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Abstract

We prove some weighted inequalities for delta derivatives acting on products and
compositions of functions on time scales and apply them to obtain generalized dynamic
Opial-type inequalitiecs. We also employ these inequalities to establish some new
dynamic Lyapunov-type inequalities, which are essential in studying disfocality, dis-
conjugacy, lower bounds of eigenvalues, and distance between generalized zeros for
half-linear dynamic equations. In particular, we solve an open problem posed by Saker
in [Math. Comput. Modelling 58 (2013), 1777-1790]. Moreover, the results presented
in this paper generalize, improve, extend, and unify most of known results not only in
the discrete and continuous analysis but also on time scales.

1. Introduction

Since its discovery more than five decades ago, Opial’s inequality has been
receiving non-diminishing attention and a large number of papers dealing with
new proofs, extensions, generalizations, variants, and discrete analogues have
appeared in the literature. Inequalities of Opial-type turn out to be useful
tools in the study of oscillation theory, disfocality, disconjugacy, eigenvalue
problems, and numerous other applications in the theory of both differential and
difference equations. A nice summary of continuous and discrete Opial-type
inequalities and their applications can be found in the book [3] by Agarwal and
Pang.

The calculus of time scales has been introduced by Hilger [12] in order to
unify discrete and continuous analysis. Since then, many authors have been
concerned with the theory of inequalities on time scales. The study of dynamic
inequalities of Opial-type was initiated by Bohner and Kaymakgalan [5] (see
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also [1]), in which they showed that if f:[0,¢]; — R is A-differentiable with
f(0) =0, then

(L.1) L 1) + £7 A0 [Ax < JO 40 PAx.

Afterwards, numerous authors have studied variants of (1.1). Two most
natural extensions are the weighted Opial-type inequalities

b b
12 [ rert@remar s o[ irtwroas

and

b b (+B)/p
(1.3) J If(X)+f"(X)|y|fA(X)I”¢(x)AXSCZ(J |fA(X)I”r(X)Ax> ;

when f(a) =0 or/and f(b) =0, where p>1, f>0, y>0, C; and C, are
constants. For contributions to inequalities (1.2) and (1.3) we refer the readers
to [6, 14, 15, 17, 22, 24, 25, 26, 29, 30, 31, 35, 36]. The best reference here is the
book by Agarwal, O’Regan and Saker [2, Chapter 3], where the most popular
articles on this subject are collected.

Motivated by these works, in this paper we consider inequalities of Opial-
type in the most general situation which demonstrate the usefulness in the field of
dynamic equations. We are concerned with two following extensions.

Notice first that the term (f + f?)f2 in the left-hand side of (I.1) can
be written as (f? A So, it is more natural and general to replace the terms
SO 1/2 )7 and [ f(x) + £7(x)|]”[f2(x)|” in the left-hand sides of (1.2) and
(1.3), respectively, by [(Go £)*|¥ and (G’ o f)f 2|, where G belongs to a suitable
class of functions. Of course, our setting brings in complications and it is much
harder to handle than other inequalities obtained previously. The main difficulty
in carrying on this construction is that for an arbitrary time scale T, it is difficult
to give an explicit formula for (Go f )A. Fortunately, by modifying the tech-
nique suggested by the authors in [19, 20], utilizing the chain rules [7, Theorems
1.87 and 1.88] and Holder’s inequality [7, Theorem 6.13], we establish surprising
results, which are essentially new, contain both the continuous case [19] and the
discrete case [20].

Next, in the time scale calculus the concept of a zero of a function is
replaced by the so-called generalized zero (GZ for short). Hence, for wider
applicability of the results, we consider Opial-type inequalities in the case when
the endpoints are not necessarily zeros but GZs.

In addition to their intrinsic interest, our extensions will be proven essential
in applications to dynamic equations. For illustration, we consider the following
A-differential equation with a damping term

(14) Lpf = (G, (f*)* +¥G,(f2) + 9G,(f7) = 0,
7!

)(7+ﬁ)/P

where p > 1, G,(x) = |x|”" sign(x), 7, ¥, and ¢ are real-valued rd-continuous
functions on T with 7>0. By a solution of (1.4), we mean a function
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f:T— R such that all delta derivatives involved in L,f exist and are rd-
continuous at each point in T, that satisfies equation (1.4). We say that f has
a GZ at some point ¢ € T provided that f(c) =0 or f(c)f?(c) <0. Equation
(1.4) is called disconjugate on [a,b]; if there is no non-trivial solution of (1.4)
with at least two GZs in [a,b], and (1.4) is said to be disfocal on [a,0(b)]y
provided there is no non-trivial solution f of (1.4) with a GZ in [a,0(b)]y
followed by a GZ of f* in [a,b];.

Two problems of interest associated with (1.4) are: (i) determining a lower
bound for the distance between the GZs of f and f2, i.e., obtaining sufficient
conditions for disfocality of (1.4); and (ii) obtaining sufficient conditions for
disconjugacy of (1.4). From this we are able to prove some new Lyapunov-
type inequalities, which provide some useful tools in the study of disfocality,
disconjugacy, counting number of GZs, lower bounds of eigenvalues, and distance
between GZs for the half-linear dynamic equation

(1.5) (zGp(f )" + 0G,(f7) = 0.

In [27], Saker considered a special case of (1.4) when p > 2 is a quotient of
odd positive integers and posed an open problem for the case when 1 < p < 2.
Hence, our results, in particular, solve this problem. Moreover, we note that
(1.4) in its general form covers several different types of differential and difference
equations depending on the choice of the time scale T. For example, when
T =R, (1.4) becomes

(1.6) (TG (1) + ¥ Gp(f) + 9Gp(f) = 0.

Some special cases of (1.6) have been studied by some authors, we refer to the
papers by Brown and Hinton [8], Harris and Kong [11], Hong, Lian and Yeh
[13], Lee et al. [16], Lian, Yeh and Li [18], Saker [23], Saker, Agarwal and
O’Regan [28], Yan [33], and Yang [34]. Our results for the case when T =R
cover most of results given in these works and are essentially new for the other
cases.

The rest of this paper is organized as follows. Section 2 contains some
definitions and preliminary lemmas of time scale calculus. Section 3 is devoted
to inequalities for products and compositions of functions on time scales, while
Section 4 is intended to motivate our investigations of dynamic Opial-type
inequalities. In Section 5, we proceed with the study of Lyapunov-type inequal-
ities and give some answers for problems (i) and (ii) presented above. The last
section works with solutions of equation (1.5).

2. Preliminaries

In this section, a brief list of essential lemmas, which are necessary for our
results, are given. For the most part, the reader is expected to be familiar with
the notion of time scales. See [7], [9], and [12] containing a lot of information on
time scale calculus. Nevertheless, we state some time scale concepts here since
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they are frequently used in the sequel. Let T, o, f°, u, f*, and f: f(x)Ax stand
for time scale, forward jump operator, f oo, graininess, delta derivative of f,
and delta integral of f from a to b, respectively. The notations [a,b]y, (a,b],
and so on, will denote time scale intervals, for example, (a,b]y = (a,b]NT. In
particular, [1,n]y ={l,...,n}, where n is a positive integer.

Lemma 2.1. If f: T — R is A-differentiable at x € T", then

2.1) F7(x) = f(x) + p(x) 2 ().
For f:T— R and aeT", we have

a(a)
(22) | roas = s,

Lemma 2.2 (Leibniz formula). If fA exists for je[l,n]y, then

(2.3) (}Hl J?)A = Z (ﬁ f;-”) f}A< H f;;).

j=1 k= j+1

LemMa 2.3 (Integration by parts). If f2g° and fg* are A-integrable on
[a,b)y, then
b

b
(2.4) j FA)g° (x)Ax + j S0 (X)Ax = f(B)g(b) — f(@)g(a).

a
A function f: T — R is said to be absolutely continuous on T if for every
¢ > 0 there exists a d > 0 such that if {{ax,bx)y}i_;, With ax,br €T, is a finite
pairwise disjoint family of subintervals of T satisfying > ;_,(bx — ax) <J, then

Soiey 1 (bk) = fax)| < e. Let us denote by «/%([a,b]y) the class of all real-
valued absolutely continuous functions on [a,d].

Lemma 2.4 (Fundamental theorem of calculus). For f' € /% ([a,b]y), we have

(2.5) f(X)=f(a)+rfA(t)At, xe [a,Bly
and

b
(2:6) 15 = £ )~ | r40M xela bl

A function 7: [a,b]; — R is said to be a weight on [a,b]; if 7 is positive
and rd-continuous on [a,b]y. Let #7([a,b]y) denote the set of all weights on
[a,b]r. The Lebesgue A-measure is defined over the Lebesgue measurable subsets
of T, i.e., a set E C T is A-measurable if and only if E is Lebesgue measurable.
For p>1 and te#(la,b]y), we denote by LK([a,b]y,7) the set of all A-

measurable functions f defined on [a,b]; such that jf |/ (x)|"z(x)Ax < oo and by
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Z?([a,b]y,7) the set of all functions f € /% ([a,b]y) for which f* € LX([a,b]y,7)
and that f has a GZ at ¢. From now on, p>1 and ¢ > 1 are conjugate
exponents, i.e., 1/p+1/g=1.

Lemma 2.5 (Holder’s inequality). Suppose that te€ W ([a,bly), f€
LIA)([avb]T7T)7 and g € LZ([aa b}T7T)' Then fg € Li([av b]va) and

27) jb F(R)g()le(x)Ax < (Jb |f<x>|Pr<x>Ax)l/p (jb |g<x>|‘fr<x>Ax)l/q.

LemMma 2.6. For 1€ # (la,cly) and f € LF([a,c]|p,7), there exists a £€0,1)
such that (1 — )f( )+ ¢f%a) =0. By setting )(é( x)=1 lfxe[ (a),c]y and

xe(a) =1-=¢&, te(x f)( ()T=9/P(1)At, and Fs(x f|fA x:(D)T(1)AL, we
have

(238) S < F7 ()2 (v), xelola), dr.

Similarly, for ve W ([c,a(b)]y) and f € %L ([c,0(b))y,7), there exists an n €
[0,1) such that (1 —n)f(b) +nf°(b) =0. Let A,(x)=1ifx€[c,b)r and 4,(b) =
1, 2y (x) = [70 2y (T2 ()AL, and Fy(x) = [T |20 4y (0)c(t)At. Then

(2.9) [f(3)] < BP(0)2,/(x), x€le,bly.

Proof. Since f(a)=0 or f(a)f(a) <0, it follows that there exists a
£e[0,1) such that (1 —¢&)f(a)+&f° (a)70 Hence using (2.1), (2.2), and
(2.5), we obtain

.10) 1) = | 20208 xelola).dy.
Applying (2.7) to (2.10) yields (2.8) as required. The proof for (2.9) is similar.
O

We now recall a class of functions introduced by the authors in [20], which
will be required when we prove some inequalities for compositions of functions.

For 0 < R < oo, let %}, stand for the class of all functions G € C'(—R, R)
satisfying the following conditions: G(0) = 0; |G’'(x)| < G'(|x|) forall x € (=R, R);
and if x < y*z'™* o e[0,1], 0 < x, y,z < R, then G'(x) < [G'(»)]"[G'(z)]' % ie.,
G’ is geometrically convex on (0, R).

We have G(x) = |x|" e 4L for p>1. If 3;° axx* is an absolutely con-
vergent power series with radius of convergence R, then G(x) = >/ |ax|x**!/
(k+1) belongs to ¥5. For example, e* — 1€ %! .

Lemma 2.7 ([20]). If G e %), then the following statements hold:

(1) G' is non-negative and increasing on (0, R);

(2) G is increasing on (0,R) and |G(x)| < G(|x|) for all x e (—R, R);
(3) G is geometrically convex on (0,R).
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LemMA 2.8 (Chain rule). Let Ge %) and [ : T — (=R, R) be A-differentiable.
Then Go f is A-differentiable and

1

(2.11) (GOf)A(X):fA(X)J G (of7(x) + (1 = 5)f(x) ds, xeT",

0

Moreover, if [ is non-negative and increasing on T, then

(2.12) (Go f)*(x) > f2(x)(G o f)(x), xeT~

3. Inequalities for products and compositions of functions

In what follows a, b and ¢ belong to T such that g(a) <c<b. If 7;€
W (la,cly) and fie £L([a,c]y,7) for je[lnly, then & xe, 7o, and F are
defined as in Lemma 2.6. Similar considerations apply to the case when 7; e
W ([e,a(b)]y) and f; € ZL([c,0(b)]y, 7). We first obtain weighted inequalities
for a product of functions.

TueoreM 3.1 Let 7y e W ([a, cly), f; € LY ([a, cly, 7j) and v = [(T] ) Tf}.)A]fp/q.
Then v is a weight on [o(a),c]y and moreover, ' ’

A P
(3.1) J (H f]> (x)| v(x)Ax < HF@(C) - HFg(a).
@] \j=1 j=1 J=1
Likewise, let t; € W ([c,a(b)]y) and fj € £F([c,0(b)|y,1;). Then the function
o= [-(IT= f,,/_)A]fp/q is a weight on [c,b)y and

P

b(x)Ax < [ £y (c

J=1 J=1

=
N

—
o
>
|
et
/v\
=
S~—

AVE A
(3.2) | (Hﬁ) (x)

Proof. Since t; € # ([a,c]y), we have T@j,,z?j e W (lo(a),c]y) for je[l,n)y.
By Leibniz formula (2.3), ve # ([o(a),c]y). Also, for x € [o(a),c]y, we have

n A j—1 n
(Hﬁ) ()| < Z(H Iﬁ"(X)I> If,»A(X)< I1 |fk(x)>-
j=1 i=1

j=1 k=j+1
Using | /A (x)| = [Ffé(x)}l/p[ré(x)]l/q and (2.8) in (3.3) and then applying Holder’s
inequality for the sum, we can assert that

n A
(Hﬁ-) (x)
j=1

(3.3)

p

n A
(3.4) v(x) < (HF@) (x), xelo(a),dy
j=1
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Integrating (3.4) over [o(a), ¢|]; and using (2.5), we get (3.1). The proof for (3.2)
is similar. O

Remark 3.2. If fj(a) =0 for je[l,n]y, then inequality (3.1) also holds
true when we replace o(a) by a. By taking T =R, inequality (3.1) reduces to
[10, Theorem 1.6].

Next, let us consider some weighted inequalities for the transform f — Go f,
where Ge %), and 0 < R < .

THEOREM 3.3. Let t€ W ([a,c|y) and f € L/ ((a,c|y,T) be such that Fs(c) <
R and t:(c) <R Then 3=1[(Go ri)A]fp/q e W ([o(a),c]y) and

(3-5) JC ) (G o /)X )I"(x)Ax < (G o Fy)(c) = (G o FY)(a).

a(a

Similarly, let T € W ([e,a(b)]y) and f € £} ([c,a(b)]y,7) satisfy F,(c) < R and
t,(c) <R Then §=[—(Go fﬂ)A]fp/” e W ([e,bly) and furthermore,

b A A A
(3.6) | 160 ersmar < (G B)e) ~ (G o F) (o)

c

Proof. We give the proof only for the case when f e %/ ([a,c|,7); the
proof of the other case is similar and therefore omitted. From (2.11) we observe
that 3 € # ([o(a),c]y) and

1
(3.7) I(GOf)A(X)ISIfA(X)IJOIG’(Sf"(x)Jr(l—S)f(X))Ids, x € [o(a), cy-
According to Lemma 2.6, properties of G’, and Holder’s inequality, we have
(3.8) G (s 7(x) + (1 =)/ (x))]

< [G'(FZ (x) + (1 = $)F: ()] 7[G' (522 (x) + (1 = )e(x)]

for x € [o(a),c]y and s [0,1]. Using |[f2(x)| = [Ff(x)]l/p[r?(x)]l/q and (3.8) in
(3.7) and then applying (2.7), we arrive at )

(3.9) (Go £)*()|"8(x) < (GoF)*(x), x€la(a),cy.
Integrate inequality (3.9) over [o(a),c]; and use (2.5) to obtain (3.5). O
Combining Theorems 3.1 and 3.3 yields the following corollary.

COROLLARY 3.4. Let Gye %y, ;€ W ([a,cly) and f; € L ([a,c|y, 1) be such
that F:(c) < R and t¢(c) < R for je[l,nly. Thenv= (]}, Gjo Téj)A]ip/q is a
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weight on [o(a),c]y and
¢ n A ’ n
(3.10) J (H Gjoﬁ> (x)| v(x)Ax < H ;o Fy) (Gjo FZ)(a).
ofa) | \ 1 i =1
Likewise, if 7j € W ([c,a(b)]y) and f; € L} ([c,a(b)]y,1) satisfying F, () <R
and t,(c) <R for je |l nly, then v=[—([T"_; Giot,)" " e, b} ) and

(3.11) J(HGof]> H )= [](Gi o E,)(b).

J=1
Remark 3.5. As special cases when T = R and T = Z, the results contained
in Corollary 3.4 reduce to the corresponding ones stated in [19] and [20],
respectively.

V(x

I/\

4. Opial-type inequalities on time scales

This section is devoted to establish generalized Opial-type inequalities on
time scales by using weighted inequalities obtained above. It is a new argument
that yields the most general version and we include it here since the technique
may be useful in the proof of other inequalities. Here and subsequently, o and
are positive real numbers such that 1/p+1/0=1/p.

TueoreM 4.1. Let Gje %y, 1€ W (|a,cly) and f; e L7(la,c|y,1;) be such
that F:(c) < R and t¢/(c) < R for je[l,nly. For g W (la,cly) such that
B/

. A —o/q
K = J p*F( [(HG oq) x} Ax < o0,
a(a)

we have
B

A
(4.1) J [1Gof) )] e(x)Ax
al@)| \ j=I

/f/p
<K

ﬁGoF HGoFé
= =

Similarly, let t; € # ([c,a(b)]y) and f; € L ([c,a(b)]y,7;) satisfy ﬁ,,}(c) <R
and t,(c) < R for je[l,nlx. If pe W ([c,a(b)ly) such that
B/

b A —a/q
K = J g<//5 |: <HGOT”> ] Ax < o0,
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then
B

b
4.2 J p(x)Ax

n A
(H Gjo fi) (x)
=1

n

Blp

=

<K

(G0 F,)(0) - [[(Gro F)(b)

j=1 j=1

Proof.  Let v=[(I]}, G,oré/)A]_”/q. Then v is a weight on [o(a),c|t.
Hence, (4.1) is derived by using (2.7) and (3.10). The same proof works for
4.2). O

CoROLLARY 4.2. Let 1,9 € W ([a,c]y) and f € LF([a,c]y,T) be such that

¢ 1/q
L:= U (pq(x)(fg)A(x)Ax] < .
a(a)

Then one has

(4.3) Ji : (1172 (®)lp(x)Ax < LIFL(¢) = FL(a(a))]'".

Similarly, if v,p € W ([c,0(b)]y) and [ e L ([c,a(b)|r,T), then

b b 1/q
C

(4.4) J (1172 () o) Ax < U 0! () (=20)()Ax|  [Ef(e) - EP (D))"

c

as long as the right-hand side exists and is finite.

Remark 4.3. When f(a) =0 or/and f(b) =0, Corollary 4.2 derives various

known results in the literature:

() If p=2,a=0, p=1=1, then (4.3) reduces to (1.1), while (4.4) is new;

(2) Inequalities (4.3) and (4.4) are the same as inequalities given in Theorem
4.1 and Corollary 4.4 in [36], respectively, if we take p =2, a =0 and
p=1

(3) For p=2 and 7 =1, (4.3) becomes a sharper version of [14, Theorem
3.1]. Similarly, (4.4) reduces to a sharpened version of [14, Theorem
3.2];

(4) Let p=2,a=0, t=wy, p =°, where w and ¢ are two weights on
[0,c]y such that [j At/w(r) < oo and  is decreasing. Then inequality
(4.3) implies [5, Theorem 4.1]. 1In this case, inequality (4.4) is essentially
new;

(5) Inequality (4.3) reduces to [6, Corollary 3.2].
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Remark 4.4. 1In [24, Theorem 1], Saker proved an inequality similar to (4.3)
in the case when p =2 and f(a) =0 with the term L being replaced by

o ([ Sa] o s

In some cases we see that M > L, i.e., (4.3) gives a sharpened version of Saker’s
result. For example, if ¢ is increasing on |a, ¢|y, then

qu(x) fjg)) Ax < ( sup  u(x) @> L,

xela,c)y T(X)

which yields M > L. The same conclusion can be drawn for (4.4) which
corresponds to [24, Theorem 2].

The following corollary can be proved in view of Theorem 4.1 and the well-
known inequality of arithmetic and geometric means:

n 1 n n
(4.5) IEE (EZa,), a;=0 for jel[l,nly.
j=1 j=1

COROLLARY 4.5. Let meN, ¢,t5€ W ([a,cly) for je[l,nly. If fie
ZP(la,cp,tj) with fi(a) =0 for jel[l,n]ly and

1/q

A\
N = 1(x Xzﬂ_q/p A Ax ,
Jq)()(H(j () ) ] <o
then
¢ n A mn/p
(4.6) J <Hf/m> (x)|(x) AX<N< J Z x> .
a j=1 j=1
y Likewise, if ¢,t; € W ([c,b|y), f; € L (le,b]y, 7)) with f;(b) =0 for je[l,n]y,
an
b n m\A l/a
N = ~4P(HA Ax ,
[ (L[ 5 0m) o] <
then
b n A 1 b on mn/p
wn | (Hf) ® w(x)AxSN(;j Z|/§A<x>|Prj<x>Ax>
¢ =1 ¢ G=1
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Remark 4.6. (1) Note that whenn=2,m=1,p=2, 1 =1 = Yo, p = §°,
where W, w € # ([a,c]y) and ¥ is decreasing on [a,c|y, inequality (4.6)
improves [29, Theorem 3.5]. Similarly, [29, Theorem 3.6] can be derived
from (4.7).

(2) Inequality (4.6) implies [15, Theorem 3.2], and so is [15, Theorem 3.1]
if we take 7; =1 for all je[l,n]y, ¢ =1 and p =nm. Moreover, let
p=y° and t=y 0w, where Y,we # (la,c]y) with  decreasing on
[a,b]r. Then (4.6) improves the results contained in [15, Theorems 4.1
and 4.2] if we choose m =1, p=n and p =mn — 1, respectively.

We point out that it is not easy to give an explicit formula for (Go f )A
in general. So, for wider applicability of the results, we would like to replace
(Gjo f/)A appeared in Theorem 4.1 by f]'.A(Gj’ o fj) and obtain the following
theorem whose proof is based on Hoélder’s inequality (2.7), Lemmas 2.6, 2.7 and
2.8, and a modification of the method used in the proof of Theorem 3.3.

Tueorem 4.7. Let Gje %y, 1€ W ([a,c|y) and f;e LP([a,cly,7;) be such
that Fg(c) < R and t¢(c) < R for je[l,nly. For pe W ([a,cly) such that
. " %/q Bl
Pi= U (Zhé(x)(G/ o) (¥ [[(Ge org)(X)) (p“/’f(x)Ax} < 0,
=1 k#j

we obtain

¢ n p
(4.8) L(a) (Z 2)(G o 1)) T 1(Gr o ﬁc)(X)|> p(x)Ax

k#j
Blp

n

[1(G o £)0) - [[(6 0 2@

J=1 J=1

Likewise, let t; € # ([c,a(b)]y) and f;e LL([c,a(b)|y,T;) satisfy Fm(c) <R
and t,(c) <R for je[l,nly. One has ’

<P

b/ n B
(4.9) L <Zl: 152G o £) ()] kl;[ (G o fk)(X)) p(x)Ax
Blp

n n

[1(Gi o £)(e) = T](G o £ (B)

j=1 j=1
if o W ([c,o(b)ly) such that

b n o/q bl
Pi= U(Z[—f@(xxcf ofn,xan(Gkofn,()(x)) w/ﬁ<x>Ax] < o0,

=1 k#j

<P
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Proof. We only prove (4.8), as the proof of (4.9) is similar. By Lemmas
2.6 and 2.7,

(G0 )] < [(Gj o Fe) ()] "7[(Gy o 7)) (x)]

and

(G 0 f)(0)] < [FAX)(G] o Fe) (0] [ (x)(G] o 7,) ()]
for x € [o(a),c]y and je[l,n]y. Thus, by Holder’s mequahty,

n B
(4.10) (ZIJ?A(X)(G,(OJ_‘;)(X)I I1 |(Gkofk)(x)|> p(x)
j=1

k#j

., Blp
SOIRA(G o Pl T (G F¢,<><x>]

j=1 k#j

n Bla
x lZ[Té(X)(G} o) ()] [[(Geo fé,f)(X)] o(x),

J=1 k#j

for xeo(a),c]y. Integrating both sides of (4.10) over [o(a),c]; and using
Holder’s inequality with indices p/f and o/f, we get

c n B
J y (Z GG o YT 1(Gro fk)(x)|> p(x)Ax
ola) \ j=1

k#j

<P

a(a) j=1 k#j

¢ n Blp
[ SoreGte m)wi TG Fg)(x)Ax]

Blp

IA

P TL(G o F2)(0) - [ [(Gr0 FO)@)

j=1 j=1

)

where we have used Leibniz formula (2.3) and the fact that
(Gyo F)(x) < (Go F)(x) and FAR)(G] o F2)(x) < (Gyo Fy) (%)
for x e [o(a),c]y and je([l,n]y. Hence, (4.8) is verified. O

Remark 4.8. Taking n=2, f =1, Gi(x) = Ga(x) = x, fi(a) = fa(a) =0 or/
and fi(h) = fa(b) =0, ¢ = Y7, 11 = 1o = w[y°)"%, where w, € #([a,b]y) and
¥ is decreasing on [a, b]y, Theorem 4.7 improves and generalizes the results given
in [35].

CorOLLARY 4.9. If 1,9 W ([a,c]y), f e Ll (la,c]y,T) and
Bl

Blp| pe
0= <y+ﬁﬁ> Uo@h$<x>r§/ﬂ<x>1“/‘fw/ﬂocmx < oo,
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then
@i [ U@ ewar < OF e — FX P ol
a(a) )
Similarly, suppose that t,p € W ([c,a(b)]y), f € L ([c,a(b)]y,7) and

) Blp [ b Ala
0:= (%) U [~ 22 (x)/ () (x)Ax| < 0.

We have

b
(4.12) j SN2 p(x)Ax < QIET PP (¢) — B9 (b)] P,
Remark 4.10. If f(a) =0, then inequality (4.11) implies that

)

¢ , ¢ (y+8)/p
@1 [ erwar < o U IfA(X)”T(X)AX}

o (25 ([ )™

From (4.13) we can deduce some existed Opial-type inequalities:
(1) If one sets p =y+f and ¢ =7, where 7 is decreasing on [a,c|y, then
(4.13) improves [17, Theorem 3.1] and [30, Theorem 1];
(2) By setting f=1 and ©=wp?” ) where we ¥ ([a,c]y) and ¢ is
decreasing on [a, c|y, (4.13) reduces to [2, Theorem 3.2.4] (see also [31]);
(3) If p=y+p, then inequality (4.13) becomes [29, Theorem 3.1] which
reduces to [22, Theorem 2.4].
Similar consideration applying to (4.12) yields other results given in [17, 22, 29,
30], and [31].

where
Blo

5. Disfocal problems and disconjugacy conditions

In this section we establish sufficient conditions for disfocality and disconju-
gacy of equation (1.4). In the following, we assume that u(x)[y(x)|/z(x) < < 1
for all x €[a,o(b)]y. Notice that this assumption is trivial in the case when
T =R since u=0. We first formulate our main results related to the spacing
between a GZ of the solution and a GZ of its derivative of equation (1.4), which
yields sufficient conditions for disfocality of (1.4).

THEOREM 5.1. If equation (1.4) has a non-trivial solution f € £’ ([a,c]t,7)
such that f(c)f(c) <0, then

(51) TC(C’ lﬁ) + Wi(avcv (Dc) >1-9,
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c
where ®.(x) := [ p(1)At,

1/q

ag

Tile ) = (1)1/p UC@ A0 (Dl ()]“Ax

and

Weta.e.00 = [ o) ]

267

Similarly, if f € %! ([c,a(b)]y,7) is a non-trivial solution of equation (1.4)

such that f2(c)f(c) >0, then
(5.2) T, (c, ) + Wy(c,a(h),®,) > 1 -9,
where ®.(x) := [ p(t)At,

e d) = (%)W {_ J(b fnA(x)fg_](X)lﬂ()@ﬁ’AxTM

and

) olb) . 1/q
W(eo(b), &) = | 10.001(~37) <x>Ax] -

Proof.  We only prove (5.1), as the proof of (5.2) is similar.

both sides of (1.4) by f“ and integrating it over [a,c|y, we get

(5.3) - [Gtrt ) @ was

c

- J )Gy (£ () /7 () Ax + J o(3)| /7 ()| Ax.

a

Multiplying

Using integration by parts formula (2.4) with f2(c)f(c) <0 and f(a)=

—éu(a) f2(a), we obtain
(5.4) - [ GG @ @Ay = o).
By u(x)[y(x)[/7(x) <J and (4.11),

JCﬂ(X)l//(X)\fA(X)VXg(X)Ax < 6F(0)

and

j: HIG0)S(IA S Tele W) Fle)
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Therefore, due to (2.1),

(5:3) J V()G (f4())f7(x)Ax < (6 + Te(e, ) Fe(c).

Since ®2(x) = —p(x) and ®.(c) =0, it follows from (2.4), (2.8), (4.3), and
Holder’s inequality that

c

(5.6) j"¢<x>|f“<x>|"Ax=®f<a>|f”(a>|P+j ®.(x)(1/17) (x)Ax

a a(a)
(5.7) < We(a,c,®)F(c).

Considering (5.4), (5.5) and (5.7) in (5.3) and canceling F¢(c), we get (5.1).
O

Remark 5.2. When f(a) =0 or/and f(b) =0, Theorem 5.1 solves [27,
Problem 1] and implies [14, Theorems 4.1 and 4.2]. In the special case when
T =R, Theorem 5.1 generalizes [8, Theorem 3.1], [11, Theorems 2.1 and 2.2],
[23, Theorem 1], and [28, Theorem 2.1].

By using the maximum of ||, |®.|, and |®.| in (5.1) and (5.2), we obtain the
following corollary.

COROLLARY 5.3. Suppose that f is a non-trivial solution of equation (1.4)
which belongs to £?([a,c]y,t) and f2(c)f(c) <0, then

(5.8) T:(c, 1)( sup |&p(x)> +T§l(c)< sup |<Dc(x)|> >1-0.
xelo(a),c)y x€ela,c)yp

Likewise, if f is a non-trivial solution of (1.4) which belongs to %} (¢, o(b)]y,7)
and f2(c)f(c) >0, then

(5.9) Tn(c,l)< sup |¢(x)|>+ff;1(c)< sup)] |(i)c(x)|> >1-6.

xele,by xele,a(b

Remark 5.4. When f(a) =0, (5.8) improves the results given in [24, Corol-
lary 14], [26, Corollary 3.8] and [27, Corollary 2.5]. Similar considerations apply
to (5.9). Also, if T =R, then Corollary 5.3 coincides with [23, Theorem 2].

THEOREM 5.5.  Equation (1.4) is disfocal on [a,0(b)|y if
(5.10)  max{Ty(a(b),y) + Wo(a,a(b), D), To(a,¥) + Wola,a(b),®,)} < 1 —J.
Proof. Assume, to the contrary, that (5.10) holds and equation (1.4) is not
disfocal on [a,0(b)]r. But then, by definition, there is a non-trivial solution f

of (1.4) with a GZ in [a,0(b)]; followed by a GZ of f2 in [a,b]y. Without
loss of generality, we may assume that a is a GZ of f, b is a GZ of f*, and f
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has no GZs on (a,a(b)]y. Since f2(b)f2(a(b)) <0, we have f(b)f2(h) <0 or
f(o(b)) S (a(b)) <0. By (5.1),

1 =6 < Te(a(b), ) + Wela,a(b), o)) < To(a(b),¥) + Wo(a,a(b), Do),
which contradicts (5.10). The proof is complete. O

Application of Theorem 5.1 enables us to establish some new Lyapunov-type

inequalities on time scales which lead immediately to disconjugacy criteria for
(1.4).

THEOREM 5.6. Suppose that equation (1.4) has a non-trivial solution f with
two consecutive GZs a and b, then there are c¢,o(d) € [a, by, ¢ < a(d), for which

(5.11) Te(c, ) + We(a,c,®,) > 1 -0
and
(5.12) T,(d, ) + Wy(d,a(b),Dyq) > 1 —0.

Proof. Since f has no GZs on (a,b)r, it follows that f does not change
sign on (a,b)r. We can certainly assume that f(x) >0 on (a,b)r, since other-
wise we can replace f by —f. Let ¢ and o(d) denote the least and the greatest
extreme points of f on [a,b]y, respectively. If there is only one extreme point
of f, then ¢ and o(d) coincide. Since a is a GZ of f and f(c)f*(c) <0, it
follows that (5.11) holds due to (5.1). As it is shown in [7, Theorem 6.54] one
can see that if o(d) =d, then f2(d) =0 and if o(d) > d, we have f(d)f*(d)
> 0. Hence, (5.12) follows by (5.2). O

COROLLARY 5.7. Suppose that for all c,o(d) € |a,b)y, ¢ < a(d), we have
(5:13)  max{To(c, ) + Wo(a, ¢, ), To(d, ) + Wo(d, o(b), ®a)} < 1-0.

Then equation (1.4) is disconjugate on |a,b|y.

6. The distance between consecutive generalized zeros

In this section, we proceed with the study of disfocality, disconjugacy, lower
bounds of eigenvalues, and the distance between GZs for dynamic equation (1.5).

THEOREM 6.1. Suppose that f e LF(la,c|y,T) is a non-trivial solution of
equation (1.5) and f*(c)f(c) <0, then
)> )

(6.1) rgl(c)< sup
Moreover, if there are no extreme values of f on (a,c)p, then

xela,c]p
(6.2) Tg—l(c)< sup J}(z)Az) > 1.

x€ela, ]y Ix

JC(;)(I)AZ

X
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If instead [ e L} (lc,a(b)|y,7) and f2(c)f(c) =0, then

(6.3) ﬁl@< sup fwmm>>L
xele,a(b))ylde

Moreover, if there are no extreme values of f on (c,b|y, then

(6.4) f{’ll(c)< sup J go(l)At) > 1.
xele,a(b)]y Je

Proof. Inequalities (6.1) and (6.3) hold due to (5.8) and (5.9), respectively.
We now prove (6.2). Suppose that there are no extreme values of f on (a,c¢)r.
Since a is a GZ of f, we can assume that f(c)=max,cp,q, f(x). Then
f(x) >0, fA(x) >0 and thus (|f]")*(x) > 0 for x e (a,c)p. By (5.4) and (5.6),
SUDyc (g, Jy #(1)A7 >0 and so,

Fe(c) < < sup Jﬂcﬂ(l)Al> 7 (e)Fe(c),

xela,c]y Jx
which yields (6.2). The proof for (6.4) follows in a way similar to the above.
O

Remark 6.2. Observe that [11, Theorems 2.1 and 2.2], [13, Theorems 2.3
and 2.4], and [28, Theorem 2.3] are consequences of Theorem 6.1 if one sets
T=R.

,  sup

CoOROLLARY 6.3. Egquation (1.5) is disfocal on |a,o(b)|y if
x€la,bly x€la,a(b)]y

a(b)
| ooar
X

a(b) Ax I=p
< —_— .

- L /7 (x)

The following theorem gives more sufficient conditions for disconjugacy of
(1.5) when ¢ is oscillatory and this behavior affects the bounds.

(6.5) max{ sup

Jx o(t)At

a

THEOREM 6.4. Let a and b denote two consecutive GZs of a non-trivial
solution f of (1.5). Then there exist two disjoint subintervals of [a,b]y, I\ and I,
satisfying

1-p
o(b)
(6.6) J p(x)Ax > 2 <J xg(x)}v,?(x)f_q/P(x)Ax>
LUh a )
and
6.7) J o(x)Ax < 0.
[a,0(0)lr\(hUD)
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Proof. Since f has no GZs on (a,b)y, we may assume that f(x) >0 on
(a,b)y. Let ¢ and o(d) denote the least and the greatest extreme points of f on
[a,b]r, respectively. If there is only one extreme point of f, then ¢ and o(d)
coincide.

Case 1. Suppose that ¢ < g(d). Thus ¢ <d, and there exists ¢ € [a,¢)y
such that

c c

o(x)Ax > J o(x)Ax,

a

JC p(x)Ax > Téfp(c) and J

€1 1

by (6.2). Similarly, we can choose d; € (d,o(b)]y for which

d] dl ”(b>
J p(x)Ax > f,;_P(d) and J P(x)Ax = J p(x)Ax.
d d

d
Let I, = [c1,¢]y and L, = [d,di]y. We thus get

J P()AX > 7€) + 217 (d) = 27 (z:(c) + ()

o(b) I=p
zzP(J )(é(x)/l,?(x)‘cq/p(x)Ax> ,

a

where we have used Jensen s inequality for the convex function x!=7.  So, (
verified. Obviously, [ ¢(x)Ax <0 and j X)Ax <0. To prove (6 7
sufficient to show that f go x)Ax <0. D1v1d1ng both sides of (1.5) by G,(f?(x)),
integrating it over [c,d], and using (2.4) with f2(d)f(d) >0 and f2(c)f(c) <0,
we have

6.6) is
) it is

Jd p(¥)Ax < Jd ()G (f2(x) (%)A(X)Ax.

c c

By [7, Theorem 1.20 (iv)] and (2.11),

A
G W) () 9 =0. xe e

Therefore, we conclude that Ld p(x)Ax < 0.

Case 2. Assume that there is only one extreme point ¢ of f. Then
fAx)>0 for xe(a,c)p and f2(x) <0 for xe(c,b]y. We choose ®(x)=
C — [“o(t)At, where C is some constant. Set

a

M = max JX o(HAt = Jdl o(x)Ax,

xelaod) Jq a

m= min JX p(t)At = Jq p(x)Ax,

xela,a(b)] Jq a
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and take C = (M +m)/2. Since [ ¢(1)At € [m, M], we see that

(68) ()| < %j p(Ax.

Multiply both sides of (1.5) by /7 and integrate it over [a,b]; to give

(6.9) —J:(pr(fA))A(X)f”(X)AX= j/ p(3)| () "Ax.

Since f(a) = —Eu(a)f2(a) and f(b) = —nu(b)f2(b), integrating by parts yields
(6.10) |G s oas = o) + Fifo)

By integration by parts formula (2.4), Lemma 2.6 and Hoélder’s inequality,

(6.11) Jb

a

(/J(X)If"(X)I”AXS( max |<D<x>|)2|f<c>"

xela,a(b)]y

d, .
< (J w(x)Ax)zf’(Ff(c) B0 zele) + ().

1

Considering (6.10) and (6.11) in (6.9) and dividing two sides by F:(c) + F,(c), we

get
d o(b) I=p
J p(x)Ax > 27 (J Xi(x)i,,(x)r"”’(x)Ax) ,

c a
Wthh 1mp1ies (6.6). Finally, inequality (6.7) follows by [' ¢(x)Ax <0 and
fd X)Ax < 0. O

COROLLARY 0.5. Egquation (1.5) is disconjugate on |a,b]y if for every sub-
intervals Iy and L, of [a,o(D)]r,

1—p
(6.12) J p(x)Ax < 27 (J UI)T“””(X)AX) .

Remark 6.6. Our results contained in Theorem 6.4 and Corollary 6.5 reduce
to the ones known not only on time scales (see [2, Theorems 4.2.1 and 4.2.2],
[4, Theorems 1.3 and 3.6], [32, Theorem 2D], and [21]) but also in R (see [8,
Corollary 4.1], [11, Theorem 2.3 and Corollary 2.2], [13, Theorem 2.6 and
Corollary 2.8], [16, Lemma 1], and [34, Theorems 2.1 and 2.4]).

Theorem 6.4 also allows for a counting of the number of GZs.

THEOREM 6.7. Assume that a non-trivial solution of (1.5) has (n+ 1) GZs on
[a,b]ly. Then there exist 2n disjoint subintervals of [a,bly, Iy and I, such that

1 Lo(b) Tfl/l’(x)Ax>l/p (Jl go(x)Ax)l ’
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and

(6.14) p(x)Ax <0,

J[aaa(b)]r\l
where I =J_(Ij U ).
Proof. 1If a solution f of (1.5) has consecutive GZs a; < --- < @,41 On

[a,b], then Theorem 6.4 yields that for each je [1,n]y, there are two disjoint
subintervals of [a;,a;11]r, In and I, with

1-p
a(ajy1)
(6.15) Jl plax> Y (J 1o (V) (x)r_"/”(x)Ax>
1Vl 4j '
and
(6.16) J p(x)Ax <0,
laj,o(aj )] p\([nUIp)

where &; €[0,1) such that (1 —¢&;)f(a;) +¢&f%(a;) =0 for ie[l,n+1]y. Sum
(6.15) for j from 1 to n and use Jensen’s inequality for the convex function x!~7
to obtain

n_ ra(ajs 1-r
(6.17) J p(x)Ax > 27n? (ZJ ( )ng(X)/lgj_l(x)Tq/”(x)Ax> :

j=1
Since
n_ ra(aj) a(b)
ZJ Xéj(x)xé/_ﬂ(x)fq/ﬂ(x)AxgJ 7797 (x)Ax,

=1 e a

inequality (6.17) yields (6.13) as required. Finally, from (6.16) it is easy to
deduce (6.14). O

Theorem 6.4 also gives a clear relationship between Lyapunov-type inequal-
ities and eigenvalue problems. Let us note that changing ¢ to ¢ in (1.5) we
easily obtain a lower bound for the eigenvalues using the fact that the eigen-
function f, associated with the n™ eigenvalue, has exactly (n+ 1) GZs.

THEOREM 6.8. Let A, be the n™ eigenvalue of

(6.18) ~(xG (/™) (%) = 0()Gy(f°(x)),  x€ (ab)y,

where a and b are GZs of f. Then there exist 2n disjoint subintervals of [a, D],
Iy and I, such that

o(b) I=p -1
(6.19) I > 270" <L r"”(x)Ax) (J/ ¢(x)Ax>
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and

(6.20)

where I.=J;iL;(In UIp).

Forany xeT, 0 > 0, x+J € T, we denote by (I; UL)(x,d) the union of two
disjoint subintervals of [x,x + ]y, I} and L. We can now obtain the distance
between consecutive GZs of solutions of (1.5). A non-trivial solution of (1.5) is
called oscillatory if it has infinitely many (isolated) GZs in [a, c0)y.

THEOREM 6.9. If f is an oscillatory solution of (1.5), 1> K > 0 on [a,o0)y,
and

p—1
(6.21) lim sup J p()AL | <27
x—o \ K Jnun)xe

Jor all 6 >0 and for every two disjoint subintervals Iy and I, of [x,x + |y, then
the distance between consecutive GZs of [ is unbounded as x — oo.

Proof. Assume, for a contradiction, that equation (1.5) has an oscillatory
solution f whose GZs contain a subsequence {x,, };—, such that 0 < o(x,,,)—
Xp, <0 for some 6 and all k. By Theorem 6.4, there are disjoint subintervals
I (xp,,0) and DL(xy,0) of [x,,x, + 0]y satisfying

o’(xnkJFI)
J p(x)Ax > 27 J
(11U12><X"k‘6) Xn

for any k, since 7> K >0 on [a,o0)y. We thus have

p—1
lim sup J p()Ar | =27,
k—oo K (I Ulz)(xnkﬁ)

which contradicts (6.21). O

1-p
K“””Ax) > 2PK5'P > 0

K

Remark 6.10. For the time scale T =R, Theorem 6.9 generalizes [11,
Theorem 3.1], [13, Theorem 3.1], [18, Theorem 2], and [33, Theorem 1].

THEOREM 6.11. Let f be an oscillatory solution of (1.5). If 1> K >0 on

[a,00)p and there exists a dy > 0 such that for every two disjoint subintervals of
[x,x+00)r, L1 and b,

(6.22) lim J p(HAL | =0,
X—=0 (I]Ulz)(x,én)

then the distance between consecutive GZs of [ must become infinite as x — oo.
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Proof. We first claim that for all 6 >0 and any disjoint subintervals of
[x,x+0]y, I and b,

(6.23) fim J o(D)AL ] = 0.
X—=© (I]Ulz)(x,(i)

Let k denote the least integer with kdy >0, x; =x+ joy, j=0,1,...,k—1,
and x; =d. By taking I;(x;,00) = Ii(x,0) N [xj,Xj41]p for j=0,1,...,k—1 and
i=1,2, we get

k-1
(6.24) J o(1)Ar = ZJ p(1)At.
(LUL)(x,0) =0 J (InUlp)(x;,0)
Since x; — o0 as x — oo, we have from (6.22) that
(6.25) lim J p(H)At | =0 for j=0,1,....k—1.
YO NI (1nULa) (x5,00)

Combining (6.25) and (6.24) we obtain (6.23). As a consequence of (6.23), for
0 >0 and any disjoint subintervals /; and I, of [x,x +J];, we have

; or! J (A
m | —— p(H)At | = 0.
e\ K ) (hun)x,e)

Thus, the result follows by Theorem 6.9. O

Remark 6.12. The results given in [11, Theorem 3.2], [13, Theorem 3.2], and
[33, Theorem 2] are special cases of Theorem 6.11 obtained by setting T = R.

Remark 6.13. Most of our results are essentially new even in the well-
studied difference equation setting, as far as the authors are aware.

Acknowledgement. The authors would like to thank the anonymous referee
for valuable comments and suggestions.
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