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TIKHONOV REGULARIZATION FOR DUNKL
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Abstract

We study some class of Dunkl multiplier operators T} ,,; and we give for them an
application of the theory of reproducing kernels to the Tikhonov regularization, which
gives the best approximation of the operators Ty, on the Dunkl-type Paley-Wiener
spaces Hj.

1. Introduction

In this paper, we consider R? with the Euclidean inner product <.,.> and
norm |y| := /<y, y>. For o e R/\{0}, let o, be the reflection in the hyperplane
H, = R? orthogonal to o:

2o, x)
OyX (= X — —ZOC
o

A finite set % = R“\{0} is called a root system, if RNR.0 = {—a,«} and
o, R =R for all xeR. We assume that it is normalized by |a|*> =2 for all
aeR. For a root system K, the reflections o,, o € N, generate a finite group G.
The Coxeter group G is a subgroup of the orthogonal group O(d). All
reflections in G, correspond to suitable pairs of roots. For a given fe
Rd\U“EmH“, we fix the positive subsystem R, :={ae$R: (o, f> > 0}. Then
for each o e R either e R, or —aeR,.

Let k : R — C be a multiplicity function on R (a function which are constant
on the orbits under the action of G). As an abbreviation, we introduce the index
Vi = Zaeﬂh k(OC)

Throughout this paper, we will assume that k(x) >0 for all « € . More-
over, let wy denote the weight function wy(x):=[[,cq, [<o x>\2k<“), for all
x € R, which is G-invariant and homogeneous of degree 2.
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Let ¢, be the Mehta-type constant given by

-1
Ck = (J e M2y (x) dx) )
Rd

We denote by g, the measure on RY given by du(x) := cywi(x) dx; and by
L?(w,), 1 < p < oo, the space of measurable functions f on R, such that

1/p
i = ([, OO ) < e, 1< p <

£l ) 7= €85 sup [f(x)] < 0.

xeR?

For f e L'(x,) the Dunkl transform is defined (see [3]) by

AN = | Bl S (0) ),y e,
where Ej(—ix, y) denotes the Dunkl kernel (for more details, see the next
section).

Let m be a function in L*(z,). The Dunkl multiplier operators 7T} ,, are
defined for f e L?(y,) by

Tk7111f<x) = %cﬁl(m%f(f))(x% X € Rd'

These operators are studied in [15, 16] where the author established some
applications (Calderén’s reproducing formulas, best approximation formulas,
extremal functions....).

Building on the ideas of Matsuura et al. [6], Saitoh [11, 13] and Yamada
et al. [19], and using the theory of reproducing kernels [1, 10], we give best
approximation of the operator 7 ,, on the Dunkl-type Paley-Wiener space Hj.
More precisely, for all # >0, ge L*(y), the infimum

2
lnf {77||f||H,, +llg — Tk,mf”U(/(k)}ﬂ

is attained at one function F,’ , called the extremal function, and given by

2(2)m(2)7i(9)(2)
7+ |m(2)|*

Next we show for F,  the following properties.

,g°

Fg(y) = JR" Ei(iy, z) du(2).

. 1
© Ny ol < 2\/—||JHL2 )"

(ll) 111’11,7%()\ || Tk m gHL =0.

(iii) limy_o+[|F, . T, ,,,/ |1-1,

In the Dunkl setting, the extremal functions are studied in several directions
[14, 15, 16, 17].
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This paper is organized as follows. In Section 2 we define and study the
Dunkl multiplier operators 7% , on the Dunkl-type Paley-Wiener spaces H),.
The last section of this paper is devoted to give an application of the theory of
reproducing kernels to the Tikhonov regularization, which gives the best approxi-
mation of the operators T}, on Hj.

2. The Dunkl-type Paley-Wiener spaces

The Dunkl operators Z;; j=1,...,d, on R? associated with the finite
reflection group G and multiplicity function k& are given, for a function f of class
C! on RY, by

0 S (x) = f(02x)

2if(x) =—f(x)+ k(o) .
Jf( ) ax] ( ) “Ezm;r ( ) ] <OC7X>

For y eRY, the initial problem Du(.,y)(x)=yu(x,y), j=1,...,d, with

u(0, y) =1 admits a unique analytic solution on RY, which will be denoted by

Ei(x,y) and called Dunkl kernel [2, 4]. This kernel has a unique analytic
extension to C? x C? (see [8]). In our case (see [2, 3)),

(2.1) |Ex(ix, y)| <1, x,yeR’

The Dunkl kernel gives rise to an integral transform, which is called
Dunkl transform on RY, and was introduced by Dunkl in [3], where already
many basic properties were established. Dunkl’s results were completed and
extended later by De Jeu [4]. The Dunkl transform of a function f in L'(z,),
is defined by

AN = | B nf(0) ), yer

We notice that %, agrees with the Fourier transform & that is given by

N

() = <zn>—d/2j e Pf(x) dx, xeRY.

R4

Some of the properties of Dunkl transform % are collected bellow (see
(3, 4]).

TueoreMm 2.1. (i) L' — L*-boundedness. For all felL'(w), Zi(f)e
L” () and

[F U e ) < NS -

(ii) Inversion theorem. Let f e L'(w,), such that F;(f) e L'(w,). Then

f(x) = Zi(F(f)(=x), ae xeR"
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(iii) Plancherel theorem. The Dunkl transform Zy extends uniquely to an
isometric isomorphism of L*(w.) onto itself In particular,

7% (M 22y = 1S W24

Let 2> 0 and yx, the function defined by

d
an(z) == HX(fl/h,l/h)(Zi% z=(21,...,24) € RY,

-1

where y(_y, 1/, 1s the characteristic function of the interval (—1/h,1/h).
We define the Paley-Wiener space Hj, as
Hy = 7 (L ()

The space H, satisfies
(2:2) Hy < L (1),  Fi(Hy) = L' 0L ().

We see that any element f € H; is represented uniquely by a function
F e L*(y) in the form

[ =7 (uF).
The space Hj provided with the norm
1/ ez, = IF N L2

Let m be a function in L* (). The Dunkl multiplier operators Ty ,,, are
defined for f e L?(y,) by

(2.3) TS = T (mFi(f)).

THEOREM 2.2. Let me L*(uy). The operators Ty, are bounded linear
operators from Hy, into L*(p), and

I Toeom S N 22y < Il o oy L W -

Proof. Let me L*(y;,). From Theorem 2.1 (iii) and (2.3) we obtain

12
Tenf i = (| MOPIAN ) a2

12
< Il ([ GNP do)

< lml e (o S N -

This gives the result. ]

As application, we give the following example.
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Example 2.3. Let m be the function defined for ¢ > 0 by
m(z) == e”‘z|z, ze R
Then T pmf = Wi (f), where Wj , is the Dunkl-type Weierstrass transform
[9, 14].
Let n > 0. We denote by <.,., y, the inner product defined on the space
Hh by
(24) s@nm, =0lS90m, + Tiemfs Tem9D12()>

and the norm Hf||,7‘Hh =L,

On Hj, the two norms ||.[|y, and |.[|, ;, are equivalent. This (Hp,<.,.>, g,)
is a Hilbert space with reproducing kernel given by the following theorem.

THEOREM 2.4. Let n >0 and me L*(w). The space (Hp,<.,.), n,) has
the reproducing kernel

(2.5) Ki(x, ) = JR[[ Xh(Z)E;ix[;)(f;(z_iy?Z)

d:uk(Z)a

that is
(i) For all y e R?, the function x — Kj(x, y) belongs to H.
(ii) The reproducing property: for all f € Hy and y e R?,
<.f7Kh('7y)>n,H/, :f(y)
Eo(—i
Proof. (i) Let yeR? From (2.1), the function z HM

7+ |m(2)[?
belongs to L' N L?(y;). Then, the function K is well defined and by Theorem
2.1 (ii), we have

-
(2.6) mmw;%(ﬂiiiﬁymAfm
7+ )
Then by Theorem 2.1 (iii) and (2.1), we obtain
(= 27
KNG < 2D and K I, < S5

This proves that for all y e RY the function Kj(.,y) belongs to H,.
(ii) Let f e H, and y e R?. From (2.4) and (2.6), we have

S Kales 8oy, = | Bl 7)) di(2),
and from (2.2), we obtain the reproducing property:

<f.7 Kh('7 y)>177H/7 = f(y)
This completes the proof of the theorem. O



404 FETHI SOLTANI

3. Extremal functions for the operators 7} ,

In this section, by using the theory of extremal function and reproducing
kernel of Hilbert space [10, 11, 12, 13] we study the extremal function associated
to the Dunkl multiplier operators Ty ,. In the particular case when k =0 this
function is studied in [7, 18]. The main result of this section can be stated as
follows.

THEOREM 3.1. Let me L*(u;). For any ge L*(w,) and for any 5 >0,

there exists a unique function F, . where the infimum

(1) inf {1l £, + 9 = T 1)

is attained. Moreover, the extremal function F, is given by

Fiy0) = | 003 2) day ),

where

B xn(2)m(z)Ep(—ix, z) Ex(iy, z)
ot = [ BT

duy(2).

Proof. The existence and unicity of the extremal function F,’  satisfying
(3.1) is obtained in [5, 6, 12].  Especially, F,’, is given by the reproducing kernel
of Hy with ||.||, p, norm as

(32) Fn*,q(y) = <Q7 Tk,m(Kh('a y))>L2(,uk)7

where K is the kernel given by (2.5).
But by Theorem 2.1 (ii) and (2.6), we have

T (Kales2)) = [ () PR 302 Bl 2) d(2)

_ J xn(2)m(2) Ey(ix, 2) Ex(—iy, 2)
R 0+ m(z)[?
This clearly yields the result. O

duy(2).

As application, we give the following example.

Example 3.2. Let n >0 and ge L?*(w,). If m(z) := e*"z|2, t > 0, then

£ ()= J g(x)On(x, y) dpy(x),

R d
where

Qh(x7 y) :J Xh(Z)Ek(_ixﬂ Z)Ek(iy,Z) d,uk(Z)

2 2
RY 776t|z\ + el
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COROLLARY 3.3. Let >0 and ge L*(). The extremal function Fy,
satisfies:

12
. N Ckzyk+dd}k
0 17,0 < (Y ) ol
. 12 1/2
.. « Ck2“+ddy" 2 1522
@ 177 = () (], 0P i)

Proof. (i) From (3.2) and Theorem 2.1 (iii), we have

1Ey g < 191 2200 | T (K G D)2,
< gll 22 170 (Kn (- YD) 22,

Then, by (2.6) we deduce

) 1/2
(3.3) 2 ) < ol iz ( [ m({zﬂﬂin'(;q)gz)cll;]t,;(z)) |

Using the fact that
(3.4) 7+ Im (=) = dnlm(=)|%,

we obtain the result.
(i) We write
2 2
Fyg) = | e e (60, v, 5) di ().
Applying Hoélder’s inequality, we obtain

Er g < J 9GO 2104 (x, 91 dpge ().

Thus and from Fubini-Tonnelli’s theorem, we get

2

(33 1 ) < [ IO 00
T E (i
The function z — QUGN zzx, 2) belongs to L' N L%(y,), then by Theorem
2.1 (i), 1+ |m(z)|
1 xn(2)m(z)Ep(—ix, z
Ou(x.7) = %; ‘(7”( DL )> )
1+ |m(z)]

Thus, by Theorem 2.1 (iii) we deduce that

(2)|m(z)|* dpg (2)
L

36 105 My = [, 1@ DA ) < | BORE
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Then using the inequality (3.4), we obtain

1 12
104 iy = 3z ([ 062) )

From this inequality and (3.5) we deduce the result. O

COROLLARY 3.4. Let > 0. For every ge L*(u), we have

0 £y0) = B2 BEEEE due),
_EAGE

7+ |m(2)|”

s 1
(iii) 15, ol < ﬁllg\lmﬂky

Proof. (i) follows from (3.2) by using Theorem 2.1 (iii) and (2.6).
(778
(i) The function z HXh(Z)m(Z)/k(‘Z)(Z)
Theorem 2.1 (i), we have 7+ |m(2)]

belongs to L'NL?*(w,). Then by

Thus, by Theorem 2.1 (iii), we obtain (ii).
(iii) By relation (ii) we have

EZIGl [m(2)|*|Z(9) (2) |
F*ZZJ Ldﬂz:J Ay (=
Il = | ) = | PSS e
Using the inequality (3.4), we obtain
« 2 1 2 1 2
1Pyl < |1 @EF D) = ol
which ends the proof. ]

THEOREM 3.5. Let 5> 0. For every g€ e L*(y;.), we have
. . y(2)|m Fr(g
me@AMéM&W@””|UU(X)@N)
2)

+ m(z)[?

i ey _ EMEOLR)C
(il) Zi(Ti,mF, ,)(2) = 0+ m(2))

(?ii) Tk’”Fﬂ*(/(y) = Fy 1 ()
(iv) llm,ﬁ0+|| Tk,mFr;:g - g”U(/lk) =0.

Proof. From (2.3) and Corollary 3.4 (ii), we have

oo = gt [ 2(EmE) P Fig) ()
Tty () = 7 (WAL AOE) )
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@M@’ 7i(9)(2)
) 1+ |m(2)” -
Theorem 2.1 (ii), we obtain (i), and by Theorem 2.1 (iii) we obtain (ii).
(iii) follows from (i) and Corollary 3.4 (i).
(iv) From (ii) we have

The function z —

belongs to L'ML*(y,). Then by

yk(Tk,mF,;g - g)(Z) =

Thus,

2| o7, 2

. 2|7 (9) ()]

nan.—ng,zj Ay (2).
o Ty (=) Im(2) P

Using the dominated convergence theorem and the fact that
2|7 2)|?
U | k<g)( )‘ — < |37k(g)(2)|2,
(7 + 2 (2)Im(2)[°]
we deduce (iv). O

THEOREM 3.6. Let n > 0. For every [ e Hy, we have
) I
(if) limy, o+ || Fy 7, r = f1

u, = 0.

Proof. (i) From (2.2), the function #(f)e L' NL?*(w,). Then by Corol-
lary 3.4 (i) and Theorem 2.1 (ii),

(3.7) Frens )= 10) = | 7N iy ) duy(z).

R+ 14(2)|m(z) |
So
. 7 (f) ()]
Iy ey = Pl < | 2 IE ga),
i W ket () m(2))
Again, by dominated convergence theorem and the fact that
n| () (z g
IO g2,
1+ x(2)m(z)]

we deduce (i).
(i) From (3.7) we have

FeFyr,.r =) =

Consequently,

* 112 n-|e
17y = = |,
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Using the dominated convergence theorem and the fact that
P17 ()E) < 1Z(/)(2)°

W@+ m@mEP )
we deduce (ii). O

b

Remark 3.7. (3 =0). Let me L*(y;) with m # 0; and let g e L*(u).
(i) From (3.3) we have

1/2
. Xn\Z
B0 < (J i) dﬂk<z>) ol

m(z)]

If we take g = T ,,f when f € Hj, then by Theorem 3.6 (i), we get

2 v
)l < (j 2 duk<z>> | T2

m(z)|*

(i) From (3.6) we have

10,05 M = [, 25 o)

Then by (3.5) we obtain

. 12 7 12
lFo*,glleWS(JRd n dﬂk(2>> (] oo™ auiw )

|m
By Theorem 3.5 (iii) and (iv), we deduce that

. 12 2 12
||g|u<,,k>s<j 4(E) dﬂk<z>> (|, sl e™ auo)

rY |m(2)|”
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