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A FINITE PRESENTATION OF THE LEVEL 2 PRINCIPAL
CONGRUENCE SUBGROUP OF GL(n;Z)

Ryoma KOBAYASHI

Abstract

It is known that the level 2 principal congruence subgroup of GL(n;Z) has a finite
generating set (see [7]). In this paper, we give a finite presentation of the level 2
principal congruence subgroup of GL(n;Z).

1. Introduction

Forn > 1, let I'y(n) = ker(GL(n; Z) — GL(n;Zy)). We call I'z(n) the level 2
principal congruence subgroup of GL(n;Z). Note that for 4 € I';(n) the diagonal
entries of 4 are odd and the others are even.

For 1 <i,j <n with i #j, let E; denote the matrix whose (i, j) entry is 2,
diagonal entries are 1 and others are 0, and let F; denote the matrix whose (i, )
entry is —1, other diagonal entries are 1 and others are 0. It is known that T';(n)
is generated by Ej; and F; for 1 <i,j<n with i #j (see [7]).

In this paper, we give a finite presentation of I'»(n).

THEOREM 1.1. For n>1, I's(n) has a finite presentation with generators Ej
and F;, fo; 1 <i,j<n with i #j, and with the following relators

(1) F;

) (B, (EUFJV, (FiF3)* (when n = 2),

( ) ( ) [ ijs } [ElﬂEkj] [Et/ka] [El/kat]Ek, (When n= 3)

(b) [EJ,FEUFE,G Eyj, EiFi Ey FiE; YEy] for i < j <k (when n=>3),

4) [Ej, Ex] (when n>4),
where [X,Y]=X'Y'XY and 1 <i,j k,| <n are mutually different.

We note that a finite presentation of I'»(n) has been obtained also by
Fullarton [3] and Margalit-Putman.

It is clear that the above theorem is valid in the case n=1. A proof of
the theorem is by induction on n. In Section 3, we will prove the case n =2
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of Theorem 1.1, using the Reidemeister-Schreier method. In Section 4, we will
prove the case n =3 of Theorem 1.1, considering a simply connected simplicial
complex on which I',(n) acts. In Section 5, we will introduce another simply
connected simplicial complex on which I'»(n) acts for n > 4. Finally, in Section
6, we will obtain the presentation of Theorem 1.1, by this action and induction
on n.

We now explain about an application of Theorem 1.1. For g >1, let N,
denote a non-orientable closed surface of genus g, that is, N, is a connected sum
of g real projective planes. Let - : H|(Ny; R) x H{(N,; R) — Z, denote the mod 2
intersection form, and let Aut(H;(N,;R),-) denote the group of automorphisms
over Hi(Ny; R) preserving the mod 2 intersection form -, where R =7 or Z,.
Consider the natural epimorphism

(I)g : Aut(Hl (]Vg;Z)7 ) — Aut(H1 (Ng;Zz), )

McCarthy and Pinkall [7] showed that I';(g — 1) is isomorphic to ker @,.

We denote by .#(N,) the group of isotopy classes of diffeomorphisms over
Ny. The group #(Ny) is called the mapping class group of N,. 1In [7] and [4],
it is shown that the natural homomorphism .#(N,;) — Aut(H;(Ny;R),-) is
surjective, where R=7Z or Z,. Let #(N,) denote the kernel of .#(N,) —
Aut(H|(Ny; Z),-). We say J(N,) the Torelli group of N,. In [5], Hirose and
the author obtained a generating set of .#(N,) for g >4, using Theorem 1.1.

2. Preliminaries

In this section, we explain about some facts for presentations of groups.

2.1. Basics on presentations of groups
Let G|, G, and G3 be groups with a short exact sequence

156,256,556, —1.

If G; and G; are presented then we can obtain a presentation of G,. In
particular, if G; and G3 are finitely presented then G, can be finitely presented.

More precisely, a presentation of G, is obtained as follows. Let G| =
(X1|R)) and G;=<{X3|R;»>. For each xeX;, we choose Xxen!(x).
We put X> = {d(x1),x3|x1 € Xi,x3 € X3}. For r=aj'a? - a € Rs, let 7=
a“a®?---ar*. For gekerm let g be a word over ¢(X;) with g=g. Let
A={¢(n)|reR}, B={rr"|rseR} and C = {X30(x1)%3 'X3(x;)x3~1 " |
x1 € X1,x3€ X3}. We put R, = AUBUC. Then we have G, = {Xz| Ry).

In addition, if there is a homomorphism p : G3 — G such that 7o p = idg,,
choose % = p(x) e n(x) " for x e X;. Then, we have the relation 7= 1 in G, for
re R3.

If G, is presented then we can examine a presentation of Gj, by the
Reidemeister-Schreier method. In particular, if G is a finite group, that is, the
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index of Im ¢ is finite, and G, can be finitely presented, then G; can be finitely
presented.
For further information see [6].

2.2. Presentations of groups acting on a simplicial complex

Let X be a simplicial complex, and let G be a group acting on X by
isomorphisms as a simplicial map. We suppose that the action of G on X is
without rotation, that is, for a simplex A € X and g € G, if g(A) = A then g(v) = v
for all vertices v e A. For a simplex A € X, let Gp be the stabilizer of A. For
k >0, the k-skeleton X®) is the subcomplex of X consisting of all simplices of
dimension at most k.

Consider a homomorphism @ : *(O)Gv — G. For ge G, if g stabilizes a
veX

vertex we X, we denote g by g, as an element in G, < ;k( @G”' For a
ve

1-simplex {v,w} e X and g € G,NG,, we have g,g,' € ker ® and call g,g,' the

edge relator.

At first, for any l-simplex {v,w}, choose an orientation such that orienta-
tions are preserved by the action of G. Namely, orientations of {v,w} and
g{v,w} are compatible for all g € G. We denote the oriented 1-simplex {v, w} by
(v,w). Similarly, choose orders of 2-simplices, and denote the ordered 2-simplex
{v1, 02,03} by (v1,v2,v3). For an oriented 1-simplex e = (v, w), let o(e) = v and
t(e) =w. For an oriented 2-simplex 7 = (v, v2,v3), we call v; the base point
of 7.

Next, choose an oriented tree 7" of X such that a set of vertices of T is a set
of representative elements for vertices of the orbit space G\X. Let I denote the
set of vertices of 7. In addition, choose a set E of representative elements for
oriented 1-simplices of G\X such that o(e) € V for e € E and 1-simplices of T is
in E, and a set F of representative elements for ordered 2-simplices of G\ X such
that the base point of 7 is in V for t€ F. For e € E, let w(e) denote the element
in V' which is equivalent to #(e) by the action of G, and choose g, € G such that
ge(w(e)) =t(e) and g, =1 if e T.

For a I-simplex {v,w} with ve ¥V, note that {v,w} = {o(e),hg.w(e)} or
{w(e),hg;to(e)} for some eeEF and he G, Then we define respectively
Jgo,wy = hge or hg;'. Let o be a loop in X starting at a Vertex of V. We
denote o = {v;, {vi,vi11}|1 <i<k,vpp1 =01}, Note that vy,g;'va e V, where
g1 = gu,,in)- For 2<i<k, deﬁne 9i = G4t g\ (0,0} inductively. Note that
for 2 <i <k, there exists an oriented 151mplex e; such that o(e;) e V' and
{vi,vip1} = g192---gi-1{o(ei), t(e;)}. Let gy, = g1g2---gr. We have g,(v1) = vy,
that is, g, € G,,.

For eeE put a word g,. For a l-simplex {v,w} with ve V, let Iiowy =
hg, or hge if gy, Wy = hge or hg respectlvely For a loop o in X starting at a
vertex of V, let g, = g,1G>- - 9« 1f Jd. = ¢g192- -+ gr. Note that we can define g,

and g, for t € F, regarding 7 as a loop in X. Let G = ( *VG”> * ( *E<g“g>>.
ve ee

The following theorem is a special case of the result of Brown [1].
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THEOREM 2.1 ([1]). Let X be a simply connected simplicial complex, and
let G be a group acting without rotation on X by isomorphisms as a simplicial
map. Then G is isomorphic to the quotient of G by the normal subgroup generated
by followings

(1) g,, where ee T,

(2) 9. " Ao0).(9: " AGe) iy Where e € E and A€ G,,

(3) g}g;l, where T e F.

3. Proof of the case n =2 of Theorem 1.1

In this section, we prove the following proposition.

ProposITION 3.1. T'2(2) has a finite presentation with generators Ea, Enj,
F andz F>, and with relators Flz, F22, (E12F1)2, (E12F2)2, (E21F1)2, (E21F2)2 and
(FF)°.

3.1. The Reidemeister Schreier method
Let x, y and z be

(1 —1 A (01
o 1)) T o)
At first, we prove the next lemma.

LemMma 3.2. GL(2,Z) has a presentation with

1

GL(2;Z) = {x, y,z| xyxy~'x71y71 (0)®, 22, xzpz).

Proof. 1In [8], it is known that SL(2;Z) has a presentation with
SL(2Z) = <x, p [ xpxy ™ X7y ().
Consider the short exact sequence
1 - SL(2;Z) — GL(2,Z) — {+1} — 1.

Note that {+1} = (det z| (det z)*>. Then we have that GL(2;Z) has a presen-
tation with generators x, y and z, and with the following relations

Cxpy Ty =1 () =1,

c 22 =1,

czxzl =yl ozt = X7l
Since z> =1, we have zxzy =1 and zyzx = 1. Moreover the equation zxzy =
zyzx = 1 is obtained from xzyz = 1. Therefore, we obtain the claim. O

1 1

Next we consider the short exact sequence

1 - T»(2) — GL(2;Z) 5 GL(2;Z,) — 1.



538 RYOMA KOBAYASHI

For 0 <i<5, let ;€ GL(2;Z) be

10 11 10
@ (o) a=(oo) em(i)

01 11 0 1
“=(io) w=(o) e=(i)

and let U = {ap,a),a2,a3,as,as}. Since each of a; is denoted by ay=1,
ay=x"', aa=y, a3==z ay=x"'z and as = yz, as a word over {x,y,z}, we

have that U is a Schreier transversal for I';(2) in GL(2;Z) (see [6]). For
A e GL(2;Z), we define A =a; if n(A) =n(a;). Let B be the set of matrices
wa; 'wa; with wa; ¢ U, where 0 <i<5 and w=x*!, p*! and z. Then we
have

{6 6 A6 DG DG )

(see Table 1). Note that B is a generating set of I'2(2) (see [6]). It is clear that

1o-2\ /1 2\ 1o\ /1 o\

o 1) \o 1/’ -2 1) \2 1)~
Thus, by Tietze transformations, we obtain the generating set B’ = {g1, 92,93, 94}
of I';(2), where

(12 (12 (10 (-1 0
g1 = 0 1 , 92 = 0 —1 , g3z = 71 ) g4 = b 1

wa,-’lwal- w=Xx w=Xx w=y w=y W=z

S =

[

(0 2)

S =
— O

[
—_ o

S =
— O

~— N |~ N |—— N |~ N ||

S =

S— [ N | N | N~ | N~ | N~

(o )

Table 1. The matrix wa; 'wa;.

— O
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We now prove the next lemma.

LemmA 3.3. Let r=riry-- -1, € GL(2;Z). Then for 0 <i<5and 1 <j<
n—1, we have

ri(rjer - rn)ai = (Fjrjgn - 1) d;.

Proof. Note that 4 = B if and only if n(4) = n(B). We calculate

n(rj(rjsr - ra)ai) = m(rp)a((rjey -+ ra)ai)
= n(rj)n((rjﬂ rn)at)
= n((rjrj1 - Tn)an).
Therefore, we obtain the claim. O

Let R be the set of relators of GL(2;Z) in Lemma 3.2. For any r=
iy € R and 0 <i <5, we define a word s,; over B’ as follows.

Sri = (afli’l(rz cer)ap)((r - 'rn)afl"z(i% S Tn)a) - (Tafl"nai)-

Let S={s;|reR0<i<5}. Then S is a set of relators of I',(2) (see [6]).
Hence we have I',(2) = (B'|S).

3.2. Proof of Proposition 3.1

We now write all elements in S as a product of elements in B’. Let

W] = w~'w.
11

For r=xyxy~'x 'y~', we have
510 = [xar][yag][xas] [y~ as][x ][y~ ao]
= (ga05")7,
s = [xao)[yas][xas| [y~ &) [x @) [y~ @]
= (91"9394)°,
s = [xas][yas][xaq) [y~ an][x " ao) [y @]
513 = [xag][yai][xao) [y~ @] [x " as) [y~ as]
= (g297")7,
=

[xax][y ™" ao][x " ar] [y~ a4

[xa\][y " as][x " as] [y as)
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For r = (xy)°, we have

5,0 = [xai|[yas)[xas][yas|[xas] [ yao)[xa1][yas][xas][yas][xaz][ yao]

_ 2
= (9495 '192)",

s = [xao][yar][xas][yas][xas)[yai][xao][ yas][xas][ yas][xas] [yai]

2
(91 1939492) )

s = [xas][yas][xas] [yai][xao)[ yaa] [xas|[ yas][xas][ yai][xao] [ya:]

(949291 ) s

513 = [xas][yai][xao] [yas][xas|[yas][xaa][ya][xao)[yas][xas] [ yas]

= (9297 '9394),

s = [xa3][yas)[xaz][ yao)[xai ][ yas|[xas][yas|[xaz] [yao] [xa: ][ yaa]

= (95 '910294)°,

= [xaa][yao][xa1][yas)[xas][yas|[xaz][yao] [xa1][yaa] [xas][ yas]

= (929495 '91)".

For r=z* and 0<i<5, since zZa; 'za; = (1 0), we have s, =1. For
r = xzyz, we have 0 1

s = [xai][zas][yas][zao] = 1,

s = [xao][zas][yas)[zar] = g g1 = 1,

s = [xas][zan][yas)[za2] = g3,

Sy3 = [xaa][zaa][yao)[zas) = 1,

s = [xas][za0] [yan)[zas] = g3 ' g3 = 1,

srs = [xan][zaq][yai][zas] = g3.

Note that 50150 = S = 155> St = S(xp)62 = (63> UP O conjugation,
and Syzyz = Sypyyplx-1y12, Sxzpzs = Syy-ix-1y-15.  Lherefore, F2(2) has a presen-
tation w1th generators gl, g2, J3, g4 and with relators (J4g3 ) ) (91_19394)2= 9i»
(9291 1)% (95'9192)%, 93, (9495 '9192)° and (g7 'g3g492).

Finally, we put Ej» =g, E» = g3, F| = g4g31 and F» = g2g;!. Note that
g1 = En, 9o = F,E, g3 = E3; and g4 = F1E;. By Tietze transformations, we
conclude that I',(2) has a finite presentatlon W1th generators E, E21, Fy and Fz,
and with relators Flz, F (E12F1) S (E12F2) N (Elel) N (E21F2) and (Fle) .

Thus, the proof of Prop051t10n 3.1 is completed. Therefore, Theorem 1.1 is
valid when n = 2.
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4. Proof of the case n = 3 of Theorem 1.1

In this section, we prove the following proposition.

ProposITION 4.1. T(3) has a finite presentation with generators Ey, Es,
Ey, Er, E31, E32, Fy, F, and F», and with the following relators

(1) FZ, F3, F3,

@) (EF), (Eok)’, (EoF)’, (EnR)’s (EaR)’ (EnF), (ExF)’,

(EnFs)%, (EsiF3)°, (Es 1), (EnFs), (Enk)’, (FiIF)°, (FIFs)?, (FaFs)7,

(3) (a) [En, Ens], [Ear, Exsl, [Es1, Exl, [Ear, E3i], [Ev2, Esa), [E137E23] [E127F3]

[Exr, F3), [Eis, ), [Es1, Fa), [Exs, F1, [Esp, Fi), [Ex, E13)ED, [Ens, En) ER,
[E31, Ex3|E5,, [E13,E21}E223, [E21,E32]E321, [Ev2, E31]ES,
(b) [ExFoEnnF Es Ex, E3 FsE3FLEs ) Ens).

4.1. Preparation

For R=7Z or Z,, let %#,(R) denote the simplicial complex whose (k — 1)-
simplex {xj,x2,...,x;} is the set of k-vectors x; € R" such that xj, x,,...,x; are
mutually different column vectors of a matrix 4 € GL(n; R). In [2], Day and
Putman proved that %,(Z) is (n— 2)-connected. Here, a simplicial complex
X is m-connected if its geometric realization |X| is m-connected. In addition,
X is —1-connected if X is nonempty. Note that there is the natural left action
Iy(n) X B,(Z) — B,(Z) defined by A{x|,xa,...,xx} = {Ax1,Axs,..., Ax;} for
AeTy(n) and {xi,x2,...,xx} € B,(Z), and that the action is without rotation.

In this section, we consider the case n = 3. Since GL(3;Z,) is the quotient
of GL(3;Z) by I'»(3), it follows that the orbit space I'2(3)\%3(Z) is isomorphic
to B3(Zy). Let ¢: %3(Z) — %#3(Z,) be a natural surjection induced by the
surjection GL(3;Z) — GL(3;Z,).

For 1 <i<7, let v; be vy =e¢1, 137 =@, V3 =e3, V4 = €] + €3, U5 = €] + €3,
vg =€, +e3 and v; =e; + e, +e3, where e;, e, and e3 are canonical normal
vectors in Z°. Then, the vertices of %;(Z,) are ¢(v;), the 1-simplices are
¢({vi,v;}), and the 2-simplices are @({v;,v;,vx}), where {i, j,k} is not {1,2,4},
{1,3,5}, {1,6,7}, {2,3,6}, {2,5,7}, {3,4,7} and {4,5,6}. (Note that {v|,vs,v4},
{v1,v3,0s}, {v1,v6,07}, {v2,03,06}, {v2,0s5,07}, {v3,v4,07} and {v4,vs,v6} are not
2-simplices of %3(Z).)

We prove the next lemma.
by the

Vi

Lemma 4.2. T»(3) is isomorphic to the quotient of x T1(3)
normal subgroup generated by edge relators. I=i=?

For the definition of the edge relator, see Subsection 2.2.

Proof: We set followings
* V= {v1, 02,03, 04,05, 06,7},
cT={(vn,v)]|2<i<T}UV,
CE—{(ou)1<i<j=T),

F={(vi,v,v) |1 <i<j<k<T0({vi,vj0¢}) € B(Z2)}.
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For e = (v;,v;) € E, since w(e) =t(e), we choose g.=1, and write g; = ge.
By Theorem 2.1, T'»(3) is isomorphic to the quotient of <1<T<7r2(3)v,-)*
(1<l</<7<g’1>) by the normal subgroup generated by followings

(1) gy;, where 2 <i <7,
(2) g,lle,g,/X ', where 1 <i<j<7and X e5(3)

(3) g.97", where 7 € F.
Note that g, = gygugy' for ©= (v;,v;,v). Hence, the relation g.g;'=1 is
equivalent to the relation g;g; = gy Since g;; =1 for 2 <i <7, we have the
relation g; =1 for 2 <i < j <7 except for (i, j) = (2,4), (3,5) and (6,7). For
example, the relation §,; =1 is obtained from the relation §,g,; = g;3. In
addition, relations §,4 =1, g3s =1 and gg; =1 are obtained from relations
g23g34 = Goa, 923935 = o5 and grsde7 = ga7, respectively. Hence, we have the rela-
tion g; =1 for 1 <i< j<7. Therefore, I';(3) is isomorphic to the quotient of
* F2(3) by the normal subgroup generated by 4 = {X,, X, M<i<j<7,

1<i<?

X €TI3(3) ()} Since 4 is the set of edge relators, we obtaln the claim. [

(v1,)°

Ui

We next consider presentations of I'2(3), for all 1 <i <7 and edge relators.

4.2. Presentations of I'»(3),

Lemma 4.3. For 1 <t <n there is a short exact sequence
0—2""' =Tyn), »Tan—1)—1.

Proof.  We first note that 4 € I';(n), is a matrix whose 7-column vector is
e, For Z"' we give the presentatlon 2" =Xy, x0, . X |xixjxi‘lxj"
(1<i<j<n—1)). Let Z"' = Ty(n), be the homomorphism which sends
x; to E; when i<t and to E,;; when i >t Let I'y(n), — [a(n—1) be the
homomorphism which sends 4 to A,, where 4 is the (n— 1)-submatrix of 4
obtained by removing the i-row vector and the j-column vector of A. Then, it
follows that the sequence 0 — Z" ! — [a(n), — Ta(n—1) — 1 is exact. O

Remark 4.4. Let p,: [3(n—1) — I'y(n),, be the homomorphism defined by

E,) (
E1/+1)£, (when i<t—1,j>1),
Eiyy),, (when j <t—1,i>1),

( when i,j <t—1),
(
(
( 1+1/+1) (when i, j > 1),
(F
(

pi(Ey) =

) (when i <t—1),
pi(Fi) = { ,+1) (when i > 1),
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where subscripts e¢; are added in order to indicate that these are the clements
of I'z(n),,, that is, we write 4,, for 4 € ['x(n),. Put Ih(n—1) = <X[Y). Then,
from Lemma 4.3, I';(n), is generated by
* (Eu),, for 1 <i<n with i#1,
. (Eif)e,’ (Fi)e’ for 1 <i,j<n with i#j and i,j # 1,
and has relators
(1) [(En),,, (Ey),,) for 1 <i,j<n with i #],
2) p,(») for yevy,
3) - (Ey),, (En) (E,) (Ey),, (En) "for 1 <i,j<nwithi#jandi,j+#1,
* (Ey),, (EU)e,( e, (Et/) for 1<l ,j<n with i #j and i,j # ¢,
* (Ey),, (Etk) (Ej),, (Etk) for 1 <i,j,k <n with i, j,k#¢ and i, j, k
are mutually dlfferent (When n>4),
* (F),, YEy), (Fi),, - (Eu),, for 1 <i<n with i#1,
. (F)et (Ey)e,(Fy),, - (Ey), ' for 1 <i,j<n with i #j and i, j # 1.

The relators (3) can ‘be rephrased as follows.
* [(Ey),,s (En),, ](EU) for 1 <i,j<n with i#j and i,j # 1,
* [(Ey),,s (Etj)ez] for 1< i,j<n with i#j and i,j #1,
* [(Ey),, (Ew),,] for 1 <i,jk<n with i,j,k# ¢ and i,jk are mutually

different (when n > 4),
* ((Ex),,(Fy),)" for 1 <i<n with i #1,
* [(Ey),,, (Fi),] for 1 <i,j<n with i#j and i,j #t.

By Lemma 4.3, Remark 4.4 and Proposition 3.1, we have the following.

LemMA 4.5, T(3),, has a finite presentation with generators (Eva), , (E13),,
(E2),,» (E32)y, ( 2)y, and (F3) , and with the following relators
(1.1) ((F )Ul) (F)),
(1.2) ((En), (F2),)°  ((Ew), (Fs)L 2 (En), (B2),)% (Bxn), (F),)%
(Exn), (F2),)%, (Ex),, (F3),)% ((F2),, (F. )1)2,
(1.3) [(En),,, (E13),], [(Elz)vlv(Esz) s [(Elz)Lla(Fs)vl], [(Els)vly(Ezz)v,];
(E13),,, (F2),)s [(E23),,s (E2), J(E1s)ys [(Ex2)y,s (E13)y ) (E12)s -

For X € GL(n;Z), let ®y : T',(n) — I';(n) be the homomorphism defined
by ®y(A) = XAX~'. Note that this definition is well-defined, since I'>(n) is a
normal subgroup of GL(n;Z). For 1 <i,j<n with i#j, let T; denote the
matrix whose (i, j) entry is 1, diagonal entries are 1 and others are 0, and let
S; denote the matrix whose (i,i) and (i+ 1,i+ 1) entries are 0, other diagonal
entries are 1, (i,i+ 1) and (i+1,i) entries are 1 and others are 0. Using
homomorphisms ®y for some X € GL(n;Z), we provide presentations of I'(n),
forall 2<i<7.

First, considering ®s, : I'2(3), — I'2(3),,, it follows that I'»(3),, has a finite
presentation with generators (Ea1),,, (Ex),,, (E13),,, (E31),,, (F1),, and (F3),,,
and with the following relators
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En),, (F3),

25 (( ) ((E3),,(F1),,)%, ((Ens),,(F3),,)7,
0% (Es),, (F),,)° ?

( .
> (1), (F3),,)°
0ab> [(Ezl)w( 3)0, s [(Ezs)UZ»(Els)uZL
Ex )bz»(Fl) ], [(E13)L27(E21)U7]( 23)es [(531)02»(1523)0](1521)@7

Next, considering ®s,s, : [2(3), — I'2(3),,, it follows that I'2(3), has a
finite presentation with generators (Es1),,, (E3),, (Ei2),, (Ea),, (F1), and
(F2),,, and with the followmg relators

(3.1) (F),)° (F ))
(3.2) ((Ex 03) (
((
[
[

(2.3)

En), (F1),)" (En),(F),,)7

32)03(172)“)2 (
21) Doy ( 2), )2,

)es (F1) (E (
En),(F),)° (En),(F),,)’ ((F
(3.3) (E%I)U3»(E32)03] [(E31)U37(E21) ], [(E31)1;37(F2)v3]3 [(E32)
(Ex2)yys (F1),)s [(E12),s (E31),)(Ex2)ps [(Ent)y,, (Es), (B3
Next, considering ®r,, : I'2(3), — I2(3),,, it follows that 1"2(3)v4 has a finite
presentation with generators (E21F2E12F1)U4, (E13E23)04, (E23)L4, ( 311E32)U4,
(Ea k), and (F3),, and with the following relators
@.1) (EnFa),)% (Fs),,)%
(42) (EnFEnF 4(Ele2) )2, (EsEn)y, (Fs),,)%, ((Ex)y, (ExF2),,)°

( )
EE 23) 5, (F3),, § (( 311532)04(E21F2)v4)2, (Es'Es),, (F3),,)7,

)%,
(15211‘7215121':1)L4 (E13E23) s [(E21F2E12F1)U47(EﬁlEn)UJ,
(EaF2Enk),,, (F3),,), [(E13E23) o (E23),,]s [(E3En),,, (ExF2),,]s
(
(

" >(E12) >

L.

IS

(4.3)

Ex),,, (EnFEnh), ](E13E23)v4,

E;! Esz)w (E13E23),,4](E21F2E12F1)f4-

Next, considering ®@g,7,, : I'2(3), — I2(3),,, it follows that I'»(3), has a
finite presentation with generators (E3 F3E3Fy),., (EnnEsn),., (En),,, (Ey'Ex),,
(E31F3),, and (F. )v, and with the following relators

(
(
(
(
|
[
[
[

(5.1) ((EnF5),,)% ((F2),,)’)

(5.2) ((ElesElsFl)L (E31F3) )%, (EnEn), (F2),)% (Ex),(EnFs),)’,
(Ex),, (F2),,)%, ((E211E23) (EnFs),)? (Bs'En),(F2),,)%
((E31F3) (F )LS)

(5.3) [(E31F3E13F1)b5,(Ele32)U5], (EssF3EF),,, (Es'Ex), ],

(Esi FEF),,, (F2),], [(E12E32)L5,(E32)‘L [(EnEx),,, (E31F3),],
[(E5 )LS,(E31F3E13F1) J(EnEs);,
[(Ex! E%),., (EnEn), ](E31F3E13F1)

Next, considering ®s,s,7;, : [2(3),, — F2(3)L6, it follows that I'5(3), has a
finite presentation with generators (E32F3E23F2)06, (E21E31)u(,7 (E31)v(,7 (E1_21E13)06,
(ExF3),, and (F1), : and with the following relators
(6.1) (ExF3),)° ((F1),,)% ) ) )
(6.2) ((E32F3E23F2),)6(E32F3)vé) » ((ExEs1), (F1),,)7 ((B31),, (Exf3),)",
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((E31), (F1),,) ((EleEls)vs(East)vﬁ)z: (ER'Ens), (F),,)’,
((Esta) (F )LG)

(6.3) [(EzzeEstz)%,(EzlEu) |, (EnF3EnFy),, (ER'En),,
(EnF3Enk),, (F1),], [(E21E31)L6,(E31)6} [(E21E31),,, (E32F3),),
[(E31 )Lé,(E32F3Ez3F2) J(ExE3),,

[(Ex! En),,, (EaEs), ](E32F3E23F2) 26"
Finally, considering <DT31721 I(3), — Ia(3)
finite presentation with generators (E21F2E12F1E3’11E32)
(Ey'Ex3),,, (E3'En),,, (EnF),
(7.1)
(7.2)

it follows that I'»(3), has a
v (EsIFEFEy' Exs),
and (E31F3)U7, and with the following relators

v7°

17’ v7

((Elez) )% ((E31F3) 0%

((E21F2E12F1E31 Ex),, (Elez) ), ((E31F3E13F1E{11E23)U7(E31Fs)v7)2,
((Esi'Ex3),, (EnF), ), ((Ez11E23)v7(E31F3)U7)2, (Es'Es),, (EaF2),)°,
((E5)' E32)b7(EalF3) )2, (EnF), (EsiF3),)°

(7.3) [(Esi FEnnF E5)! E32) (E31F3E13F1E{11E23)v7], [(E21F2E12F1E3]1E32)U7,
(E3i'En),, ), [(E21F2E12F1E3’11E32)v (Es1F3),,), [(EnFEsFE;' Ey), ),
(Ei1E23)E7]> [(E31F3E13F1E{11E23) , (EaF2),, ],
[(Esi'Ex),,, (EnFEnFE5' E),, ](E31F3E13F1E21 E23)L7,
[(E3’11E32)U7, (E31F3E13F1Ei1E23)v7](E21FzEle1E31 E32)U7-

4.3. On edge relations

Note that
I203) (61,00) = T2(3) (01,000 = T2(3) (53, 00)
203) (1,05) = T2(3) (01,09) = T2(3) (55, 05)
r2(3)(uz,r3) = r2(3)(r2,%) = r2(3)(v3,vs)7
2(3) 1,000 = T2(3) (01,0) = T203) (5,09
F2(3)(vz.v5) = r2(3)(v2,v7) = r2(3)(vs,v7)7
123) (5, 00) = T2(3) (03,00 = T2(3) (04, 0)

It follows that T'(3),, ,,)» T2(3)(,,.0) and I'2(3) are generated by

U1,04 Uz,L’4)
1 0 2 1 00 1 0 0
01 0}, 01 21, 01 0
0 01 0 0 1 0 0 -1

Then we have the following edge relatlons
* (En),, = (Eni3),, = (EnzEns), (E23) )
* (Ex),, = (Exn),, = (En),,
* (B),, = (F3),, = (F3),,
Next, considering ®s, : I'2(3),, ,,) = T2(3),, 4y, it follows that T'5(3)
I2(3),,05) and I2(3),, ,,) are generated by

v1,03)°

(v3,0s
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1 20 100 1 0 0
o1 0of, [o1o0], [0 =10
00 1 02 1 0 0 1

Then we have the following edge relatlons
* (En), = (En),, = (Enkn), (E32)L5,
* (En)y, = (E32),, = (E3)yy
 (B), = (), = (F),.
Next, con51dermg D5, : 1“2(3)(1,1702) — 1"2(3)(
I5(3) (4,00 and Ta2(3) are generated by

, it follows that T"»(3)

v2,03) (v2,03)°

v3,06)
1 0 0 1 0 0 -1 0 O
21 01, 01 01, 0 1 0
0 0 1 2 0 1 0 0 1

Then we have the following edge relatlons
* (Ea),, = (En),, = (Ex1E31), (Es),,
* (Ea), = (E31),, = (E31),,
© (F1),, = (F),, = (F1),,-
Next, considering ®r,, : I5(3),, ,,) — I2(3),

v,0e)> 1t follows that T'5(3)
I2(3) 4,4,y and T2(3) are generated by

v1,06)°

(ve,v7)
1 -2 2 1 0 O 1 0 0
0o 1 0], 0o -1 21, 01 0
0 0 1 0 -2 3 0 2 -1

Then we have the followmg edge relations
* (En), ' (En),, = (ER'En),,
(E31F3) (E31F3E13F1521 Ey), (E21 Ex), (EnF),,
(EnFREnF E5' Ex), (E;)! E32)L7 ,
* (Ex),, (F3),,(E2),, (Fz) w = (EnFExP),
— (Ey E32)07(E31F3)U7 (E5'Ex3),, (Ex1F2),,
* (En), (F3), = (EnF3), = (E3'En), (E3F3),.
Next, considering @, 75, : I2(3) 4, 1,) = T2(3)(4y,05)» it follows that T'5(3)
I2(3) (4y,0,) and T'2(3) are generated by

v2,05)?

(vs, v6)
1 0 O -1 0 2 1 0 O
-2 1 21, 0O 1 0], 01 0
0 0 1 -2 0 3 2 0 -1

Then we have the following edge relations
* (Ea), (E23) (E211E23) vs (E211E23)v7’
* (En),,(F3), (E13)02(F1)U2 = (Es1 F3EiF),,
= (Es11'7315131”1E{111523)v7 (E{llEB),;l,
* (Ba1),, (F3),, = (E31F3),, = (EaiF3),,.
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Next, considering  @s,s5,75, 1 [2(3) 1) = T2(3) (4,0, 1t follows  that

12(3) (55,00 T2(3)(1s,0p) and I2(3),, ,,) are generated by

1 00 -1 2 0 1 0 0
0 1 01, -2 3 0], 2 -1 0
-2 21 0 0 1 0 0 1

Then we have the following edge relations
* (En),, (En),, = (E3'En),, = (E5'Ex),,,
* (Ex) 3(F2) 3(E12)v3(F1)U3 = (EnFEnF),,
= (Ez1F2Ele1E3711E32)v7 (E{llEsz);l,
* (En),,(F2),, = (ExF),, = (EnF),,.

Next, considering @77, : T2(3),, 1) = T2(3) 45.4)» 1t follows that I'5(3),, )
is generated by
-1 -2 2 1 0 0 1 0 O
o 1 of, | =2 -1 2|, o1 o
-2 -2 3 -2 =2 3 2 2 -1

Then we have the following edge relations
* (Enkxn), (E31F3E13F1) (E31)L6(Fl) (E32F3) (E121E13)b6,
* (En), (Fz) (E31F3), (E211E23) = (EaE31),, (E32F3E23F2)
* (Ex), (E31F2) (En)yﬁ(E,zze)L
Next, considering D, 1,1 1 [2(3)
I2(3) 0 18 generated by

[

= I2(3) 4,0 it follows that

(v1,02)

-1 2 -2 1 0 0 1 0 0
23 2|, =23 2, [2 -1 2
0 0 1 -2 2 -1 0 0 1

Then we have the following edge relations
* (EizEn), (E21F2E12F1)
(E21E31) (E31),, (Fl) (E32F3) (E32F3E23F2) (Ep E13)L6,
. (523)“(1:3)04(E21F2)U4(E311E32) (E21E31) (E32F3E23F2) ,
* (Exn),,(Euka),, = (Enks), (E31) (E32F3) (E32F3E23F2)

Finally, considering (DS]SszTsz F2(3) (o1,0) —>F2(3)(U4‘vs), it follows that
I2(3) 4,05 1s generated by ' '
3 -2 -2 3 -2 =2 -1 2 2
2 -1 =2, lo 1 o [, 0 1 0
0 0 1 2 =2 -1 0 0 1

Then we have the following edge relations
* (EiEn), (E21F2E12F1)
(Ele32) (E32),, (Fz) (E31F3)05(E31F3E13F1)05(E{11E23)

vs?



548 RYOMA KOBAYASHI

* (EizE), (E )or (F3), (B B2), (En F2EnnFy),, (E5) En),,
(E12E32) (E31F3E13F1)151,
* (EnEn), (E23) (Elez) (EnF2En k),

=(E12E32) (Ezz) (EﬂFs) (E31F3E13F1)5~

Therefore, using Tletze transformations, by Lemma 4.2, we obtain the
presentation for Proposition 4.1 (For more details see Appendix A). Thus,
Theorem 1.1 is valid when n = 3.

5. A simplicial complex on which T';(n) acts

Let I'24,(Z) denote the subcomplex of %,(Z) whose (k — 1)-simplex
{x1,x2,...,x;} is the set of k-vectors x; € Z" such that xj,xy,...,x; are mutually
different column vectors of a matrix 4 € I';(n). Note that for a vertex v, we
have v =¢; mod 2 for some 1 <i < n, where ej,e,...,¢, are canonical normal
vectors in Z". For a (k — 1)-simplex A = {x,x2,...,xx}, A € ['2(n) is an exten-
sion of A if each x; is a column vector of A.

In this section, we prove the following proposition.

ProproSITION 5.1. For n >4, the simplicial complex T2%,(Z) is simply
connected.

In a proof of this proposition, we will use the idea of Day-Putman [2] for
proving that %,(Z) is (n — 2)-connected.

5.1. Preparation

Let X be a simplicial complex. Then we define followings.

« For a simplex A e X, stary(A) is the subcomplex of X whose simplex
A’ € X satisfies that A,A’ = A” for some simplex A” € X. We also define
stary (@) = X.

« For a simplex A€ X, linky(A) is the subcomplex of stary(A) whose
simplex A’ € stary(A) does not intersect A. We also define linky (0) = X.

Here, we prove followings.

LemMa 5.2. For n =2, I'2%,(Z) is path connected.

Proof. We first consider the case n =2. Let vy = vg1e; + vopes € I'2%2(Z)
be a vertex. Then there exists a vertex v; = vjje; + vizep € [2%,(Z) such that
{vo,v1} € T2%,(Z). Note that vyjviy — voav1; = 1. By Euclidean algorithm, we
can suppose that |vg;| > |v11]. Similarly, there exist vertices v, = vy1€1 + vnen, - . .,
vk = vp1e1 + vgpes € T2 %2(Z) such that {v;,vip1} € ToBr(Z), |via| > |viy11] for
1 <i<k-—1 and v, =e; or e, for some positive integer k. Hence, [2%,(Z)
is path connected.

Next, we suppose n > 3. Let v,weI24,(Z) be vertices. Without loss of
generality, we suppose v =¢; and w=e¢, mod 2. Then there is an extension
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AeTls(n) of v. We write 47 'w=>"" ae;. Let Sy, =31 5|a;]. For 3<
i <n, if |az| < |a;, there is an integer u € Z such that |ay| > |a; + 2uaz|. Then we
have that Sguatw < Sqy and EfA™'v=ei. If |as| > |ai #0, there is an
integer u’ e Z such that |a; + 2u/ a,\ < |a;|. In addition, there is an integer
u"eZ such that |a; +2u'ay| > |a, +2u"(a; +2W'a;)|. Then we have that
SE“ BV At < S, and E}é EZ”IA v=e;. Repeating this operation, we con-
clude that there exists B e 1"2( ) such that Sp, =0 and Bv =¢;. Note that Bw
can be regarded as a vertex in [',%4,(Z). Hence, Bw is joined to e;, that is, Bw
is joined to Bv. The action of B~! brings the path joining Bw with Bv to the
path joining w with v. Thus, I'2%,(Z) is path connected. O

Lemma 5.3. Let AeT2%,(Z) be a (k — 1)-simplex. Then we have follow-

ings.
* starr,y,(z)(A) is isomorphic to starr,y, z)({e1,e,...,ex}) as a simplicial
complex.
* linkr,,(z)(A) is isomorphic to linkr,y, z)({e1,e2,...,ex}) as a simplicial
complex.

Proof. For A= {xi,x2,...,X}, suppose x; =e¢;; mod2. Let A€l (n)
be an extension of A. Then restrictions of the action of 4~! on I',%,(Z)

71|starr2,%n(z)(A) s starr,z,(z) (A) — starr,z,z)({ei), €i): - - € 1),
A71|1inkrm(z)(A) : linkr, ,(z)(A) — linkr,4,z)({ei1), €i2), - - - @i })

are isomorphisms as a simplicial map. It is clear that starr,y, z)({ei1),ei2),

ek }) and linkr,y z)({€i1),€i2), - - -,eix)}) are respectively isomorphic to
starr,z,(z)({e1,€2,...,ex}) and linkr,4 (z)({e1,e2,...,ex}). Thus, we obtain
the claim. ]

CoOROLLARY 5.4. Let AeT2%8,(Z) be a (k— 1)-simplex. If n—k > 2, then
linkr,4,z)(A) is path connected.

Proof. By an argument similar to the proof of Lemma 5.2, we have that
linkr,4,z)({e1,€2,...,ec}) is path connected. By Lemma 5.3, linkr,y, (z)(A) is
also path connected. ]

5.2. Proof of Proposition 5.1

We suppose n>4. Let o= {x;,{x;,xi11}|1 <i<k,xp1 =x1} be a loop
on I'2%,(Z). We show that o is null-homotopic.

For v =" vie; e Z", we define Rank(v) = |v,|. Let R, = max Rank(x;).

We first prove the next lemma.

LemMa 5.5.  For a 1-simplex {v,w} € T'2%,(Z) with Rank(v) = Rank(w) = 0,
we have {v,w} € linkr, 4 z)(en).
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Proof. Note that v# w mod 2. Suppose that v=e¢;, w=e¢ mod2 and
i < j. Since Rank(v) = Rank(w)=0, we have that v,w # e, mod 2. There
exists an extension 4 = (ajay - --ay,) € I2(n) of {v,w}. Let Sy =>",, Rank(a).
Note that S, is odd.

First, we consider the case S, =1. Note that Rank(q;) =0 for 1 </ <
n—1 and Rank(a,)=1. Put a,= Zl”:_ll 2b;e; + ce,, where ¢ = +1. Let B=

Elbr]zEsz Ebn IF(‘5 1)/2.

S Then we have BA = (a;---a,1e,). Hence, we have
that {v,w} = {a;, a;} € linkr, 4, (z)(en).

Next, we suppose Sy > 3. Note that there exists 1 </ <n—1 with [ #1i,j
such that Rank(a;) # 0. If Rank(a;) > Rank(a,), there exists an integer u € Z
such that Rank(a; 4+ 2ua,) < Rank(a,). Then we have that AE}, is an extension
of {v,w} and that Sagy < Sa. Similarly, if Rank(a;) < Rank(a,), there exists
an 1nteger u' € Z such "that Rank(a;) > Rank(a, + 2u/a;). Then we have that
AE}" is an extension of {v,w} and that S, g < S4. Repeating this operation,
we conclude that there exists an extension 4''€ Iy(n) of {v,w} such that S, = 1.
Therefore, we have {v,w} €linkr,4,z)(e,). Thus, we obtain the claim. O

When R, = 0, by this lemma, we have {x;, x;1} € linkr,4,z)(e,). Namely,
the loop o is in linkr,y,(z)(e,). Since linkr,y, (z)(e,) is the subcomplex of
starr, 4, (z)(e.) and starr, 4, (z)(e,) is contractible, o is null-homotopic. Therefore,
we next assume R, > 0.

Suppose that R, is odd. There exists 1 <i <k such that Rank(x;) = R,.
Since R, is odd, we have that x; = e,, X;+1 # e, mod 2 and Rank(x;11) < R,.
By Corollary 5.4, we have that linkr,4, z)(x;) is path connected. Since
Xit1 € linkp,y (z)(x;), there exists a path {y;, y;,{y;, y}|1 <j</—1} on
linkr, 5,(z)(x;) between x; 1 and x;;1 such that y; =x; 1 and y; = x;1 (see
Figure 1). Since R, is odd and Rank(y;) is even for each y;, there exists an

[
Vs Vi2 V3 Vi2
] !
Xi1 X Xit1 Xi1 X Xis
] ’
B Yi-2
iﬁ// Yiei
Xiq Xit

FIGURE 1. The case R, is odd.
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integer s; € Z such that Rank(y]) < R,, where y/ = y; + 25;x;.  We choose 5; =0
if Rank(y;) < R,. When y,; = e,, Vi+1 = ey mod 2, for an extension 4 € I'>(n) of
{xi, yj, yj11}, we have that {x;, ], ]} = {AEX’EA’,,“e,,,AES’ES{]'e,,AE,:’, En ey}
Hence {x;, yj, yj;1} is a 2-simplex which has an extension AEJEy". Therefore
we have that the path {y/,y,,{y/,yﬁl} | 1 <j<I—1} between x;_; and x; is
in linkr,z,z)(x;) (see Figure 1). Let o' = aU{y}, y;,{y/, yj } |1 <j<1—1}\
{x,-,{x,-,x,-il}}. Then o' is homotopic to o (see Figure 1). For all x; with
Rank(x;) = R,, applying the same operation, we conclude that Rg < R,, where
f is a resulting loop which is homotopic to .

Next, suppose that R, is even. There exists 1 < i < k such that Rank(x;) =
R,. Since R, is even, we have x; # e, mod 2.

Remark 5.6. Under the assumption n > 4, we may suppose that o satisfies
all of the following conditions.

* Rank(x;41) < Ry,

* Xij+1 # e, mod 2,

* X; 1 # x;11 mod 2.

Proof Without loss of generality, we suppose that x; = e; mod 2.

* Suppose that Rank(x;,_;) = R,. Since R, is even we have x;,_| #e,
mod 2. Without loss of generality, we suppose that x; | = e, mod 2.
There exists an extension A € I';(n) of {x;,x;_1} such that Rank(A4e,) <
R,. In fact, if Rank(A4e,) > R,, there is an integer ue€ Z such that
Rank(A4E{ e,) < R,. Then we choose AE{! in place of A as an extension
of {x;,xi_1}. (Note that Rank(d4e,) and Rank(A4E} e,) are not equal
to R,, since these are odd.) Let y = Ae,, and let o/ = aU{y, {x;_1, ¥},
{y, xi} \{{xi-1,x;}}. Then o’ is homotopic to «. Hence, considering o’
in place of o, we may suppose Rank(x;,_;) < R,. Similarly, we may
suppose Rank(x;y1) < R,.

+ Suppose that x;_; =e¢, mod2. Since Rank(x;_;) is odd we have
Rank(x;_;) < Ry. There exists an extension 4 € I';(n) of {x;,x;_1} such
that Rank(A4e;) < Rank(x;_1)(< R,). In fact, if Rank(A4e;) > Rank(x;_),
there is an integer u € Z such that Rank(4E%e,) < Rank(x;_;). Then
we choose AEY, in place of A as an extension of {x;,x;_1}. (Note that
Rank(A4e;) and Rank(AE}e;) are not equal to Rank(x;_;), since these
are even.) Let y = Aey, and let o/ = aU{y, {x;—1, v}, {y, x;} }\{{xi=1, x:} }.
Then o’ is homotopic to «. Hence, considering o’ in place of «, we may
suppose Rank(x;_;) < R, and x;_| # ¢, mod 2. Similarly, we may sup-
pose Rank(x;11) < R, and x;.1 # e, mod 2.

* Suppose that Rank(x;41) < R,, X;+1 # e, mod2 and x;_; = x;;; mod 2.
Without loss of generality, we suppose that x;;; =e; mod 2. There
exists an extension A4eTl,(n) of {x;x;_1} such that Rank(Ae;) <
Rank(x;—1)(< Ry). In fact, if Rank(4e;) > Rank(x;_;), there is an integer
ueZ such that Rank(AEj e;) < Rank(x,_;). Then we choose AE}, in
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place of 4 as an extension of {x;,x;_1}. (Since Ae; # x;, X;+1,€, mod 2,
we need the assumption n>4.) Let y= Aes, and let o =aU{y,
{xi, v} {y, xi ) \{{xi=1,x;}}. Then &’ is homotopic to . Hence, con-
sidering o’ in place of «, we may suppose that Rank(x;4) < R,
Xi+1 £ e, mod 2 and x;_; # x;;; mod 2. O

We now suppose that o satisfies the conditions of the above remark.
Suppose that x; =e;, x;-1 =¢; and x;1) =e¢, mod 2, where s, ¢t and u are
mutually different and not equal to n. Since {x;,_1,x;} is a I-simplex in
I%,(Z), there is an extension BeTp(n) of {x; 1,x;}. We write B 'x;y| =
> aje;. It follows that there exist an even integer b, and an odd integer b,

suéh that a,b, — a,b, = gcd(ay,,a,). Then we have that

(au/gcd(a,,,an) bu>‘1 (a) B ( gcd(au,an)>

an/ged(ay, an) - by an 0 '

Let C eI';(n) be the matrix whose (u,u) entry is a,/ged(ay,,a,), (n,u) entry is
ay/ged(ay, ay), (u,n) entry is b,, (n,n) entry is b,, other diagonal entries are 1
and other entries are 0. Then if we set 4 = C~'B~!, it follows that Ax; = e,,
Ax;_1 = ¢, and Rank(A4x;1) =0.

Since {e;, Ax;11} is a l-simplex and Rank(e;) = Rank(4x;:;) =0, by
Lemma 5.5, we have that {ey, Ax;1} €linkr, 4, (z)(e,). Therefore, we have
that e, e linkr, 4, (z)({es, 4x;11}). In  addition, it is clear that e,€
linkr,4,z)({es,;e;}). Hence, we have that A le, € linkr, »,z)({xi, Xi+1}) (see
Figure 2). Then, there exists an integer / such that Rank(x!) < R,, where
x{ = A 'e,+2Ix;. We have also that x/ € linkr,,(z)({xi,xi+1}) (see Figure 2).
Let of = aU{{x/}, {x}, i1} }\{x;, {x;,x;+1}}. Then o' is homotopic to o (see
Figure 2). Similar to the case R, is odd, for all x; with Rank(x;) = R,, applying

-1
A en A en
—>
Xi1 X Xiv €, € Ax;.y
¢ - -1
A e +20x, A e, +2Ix,
—>
X X; Xiv1

FIGURE 2. The case R, is even.
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the same operation, we conclude that Ry < R,, where f is a resulting loop which
is homotopic to .

Repeating this operation until R, =0, we conclude that the loop o on
I'%,(Z) is null homotopic. Thus, [,4%,(Z) is simply connected.

6. Proof of Theorem 1.1

We first prove the next proposition.

LemMma 6.1. For any n>4, Ty(n) is isomorphic to the quotient of

s I'y(n), by the normal subgroup generated by edge relators.
<i<n !

Proof. For a (k—1)-simplex A= {xi,x2,...,xc} €2%,(Z) with x;
ejjy mod 2, let 4ely(n) be an extension of A. Then we have A7 A
{ei1), €i2); - -+ €} Therefore, we have

Fz(l’l)\rgﬂn(Z)

= {{ei(l),ei(z),.. . ,el-(k>} [1<k<nl<i(l)<i2)<---<i(k) <n}.

It is clear that I'y(n)\I'2%4,(Z) is contractible. Note that the action of I';(n) on
I %,(Z) is without rotation.
We first set followings.
T ={(e,e) |2 <i<n}.
*E={(ese) |1 <i<j<n}.
* F={(eeer) |1 <i<j<k<n}.
* For ee E, we choose g, =1, and write g. = g; when e = (e;, ¢;).
* For 7 = (e,,e,,ek) eF, let g. = gygugy-
Then, since I':%,(Z) is simply connected, it follows from Theorem 2.1 that I',(n)

is isomorphic to the quotient of * Fz(n)ei>( * <éi;>> by the normal
subgroup generated by followings \' ='=" I<i<jsn
(1) gy;, where 2 <i <n,
(2) g,/IXé gyX, ', where 1 <i<j<n and X €Ta(n)
(3) g,9", where e F.
Since g, =1, the relation g,g;" is equivalent to the relation g;g; = gy if
t = (e;,¢j,ex). By relations g;; =1, we have the relation g; =1 for 1 <i<
j <n. Thus, we obtain the claim. O

€i¢j)

1

Note that for e = (es,e;), I'»(n), is generated by (E;), and (F;), for
1 <i,j<n with j#s,¢t. Hence, we have edge relations

‘ (Eij)es = (Eij)e,’

* (), = (£)),,

Since we already obtained presentations of I'»(2) and I'z(3), from Lemma
6.1 and Remark 4.4, we obtain the presentation of I';(n) for n > 4, by induction
on n.
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Thus, we complete the proof of Theorem 1.1.

Appendix A

In this section, we check Tietze transformations of Subsection 4.3.

Let I' denote the quotient of L 71"2(3)0_ by the normal subgroup generated
<i< !

by edge relators. By the edge relations of Subsection 4.3, we have the following

relations, in T,
(1) * (Ex3),, = (E23),,,
. = (E3)

(

(

(

(

(

(

(

(FZ) = (F2)y,
(ElezElel) = (Ea),,(F2),, (E12),,, (F1),,,
(EvsEx),, = (513)UI(E23)01,
(E23),, = (E23),,
(Es'En),, = (Ea1),, (En),,,
(EaF2),, = (E2),, ( 2) s
(F3),, = (F 3) 05
(Es1 FsEiFy),, = (Es),, (F3),, (Ens),, (F1),..

: 515121'532%5 (Elz) 1(E32)1;1:
(E5'Ex),, = (En),, (Ex),,,
(E31F3),, = (E3), (F3)W
( =(F2)vl,
(ExxF3Exh), = (Ex), (F3), (Ex), (F2),,
EE21E31)U6 (EZI)UZ(EM)UZ:
(
(
(
(
(
(
(
(

EREn), = (En), (E3),,.,

ExFs), = (Ex) l(F3)Ul7
Do = (F1),,

1'5211725121’1E3_11E32)U7 =

E5'Ex),, = (Ex), ( 23)u,5
E31E32),,7 (Es),, (Ex),

Enk), _(Em)( ),
* (Ea1F3),, = (E31), (F%)Ll

10

-1
(E21),,(F2),, (E12),, (Fl)vz(En)vzl(Esz)w
Ey FEiFIEy! Ez%) = (E31),,(F3),, (E13),, (F1),,(E21),, (E23),,s

Using Tietze transformatlons we obtain a presentation of [' whose generators

are (En2),,, (E13),,, (E23),,, (E32)v|> (F2),,> (F3),,> (Ea1),,, (E31),, and (F1),,.

To
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avoid complication of notations, we rewrite X = X;,. Then we have a finite
presentation of [ with generators Epn, Ey3, Enxs, E3, Fz, F;, E»;, E5 and F, and
with the followmg relators
(1.1) F7, Fs:
(1.2) (Enk)?, (EiFs)?, (Enk)?, (EnFs)’, (Enk)?, (EnF)’, (FF)7
(1.3) [En2, Ens), [En,Exnl, [EnFs), [Eis,Exnl, [EiF)l,  [Ex, EnlEL,
[E32,E13]E122,

(2.1) F
(2.2) (EI%FI) . (ExF)?, (ExR), (EnFs)’, (FiF)?,
(2.3) [E217Ezs] [Eat, Esll, [Ea, Fs), [Eas, Fil, [Evs, En)ES;, [Ear, Ex)E3,
(32) (Enk)’, (EnF)*, (FiF)’,
(3.3) [Es1, Exnl, [E31, P2, [Ex, Fil, [En, E31|ES, [Ean, Exn)E3,
(4.3) [E5' Exs, EsExs)(Est F2EnFy)?,
(5.3) [E21lEz3,E12E32}(E31F3E13F1)2,
(6.3) [Ep E13,E21E31](E32F3E23F2),
(7.3) (a) [E21F2E12F1E31 532,E31F3E13F1E21 Ex),
(b) [Es'Ens, ExyF>EnFLE5)' Exy|(Es1 FsEis FyEyy! Ezg) ,
(€) [E;'Exn, E3\F3E3F) Es) Ex3)(Ex FoEn Fy E5y! E)*.
Let X, Y and Z be

X = ((FF)*, (EsF)*, (EyF)*, [Eg, Fi] 140, .k} = {1,2,3}},

Y = {[Ej, Exl, [Ey, Ey] | {7, ), k} = {1,2,3}},
Z = {[Ey, EulEg; | {i, j.k} = {1,2,3}}.

We show that relators (4.3), (5.3), (6.3) and (b), (c) of (7.3) are obtained from

c__o

relators X, Y, Z and (a) of (7.3). In transformation, the notation “=" means
conjugation. An underline means applying relators Y, Z or (a) of (7.3).

LemmA A.l. Under relators (1.-), (2.-), (3.-) and con]ugatlon
(1) the relator (a) of (7.3) is equivalent to the relator (Elelj Ek] E]/CElkEk1 ) ,
(2) relators (b) and (c) of (7 3) are equivalent to the relator Ekj EyE; E
EEy; ElEkElk EklElk Ey,
where (j, k) = (2,3) or (3,2).

Proof. (1) At first, we delete words F), F, and F3, using relators X, and
then transform as follows.

[EnFEyF E By, En FeEw FE; Ey]
= (EnFEyF Ef Eyy) (En FREiFIE; ! E)
Y
(Eg'En R E;; FEL ) (Ey En FLE F E)

J!
Y
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= EpEyj By EwBpEy - B B By - Ey EyEg
Y
= EpEj'E' - ExEv Ep - E'E' Er)' - ExEvE!
Y
= EpEj'Ey' - ExEwEy'Ep - Ey'Ej' - EpEvE!
Y

= EpEj; E ExEvcEy' - EqEy E Ex B Er
= (BpEj B ExEvE')’.
Thus, we obtain the claim.
(2) Similarly, we delete words F;, F, and F3 as follows.
Eji Eje, EnFEyiFyEyy' Eyg)
= E; ' Ej - By En FLE ' BE;" - E;y' Ey - En FEF E' Ey
Y Y

Ey - EnEg EyEy' - Ei' - By By By,

el
X ok
(Ex1 FiEveFLEy Ey)?
= ElekElkFlE,{lE;k . ElekElkFlE,‘TlEjk
. EnEyR EpEy' - EqEy Eq' Ey.
We next calculate
[E! Ex, En FyE\FyE Exj) (Exi Fe Eve FLEjy ' Ee )’

= Ey EnEn By EyE; By Ej Ejy Ey - En By EnEy!
Y VA

- En By By Ex
_ -l 11 -1 -1 —1
= Ly EyEjy By EgEy EnEwEy B By Ex.-
Thus, we obtain the claim. O

ProPOSITION A.2. Each of relators (b) and (c) of (7.3) is obtained from
relators X, Y, Z and (a) of (7.3).

Proof. Let (j,k)=1(2,3) or (3,2). We calculate

| = Ej By By BB By - EpEy By g Eve Eyy|
Y
= Ej Ejj' B Ev ExEf'Ej E'Ey ExEE!
VA z
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= EjEw EyEg By By ExEy' Eg' Ey Ev Egy|
zZ
= EpEwEy EyEE; ExEj' Ey' EnE By
= EyE\E;, Ey E;' Ej;' ExEv E)' Ej EEy!
Y Y
= EyEyE; ExEy' E;' ExEvEp Ef EvcEp!
VA

= (ExEwEy EaEy By ) EyEyE; ' ExEy Eyj' EnEy ' EvEyy EvEyy|
(a) of (7.3)

= ExEvEy EfEy E Ex EwE ExEy Ej EnEy EnE EwE!

= E;' - ExEvEy EnE;) Ey En EwE (EpEyj' EyE;)
- Ep B B EnEy EnEg EEy' - Ey

= (Eg' ExEwEq EnEy;') EyEy ExEg' Ef EnEy Ey B Ev g Eyg
(a) of (7.3)

= EyE;'ExEy' E\' Ej Ey EwEy EwEy' Ey

= Fi - EyEyE; ExEy E; EnEy EvEy EwEy' - Fi
= Eg' EyEj; By EgEy; En By Ey! En Eq Ega.

By Lemma A.l1, we obtain the claim. O

PropoSITION A.3.  Each of relators (4.3), (5.3) and (6.3) is obtained from
other relators and conjugation.

Proof. We first consider relators (4.3) and (5.3). Let (j,k)=(2,3) or
(3,2).
[EiTlEfkvEl./'Ekj](ElekElkF1)2

= Ey'Ep - By Eyj' - By By -EyEy - Exi FeEucFy - B FeEnycFy
Y Y

= Ei EnEjj By By By EyEgEa Byl B Ep!

= Fi(EnEy Eq Ey Ey By Ey ExE; ' EyEy) Fy

= B Bk EvEy By EvEg' EycEj Eyj' By

= (ElglEleﬁlEj;lEkjEl;lEilEjkEkaE/ClEﬁclEkl)71~
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We next consider the relator (6.3).

[ER'Er3, Esi Exy ) (EnFsExsF>)*

=ER'En - E3'Es)' - ER'Ers - EaEs) - Eypy FsEnsFs - ExyF3ExsFs
Z

= E EnkEy) By Eyy EisEs) Ex By Eyy| ExnEyy'
Y

= E5EL En E5 ' ES ER EnE; ) ExnEy By Exp
Z
= FEjEp EZBIE;llEiI EIEIE]3E3T11E32E2731E21E32
Z
= EEnEy'Ey Ey ER Ers E5 ' ExnEy By Exp
Z
= EnEnEy EnER Exy ER Eq EnEsy Ex Ex
= E1721E2731E1731 EilE32E2}lE2| EypEE ) E;llEgl
VA 4
= £y Es ER' Ey Exy Eyy' ExEry ExERE;) Eny
Z Z Z
= Ey EEy Esy' Epy' EsErs EnEyy E5 Ep Eny
Z Z
= £y EEy Epy ExER E Es Eg! EnEp Ex
Z

= E£1E13E§]1E3721E23E131E31E32E131E21E]31E21 .

By Lemma A.l, each of relators (4.3), (5.3) and (6.3) is obtained from relators
(1.-), (2.-), (3.-) and (b), (c) of (7.3). Thus, we obtain the claim. O
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