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REDUCTION OF A FAMILY OF IDEALS
Tomasz Robpak

Abstract

In the paper we prove that there exists a simultaneous reduction of one-parameter
family of m,,-primary ideals in the ring of germs of holomorphic functions. Moreover,
we generalize the result of A. Ploski [8] on the semicontinuity of the Lojasiewicz
exponent in a multiplicity-constant deformation.

1. Introduction

Let R be a ring and [ an ideal. We say that an ideal J is a reduction of I
if it satisfies the following condition:

J < I, and for some r >0 we have I'"! = JI".

The notion of reduction is closely related to the notions of Hilbert-Samuel
multiplicity and integral closure of an ideal.

Recall that if (R,m) is a Noetherian local ring of dimension n and [ is an
m-primary ideal of R, then the Hilbert-Samuel multiplicity of I is given by the
formula

!
e(I) = kILIg % length, R/I*.

For the multiplicity theory in local rings see for example [7] or [4].
Let I be an ideal in a ring R. An element x € R is said to be integral over 1
if there exists an integer n and elements a;, € IX, k =1,...,n, such that

X"+ax" '+ 4aq,=0.

The set of all elements of R that are integral over [ is called the integral closure
of I, and is denoted I. If I =1 then [ is called integrally closed. 1t is well

known that I is an ideal.
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The relationship between the above notions is given in the following
Theorem due to D. Rees:

THEOREM 1 (Rees, [4, Cor. 1.2.5, Thm. 11.3.1]). Let (R,m) be a formally
equidimensional Noetherian local ring and let J < I be two wm-primary ideals.
Then the following conditions are equivalent:

1. J is a reduction of I;

2. e() e(J)

3.1=

If R/m is infinite, dim R = d and [ is an m-primary ideal of R then any d
“sufficiently general” elements of / form a reduction of /. More precisely we
have the following result

THEOREM 2 ([7, Theorem 14.14]). Let (R, m) be a d-dimensional Noetherian
local ring, and suppose that k = R/m is an infinite field; let I = (uy,...,us) be
an m-primary ideal. Then there exist a finite number of polynomials D, € k[Z;;
1<i<d,1<j<s], | <a<vsuch that if y;=> ayu;, i=1,...,d and at least
one of Dy(a;;1 <i<d, 1 <j<s)+#O0, then the ideal (y1,...,ys)R is a reduction
of I and {y1,...,yq} is a system of parameters of R.

In fact, the above theorem could be generalized to arbitrary ideals in R.
Recall that if (R, m) is a Noetherian local ring, the analytic spread of I (denoted
/(I)) is the Krull dimension of the fiber cone of I:

R[I] ~R® I o g
mR[l1] T m mi?

where ¢ is a variable over R.

THEOREM 3 ([4, Theorem 8.6.6]). Let (R, m) be a Noetherian local ring with
infinite residue field and I an ideal of analytlc spread at most . There exists a non-
empty Zariski-open subset U of (I/mI) such that whenever xi,...,x;el with
(x1+ml,....,x;+ml) e U, then (x1,...,x;)R is a reduction of I.

Now, let (0,,m,) be the ring of germs of holomorphic functions
(C",0) - C. From Theorem 3 we see that, if 7 = (f1,..., f,)®, and / denotes
the integer /(I), then the ideal

(Z ajifis .. Zag,f/) O,

is a reduction of I for generic coefficients a; € C.

If g=1(g1,..-,9m): (C",0) — (C™,0) is an analytic map germ, then we
denote by (g)0, the ideal of O, generated by gi,...,g,. The aim of this note
is to study the following
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QuestioN 4. Let [:=(F)0, and [, := (F;)0, =cm, be a family of
ideals given by a holomorphic map F = F,(x) = F(x,) : (C" x C*,0) — (C™,0).
Assume that the analytic spread of I, is constant in some neighbourhood of
0 e C*. Denote this constant value /. Does there exist a linear map 7 : C" —
C’ such that J, := (mo F,)0, is a reduction of I, for ¢ close to 0eCk?

By Theorem 3, the answer is immediate if /(I) = /(I;) in some neighbour-
hood of 0 e C¥. Tt turns out that the above condition is fulfilled in multiplicity-
constant families of m,-primary ideals. This fact is implicitly stated in the proof
of the principle of specialization of integral dependence given by B. Teissier in
[11]. We will here recall this argument.

PROPOSITION 5. Let I be as in Question 4. If I, are w,-primary ideals and
the function t — e(l,) is constant, then {(I) = /(I,) = n in some neighbourhood of
0 e Ck.  In particular, the answer to Question 4 is positive in this case.

Proof. By [4, Corollary 8.3.9] we have ht(/) < /(I) < dim R for any ideal
I in Noetherian local ring (R,m). Thus /(f;) =n since I, are m,-primary.
Let 7:C" — C" be a linear map such that (zo Fy)@, is a reduction of I.
Put J,:= (no F,)0,, for all . We have e(J;) <e(Jy), since the multiplicity
e(-) is upper semicontinuos. Moreover e(I;) < e(J;), because J, = I;. Summing
up

e(ly) = e(Jo) = e(Jy) = e(l}) = e(ly).

Therefore J, = 1, by Rees theorem. From this and [11, Corollaire 1.2, p. 132] we
deduce that J =1 and consequently /(1) = n. O

In the next section we get as a corollary that in a multiplicity-constant family
of ideals the Lojasiewicz exponent is a lower semicontinuos function. A. Ploski
proved this result under the additional restriction m = n.

Example 6. Let F:(C*x C,0) — (C,0) be given by F(x,y, ) := (x°, y°,
£xy). By the main result of [2] we have /((F)(3) = 3. However, if z: C* —
C? is given by n(u,v,w) = (u+w,v+w) then moF, generate a reduction of
(F,)0, for any ¢. Indeed, if we put I, := (F,)05, J; := (n o F,)0, then I? = J,I,.

Observe that the family (F,)®, is not multiplicity-constant. We have

10 ¢ #0,

e((F)02) = { 25 1=0.

Our main result is given in the next theorem. It is a positive answer for
Question 4 in case of one-parameter families of m,-primary ideals.

THEOREM 7. Let F = Fi(x) = F(x,1): (C" x C,0) — (C™,0) be a holomor-
phic map.  Assume that (F;)0, is an mw,-primary ideal for all t. Then there exists
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a complex linear map n: C"™ — C" such that for all t the ideal (no F,)0, is a
reduction of (F;)0,.

We give the proof of Theorem 7 in Section 5. It is based on some geometric
property of Hilbert-Samuel multiplicity given in Section 3. In Section 4 we recall
the notion of elementary blowing-up.

Acknowledgements. We would like to thank the anonymous referee for
pointing out the connection between the problem considered in the paper and the
notion of analytic spread.

2. Semicontinuity of the Lojasiewicz exponent

Let (R,m) be a local ring and let I be an m-primary ideal. By the
Lojasiewicz exponent ¥ (I) of I we define the infimum of

{£ m? < I_q}.
q

It was proved in [5] that if F: (C",0) — (C™,0) is a holomorphic map with an
isolated zero at the origin and I := (F)0,, then #(I) is the optimal exponent v
in the inequality

|F(x)] = Clx[",

where C is some positive constant and x runs through sufficiently small neigh-
bourhood of 0e C".

Lemma 8. Let (R,m) be a Noetherian local ring. If I is an m-primary
ideal of R and J is a reduction of I then ¥ (I)= ZL(J).

Proof. Obviously #(I) < #(J). Assume that m? < I4. Since J is a
reduction of 7, then also J¢ is a reduction of 79 [4, Prop. 8.1.5]. Thus J4 =14
by Theorem 1, which gives m? = J4. This proves the inequality #(J) < Z(I)
and ends the proof. Ul

COROLLARY 9 (A. Ploski for m =n, [8]). Let F:(C" x C¥,0) — (C",0) be
a holomorphic map. Put I, := (F,)0,. 1If the function t — e(l,) is constant and
finite then the function tvw— ZL(I,) is lower semicontinuos.

Proof. By Proposition 5 and Theorem 2 there exists a linear map
n:C" — C" such that J,:= (no F,)0, is a reduction of I, for all 7. Thus
L(J) =2L(I,) and e(J;) =e(l;) by Theorem 1 and Lemma 8. Consequently
t— e(J;) is constant and finite and the assertion follows from the case m =n
proved by A. Ptoski. O

More direct proof of this result we will give in our forthcoming paper [10].
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3. Improper intersection multiplicity

Let V, Z be a pair of analytic sets defined in some neighbourhood of p € CV
and assume that p is an isolated point of VNZ. If dim, V' +dim, Z=N
then it is well known how to define the intersection index i(V - Z,p) of V and Z
at p (see e.g. [3]). Now, assume that dim, V' +dim, Z < N and Z is smooth
at p. In this case the intersection index of V' and Z at p was defined in [1] by
the formula i(V - Z; p) = minw i,(V - W; p), where W goes over all analytic sets
defined in some neighbourhood of p such that

+ ZNU < WNU for some neighbourhood U of p,

+ p is an isolated point of V' N W,

* dim, V' +dim, W = N.

Let f:(C",0) — (C™,0) be a holomorphic map with an isolated zero.
Using the above definition one may define (see [9]) the so-called improper
intersection multiplicity of f by the formula

io(f) := i(graph f - (C" x {0}"); (0,0)).

We recall one more definition. Let V' be a germ of an analytic set at
p e C”. Then the (Whitney) tangent cone of V is the set of all v e C" such that
there exist {p,} = V, {t,} = C with p, — p and t,(p, —p) — v. For the map f
as above by C; we will denote the tangent cone of the germ of the image of f
at the origin.

The following observation is due to S. Spodzieja.

Tueorem 10 ([9]). If n: C™ — C' is a linear map such that ker 1N C; = {0},
then mo f has an isolated zero in the origin and iy(f) = io(mo f). If additionally
I=n then iy(f) =e((mo f)0O,). Moreover, the number iy(f) depends only on the
ideal generated by the components of f.

In what follows we will write iy(7) := io(f), where f = (fi,..., fm) are any
generators of an my,-primary ideal / in ¢,.

CoroLLARY 11. If I is an wy-primary ideal in O, then iz(I) = e(I).

Proof. Let I =(fi,...,fm)0,. By Theorems 2 and 10 there exist linear

combinations g; = Y _a; f;, i =1,...,n such that J = (g1,...,9,)0, is a reduction
of I, {g1,...,9n} 1s a system of parameters of @, and iy(I) =iy(J) = e(J).
From Theorem 1 we get e(I) =e(J). This ends the proof. O

COROLLARY 12. If n: C"™ — C' is a linear map such that ker 1N C; = {0},
then the ideal J generated by mo f is a reduction of I.

Proof. We have J < and e(J) =e(f). This and Theorem 1 give the
assertion. =
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4. Elementary blowing-up

Here we recall the notion of an elementary blowing-up after [6].

Let U< C" be an open and connected neighbourhood of 0e C”"; let
f=Uo,.--,fm) #0 be a sequence of holomorphic functions on U. Put
S={xeU: f(x) =0} and

E(f)={(x,u) e UxP": fi(x)uj = fi(x)u;, i,j=0,...,m},

where u=[ug: -+ : uy,] e P".
Let Y be the closure of E(f)\(S x P™) in U x P”. The natural projection

n:Y —-U

is called the (elementary) blowing-up of U by means of fy,..., fn. The analytic
subset S is called the centre of the blowing-up and its inverse image n~'(S) < Y
is called the exceptional set of the blowing-up.

PrOPOSITION 13.  Under above notations we have:

1. Y is an analytic subset of U x P™;

2. m is proper, its range is U and the restriction my\,-1(s) is @ biholomorphism
onto U\S;

3. Y is irreducible;

4. The exceptional set n='(S) is analytic in U xP™ and it is of pure
dimension n — 1.

Proof. For items 1. and 2. see [6, VIL.5.1]. Item 3. follows from our
assumption that U is connected. For the proof of 4., let us consider the analytic
map

F:UxP">5 (x,u) — (f(x),u) e C" x P

Let yo, ..., ym be coordinates in C"™'. If we denote by 7,41 : IT,11 — C™' the
blowing-up of C"*' by means of yy,..., y, then for the restriction f = Fy we
get the following commutative diagram of analytic maps:

/

Y —— Iy

Jﬂ lﬂmﬂ

U f Cm+1

Take (xo,up) en~'(0). Let Q<TIl,.; be a neighbourhood of (0,u),
h:Q — C an analytic function such that

7,01 (0)N1Q = {(v,u) € Q: h(y,u) = 0},

~ Let Qc Y be a neighbourhood of (xo,up) such that f(Q) < Q. Since
N (m,10(0) = 77(S) we get
7 (S)NQ = {(x,u) e Q:ho f(x,u) =0}.
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Thus there exists a neighbourhood A = U x P" of (xg,up) and an analytic
set V' < A of pure dimension n+ m — 1 such that

Y (S)YNA=VNYNA.
This gives
dim(xO’uo) 7! (S) = dim(xo,uo) Y—-1=n-1.

Since Y is irreducible and 7~!(S) & ¥ we get that dim, n~!(S) =n—1 for
any pen!'(S). This ends the proof. O

5. Proof of Theorem 7

LemMma 14. Let F: (C" x C,0) — (C™1,0), m = n be a holomorphic map.
Assume that 0 is an isolated point of F7'(0) for |t| <d. Then there exists
d>¢>0 and a complex line V< C"™' such that VN Cr, = {0} for |t] <e.

Proof. Let F: U — C™!' where U = C" x C is a connected neighbourhood
of the origin. Put S={(z,/)e U:F(z,t)=0}and let z: UXxP" oY — U be
the elementary blowing-up of U by F. By Proposition 13 its exceptional set
E:=7"!(S) is an analytic set of pure dimension n. Let & be the set of
irreducible components W of E such that the origin in C”“Nis an accumulation
point of #(W)N ({0} x C). Then & is finite. Denote by Cpr, the image of the
cone Cp, in P™. Observe that

{00y x Cr = | W, |1 <0.
Weé&

On the other hand, if Wed& then W is n-dimensional irreducible set and
W ¢ {0} x P". Consequently

dim WN{0} xP")<n—1<m.
Thus there exists ¢ > 0 and an open set G = P™ such that

({(O;I)}XGW( U W)‘Z), 0<|t]<e

Weé

As a result if ¥ is a line in C™"!' corresponding to some point in G then
VN Cp,={0} for 0 < |f|] <e Since G is not a subset of Cp we get the
assertion. O

Proof of Theorem 7. Induction on m. In the case m = n there is nothing
to prove. Let us assume that the assertion is true for some m >n and let
F:(C"x C,0) — (C™' 0) be a holomorphic map such that the ideals (F)0,
are m,-primary. By Lemma 14 there exists ¢ >0 and a linear mapping
7' : C™' — C™ such that ker 7' N Cp, = {0} for || <& Thus, by Corollary 12
the ideal (n’ o F;)0, is a reduction of (F;)0,, for all € C such that |7 <& On
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the other hand, by induction hypothesis, there exists a linear map =" : C" — C”"
such that (" o 7’ o F;), is a reduction of (n’ o F;), for small z. Thus if we put
n:=n"on' we get the assertion. O
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