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SUFFICIENT CONDITIONS FOR A REAL POLYNOMIAL
TO BE A SUM OF SQUARES OF POLYNOMIALS

VAN DoAT DaNG* AND THI THAO NGUYENT

Abstract

In this paper, we establish new sufficient conditions for the polynomial f to be
SOS in terms of the Newton polyhedron of f (Theorems 2.6 and 2.12). These new
sufficient conditions include results which were proved earlier by Lasserre [13, Theorem
3], Fidalgo and Kovacec [6, Theorem 4.3, Ghasemi and Marshall [7, Theorems 2.1 and
2.3], and Ghasemi and Marshall [8, Theorem 2.3].

1. Introduction

The problem of representation of positive semidefinite polynomials (PSD) as
sums of squares of polynomials (SOS) has been treated by many authors. Note
that if f is SOS then the degree of f is even. In [10], Hilbert proved that
Py =24, ifand onlyif n <2 ord =1 or (n,d) = (3,2), where Pyy , and Xy ,
are the cone of PSD forms of degree 2d in n variables and the cone of SOS forms
of degree 2d in n variables, respectively; see [2, Theorem 6.3.7]. The first explicit
example for this phenomenon was given by Motzkin [18]; see [16, Proposition
1.2.2].

We denote by N the set of nonnegative integers {0,1,2,...}. For x
(x1,...,x,) and o = (oq,...,0,) € N”, define x* =x{"---x) and |a| =oq + -
o,. Using these notations, every polynomial f € R[x] can be writen as f(x)
> sent Jox*, where f, e R and f, =0, except for finitely many «. Assume now
that f is nonconstant and has even degree 2d. Let Q:= {aeN"|f, #0}\
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{0,2dey,...,2de,}, where e; = (1,0,...,0),...,¢, = (0,...,0,1). Thus f has the
form

FE) =L+ X"+ fraex.
1

xeQ i=
Setting

A:={aeQ]|f,x* is not a sum of squares in R[x]}

={0eQ|f, <0 or o; is odd for some i€ {l,...,n}}.

In [13, Theorem 3], Lasserre proved that if

: : | .
fo= agw and  fa, = d;'f”zd’ i=1,....n,
then f is SOS.
Later on, some various versions on sufficient conditions of this type have
been given by Fidalgo and Kovacec [6, Theorem 4.3], and Ghasemi and Marshall
[7, Theorems 2.1 and 2.3] where the left-hand sides of the inequalities are kept

unchanged and the right-hand sides are replaced by quantities which also depend
on the coefficients f,, « € A. Indeed, in [7, Theorems 2.1], f is SOS if

X . 2d — |o| X o . _
A 57 and fzf,efzz\fx|ﬁ, i=1,....m

aeA aeA

and this result is an new version of Lasserre’s one.

Recently, Ghasemi and Marshall [8, Theorem 2.3] have given another
sufficient condition on additional variables satisfying constrains depending on
the coefficients f,, « € A, for the polynomial f to be SOS. Precisely, a sufficient
condition for a form f of degree 2d to be SOS is that there exist nonnegative real
numbers a,; for a € A, i=1,...,n, such that

2d 2d .
Q2d) a) = |fu|a*, «eA, and fru, = Zam, i=1,...,n,
oeA

where a} =a}'---al, and o =o"-- o with the convention 0°=1. This
result include improvements of the above results. However, if fo = foge, =+ =
Sode, =0, the conditions of [8, Theorem 2.3] imply that A=0 and so f is
obviously SOS. Thus, this criterion is overly restrictive.

We recall here some notations about Newton polyhedra. Let supp(f) :=
{eeN"| f, #0}. The Newton polyhedron T'(f) of f is the convex hull of
supp(f) in R". Clearly, I'(f) is a compact convex polyhedron of dimension at
most n. A supporting hyperplane of T'(f) is a hyperplane minimizing the value
of some linear function on I'(f). The faces of the boundary of the Newton

polyhedron I'(f) are the intersection of I'(f) with its supporting hyperplanes.
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They are compact convex polyhedra of dimension at most n — 1. The vertices
are faces of dimension 0 (i.e., points).

In this paper, we establish new sufficient conditions for the polynomial f to
be SOS in terms of the Newton polyhedron I'(f) of f (Theorems 2.6 and 2.12).
Precisely, we replace the values fo, fade,s- - -, fade, in the left sides of the inequal-
ities above by some values f,, u € %, where % is some set satisfying V(f) =« % =
['(f)N(2Z)". Note that our new sufficient conditions include all the results
mentioned above.

The paper is organized as follows. Section 2 presents the new sufficient
conditions for a polynomial to be a sum of squares of polynomials (Theorem 2.6
and 2.12). In Section 3, we prove these results. As a consequence of Theorem
2.12, a lower bound of f is established in Section 4.

2. Statement of the results

Suppose f(xi,...,X,) is a polynomial of degree 2d. Let

X1 X,
f(x07xla"'axn) :xédf<x—0,... _n)

)
X0

Then f is a form of degree 2d called the homogenization of f. We have the
following well-known result.

ProposITION 2.1 ([16, Proposition 1.2.4]). Let f be a polynomial of degree
2d. Then f is PSD iff f is PSD; and [ is SOS iff [ is SOS.

We now assume f is a form, and I'(f’) is the Newton polyhedron of f. Let
« @ :=T(f)NZ" denote the set of all integer points in I'(f),
« o = {J(s+1)|s,te(f)N(2Z)"} denote the set of integer points from
I'(f) which are averages of even integer points from I'(f), and

< =/\{S(s+1)|s#1,5:eT(f)N(2Z)"} denote the set of even integer
points from I'(f) which are not averages of distinct even integer points
from T'(f).

From now on, V := V(f) denotes the set of vertices of the Newton poly-
hedron of f. It follows from [9, Theorem 3.1] that if f is PSD, the set V is
contained in (2Z)", and so V = 7" < ¥N(2Z)". We recall some results, which
give some necessary conditions for a polynomial to be SOS.

ProposITION 2.2 ([4, Proposition 3.7]). If f is SOS, then
(i) for every a e supp(f), we have o€ .o/, and
(ii) for every ue", f, >0.

We recall here some notations, due to Reznick [23]. We use the term
framework to denote a set % = {u',...,u"} in which u' = (uf,...,u}) e (22)"
with u/ >0 and > ", uj = 2d for all i and some d. A trellis is a framework in
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which u',... u” comprise the vertices of a simplex. Note that if % is a trellis,
then % is a linearly independent set.

DEerNITION 2.3 ([23, Definition 2.1]). Let % be a framework. A finite set
& <= Z" is called U-mediated if ¥ contains %, and every v e L \% is an average
of two distinct even points in .

We now assume that V' <« % < ¥". Then, % is a framework. By [23,
Theorem 2.2], we get the following.

THEOREM 2.4 ([23]). There is a %U-mediated set U™ satisfying o/ (U) :=
{3(s+0)|s,teU} =U* =% and U* contains every U-mediated set.

Suppose that V = {u',...,u"} is a framework. If o e Z" and o= Aju' +
coro 4 Apu™ with 4; >0 and A4; +---+ 4, =1, then a € %; conversely, if a €@
then at least one such A= (4;,...,4,) exists. Let

A)={A=01yooydm) |4 =0, -+ Ap=1, and o= liu' +--- + L,u"}.

If V is a trellis, then only one such A= (4y,...,4,,) exists, and (4,...,4,,) are
called the barycentric coordinates of o with respect to V.

THEOREM 2.5 ([23, Theorem 3.3])).  Suppose V = {u',... u™} is a framework,

€% and ) e o). Then, if the form f(V, 1 a)(x) = Ax" + -+ px" — x*
is SOS then o€ V"

The following is our new result, which gives a sufficient condition on the
coefficients for a polynomial to be sum of squares.

THEOREM 2.6. Let | be a form in n real variables with V < (2Z.)".  Suppose
that V. < U < V" such that

(i) aeu” for all o €A,

(11) minue“]/ fu = ZzeA |f%‘
Then f is SOS. Here, by convention, we set Y., .. |fs| =0 if A=0.

COROLLARY 2.7. Let f be a form in n real variables with V < (2Z)".
Suppose

(i) aeof for all weA,

(i) mingey fu= 3o e /ol
Then f is SOS.

COROLLARY 2.8. Let f be a form in 3 real variables with V < (2Z)*.  Then,
fis SOS if

min f, > Y |fl.
uevy

aEA
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Remark 2.9. Condition (ii) of Theorem 2.6 together with f, =0 for some
u e implies that A= and f, >0 for all u e %; in this case, f is obviously
SOS. Thus, an alternative sufficient condition is given by Theorem 2.6 for
V< <supp(f)NY.

Next, we shall give another sufficient condition for a polynomial to be SOS.
We recall the following result, due to Reznick.

TueoreM 2.10 ([23, Corollary 4.9]). Suppose V = {u',...,u™} is a trellis,
and o€ 6. Then the form f(V,a)(x) == Ax* + -+ L,x*" — x* is SOS if and
only if a e V*. Here (11,...,Ay) are the barycentric coordinates of o with respect
to V.

We will make use Theorem 2.10 to prove the following.

COROLLARY 2.11. Suppose that V ={u',....u™} is a trellis and o€ V*.
Then, for a form E(x)=bix" + -+ bux"" —¢ex* such that b; >0 for i=
1,....m, and ¢ >0 if all o; are even, the following are equivalent:

i) E=0.

(i) |c[Af"--- Al < bt bin (with the convention 0° = 1).
(iii) E is SOS.
Here (Ay,...,An) are the barycentric coordinates of o with respect to V.

Now, we present our other result, which is an improved version of [8,
Theorem 2.3]. The proof of this result is by using Corollary 2.11.

TueOREM 2.12.  Let f be a form, and V = {u',... u™} be the set of vertices
of T(f). Suppose that V is a trellis, and o€ V* for all a€ A. A sufficient
condition for f to be SOS is that there exist nonnegative real numbers a,; for
aeA, i=1,...,m, such that

(i) al =|fild}, weA, and

() fui = D epntai i=1,...,m
Here a, = (ay1,--.,a0,m), Ao = (Aa1,--., 0m) are the barycentric coordinates of
o with respect to V, al* = aiﬁl cealy, and A = ijﬁ' e Qe

We mention some corollaries of Theorem 2.12. Corollary 2.13 generalizes
known earlier results, due to Lasserre [13, Theorem 3] and Ghasemi and Marshall
[7, Theorem 2.1]. Corollary 2.14 includes results which were proved earlier by
Fidalgo and Kovacec [6, Theorem 4.3] and Ghasemi and Marshall [7, Theorem
2.3]. Corollary 2.15 is a generalization of the result of Ghasemi and Marshall
[8, Corollary 2.7]. Each corollary will be proved by applying Theorem 2.12 for
a particular choice of the lifted variables a ;.
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COROLLARY 2.13. Suppose f is a form such that V ={u',... . u"} is a
trellis, and o€ V* for all o€ A.  Then if

fl‘,t"Z Z‘f”la,h izl?"‘ama

aEA

then f is SOS.

COROLLARY 2.14. Suppose f is a form such that V ={u',... . u"} is a
trellis, and o€ V* for all oe A. Then f is SOS if

Sz Y Il i=1,m.

aeA

COROLLARY 2.15. Suppose f is a form such that V ={u',... . u"} is a
trellis, and o€ V* for all oe A. Then f is SOS if

m Aai
aeA Hi:l U[M

Notice that, by a similar argument as in [8, Remark 2.8], Corollary 2.15 is
an improved version of Corollary 2.14.

COROLLARY 2.16. Suppose f is a form such that V ={u',... . u"} is a
trellis, and o€ V* for all oe A. Then f is SOS if

¥ 1/ 2, it
Sz Y kiw<'k) L oi=1,...,m,

€A, Ay i #0

where ny = |{i| Ay, #0}|, and k is a positive real number.

3. Proof of the results

Let R[x] be the ring of real polynomials in the variables x = (xi,...,x,),
and R[x],, be the vector space of real polynomials of degree at most 2d, with
canonical basis (x*) = {x*|a e N" |a|] <2d}. Given a sequence y=(y,) =R
indexed by the canonical basis (x*), let L, : R[x],;, — R be the linear mapping

[=) 5= L(f) =) fivay [ €RRy,

and let M;(y) be the moment matrix with rows and columns indexed by (x%),
and defined by
Ma(y) (@ f) = Ly(x**) = yarp, o, feN": o], |f| < d.

Let the notation M,(y) = 0 stand for M,(y) is positive semidefinite.
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Remark 3.1. Tt is clear that M,(y) =0 iff L,(f?) >0 for all f eR[x],.
Moreover, f is SOS iff L,(f) >0 for all y such that My(y) >0 (this is a
corollary of [14, Theorem 3.1]).

LemmaA 3.2. Let U be a framework and ¥ be a U-mediated set. Suppose
y=(yy) <R such that My(y) = 0. Then

|L,(x*)| < max L,(x") for all o€ &.
ueuU

Proof. First of all, we will show that if o € #\%, there exists k > 1 and a
sequence

1
i1 :E(ai"_ﬂ[)» O‘i#ﬁia ai,ﬁiefﬂ(ZZ)", i:1,...,k,
such that oy =« and o € %. In fact, let
. 1
X = {oc’there exists k> 1 and a sequence a;_; :E(oc[ +B)), 0 # B

u,fie NQRL)",i=1,...,k, such that op = o and oy :oc’}.

Since X is contained in %, the set X is finite, and so the convex hull of X has
vertices which belong to %.

Now, setting 7 := max,c¢|L,(x*)|. Then there exists some y € & such that
7= |L,(x")]. If ye, then

[L,(x*)| < |Ly(x7)| = ma/x|Ly(x”)| for all e Z.
ue
Otherwise, by the above claim, there exists some k > 1 such that

y=x501+B1), n#PeLNQ2L)",

Nn==+p), n#pheLN(2L)",

= N =

[am—

Tk—1 = E(Vk +B)s e #Be LNQ2L)",
where y, € %. Since My(y) > 0, we have
T=|L,(x7)| = |Ly(x(1/2)(y1+ﬂ1))| < \/Ly(xyl)Ly(xﬂl) < \/Ly(xvl)f,

Hence 7 < L,(x71). By repeating the above arguments, after finitely many steps,
we deduce

7 < Ly(x7) < max Ly(x").
ueu

This complete the proof of the lemma. O
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Proof of Theorem 2.6. By Remark 3.1, it is sufficient to show that
L,(f) >0 for any y such that M,(y) = 0.

So let y be such that M,(y) = 0. Let v:=max{L,(x*)|ue#}. Then, by
Lemma 3.2, we have

|Ly(x*)| <t for all ae¥”.

This together with Conditions (i)—(ii) implies that

=3 Sl () + > AL+ DY S

ueil aeA o (UUA)

_<m1nfu Z|fa>r>0 O

aeA
Proof of Corollary 2.7. We first prove the following.
Cram 3.3. We have v = <.

Proof. We first prove that o/ = 7"*. Indeed, for every o € .«/\7,, we have
a=1(s+1) for some s+#1t5,tel(f)N(2Z)" < .o/N(2Z)", and hence o is an
average of two distinct even points in .«/. Thus ./ is a ¥"-mediated set, and so
o <V,

On the other hand, let ¢’ := %\.«Z, we will show that €'N ¥ * = 0. Indeed,
by contradiction, assume that there exists some a € %’ N ¥ *. Then, we have

cae%’, and so a ¢ .of;

+ e 7*; and hence o =1 (s+ 1) for some s,t€ 7 *N(2Z)" = ¢N(2Z)", by

Theorem 2.4; and so « € .o7.
The contradiction shows that €' N¥"* =0, and hence ¥ * < .«/.
Therefore, we have ¥ = o/. O

Now, the corollary follows imediately from Theorem 2.6 and Claim 3.3.
O

Proof of Corollary 2.8. Note that 7 is also framework in Z*. Then it is
shown in [22] that ./ = 4. This, together with Claim 3.3, shows that ¥ * = .
Thus, Condition (i) of Theorem 2.6 is obviously true, and f is SOS. O

Proof of Corollary 2.11. (iii) = (i) is trivial, so it suffices to show that
(i) = (i) and (ii) = (iii).
First of all, notice that:
« If ¢ =0, the result is trivially true.
« If ¢ <0, by the assumption, there exists some o; ¢ 2Z. Then making a
change of the variables x; = —y;, and x; = y; for j #i, c is replaced by
—c. In this way, we can assume that ¢ > 0.
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* If 4, =0, let

—1

E'(x) = b1x“1 4o by X — ex™

Cram 3.4. The following are equivalent.
(a) E>0.
(b) E=0.

Proof. (a) = (b). Suppose E(x) >0 for all xe R". Since # = {u',...,u"}
is a trellis, {u',... ,u™} is linearly independent. Without the loss of genrerality,
we can assume that

1 1
ul e um
m m
Uy Uy
where u' = (ul,...,ul), i=1,...,m. We will show that there exist ci,...,¢y €
R.¢ such that
ul 1
o cepm =1
um—l m—1
o e =1
um u”"
o' et =g

for every ¢ e Ryy. In fact, it is clear that the system of linear equations

WO Tt Uk, =0

ui”’lﬁl et u,’;”lﬁm =0

ul’o + -+ u)0, =Ine
has one only root (0y,...,0,)eR™. Let ¢;:=e% i=1,...,m, so the claim is
proved. Make a change of variables

X; = CiYi, i:1,...,m

Xi=y, j=m+1,...,n

Then
Ey(p) = E(x) = bix" + -4 byx — c(x" )M (x" ) m
ull ul ul u{” um um
:bl(cl ...cmm)y +...+bn1(cl ...cmm)y
ul 1 1,7 w1 m-1 m=ly g
_C[(Cll...cll/"/lm)yu] 1"‘[(C11 ...C'l:;n )yu ]/L 1

m—1 o

=by" + ot by by — ey
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Since E,(y) >0 for all y e R", we have E(y) = lim, o E,(y) >0 for all yeR".
This proves (b).
(b) = (a). It is clear. O

CLamM 3.5. Let U ={u',...,u" 'Y, Then U is a trellis and o€ U*.

Proof. (a) Since # is a trellis, {u',...,u™} comprise the vertices of a
simplex. Thus, {u!,... ,u” '} also comprise the vertices of a simplex, and so %
is a trellis. ~ ~
~(b) Let £ =9"Nconv(%). Note that % < ¥. We will show that & is a
%-mediated set. In fact, for every fe Z\%, we have e %*\%; and hence

1
ﬂZE(S—H) for some s #te¥* N(2Z)".

Let A(s) = (4i(s),. .., Am(s)), and A(¢) = (41(¢),...,2m(¢)) be the barycentric
coordinates of s and ¢ respect to %. Then

A(p) = </11(S) ;M(Z) . ,im(s) ;)bm([)>

are the barycentric coordinates of f§ respect to #. Since f € conv(%), we have
Am(8) + An(?) = 0. This implies that

Jon(8) = Jm(1) =0,

since A (s), Am () = 0; and so f,leconv(%). Therefore, s,1e ¥ N(2Z)"; and
hence ¥ = %" Nconv(#%) is a %-mediated set. In particular, o« € %" Nconv(%)
cU*. O

By Claim 3.4 and 3.5, it is sufficient to consider the case all 4; are non-zero.
« If b, =0, then (ii) fails, since ¢, 4i,...,4s € Rsg. Taking

x:=(ctyeeyCmy Ly, 1),
where

ul ul

e rem =1
um—l umil

¢ o =1
uy u)y

I ' =

for every k € R.y. Then

E(x) = bix" 4+ 4 bpgx™ = e(x* )M ()
m—1

— (C”f..‘cun‘1)+.‘.+b (et et
=01(¢ " m—1(Cy C
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So E(x) <0 for k sufficiently large. This implies that (i) also fails. Thus the
claimed implication are trivially true in this case.

Now, we can assume that by,...,b,,¢,41,..., 4, € Ryg. By the same
arguments as above, there exist positive real numbers cy,...,c, such that

1 1
Cul B C,l:{lx = ﬂ
1 bl
G Pm
1 m .
b

(i) = (ii). Assume E(x) >0 for all xe R”". Taking
x:=(c1y.yCm, L. 1),
Then, we have
E(x) = bl)c”l 4ot by — C(xu')il . (xu”’)/‘.m

1 m 1 m
= b](cill - c”;‘;}z) 4+ 4 bm(citl - c;ﬁ:’) _ C[Cill . C;,;;H)] o [citl o C;:l'::l .

, AN A

‘“*"'”m‘c<b—1> (E)
A P A I
) G)

Jr:
=1- Cﬁ > 0.
This proves (ii).
(ii) = (iii). Make a change of variables
xXi=c¢y, i=1,....m
Xi=y, j=m+1,... ,n

A,] /ll ;L ;vm
Let ¢ := c(b—> (b—m) . By (ii), we have ¢ < 1. Then
1 m

m

1 m m
E(x) = b (c;! ...C}gj,)yu‘ T byt ey

m

m

uf ul \ L ul1h uy” u U™ Am
—c[(cl -..Cm”l)y ] ...[(Cl ...Cm”l)y ]

" AN Y
=y A Ay _C(b_:> (b_> »*

_ X1y”l +oe gt /lmy“m . éyoc
= 6(/11)’1‘l o Ay = )+ (1 - 5)0»1)’”1 +o ot Ay,
which is SOS, by Theorem 2.10. This proves (iii). O
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Proof of Theorem 2.12. Suppose that such real numbers exist. Condition
(i) and Corollary 2.11 imply that >, a, ;x* + f,x* is SOS for every a € A. So

Z (2}": “zx,ixui + focxa>

aeA \ i=1

is SOS. By Condition (ii), we have

> (f - Z>x

i=1 oeA

is SOS. Now, it is clear that f,x* is SOS for every o ¢ A. Therefore,

fx=> <fuf -> ax,i) Xy (Z a,ix" + f;X“> + > fux?

i=1 aeA aelA \ i=1 a¢g AUV

is SOS. O
Proof of Corollary 2.13. Apply Theorem 2.12 with
Ay,i = |fo|Ao; for all ae A i=1,... m. I
Proof of Corollary 2.14. Apply Theorem 2.12 with
ayi = |fyAl* for all ue A, i=1,...,m. O

Proof of Corollary 2.15. Apply Theorem 2.12 with

s
aa.izmi“)f”' for all xe A i=1,...,m. O
' HT” ()
i=1 ut
Proof of Corollary 2.16. Apply Theorem 2.12 with
¥A Vdsina
Ay, = kiw(k if 2,170, for all e A, i=1,...,m. O
0 if 25,;,=0

4. Application to global optimization

Let feR[x],...,x,] be a real polynomial, and let

S =1inf{f(x) | xeR"}.

Since f. =sup{reR|f —r is PSD}, finding f. reduces to determining when
f —ris PSD. It is known that deciding when a polynomial is PSD is NP-hard
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[1, Theorem 1.1]. Suppose deg f =m and f = fo+ -+ f,, where f; is a form
of degree i. Then a necessary condition for f, # —oo is that f,, is PSD, and a
sufficient condition for f. # —oo is that f,, is PD, i.e., f,,(x) >0 for all xeR”"
(see [15, Theorem 5.1 and 5.3]). In [9, Theorem 3.1], H. V. Ha and T. S. Pham
have given another necessary condition and another sufficient condition for
fi # —oo in terms of the Newton polyhedron of f, which are improved versions
of the results above.
Let

fsos :=sup{reR| f —r is SOS}.

Note that f, > fsos. It is known that if fsps # —o0, then fsos can be computed
by semidefinite programming (SDP); see [12, Section 3] and [20]. However, in
practice the computation of fspos can only be carried out if the number of
variables and degree are relatively small. The situation is better if f has
structured sparsity; see [24, Section 3]. Note that a necessary condition for
fsos # —oo is that f>; € Xps, and a sufficient condition for fspg # —oo is that
Jfoa GZSLM, where X9, is the interior of Xy, in the vector space of forms of
degree 2d, equipped with the euclidean topology (see [17, Proposition 5.1]).

Recently, Ghasemi and Marshall have given another lower bounded fy, for
the polynomial f of degree 2d with fyz, >0, i=1,...,n; see [8, Corollary 3.6].
Notice that fy, < fsos, and f;, can be computed by geometric programming.
As explained in [8, Section 3], although the lower bound found using this method
is typically not as good as the lower bound found using SDP, a practical
comparision confirms that the computation is faster and larger problems can be
handed.

Now, by using Theorem 2.12, we will give a lower bound, which can also
be computed by geometric programming, for a larger set of polynomials.

In this section, we also use the term framework to denote a set % =

{u,...,u™} in which u' = (uf,...,u}) € (2Z)" with u/ >0, and use the term
trellis to denote a framework in which «°,... u” comprise the vertices of a
simplex.

Let % be a framework. We also use the term %-mediated to denote a
set # < Z" which contains %, and every v e £\% is an average of two distinct
even points in ¥. Also, by [23, Theorem 2.2], it is easly seen that there is a
U-mediated set %* satisfying {i(s+1)|s,reU} = U* = conv(#)NZ" which
contains every %-mediated set.

Let V., denote the set of vertices of I',,(f):= conv{supp(f)U0}. We
now assume that V., = {u’,...,u™} is a trellis with the origin point #°. Then
for every o e I's,(f), there is only one A(a) = (Ay1,-..,44m) With 4,; >0 and
[A(e)| := A1(ar) + - -+ + Apu(2) < 1 such that

o= )va,lul + o Ay pu™.

Recall that

A = {o e supp(f) |either f;, <0 or o; is odd for some 1 <i < n}.
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THEOREM 4.1. Let f be a nonconstant polynomial of degree 2d, and r € R.
Suppose that V., = {u°,...,u™} is a trellis, and o€ V*, for all we A. Then if
there exist nonnegative real numbers a, ; foroe A, i=1,...,m, a,; =0 if 1,; =0,
such that )

() @™ = £)10)"® for every ae A such that |A(«)] =1,

() fui= D, eplui i=1,...,m,

gy A 1Y (A=1A@D
mmm~zawﬂwmmk%%ﬁ ,

Ay

then f —r is SOS. Here A<' = {ae A||A(a)] < 1}.

Proof. For every reR, consider the polynomial f —r. By setting Q :=
supp(f)\ Vs, we can write

= uO +qu’x +Zfot

aeQ

There are two cases to consider.

Case 1: If r # fp, then the homogenization of g := f —r is given by

g(x0,%) = (fuo — r)x +§jnw“W'“+§jﬁ2dw”

2eQ

It is not hard to show that the set of vertices of the Newton polyhedron I'(g) of g
is the following

V= {ﬁo = (2d,0),...,a" = (2d — |u"|,u™)};
and moreover,
« Vo is a trellis, since V,, is a trellis;
- for every e A, we have @:= (2d — |«|,2) e V., and (1 — |A()]; A1y -+
Ja,m) are the barycentric coordinates of & W1th respect to Vo,

+ by Conditions (i), (ii), and (iii) of Theorem 4.1, there exist nonnegative real
numbers a, ; for aeA, i=0,...,m, such that

(i) ayo"@a™ = 4101 - @) ) for s A,

(i) fur = > cntui i=1,...,m, and fpo —r> > _ aayo,
Thus ¢ satisfies the conditions of Theorem 2.12, and so g is SOS. By Prop-
osition 2.1, f —r is SOS.

Cast 2: If r = f;, then A<! = @, by Condition (iii) of Theorem 4.1. Then,
by Theorem 2.12, Conditions (i) and (ii) of Theorem 4.1 show that >, f,ix" +
> yenfax® is SOS.  Therefore,

r(qu,x + 3 fux >+fox“

aeA oa¢A
is SOS. Ul
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DEerINITION 4.2.  Let f be a nonconstant polynomial of degree 2d. Suppose
={u’...,u™} is a trellis, and o€ V* for all xe A. We define

fop =sup{reR|3a,; eR=" aeAji=1,...,ma,; =0 iff 1,; =0
satisfying Conditions (i), (ii), and (iii) of Theorem 4.1}.

Remark 4.3. 1. As a consequence of Theorem 4.1, we have f;, < fsos.
2. If f,: <0 for some ie{l,...,m}, then fj, =—o0.

COROLLARY 4.4. Let [ be a nonconstant polynomial of degree 2d such that
o ={u’,...,u™} is a trellis. Suppose Q :=supp(f)\V. = {a}, and e V* if
aeA.  Then f.= fsos = fyp

Proof. We write

m

F) = foo + 3 fux® + fux?
i=1

Note that f, < fsos < f.. So it is sufficient to show that for every real number
r, fi =r= fy =r. Fix reR and assume that f, >r. We will show f,, >r;
1.e., that r satisfies the constraints of Theorem 4.1. In fact, let g denote the
homogenization of f —r; ie.,

g(x0,X) = (fyo — )3 +qu, 2 4 g
Since f, >r, we get g > 0.
Cram 4.5. We have f,; >0, i=1,...,m, and fpo >r.
Proof. Since V., = {u°,...,u™} is a trellis, V, = {a"...,a™} is linearly

independent in R""!| where @' = (u)) := 2d — [u'|,ul,...,u}), i=0,...,m. With-
out the loss of genrerality, we can assume

0 0

uo e um
det|--- -+ -] #0.

m m

Uy T Uy

By the same arguments as in the proof of Corollary 2.11, for every ¢ € R-, there
exist cg,...,cn € Ry such that

0 0
U, u
COO . )" =&
cuw1 cu”’?i1 =&
0 m
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Let A= (41,...,4n) be such that o=hu' +---+Lu", with 4, >0 and
A4+ Ay <1. Taking X:= (co,...,Cm,1,...,1), we have

9(%) = (fuo — )X 4o fonZ 4 [ (R0 () (B =1 —

m

N B A u'o
= (fuo —1)(c ) + -+ fum(cy e

uO 0., um }w
_i_f\:x[co(] e c;‘;n] 0. .. [CO“ e cll;t‘l;g] m

= (fuo —7r 4+ fuuH)S + fu’" + ﬁ{g/lo+..4+ﬂ,”,l.

Since x € Q, A9+ -+ A1 > 0. Then, since g > 0, we have f,» > 0, by letting
e — 0. By the same arguments as the above, we get f,, >0 fori=1,...,m, and

f;/‘ >r. [l

A

)

To complete the proof of Corollary 4.4, let us consider two cases.

CASsE 1: Assume f, >0 and all «; are even. Then o ¢ A, and so A = 0.
In this case, r satisfies trivially the constraints of Theorem 4.1. So fy, >r.

Case 2: Assume either f, <0 or not all o; are even. Then o €A; ie.,
A=Q={a}. In this case, applying Corollary 2.11 to g, we deduce that

0 =) < T A =0
i=1

There are two subcases to consider.
« If |A] < 1, then r satisfies the constraints of Theorem 4.1 with

aﬁ_ﬁfﬁ&¢m
100 if 4 =0.

< If |A(2)] =1, then [£,]2* < []7, fu‘, and so r satisfies the constraints of
Theorem 4.1 with

i if A ,
ax,-:{sf” if 2; 20

0 if4=0,
where
A
NV
Therefore, fy, >r. O

DEFINITION 4.6 (geometric program). (1) A function ¢:RZ; — R of the
form

#x) = exft

n
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where ¢ > 0, a; e R, and x = (x1,...,x,), is called a monomial function. A sum
of monomial functions, i.e., a function of the form

k
§) =3t i
i=1

where ¢; >0 for i=1,...,k, is called a posynomial function.
(2) An optimization problem of form

Minimize ¢y(x)
Subject to  ¢;(x) <1l,i=1,....,m, and yY;(x)=1,j=1,...,p,

where ¢,...,4, are posynomials and V,...,, are monomial functions, is
called a geometric program (GP). The subset of RZ, defined by the constrants

¢i(x)S17 izla"'vma and lpj(X):l, jzl,'“apa

is called the feasible set of the GP. ¢y(x) is called the objective function. The
output of the GP is the minimum, more precisely, the infimum, of ¢,(x), taken
as x runs through the feasible set. In case feasible set is empty, the output is
understood to be +co.

See [3, Section 4.5] or [21, Section 3.5] for more about GPs.

THEOREM 4.7. Let f be a nonconstant polynomial of degree 2d. Suppose
that

i) Vo ={ul....,u"} is a trellis,

(i) ae V for all o €A
Then fy, = fo —r*, where r* is the output of the GP

iz ]
Minimize Y, _ <1 (1 — [A(a)]) [1T1
Ay
Subject to Z%A% <l,i=1,...,m, and
1)
W: 1, OC€A7 |}.(O€)| =1.

The variables in the program are the a,;, a€A, i=1,....m, (o) #0, the
understanding being that a,; =0 iff A;(a) = 0.

Proof. Observe that

B ER Al
dola) == > (1—|,1(a)|)[|ﬁ<|’1()|]

Aler)
weA<! Ay
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and
a(x‘i
¢i(a) ::ZT’ :17 » M,
aeA U
are posynomials in the variables a,;, and
a).(oc)
v, (a) = “7A, A, |A(2)] =1,
BERVAN Gl
are monomial functions in the variables a,;. By the definition of f,, it follows
immediately that f,, = fo —r*. |

COROLLARY 4.8. Let f be a nonconstant polynomial of degree 2d. Suppose
that

1) Vo ={ul....,um} is a trellis,

(i) ae V} for all €A
Then if |A(a)| < 1 for each o € A, then fy, # —oco and fy, = fo —r*, where r* is the
output of the GP

X 1 1/1=[(a)|
o)A@
Minimize 3,41 — [A(«)]) [W
ay
Subject to ZQGA% <l,i=1,....m

Proof. In this case, the equality constraints in the computation of r* are
vacuous and the feasible set is always nonempty, so f,, # —o0. The rest is
immediate from Theorem 4.7. O

We establish some lower bounds in terms of its coefficients, which can be
obtained by evaluating the objective function of the GP in Corollary 4.8 at
suitably chosen feasible points. Corollaries 4.9, 4.10, and 4.11 are improved
versions of [8, Corollaries 4.1, 4.2, and 4.3] (and so [7, Theorems 3.1, 3.2, and
3.3]) respectively.

Recall that for a (univariate) polynomial of the form p(¢) = ¢" — Z;ZOI a;t’,
where each ¢; is nonnegative and at least one «; is nonzero, there is a unique
positive root of p (see [19, Theorem 1.1.3]). Let C(p) denote the unique positive
root of p. See [5], [11, Example 4.6.2], and [8, Proposition 1.2] for more details
and upper bounds for C(p).

COROLLARY 4.9. Let f be a nonconstant polynomial of degree 2d. Suppose
that

@) V={u...,um} is a trellis,

(i) aeV* for all we A, and

(iii) |A(a)] < 1 for each o € A.
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Then fgp = rr, where

rei= fo— (1= [@)DIAKPEH),

aeA
(2D 4] 2D (e
k> nllame< Z)a,mfu, (e |>
’ aeA
Here fy:=(fu,..., fun), and D is a nonnegative integer number such that

2Dl i €L for all acA, i=1,...,m

Proof. For each e A and i=1,...,m, let

1—|A(a)]
AT
o, 2D(1=A(e) -~

By the defintion of k, for each i =1,...,m, we have ZMA/1%,~|f%|jpujw°‘)‘k2DV'<“)‘
< k?P, Hence

1—|A(x
il fal
z;a“ Z kleu)a) <fu‘
P4S]

This shows that the array (a,;|oeA,i=1,...,m) is a feasible point for the
geometric program in the statement of Corrolary 4.8. Plugging this into the
objective function of the program yields

Sa- |<>|>[Ifz|ﬂ< 0 q e

aeA aoc

1/(1=[A(e)
:Z(l—|/1(0t)| )14 TT (a> ]

aeA Ao, i #0
/11 ,k2D1 N LSO
=> (1= ]A(w) If |k2D" |
xeA Ji(2) #0
= > (1 = [A@) )| fol k2P 4,
aeA

So, 1= fo = Yyeall = [A@) ) LKA < 1, O
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COROLLARY 4.10. Let f be a nonconstant polynomial of degree 2d.  Suppose
that

@) V={u...,um} is a trellis,

(i) aeV* for all we A, and

(iii) |A(e)] < 1 for each o€ A.
Then fy, > rpg, where rpg = fo —k*P, with

2D-1 )
k> C(zw -> bjtf>, and
=
2D — (2D—j)/2D
bj := < D ) > 1

oaeA,2D|A(a)|=j

M) @M j =1, 2D — 1.

Here D is a nonnegative integer number such that 2DJ;(o) € Z for all o€ A,
i=1,...,m

Proof. For each e A and i=1,...,m, let
i = (1= [2(@))) VN fo Ae) O 0 kT2

By the defintion of k, we have ZzD 1b /< k. Hence

S = (1= @) N a0 Oy O keI 2P

aEA aEA

2D-1  (2D—)/2D
2D —J j—2D
-3 Z)(w) @) 7 ke

j=1 o€l 2D|A(x

2D—1 2D /2D
2D — / o) p—A(a
ﬁﬂ§jk/w( ’) Sl A

oA, 2D|A(a)|=j

2D-1 (2D-j)/2D
2D — o) p= (o
= fuk™ 2Dzk1< ) Z |ﬁ«.|}v(0€)()fy<>

aeA,2D|A(a)|=j

2D—-1

= fuk P> bik! < fi.
j=1

This shows that the array (a,;|c€A,i=1,...,m) is a feasible point for
the geometric program in the statement of Corrolary 4.8. Plugging this into the
objective function of the program yields
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a0 ] D
> (=12 [ﬁ}

e Ay

AN |14 T1

i 1/(1=|2(2)])
xeA Aa,#0< >

4 F1Ok20-0p, )ﬂ
2 /L(OC)D f(‘X|AMH¢0< 1— M(‘X)Dl |2(e ‘|f|/1( ) fuz

SN

j=1 oeA2D|A(a)|=j

1/(1=|2(=)])

4.7 2D/(2D= )

fﬁ“>k2D*fA%i
x| 17 Ho 7D — (2D-j)/2D X
i ( ) A ),

2D

2D—1 (2D—j)/2D
Zk'( ’) > )

o€, 2D|A(a)|=j

2D—1 )
=) b/ <k
=1
SO, VFK:f()kaDng[,. O

COROLLARY 4.11. Let f be a nonconstant polynomial of degree 2d.  Suppose
that

@) V={u...,um} is a trellis,

(i) aeV* for all we A, and

(iii) |A(e)] < 1 for each o€ A.
Then

Jop = Feme = fo — 2(1 — M(“)|)[m|,M(a)\,1(a)l<a>f;ﬂ~(a)]1/(17\A(o<)|)7
aeA

where t:=|A|.

Proof. For each €A and i=1,...,m, let aa,i:%. Then

Sa=Y 0 g

oeA aeA
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This shows that the array (a,;|oeA,i=1,...,
geometric program in the statement of Corrolary 4.8.
objective function of the program yields

1/(1=|2(=)])

YA A
S0 e L aéif) !
L /A=A

iy wH( )
aeA Ay i #0

ﬂ g iV 1/(1=]A(«)])
=301 i) wH(f)
aeA Iy 170 u'
= (1 — @) ISl 2 () ) A O,
aeA

S0, Fam = fo = Xyeall = @Dl a() @1,
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