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Abstract

In this paper, we establish new su‰cient conditions for the polynomial f to be

SOS in terms of the Newton polyhedron of f (Theorems 2.6 and 2.12). These new

su‰cient conditions include results which were proved earlier by Lasserre [13, Theorem

3], Fidalgo and Kovacec [6, Theorem 4.3], Ghasemi and Marshall [7, Theorems 2.1 and

2.3], and Ghasemi and Marshall [8, Theorem 2.3].

1. Introduction

The problem of representation of positive semidefinite polynomials (PSD) as
sums of squares of polynomials (SOS) has been treated by many authors. Note
that if f is SOS then the degree of f is even. In [10], Hilbert proved that
P2d;n ¼ S2d;n if and only if na 2 or d ¼ 1 or ðn; dÞ ¼ ð3; 2Þ, where P2d;n and S2d;n

are the cone of PSD forms of degree 2d in n variables and the cone of SOS forms
of degree 2d in n variables, respectively; see [2, Theorem 6.3.7]. The first explicit
example for this phenomenon was given by Motzkin [18]; see [16, Proposition
1.2.2].

We denote by N the set of nonnegative integers f0; 1; 2; . . .g. For x ¼
ðx1; . . . ; xnÞ and a ¼ ða1; . . . ; anÞ A Nn, define xa ¼ xa1

1 � � � xan
n and jaj ¼ a1 þ � � � þ

an. Using these notations, every polynomial f A R½x� can be writen as f ðxÞ ¼P
a AN n fax

a, where fa A R and fa ¼ 0, except for finitely many a. Assume now
that f is nonconstant and has even degree 2d. Let W :¼ fa A Nn j fa 0 0gn
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f0; 2de1; . . . ; 2deng, where e1 ¼ ð1; 0; . . . ; 0Þ; . . . ; en ¼ ð0; . . . ; 0; 1Þ. Thus f has the
form

f ðxÞ ¼ f0 þ
X
a AW

fax
a þ

Xn
i¼1

f2deix
2d
i :

Setting

D :¼ fa A W j faxa is not a sum of squares in R½x�g
¼ fa A W j fa < 0 or ai is odd for some i A f1; . . . ; ngg:

In [13, Theorem 3], Lasserre proved that if

f0 b
X
a AD

j faj and f2dei b
X
a AD

j faj
jaj
2d

; i ¼ 1; . . . ; n;

then f is SOS.
Later on, some various versions on su‰cient conditions of this type have

been given by Fidalgo and Kovacec [6, Theorem 4.3], and Ghasemi and Marshall
[7, Theorems 2.1 and 2.3] where the left-hand sides of the inequalities are kept
unchanged and the right-hand sides are replaced by quantities which also depend
on the coe‰cients fa, a A D. Indeed, in [7, Theorems 2.1], f is SOS if

f0 b
X
a AD

j faj
2d � jaj

2d
and f2dei b

X
a AD

j faj
ai

2d
; i ¼ 1; . . . ; n;

and this result is an new version of Lasserre’s one.
Recently, Ghasemi and Marshall [8, Theorem 2.3] have given another

su‰cient condition on additional variables satisfying constrains depending on
the coe‰cients fa, a A D, for the polynomial f to be SOS. Precisely, a su‰cient
condition for a form f of degree 2d to be SOS is that there exist nonnegative real
numbers aa; i for a A D, i ¼ 1; . . . ; n, such that

ð2dÞ2daa
a ¼ j faj2daa; a A D; and f2dei b

X
a AD

aa; i; i ¼ 1; . . . ; n;

where aa
a ¼ aa1

a;1 � � � aan
a;n and aa ¼ aa1

1 � � � aan
n with the convention 00 ¼ 1. This

result include improvements of the above results. However, if f0 ¼ f2de1 ¼ � � � ¼
f2den ¼ 0, the conditions of [8, Theorem 2.3] imply that D ¼ j and so f is
obviously SOS. Thus, this criterion is overly restrictive.

We recall here some notations about Newton polyhedra. Let suppð f Þ :¼
fa A Nn j fa 0 0g. The Newton polyhedron Gð f Þ of f is the convex hull of
suppð f Þ in Rn. Clearly, Gð f Þ is a compact convex polyhedron of dimension at
most n. A supporting hyperplane of Gð f Þ is a hyperplane minimizing the value
of some linear function on Gð f Þ. The faces of the boundary of the Newton
polyhedron Gð f Þ are the intersection of Gð f Þ with its supporting hyperplanes.
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They are compact convex polyhedra of dimension at most n� 1. The vertices
are faces of dimension 0 (i.e., points).

In this paper, we establish new su‰cient conditions for the polynomial f to
be SOS in terms of the Newton polyhedron Gð f Þ of f (Theorems 2.6 and 2.12).
Precisely, we replace the values f0; f2de1 ; . . . ; f2den in the left sides of the inequal-
ities above by some values fu, u A U, where U is some set satisfying Vð f ÞHUH
Gð f ÞV ð2ZÞn. Note that our new su‰cient conditions include all the results
mentioned above.

The paper is organized as follows. Section 2 presents the new su‰cient
conditions for a polynomial to be a sum of squares of polynomials (Theorem 2.6
and 2.12). In Section 3, we prove these results. As a consequence of Theorem
2.12, a lower bound of f is established in Section 4.

2. Statement of the results

Suppose f ðx1; . . . ; xnÞ is a polynomial of degree 2d. Let

f ðx0; x1; . . . ; xnÞ :¼ x2d
0 f

x1

x0
; . . . ;

xn

x0

� �
:

Then f is a form of degree 2d called the homogenization of f . We have the
following well-known result.

Proposition 2.1 ([16, Proposition 1.2.4]). Let f be a polynomial of degree
2d. Then f is PSD i¤ f is PSD; and f is SOS i¤ f is SOS.

We now assume f is a form, and Gð f Þ is the Newton polyhedron of f . Let
� C :¼ Gð f ÞVZn denote the set of all integer points in Gð f Þ,
� A :¼

�
1
2 ðsþ tÞ j s; t A Gð f ÞV ð2ZÞn

�
denote the set of integer points from

Gð f Þ which are averages of even integer points from Gð f Þ, and
� V :¼ An

�
1
2 ðsþ tÞ j s0 t; s; t A Gð f ÞV ð2ZÞn

�
denote the set of even integer

points from Gð f Þ which are not averages of distinct even integer points
from Gð f Þ.

From now on, V :¼ Vð f Þ denotes the set of vertices of the Newton poly-
hedron of f . It follows from [9, Theorem 3.1] that if f is PSD, the set V is
contained in ð2ZÞn, and so V HVHCV ð2ZÞn. We recall some results, which
give some necessary conditions for a polynomial to be SOS.

Proposition 2.2 ([4, Proposition 3.7]). If f is SOS, then
(i) for every a A suppð f Þ, we have a A A, and
(ii) for every u A V, fu b 0.

We recall here some notations, due to Reznick [23]. We use the term
framework to denote a set U ¼ fu1; . . . ; umg in which ui ¼ ðui

1; . . . ; u
i
nÞ A ð2ZÞn

with ui
j b 0 and

Pn
j¼1 u

i
j ¼ 2d for all i and some d. A trellis is a framework in
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which u1; . . . ; um comprise the vertices of a simplex. Note that if U is a trellis,
then U is a linearly independent set.

Definition 2.3 ([23, Definition 2.1]). Let U be a framework. A finite set
LHZn is called U-mediated if L contains U, and every v A LnU is an average
of two distinct even points in L.

We now assume that V HUHV. Then, U is a framework. By [23,
Theorem 2.2], we get the following.

Theorem 2.4 ([23]). There is a U-mediated set U� satisfying AðUÞ :¼�
1
2 ðsþ tÞ j s; t A U

�
HU� HC and U� contains every U-mediated set.

Suppose that V ¼ fu1; . . . ; umg is a framework. If a A Zn and a ¼ l1u
1 þ

� � � þ lmu
m with li b 0 and l1 þ � � � þ lm ¼ 1, then a A C; conversely, if a A C

then at least one such l ¼ ðl1; . . . ; lmÞ exists. Let

LðaÞ ¼ fl ¼ ðl1; . . . ; lmÞ j li b 0; l1 þ � � � þ lm ¼ 1; and a ¼ l1u
1 þ � � � þ lmu

mg:

If V is a trellis, then only one such l ¼ ðl1; . . . ; lmÞ exists, and ðl1; . . . ; lmÞ are
called the barycentric coordinates of a with respect to V .

Theorem 2.5 ([23, Theorem 3.3]). Suppose V ¼ fu1; . . . ; umg is a framework,

a A C and l A LðaÞ. Then, if the form f ðV ; l; aÞðxÞ :¼ l1x
u1 þ � � � þ lmx

um � xa

is SOS then a A V �.

The following is our new result, which gives a su‰cient condition on the
coe‰cients for a polynomial to be sum of squares.

Theorem 2.6. Let f be a form in n real variables with V H ð2ZÞn. Suppose
that V HUHV such that

(i) a A U� for all a A D,
(ii) minu AU fu b

P
a AD j faj.

Then f is SOS. Here, by convention, we set
P

a AD j faj :¼ 0 if D ¼ j.

Corollary 2.7. Let f be a form in n real variables with V H ð2ZÞn.
Suppose

(i) a A A for all a A D,
(ii) minu AV fu b

P
a AD j faj.

Then f is SOS.

Corollary 2.8. Let f be a form in 3 real variables with V H ð2ZÞ3. Then,
f is SOS if

min
u AV

fu b
X
a AD

j faj:
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Remark 2.9. Condition (ii) of Theorem 2.6 together with fu ¼ 0 for some
u A U implies that D ¼ j and fu b 0 for all u A U; in this case, f is obviously
SOS. Thus, an alternative su‰cient condition is given by Theorem 2.6 for
V HUH suppð f ÞVV.

Next, we shall give another su‰cient condition for a polynomial to be SOS.
We recall the following result, due to Reznick.

Theorem 2.10 ([23, Corollary 4.9]). Suppose V ¼ fu1; . . . ; umg is a trellis,

and a A C. Then the form f ðV ; aÞðxÞ :¼ l1x
u1 þ � � � þ lmx

um � xa is SOS if and
only if a A V �. Here ðl1; . . . ; lmÞ are the barycentric coordinates of a with respect
to V.

We will make use Theorem 2.10 to prove the following.

Corollary 2.11. Suppose that V ¼ fu1; . . . ; umg is a trellis and a A V �.
Then, for a form EðxÞ ¼ b1x

u1 þ � � � þ bmx
um � cxa such that bi b 0 for i ¼

1; . . . ;m, and cb 0 if all ai are even, the following are equivalent:
(i) Eb 0.
(ii) jcjll1

1 � � � llm
m a bl1

1 � � � blm
m (with the convention 00 ¼ 1).

(iii) E is SOS.
Here ðl1; . . . ; lmÞ are the barycentric coordinates of a with respect to V.

Now, we present our other result, which is an improved version of [8,
Theorem 2.3]. The proof of this result is by using Corollary 2.11.

Theorem 2.12. Let f be a form, and V ¼ fu1; . . . ; umg be the set of vertices
of Gð f Þ. Suppose that V is a trellis, and a A V � for all a A D. A su‰cient
condition for f to be SOS is that there exist nonnegative real numbers aa; i for
a A D, i ¼ 1; . . . ;m, such that

(i) ala
a ¼ j fajlla

a , a A D, and
(ii) fu i b

P
a AD aa; i, i ¼ 1; . . . ;m.

Here aa ¼ ðaa;1; . . . ; aa;mÞ, la ¼ ðla;1; . . . ; la;mÞ are the barycentric coordinates of

a with respect to V , ala
a ¼ a

la; 1
a;1 � � � ala;m

a;m , and lla
a ¼ l

la; 1
a;1 � � � lla;m

a;m .

We mention some corollaries of Theorem 2.12. Corollary 2.13 generalizes
known earlier results, due to Lasserre [13, Theorem 3] and Ghasemi and Marshall
[7, Theorem 2.1]. Corollary 2.14 includes results which were proved earlier by
Fidalgo and Kovacec [6, Theorem 4.3] and Ghasemi and Marshall [7, Theorem
2.3]. Corollary 2.15 is a generalization of the result of Ghasemi and Marshall
[8, Corollary 2.7]. Each corollary will be proved by applying Theorem 2.12 for
a particular choice of the lifted variables aa; i.
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Corollary 2.13. Suppose f is a form such that V ¼ fu1; . . . ; umg is a
trellis, and a A V � for all a A D. Then if

fu i b
X
a AD

j fajla; i; i ¼ 1; . . . ;m;

then f is SOS.

Corollary 2.14. Suppose f is a form such that V ¼ fu1; . . . ; umg is a
trellis, and a A V � for all a A D. Then f is SOS if

fu i b
X
a AD

j fajlla
a ; i ¼ 1; . . . ;m.

Corollary 2.15. Suppose f is a form such that V ¼ fu1; . . . ; umg is a
trellis, and a A V � for all a A D. Then f is SOS if

X
a AD

j fajlla
aQm

i¼1 f
la; i
u i

a 1:

Notice that, by a similar argument as in [8, Remark 2.8], Corollary 2.15 is
an improved version of Corollary 2.14.

Corollary 2.16. Suppose f is a form such that V ¼ fu1; . . . ; umg is a
trellis, and a A V � for all a A D. Then f is SOS if

fu i b
X

a AD;la; i00

kla; i
j faj
k

� �1=la; ina
; i ¼ 1; . . . ;m;

where na :¼ jfi j la; i00gj, and k is a positive real number.

3. Proof of the results

Let R½x� be the ring of real polynomials in the variables x ¼ ðx1; . . . ; xnÞ,
and R½x�2d be the vector space of real polynomials of degree at most 2d, with
canonical basis ðxaÞ ¼ fxa j a A Nn; jaja 2dg. Given a sequence y ¼ ðyaÞHR
indexed by the canonical basis ðxaÞ, let Ly : R½x�2d ! R be the linear mapping

f ¼
X
a

fax
a 7! Lyð f Þ ¼

X
a

fa ya; f A R½x�2d ;

and let MdðyÞ be the moment matrix with rows and columns indexed by ðxaÞ,
and defined by

MdðyÞða; bÞ :¼ LyðxaþbÞ ¼ yaþb; a; b A Nn : jaj; jbja d:

Let the notation MdðyÞ � 0 stand for MdðyÞ is positive semidefinite.
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Remark 3.1. It is clear that MdðyÞ � 0 i¤ Lyð f 2Þb 0 for all f A R½x�d .
Moreover, f is SOS i¤ Lyð f Þb 0 for all y such that MdðyÞ � 0 (this is a
corollary of [14, Theorem 3.1]).

Lemma 3.2. Let U be a framework and L be a U-mediated set. Suppose
y ¼ ðyaÞHR such that MdðyÞ � 0. Then

jLyðxaÞja max
u AU

LyðxuÞ for all a A L:

Proof. First of all, we will show that if a A LnU, there exists kb 1 and a
sequence

ai�1 ¼
1

2
ðai þ biÞ; ai 0 bi; ai; bi A LV ð2ZÞn; i ¼ 1; . . . ; k;

such that a0 ¼ a and ak A U. In fact, let

X ¼
�
a 0 j there exists kb 1 and a sequence ai�1 ¼

1

2
ðai þ biÞ; ai 0 bi;

ai; bi A LV ð2ZÞn; i ¼ 1; . . . ; k; such that a0 ¼ a and ak ¼ a 0
�
:

Since X is contained in L, the set X is finite, and so the convex hull of X has
vertices which belong to U.

Now, setting t :¼ maxa ALjLyðxaÞj. Then there exists some g A L such that
t ¼ jLyðxgÞj. If g A U, then

jLyðxaÞja jLyðxgÞj ¼ max
u AU

jLyðxuÞj for all a A L:

Otherwise, by the above claim, there exists some kb 1 such that

g ¼ 1

2
ðg1 þ b1Þ; g1 0 b1 A LV ð2ZÞn;

g1 ¼
1

2
ðg2 þ b2Þ; g2 0 b2 A LV ð2ZÞn;

� � � � � � � � � � � � � � �

gk�1 ¼
1

2
ðgk þ bkÞ; gk 0 bk A LV ð2ZÞn;

where gk A U. Since MdðyÞ � 0, we have

t ¼ jLyðxgÞj ¼ jLyðxð1=2Þðg1þb1ÞÞja
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lyðxg1ÞLyðxb1Þ

q
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lyðxg1Þt

q
:

Hence taLyðxg1Þ. By repeating the above arguments, after finitely many steps,
we deduce

taLyðxgk Þa max
u AU

LyðxuÞ:

This complete the proof of the lemma. r
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Proof of Theorem 2.6. By Remark 3.1, it is su‰cient to show that
Lyð f Þb 0 for any y such that MdðyÞ � 0.

So let y be such that MdðyÞ � 0. Let t :¼ maxfLyðxuÞ j u A Ug. Then, by
Lemma 3.2, we have

jLyðxaÞja t for all a A U�:

This together with Conditions (i)–(ii) implies that

Lyð f Þ ¼
X
u AU

fuLyðxuÞ þ
X
a AD

faLyðxaÞ þ
X

a B ðUUDÞ
faLyðxaÞ

b min
u AU

fu �
X
a AD

j faj
 !

tb 0: r

Proof of Corollary 2.7. We first prove the following.

Claim 3.3. We have V� ¼ A.

Proof. We first prove that AHV�. Indeed, for every a A AnV, we have
a ¼ 1

2 ðsþ tÞ for some s0 t; s; t A Gð f ÞV ð2ZÞn HAV ð2ZÞn, and hence a is an
average of two distinct even points in A. Thus A is a V-mediated set, and so
AHV�.

On the other hand, let C 0 :¼ CnA, we will show that C 0 VV� ¼ j. Indeed,
by contradiction, assume that there exists some a A C 0 VV�. Then, we have

� a A C 0, and so a B A;
� a A V�; and hence a ¼ 1

2 ðsþ tÞ for some s; t A V� V ð2ZÞn HCV ð2ZÞn, by
Theorem 2.4; and so a A A.

The contradiction shows that C 0 VV� ¼ j, and hence V� HA.
Therefore, we have V� ¼ A. r

Now, the corollary follows imediately from Theorem 2.6 and Claim 3.3.
r

Proof of Corollary 2.8. Note that V is also framework in Z3. Then it is
shown in [22] that A ¼ C. This, together with Claim 3.3, shows that V� ¼ C.
Thus, Condition (i) of Theorem 2.6 is obviously true, and f is SOS. r

Proof of Corollary 2.11. (iii) ) (i) is trivial, so it su‰ces to show that
(i) ) (ii) and (ii) ) (iii).

First of all, notice that:
� If c ¼ 0, the result is trivially true.
� If c < 0, by the assumption, there exists some ai B 2Z. Then making a
change of the variables xi ¼ �yi, and xj ¼ yj for j0 i, c is replaced by
�c. In this way, we can assume that c > 0.
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� If lm ¼ 0, let

~EEðxÞ ¼ b1x
u1 þ � � � þ bm�1x

um�1 � cxa:

Claim 3.4. The following are equivalent.
(a) Eb 0.
(b) ~EEb 0.

Proof. (a) ) (b). Suppose EðxÞb 0 for all x A Rn. Since U ¼ fu1; . . . ; umg
is a trellis, fu1; . . . ; umg is linearly independent. Without the loss of genrerality,
we can assume that

det

u11 � � � u1m
� � � � � � � � �
um
1 � � � um

m

2
64

3
750 0;

where ui ¼ ðui
1; . . . ; u

i
nÞ, i ¼ 1; . . . ;m. We will show that there exist c1; . . . ; cm A

R>0 such that

c
u1
1

1 � � � cu
1
m

m ¼ 1

� � � � � � � � � � � � � � �
c
um�1
1

1 � � � cu
m�1
m

m ¼ 1

c
um
1

1 � � � cu
m
m

m ¼ e

8>>>>><
>>>>>:

for every e A R>0. In fact, it is clear that the system of linear equations

u11y1 þ � � � þ u1mym ¼ 0

� � � � � � � � � � � � � � �
um�1
1 y1 þ � � � þ um�1

m ym ¼ 0

um
1 y1 þ � � � þ um

mym ¼ ln e

8>>><
>>>:

has one only root ðy1; . . . ; ymÞ A Rm. Let ci :¼ eyi , i ¼ 1; . . . ;m, so the claim is
proved. Make a change of variables

xi ¼ ci yi; i ¼ 1; . . . ;m

xj ¼ yj ; j ¼ mþ 1; . . . ; n:

�

Then

EeðyÞ :¼ EðxÞ ¼ b1x
u1 þ � � � þ bmx

um � cðxu1Þl1 � � � ðxum�1Þlm�1

¼ b1ðc
u1
1

1 � � � cu1mm Þyu1 þ � � � þ bmðc
um
1

1 � � � cum
m

m Þyum

� c½ðcu
1
1

1 � � � cu1mm Þyu1 �l1 � � � ½ðcu
m�1
1

1 � � � cum�1
m

m Þyum�1 �lm�1

¼ b1y
u1 þ � � � þ bm�1y

um�1 þ ebmy
um � cya:
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Since EeðyÞb 0 for all y A Rn, we have ~EEðyÞ ¼ lime!0 EeðyÞb 0 for all y A Rn.
This proves (b).

(b) ) (a). It is clear. r

Claim 3.5. Let ~UU ¼ fu1; . . . ; um�1g. Then ~UU is a trellis and a A ~UU�.

Proof. (a) Since U is a trellis, fu1; . . . ; umg comprise the vertices of a
simplex. Thus, fu1; . . . ; um�1g also comprise the vertices of a simplex, and so ~UU
is a trellis.

(b) Let L ¼ U� V convð ~UUÞ. Note that ~UUHL. We will show that L is a
~UU-mediated set. In fact, for every b A Ln ~UU, we have b A U�nU; and hence

b ¼ 1

2
ðsþ tÞ for some s0 t A U� V ð2ZÞn:

Let lðsÞ ¼ ðl1ðsÞ; . . . ; lmðsÞÞ, and lðtÞ ¼ ðl1ðtÞ; . . . ; lmðtÞÞ be the barycentric
coordinates of s and t respect to U. Then

lðbÞ ¼ l1ðsÞ þ l1ðtÞ
2

; . . . ;
lmðsÞ þ lmðtÞ

2

� �
are the barycentric coordinates of b respect to U. Since b A convð ~UUÞ, we have
lmðsÞ þ lmðtÞ ¼ 0. This implies that

lmðsÞ ¼ lmðtÞ ¼ 0;

since lmðsÞ; lmðtÞb 0; and so s; t A convð ~UUÞ. Therefore, s; t A LV ð2ZÞn; and

hence L ¼ U� V convð ~UUÞ is a ~UU-mediated set. In particular, a A U� V convð ~UUÞ
H ~UU�. r

By Claim 3.4 and 3.5, it is su‰cient to consider the case all li are non-zero.
� If bm ¼ 0, then (ii) fails, since c; l1; . . . ; lm A R>0. Taking

x :¼ ðc1; . . . ; cm; 1; . . . ; 1Þ;
where

c
u1
1

1 � � � cu
1
m

m ¼ 1

� � � � � � � � � � � � � � �
c
um�1
1

1 � � � cu
m�1
m

m ¼ 1

c
um
1

1 � � � cu
m
m

m ¼ k

8>>>>><
>>>>>:

for every k A R>0. Then

EðxÞ ¼ b1x
u1 þ � � � þ bm�1x

um�1 � cðxu1Þl1 � � � ðxumÞlm

¼ b1ðc
u1
1

1 � � � cu1
m

m Þ þ � � � þ bm�1ðc
um�1
1

1 � � � cum�1
m

m Þ

� c½ðcu
1
1

1 � � � cu1mm Þ�l1 � � � ½ðcu
m
1

1 � � � cum
m

m Þ�lm

¼ b1 þ � � � þ bm�1 � ck lm :
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So EðxÞ < 0 for k su‰ciently large. This implies that (i) also fails. Thus the
claimed implication are trivially true in this case.

Now, we can assume that b1; . . . ; bm; c; l1; . . . ; lm A R>0. By the same
arguments as above, there exist positive real numbers c1; . . . ; cm such that

c
u1
1

1 � � � cu
1
m

m ¼ l1

b1
� � � � � � � � � � � � � � �

c
um
1

1 � � � cu
m
m

m ¼ lm

bm
:

8>>>><
>>>>:

(i) ) (ii). Assume EðxÞb 0 for all x A Rn. Taking

x :¼ ðc1; . . . ; cm; 1; . . . ; 1Þ:
Then, we have

EðxÞ ¼ b1x
u1 þ � � � þ bmx

um � cðxu1Þl1 � � � ðxumÞlm

¼ b1ðc
u1
1

1 � � � cu1mm Þ þ � � � þ bmðc
um
1

1 � � � cum
m

m Þ � c½cu
1
1

1 � � � cu1mm �l1 � � � ½cu
m
1

1 � � � cum
m

m �lm

¼ l1 þ � � � þ lm � c
l1

b1

� �l1
� � � lm

bm

� �lm

¼ 1� c
l1

b1

� �l1
� � � lm

bm

� �lm

¼ 1� c
ll

bl
b 0:

This proves (ii).
(ii) ) (iii). Make a change of variables

xi ¼ ci yi; i ¼ 1; . . . ;m

xj ¼ yj ; j ¼ mþ 1; . . . ; n:

�

Let ~cc :¼ c
l1

b1

� �l1
� � � lm

bm

� �lm
. By (ii), we have ~cca 1. Then

EðxÞ ¼ b1ðc
u1
1

1 � � � cu1mm Þyu1 þ � � � þ bmðc
um
1

1 � � � cum
m

m Þyum

� c½ðcu
1
1

1 � � � cu1mm Þyu1 �l1 � � � ½ðcu
m
1

1 � � � cum
m

m Þyum �lm

¼ l1 y
u1 þ � � � þ lmy

um � c
l1

b1

� �l1
� � � lm

bm

� �lm
ya

¼ l1 y
u1 þ � � � þ lmy

um � ~ccya

¼ ~ccðl1yu1 þ � � � þ lmy
um � yaÞ þ ð1� ~ccÞðl1yu1 þ � � � þ lmy

umÞ;

which is SOS, by Theorem 2.10. This proves (iii). r
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Proof of Theorem 2.12. Suppose that such real numbers exist. Condition
(i) and Corollary 2.11 imply that

Pm
i¼1 aa; ix

u i þ fax
a is SOS for every a A D. So

X
a AD

Xm
i¼1

aa; ix
u i þ fax

a

 !

is SOS. By Condition (ii), we have

Xm
i¼1

fu i �
X
a AD

aa; i

 !
xui

is SOS. Now, it is clear that fax
a is SOS for every a B D. Therefore,

f ðxÞ ¼
Xm
i¼1

fu i �
X
a AD

aa; i

 !
xui þ

X
a AD

Xm
i¼1

aa; ix
u i þ fax

a

 !
þ
X

a BDUV

fax
a

is SOS. r

Proof of Corollary 2.13. Apply Theorem 2.12 with

aa; i ¼ j fajla; i for all a A D; i ¼ 1; . . . ;m: r

Proof of Corollary 2.14. Apply Theorem 2.12 with

aa; i ¼ j fajlla
a for all a A D; i ¼ 1; . . . ;m: r

Proof of Corollary 2.15. Apply Theorem 2.12 with

aa; i ¼
j fajlla

a fu iQm
i¼1 f

liðaÞ
ui

for all a A D; i ¼ 1; . . . ;m: r

Proof of Corollary 2.16. Apply Theorem 2.12 with

aa; i ¼
kla; i

j faj
k

� �1=la; ina
if la; i00;

0 if la; i ¼ 0

8><
>: for all a A D; i ¼ 1; . . . ;m: r

4. Application to global optimization

Let f A R½x1; . . . ; xn� be a real polynomial, and let

f� :¼ inff f ðxÞ j x A Rng:

Since f� ¼ supfr A R j f � r is PSDg, finding f� reduces to determining when
f � r is PSD. It is known that deciding when a polynomial is PSD is NP-hard
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[1, Theorem 1.1]. Suppose deg f ¼ m and f ¼ f0 þ � � � þ fm, where fi is a form
of degree i. Then a necessary condition for f� 0�y is that fm is PSD, and a
su‰cient condition for f� 0�y is that fm is PD, i.e., fmðxÞ > 0 for all x A Rn

(see [15, Theorem 5.1 and 5.3]). In [9, Theorem 3.1], H. V. Ha and T. S. Pham
have given another necessary condition and another su‰cient condition for
f� 0�y in terms of the Newton polyhedron of f , which are improved versions
of the results above.

Let

fSOS :¼ supfr A R j f � r is SOSg:
Note that f� b fSOS . It is known that if fSOS 0�y, then fSOS can be computed
by semidefinite programming (SDP); see [12, Section 3] and [20]. However, in
practice the computation of fSOS can only be carried out if the number of
variables and degree are relatively small. The situation is better if f has
structured sparsity; see [24, Section 3]. Note that a necessary condition for
fSOS 0�y is that f2d A S2d;n and a su‰cient condition for fSOS 0�y is that

f2d A S0
2d;n, where S0

2d;n is the interior of S2d;n in the vector space of forms of
degree 2d, equipped with the euclidean topology (see [17, Proposition 5.1]).

Recently, Ghasemi and Marshall have given another lower bounded fgp for
the polynomial f of degree 2d with f2dei > 0, i ¼ 1; . . . ; n; see [8, Corollary 3.6].
Notice that fgp a fSOS, and fgp can be computed by geometric programming.
As explained in [8, Section 3], although the lower bound found using this method
is typically not as good as the lower bound found using SDP, a practical
comparision confirms that the computation is faster and larger problems can be
handed.

Now, by using Theorem 2.12, we will give a lower bound, which can also
be computed by geometric programming, for a larger set of polynomials.

In this section, we also use the term framework to denote a set U ¼
fu0; . . . ; umg in which ui ¼ ðui

1; . . . ; u
i
nÞ A ð2ZÞn with ui

j b 0, and use the term
trellis to denote a framework in which u0; . . . ; um comprise the vertices of a
simplex.

Let U be a framework. We also use the term U-mediated to denote a
set LHZn which contains U, and every v A LnU is an average of two distinct
even points in L. Also, by [23, Theorem 2.2], it is easly seen that there is a
U-mediated set U� satisfying

�
1
2 ðsþ tÞ j s; t A U

�
HU� H convðUÞVZn which

contains every U-mediated set.
Let Vy denote the set of vertices of Gyð f Þ :¼ convfsuppð f ÞU 0g. We

now assume that Vy ¼ fu0; . . . ; umg is a trellis with the origin point u0. Then
for every a A Gyð f Þ, there is only one lðaÞ ¼ ðla;1; . . . ; la;mÞ with la; i b 0 and
jlðaÞj :¼ l1ðaÞ þ � � � þ lmðaÞa 1 such that

a ¼ la;1u
1 þ � � � þ la;mu

m:

Recall that

D ¼ fa A suppð f Þ j either fa < 0 or ai is odd for some 1a ia ng:
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Theorem 4.1. Let f be a nonconstant polynomial of degree 2d, and r A R.
Suppose that Vy ¼ fu0; . . . ; umg is a trellis, and a A V �

y for all a A D. Then if
there exist nonnegative real numbers aa; i for a A D, i ¼ 1; . . . ;m, aa; i ¼ 0 i¤ la; i ¼ 0,
such that

(i) a
lðaÞ
a ¼ j fajlðaÞlðaÞ for every a A D such that jlðaÞj ¼ 1,

(ii) fu i b
P

a AD aa; i, i ¼ 1; . . . ;m,

(iii) fu0 � rb
P

a AD<1ð1� jlðaÞjÞ j fajlðaÞlðaÞj
a
lðaÞ
a

" #1=ð1�jlðaÞjÞ

,

then f � r is SOS. Here D<1 ¼ fa A D j jlðaÞj < 1g.

Proof. For every r A R, consider the polynomial f � r. By setting W :¼
suppð f ÞnVy, we can write

f ðxÞ ¼ fu0 þ
Xm
i¼1

fu ixu i þ
X
a AW

fax
a:

There are two cases to consider.

Case 1: If r0 f0, then the homogenization of g :¼ f � r is given by

gðx0; xÞ ¼ ð fu0 � rÞx2d
0 þ

Xm
i¼1

fu ix
2d�ju i j
0 xui þ

X
a AW

fax
2d�jaj
0 xa;

It is not hard to show that the set of vertices of the Newton polyhedron GðgÞ of g
is the following

Vy ¼ fu0 ¼ ð2d; 0Þ; . . . ; um ¼ ð2d � jumj; umÞg;
and moreover,

� Vy is a trellis, since Vy is a trellis;
� for every a A D, we have a :¼ ð2d � jaj; aÞ A V

�
y, and ð1� jlðaÞj; la;1; . . . ;

la;mÞ are the barycentric coordinates of a with respect to Vy;
� by Conditions (i), (ii), and (iii) of Theorem 4.1, there exist nonnegative real
numbers aa; i for a A D, i ¼ 0; . . . ;m, such that

(i) a
1�jlðaÞj
a;0 a

lðaÞ
a ¼ j fajð1� jlðaÞjÞ1�jlðaÞj

lðaÞlðaÞ for a A D,
(ii) fu i b

P
a AD aa; i, i ¼ 1; . . . ;m, and fu0 � rb

P
a AD<1 aa;0,

Thus g satisfies the conditions of Theorem 2.12, and so g is SOS. By Prop-
osition 2.1, f � r is SOS.

Case 2: If r ¼ f0, then D<1 ¼ j, by Condition (iii) of Theorem 4.1. Then,
by Theorem 2.12, Conditions (i) and (ii) of Theorem 4.1 show that

Pm
i¼1 fu ixu i þP

a AD fax
a is SOS. Therefore,

f � r ¼
Xm
i¼1

fu ixu i þ
X
a AD

fax
a

 !
þ
X
a BD

fax
a

is SOS. r
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Definition 4.2. Let f be a nonconstant polynomial of degree 2d. Suppose
Vy ¼ fu0; . . . ; umg is a trellis, and a A V �

y for all a A D. We define

fgp :¼ supfr A R j baa; i A Rb 0; a A D; i ¼ 1; . . . ;m; aa; i ¼ 0 i¤ la; i ¼ 0

satisfying Conditions ðiÞ; ðiiÞ; and ðiiiÞ of Theorem 4:1g:

Remark 4.3. 1. As a consequence of Theorem 4.1, we have fgp a fSOS .
2. If fu i < 0 for some i A f1; . . . ;mg, then fgp ¼ �y.

Corollary 4.4. Let f be a nonconstant polynomial of degree 2d such that
Vy ¼ fu0; . . . ; umg is a trellis. Suppose W :¼ suppð f ÞnVy ¼ fag, and a A V �

y if
a A D. Then f� ¼ fSOS ¼ fgp.

Proof. We write

f ðxÞ ¼ fu0 þ
Xm
i¼1

fu ixu i þ fax
a:

Note that fgp a fSOS a f�. So it is su‰cient to show that for every real number
r, f� b r ) fgp b r. Fix r A R and assume that f� b r. We will show fgp b r;
i.e., that r satisfies the constraints of Theorem 4.1. In fact, let g denote the
homogenization of f � r; i.e.,

gðx0; xÞ ¼ ð fu0 � rÞx2d
0 þ

Xm
i¼1

fu ix
2d�ju i j
0 xui þ fax

2d�jaj
0 xa:

Since f� b r, we get gb 0.

Claim 4.5. We have fu i b 0, i ¼ 1; . . . ;m, and fu0 b r.

Proof. Since Vy ¼ fu0; . . . ; umg is a trellis, Vy ¼ fu0 . . . ; umg is linearly
independent in Rnþ1, where ui ¼ ðui

0 :¼ 2d � juij; ui
1; . . . ; u

i
nÞ, i ¼ 0; . . . ;m. With-

out the loss of genrerality, we can assume

det

u00 � � � u0m
� � � � � � � � �
um
0 � � � um

m

2
64

3
750 0:

By the same arguments as in the proof of Corollary 2.11, for every e A R>0, there
exist c0; . . . ; cm A R>0 such that

c
u0
0

0 � � � cu
0
m

m ¼ e

� � � � � � � � � � � � � � �
c
um�1
0

0 � � � cu
m�1
m

m ¼ e

c
um
0

0 � � � cu
m
m

m ¼ 1:

8>>>>><
>>>>>:
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Let l ¼ ðl1; . . . ; lmÞ be such that a ¼ l1u
1 þ � � � þ lmu

m, with li b 0 and
l1 þ � � � þ lm a 1. Taking x :¼ ðc0; . . . ; cm; 1; . . . ; 1Þ, we have

gðxÞ ¼ ð fu0 � rÞxu0 þ � � � þ fumxu
m þ faðxu

0Þl0 � � � ðxumÞlm ðl0 :¼ 1� jljÞ

¼ ð fu0 � rÞðcu
0
0

0 � � � cu0mm Þ þ � � � þ fumðcu
m
0

0 � � � cum
m

m Þ

þ fa½c
u0
0

0 � � � cu0
m

m �l0 � � � ½cu
m
0

0 � � � cum
m

m �lm

¼ ð fu0 � rþ � � � þ fum�1Þeþ fum þ fae
l0þ���þlm�1 :

Since a A W, l0 þ � � � þ lm�1 > 0. Then, since gb 0, we have fum b 0, by letting
e ! 0. By the same arguments as the above, we get fu i b 0 for i ¼ 1; . . . ;m, and
fu0 b r. r

To complete the proof of Corollary 4.4, let us consider two cases.

Case 1: Assume fa > 0 and all ai are even. Then a B D, and so D ¼ j.
In this case, r satisfies trivially the constraints of Theorem 4.1. So fgp b r.

Case 2: Assume either fa < 0 or not all ai are even. Then a A D; i.e.,
D ¼ W ¼ fag. In this case, applying Corollary 2.11 to g, we deduce that

j fajllð1� jljÞ1�jlj
a
Ym
i¼1

f li
u i ð fu0 � rÞ1�jlj:

There are two subcases to consider.
� If jlj < 1, then r satisfies the constraints of Theorem 4.1 with

aa; i ¼
fu i if li 0 0;

0 if li ¼ 0:

�
� If jlðaÞj ¼ 1, then j fajll

a
Qm

i¼1 f li
u i , and so r satisfies the constraints of

Theorem 4.1 with

aa; i ¼
sfu i if li 0 0;

0 if li ¼ 0;

�

where

s ¼ j fajllQm
i¼1 f li

u i

:

Therefore, fgp b r. r

Definition 4.6 (geometric program). (1) A function f : Rn
>0 ! R of the

form

fðxÞ ¼ cxa1
1 � � � xan

n ;

268 van doat dang and thi thao nguyen



where c > 0, ai A R, and x ¼ ðx1; . . . ; xnÞ, is called a monomial function. A sum
of monomial functions, i.e., a function of the form

fðxÞ ¼
Xk
i¼1

cix
a1i
1 � � � xani

n ;

where ci > 0 for i ¼ 1; . . . ; k, is called a posynomial function.
(2) An optimization problem of form

Minimize f0ðxÞ
Subject to fiðxÞa 1; i ¼ 1; . . . ;m; and cjðxÞ ¼ 1; j ¼ 1; . . . ; p;

�

where f0; . . . ; fm are posynomials and c0; . . . ;cp are monomial functions, is
called a geometric program (GP). The subset of Rn

>0 defined by the constrants

fiðxÞa 1; i ¼ 1; . . . ;m; and cjðxÞ ¼ 1; j ¼ 1; . . . ; p;

is called the feasible set of the GP. f0ðxÞ is called the objective function. The
output of the GP is the minimum, more precisely, the infimum, of f0ðxÞ, taken
as x runs through the feasible set. In case feasible set is empty, the output is
understood to be þy.

See [3, Section 4.5] or [21, Section 3.5] for more about GPs.

Theorem 4.7. Let f be a nonconstant polynomial of degree 2d. Suppose
that

(i) Vy ¼ fu0; . . . ; umg is a trellis,
(ii) a A V �

y for all a A D.
Then fgp ¼ f0 � r�, where r� is the output of the GP

Minimize
P

a AD<1ð1� jlðaÞjÞ j fajlðaÞlðaÞj
a
lðaÞ
a

" #1=ð1�jlðaÞjÞ

Subject to
P

a AD

aa; i

fu i

a 1; i ¼ 1; . . . ;m; and

a
lðaÞ
a

j fajlðaÞlðaÞ
¼ 1; a A D; jlðaÞj ¼ 1:

8>>>>>>>>>><
>>>>>>>>>>:

The variables in the program are the aa; i, a A D, i ¼ 1; . . . ;m, liðaÞ0 0, the
understanding being that aa; i ¼ 0 i¤ liðaÞ ¼ 0.

Proof. Observe that

f0ðaÞ :¼
X
a AD<1

ð1� jlðaÞjÞ j fajlðaÞlðaÞj
a
lðaÞ
a

" #1=ð1�jlðaÞjÞ
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and

fiðaÞ :¼
X
a AD

aa; i

fu i

; i ¼ 1; . . . ;m;

are posynomials in the variables aa; i, and

caðaÞ :¼
a
lðaÞ
a

j fajlðaÞlðaÞ
; a A D; jlðaÞj ¼ 1;

are monomial functions in the variables aa; i. By the definition of fgp, it follows
immediately that fgp ¼ f0 � r�. r

Corollary 4.8. Let f be a nonconstant polynomial of degree 2d. Suppose
that

(i) Vy ¼ fu0; . . . ; umg is a trellis,
(ii) a A V �

y for all a A D.
Then if jlðaÞj < 1 for each a A D, then fgp 0�y and fgp ¼ f0 � r�, where r� is the
output of the GP

Minimize
P

a ADð1� jlðaÞjÞ j fajlðaÞlðaÞj
a
lðaÞ
a

" #1=1�jlðaÞj

Subject to
P

a AD

aa; i

fu i

a 1; i ¼ 1; . . . ;m:

8>>>><
>>>>:

Proof. In this case, the equality constraints in the computation of r� are
vacuous and the feasible set is always nonempty, so fgp 0�y. The rest is
immediate from Theorem 4.7. r

We establish some lower bounds in terms of its coe‰cients, which can be
obtained by evaluating the objective function of the GP in Corollary 4.8 at
suitably chosen feasible points. Corollaries 4.9, 4.10, and 4.11 are improved
versions of [8, Corollaries 4.1, 4.2, and 4.3] (and so [7, Theorems 3.1, 3.2, and
3.3]) respectively.

Recall that for a (univariate) polynomial of the form pðtÞ ¼ tn �
Pn�1

i¼0 ait
i,

where each ai is nonnegative and at least one ai is nonzero, there is a unique
positive root of p (see [19, Theorem 1.1.3]). Let CðpÞ denote the unique positive
root of p. See [5], [11, Example 4.6.2], and [8, Proposition 1.2] for more details
and upper bounds for CðpÞ.

Corollary 4.9. Let f be a nonconstant polynomial of degree 2d. Suppose
that

(i) V ¼ fu0; . . . ; umg is a trellis,
(ii) a A V � for all a A D, and
(iii) jlðaÞj < 1 for each a A D.
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Then fgp b rL, where

rL :¼ f0 �
X
a AD

ð1� jlðaÞjÞj fajk2DjlðaÞj f
�lðaÞ
V ;

kb max
i¼1;...;m

C t2D �
X
a AD

la; ij faj f �jlðaÞj
u i t2DjlðaÞj

 !
:

Here fV :¼ ð fu1 ; . . . ; fumÞ, and D is a nonnegative integer number such that
2Dla; i A Z for all a A D, i ¼ 1; . . . ;m.

Proof. For each a A D and i ¼ 1; . . . ;m, let

aa; i ¼
la; ij faj f 1�jlðaÞj

ui

k2Dð1�lðaÞÞ :

By the defintion of k, for each i ¼ 1; . . . ;m, we have
P

a AD la; ij faj f
�jlðaÞj
u i k2DjlðaÞj

a k2D. Hence

X
a AD

aa; i ¼
X
a AD

la; ij faj f 1�jlðaÞj
u i

k2Dð1�lðaÞÞ a fu i :

This shows that the array ðaa; i j a A D; i ¼ 1; . . . ;mÞ is a feasible point for the
geometric program in the statement of Corrolary 4.8. Plugging this into the
objective function of the program yields

X
a AD

ð1� jlðaÞjÞ j fajlðaÞlðaÞj
a
lðaÞ
a

" #1=ð1�jlðaÞjÞ

¼
X
a AD

ð1� jlðaÞjÞ j faj
Y

la; i00

la; i

aa; i

� �la; i2
4

3
5
1=ð1�jlðaÞjÞ

¼
X
a AD

ð1� jlðaÞjÞ j faj
Y

la; i00

la; ik
2Dð1�lðaÞÞ

la; ij faj f 1�jlðaÞj
u i

 !la; i2
4

3
5
1=ð1�jlðaÞjÞ

¼
X
a AD

ð1� jlðaÞjÞj fajk2DjlðaÞj
Y

liðaÞ00

f
�liðaÞ
ui

¼
X
a AD

ð1� jlðaÞjÞj fajk2DjlðaÞj f
�lðaÞ
V :

So, rL ¼ f0 �
P

a ADð1� jlðaÞjÞj fajk2DjlðaÞj f
�lðaÞ
V a fgp. r
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Corollary 4.10. Let f be a nonconstant polynomial of degree 2d. Suppose
that

(i) V ¼ fu0; . . . ; umg is a trellis,
(ii) a A V � for all a A D, and
(iii) jlðaÞj < 1 for each a A D.

Then fgp b rFK , where rFK :¼ f0 � k2D, with

kbC t2D �
X2D�1

j¼1

bjt
j

 !
; and

bj :¼
2D� j

2D

� �ð2D� jÞ=2D X
a AD;2DjlðaÞj¼ j

j fajlðaÞlðaÞf �lðaÞ
V ; j ¼ 1; . . . ; 2D� 1:

Here D is a nonnegative integer number such that 2DliðaÞ A Z for all a A D,
i ¼ 1; . . . ;m.

Proof. For each a A D and i ¼ 1; . . . ;m, let

aa; i ¼ ð1� jlðaÞjÞ1�jlðaÞjj fajlðaÞlðaÞf �lðaÞ
V fuik j�2D:

By the defintion of k, we have
P2D�1

j¼1 bjk
j a k2D. Hence

X
a AD

aa; i ¼
X
a AD

ð1� jlðaÞjÞ1�jlðaÞjj fajlðaÞlðaÞf �lðaÞ
V fuik j�2D

¼
X2D�1

j¼1

X
a AD;2DjlðaÞj¼ j

2D� j

2D

� �ð2D� jÞ=2D
j fajlðaÞlðaÞf �lðaÞ

V fuik j�2D

¼ fu i

X2D�1

j¼1

k j�2D 2D� j

2D

� �ð2D� jÞ=2D X
a AD;2DjlðaÞj¼ j

j fajlðaÞlðaÞf �lðaÞ
V

¼ fu i k�2D
X2D�1

j¼1

k j 2D� j

2D

� �ð2D� jÞ=2D X
a AD;2DjlðaÞj¼ j

j fajlðaÞlðaÞf �lðaÞ
V

¼ fu i k�2D
X2D�1

j¼1

bjk
j
a fu i :

This shows that the array ðaa; i j a A D; i ¼ 1; . . . ;mÞ is a feasible point for
the geometric program in the statement of Corrolary 4.8. Plugging this into the
objective function of the program yields
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X
a AD

ð1� jlðaÞjÞ j fajlðaÞlðaÞj
a
lðaÞ
a

" #1=ð1�jlðaÞjÞ

¼
X
a AD

ð1� jlðaÞjÞ j faj
Y

la; i00

la; i

aa; i

� �la; i2
4

3
5
1=ð1�jlðaÞjÞ

¼
X
a AD

ð1� jlðaÞjÞ j faj
Y

la; i00

f
lðaÞ
V k2D� jla; i

ð1� jlðaÞjÞ1�jlðaÞjj fajlðaÞlðaÞfu i

 !la; i2
4

3
5
1=ð1�jlðaÞjÞ

¼
X2D�1

j¼1

X
a AD;2DjlðaÞj¼ j

2D� j

2D

� �

� j faj
Y

la; i00

f
lðaÞ
V k2D� jla; i

2D� j

2D

� �ð2D� jÞ=2D
j fajlðaÞlðaÞfu i

0
BBB@

1
CCCA
la; i

2
6664

3
7775
2D=ð2D� jÞ

¼
X2D�1

j¼1

k j 2D� j

2D

� �ð2D� jÞ=2D X
a AD;2DjlðaÞj¼ j

j fajlðaÞlðaÞf �lðaÞ
V

¼
X2D�1

j¼1

bjk
j
a k2D:

So, rFK ¼ f0 � k2D a fgp. r

Corollary 4.11. Let f be a nonconstant polynomial of degree 2d. Suppose
that

(i) V ¼ fu0; . . . ; umg is a trellis,
(ii) a A V � for all a A D, and
(iii) jlðaÞj < 1 for each a A D.

Then

fgp b rrmt :¼ f0 �
X
a AD

ð1� jlðaÞjÞ½j fajtjlðaÞjlðaÞlðaÞf �lðaÞ
V �1=ð1�jlðaÞjÞ;

where t :¼ jDj.

Proof. For each a A D and i ¼ 1; . . . ;m, let aa; i ¼
fu i

t
. Then

X
a AD

aa; i ¼
X
a AD

fu i

t
¼ fu i :
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This shows that the array ðaa; i j a A D; i ¼ 1; . . . ;mÞ is a feasible point for the
geometric program in the statement of Corrolary 4.8. Plugging this into the
objective function of the program yields

X
a AD

ð1� jlðaÞjÞ j fajlðaÞlðaÞj
a
lðaÞ
a

" #1=ð1�jlðaÞjÞ

¼
X
a AD

ð1� jlðaÞjÞ j faj
Y

la; i00

la; i

aa; i

� �la; i2
4

3
5
1=ð1�jlðaÞjÞ

¼
X
a AD

ð1� jlðaÞjÞ j faj
Y

la; i00

tla; i

fu i

� �la; i2
4

3
5
1=ð1�jlðaÞjÞ

¼
X
a AD

ð1� jlðaÞjÞ½j fajtjlðaÞjlðaÞlðaÞf �lðaÞ
V �1=ð1�jlðaÞjÞ:

So, rdmt ¼ f0 �
P

a ADð1� jlðaÞjÞ½j fajtjlðaÞjlðaÞlðaÞf �lðaÞ
V �1=ð1�jlðaÞjÞ

a fgp. r
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