,22,2z3} with singularities of order o, f,y <1 at z;, z,, z3 to show that
our result is sharp (see [12]), where o+ f+y > 2 (see [6] for the formula of
A p,y(2)|dz]). Theorems 3.3 and 4.2 in [12] verify that Theorems A and 1.1 are
sharp (see [12]).

4. Proof of Theorem 1.2 and related results

At first we need the following result for the function u. Considering
Theorems A and 1.1, if we add the assumption that x is (n— 2)-th order



338 TANRAN ZHANG

(locally) Holder continuous, we can obtain the limits for higher order derivatives
of u(z).

THEOREM 4.1. Let x:D — R be of class C">'(D) for an integer n > 2,
0<v<1 with k(0)<0. If u:D*— R is a C"™-solution to Au= —rk(z)e** in
D*, then u has an order o € (—o0,1] and for nyi,ny > 1, ny +ny <n,

(i) lim._o z"0"u(z) = g (—1)"(n — 1)l = lim._ 2"3"u(z),

(i) lim,_g z"2™0" 0" u(z) = 0.

Proof. When 0<a<1, u(z)=—alog|z| +v(z). Theorems 1.1 implies
that

lim z"0"v(z) = 0, lim z"2™0"0™v(z) =0

ZHO Z—

for ny,ny,n>1. Since

)" Y n=1)! -
(4.1) 0" log|z| = M, 0" 0™ loglz| =0,
2z
so
lirré z"0"u(z) = —a l_in(l) z"9" log|z| + lirré z"0"v(z) = %(—1)"(n - DY

lim z"z"0™0™u(z) = 0.

When o =1, u(z) = —log|z| — log log(1/|z]) + w(z). We have

lim z"0"w(z) =0, lim z"20™8"w(z) =0

z—0 z—

for ny,ny,n > 1, from Theorems 1.1. By induction,

n (n)

d" log log(1/)z]) = Zm
17 :

with constant Cj(") for 1 <j<n 1If we fix np, then
m (m1,m2)

0" log log(1/|z]) = 7 .
2, zmzm (log(1/]2]))" "

=

ny,ny

with constant C/‘( ) for 1 < Jj<mn. So

limo z"0" log log(1/|z]) = 0, lil% ZMzMm™M 6" log log(1/|z]) = 0

for ny,ny,n > 1. Combining with (4.1) leads to
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(—1)"(n — 1)
2 b)

lim z" 26" 0™ u(z) = 0. O

z—

lim z"0"u(z) = —a lirrol z"0" log|z| + l_ir% Z"0"v(z) = o

Z—

From the proof above, we can obtain a stronger limit for the mixed
derivative of u(z) when the order o =1,
(_1)n1+l’12—1

lim =2 (log(1/|2)) %" %u(z) = ) = 1

(I’l] — 1)'(1’!2 — 1)!,

which is given in [12].

On the basis of Theorem 4.1, we can provide Theorem 1.2 as a higher order
estimate for a conformal metric with the negative curvature near the origin when
o=1.

Proof of Theorem 1.2. We write A(z) = "), then 0A(z) = A(z)du(z), and

n—1

iz =Y (” ; 1) "I u(2)07 )(z)

J=0
by induction, where 3°4(z) = 3°A(z) = A(2), so

n171 — . . . .
Iy 0 = i lim (nl . 1>Z"]]6"']u(z) - |z] log(1/)z])z7 07 A(z2).
’ ny! z—0 = J

Theorem B gives that [Jyo=1/4/—x(0). From the existence of
lim,_, z""fén‘*ju(z) and /o, we know that /[, o exists. The limit (ii) in
Theorem 4.1 enables us further to write /, ,, as a sum of the terms only
containing pure derivatives of u(z),

nl—l

1 .
42) by = PP lim z;

J=

—1 N o
<n1 ; >z”‘_"6”‘_/u(z)|z log(1/|z|)z"z/0™ 07 A(z),

thus the existence of /,, o guarantees /, ,, exists.
Now we consider /; o. By Theorem 4.1, lim._y z0u(z) = —1/2. In com-
bination with Theorem B, we have

lim 2J2] log(1/|2))0A(z) = lim z|2| log(1/|2))0u(z)(2)
= lim | Tog(1/Je)A(2) - 30u(2) = =5

That means /; ¢ is a real number, so /; o =lo,; = l,1. Since

n—1 I B ] .
(4.3) Miz) =Y ( lj 1)5"'fu(z)au(z),
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then /, o =/, by induction. From (4.2), (4.3), and (i) of Theorem 4.1, we
have

n—1
o . 1 (n1—1>! 0y —j Ani—j sty jAm A )
bny oy = JE:O lli% il 1 — 1 —j)!Z 0" u(z) - |z| log(1/|z])2™z/ 0™ 87 A(z)

n11

= — hm ZMm Janl /u lim |z] log(1/|z Z_nzzjénzaj/lz
nlznzjmflf]) ()Z_>0|| g(/||) ()

1)11 1 17 l nlfl
:n_lz — 11m|z| log(1/z])z"2/8" 7 A(z :2— L
j:O
Then
SIVRRREEL LY (m — 1) ;
1 tny,ny — 3 ljony — Sitm—1,np, — —H1 — m—1,m — Ftn—1,ny-
1,12 2 /:0 2 2 1 2 1 2 2 1 2
Since ly n, = In 0,
1 1
—5—m +1 ;"
byny = 2r1711,,1_]7”2 == <m >lo s
_1 I 1
= orJon= () (oo
n ny n
Thus (i) is valid and (ii) follows form (i). O

For any regular conformal metric with negative curvature function k(z) near
the singularity, we have the following corollary of Theorem 1.2.

COROLLARY 4.2. Let A(z)|dz| be a regular conformal metric on D*.  Suppose
that the curvature k :D* — R has a Hélder continuous extension to D such that
1(0) <0 and the order of logl is a=1 at z=0. Then

(i) lim._ z|z| log(1/|z))4(z) = 2_;,40)’
(i) lim.o |2/ log(1/|2)0%A(=) = j;zc(o)’
(i) Lim._o|z|* log(1/|2))004(z) = _1;«(0)'

Theorem 1.2 implies that, in the case o = 1, the limit (1.9) can be described
by the use of the curvature x. On the other hand, when « < 1, the analogous
limit

(4.4) /= !irré |z|*A(z)
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also exists under the assumption of Theorem A. However, it cannot be described
only in terms of the curvature of A(z). The following two examples show that,
! defined by (4.4) depends on the global shape of the domain.

Example 1. If A(z)|dz| :== A, r(2)|dz| is the hyperbolic metric given in
Theorem D on D}, with the order o € (0, 1) at the origin, then / = (1 —a)/R'™*.

Example 2. Let 0 <o,f <1 and 0 <y <1 such that o+ f+y>2 and
/(z)|dz| be the generalized hyperbolic metric on the thrice-punctured Riemann
sphere C\{0,1,00} with conical singularities of orders o, S, y at 0, 1, oo,
respectively. Then

(4.5) 1:%52(1—00,
where
s__T© (m —a)[(1=b)T(a+1—¢c)I(b+1- c)>1/2
S T2-0) [(a)C(b)T(c — a)T(c — b)
with
Cat+ -y bioc+/3+y—2
a= — 5 =5 =o.

) . . . .
The constant WO — ) in the right hand side of (4.5) is due to Kraus, Roth

and Sugawa. They did not give it explicitly, but it is easy to obtain it from
[6, Corollary 4.4].

From Theorem A and the maximum principle Theorem D, the limit / in
(4.4) exists at the origin for an SK-metric. Moreover, if x(z) and u(z) satisfy the
assumption of Theorem 4.1, then u(z) is of class C? in a punctured neighborhood
of z=0. If we define

1 . o o ANy
(4.6) oy omy i= o 113% |z|*z"M 2" 0™ 0™ Ay, r(2),

then the following result gives /, ,, in terms of the recurrence relation similar to
Theorem 1.2.

THEOREM 4.3. Let x:D — R be of class C">'(D) for an integer n > 2,

0<v<landk(0)<0. Ifu:D*— Risa C" -solution to Au= —i(z)e* in D,
then u has order o € (—o0, 1] and for ny,ny >0, ny + ny < n, the limit 1, ,, defined

by (4.6) exists and satisfies
o o
lm,nz = (5) (§> 17
ny ny

where | is defined by (4.4).
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