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NOTE ON THE FILTRATIONS OF THE K-THEORY
NOBUAKI YAGITA

Abstract

Let X be a (colimit of) smooth algebraic variety over a subfield & of C. Let
K[?,q(X ) (resp. K,?)p(X (C))) be the algebraic (resp. topological) K-theory of k (resp.
complex) vector bundles over X (resp. X(C))). When K (X) = K (X(C)), we study
the differences of its three (gamma, geometrical and topological) filtrations. In par-
ticular, we consider in the cases X = BG for algebraic group G over algebraically closed
fields k, and X = Gy /T the twisted form of flag varieties G/T for non-algebraically

closed field k.

1. Introduction

Let X be a (colimit of) smooth algebraic variety over a subfield k of C. We
consider the cases that

(L.1) Koy (X) = K, (X(C))
)

where Kalg(X ) (resp. m,,( (C))) is the algebraic (resp. topological) K-theory
generated by algebraic k-bundles (complex bundles) over X (resp. X(C)). In this
assumption, we study the typical three filtrations

F(X) < F. (X) < F! (X(C))

y geo top

namely, the gamma and the geometric filtrations defined by Grothendieck [Gr],
and the topological filtration defined by Atiyah [At]. Namely, we study induced
maps of associated rings

gry(X) — grye(X) — grp,,(X(C)).

Atiyah showed that gry,,(X(C)) is isomorphic to the infitite term E *0 of the
AHss (Atiyah-Hirzebruch spectral sequence) converging to K—theory K*(X(C)).
Moreover he showed that gr;,,(X(C)) = gr;(X) if and only if E7; 0 is generated
by Chern classes in H*(X(C)). We will see that similar facts hold for Gy (X).
Namely, g qeo( ) = AE2*0 of the motivic AHss converging to motivic K-theory
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AK**'(X). Moreover we show that gr,,(X) = gr;(X) if and only if AEZ* is
generated by Chern classes in the Chow ring CH*(X) = H**(X).

Let G be a compact Lie group (e.g., a finite group) and Gy be the correspond-
ing algebraic group over an algebraically closed field k. Then by Merkurjev and
Totaro ([Tol]), we have the isomorphisms

K' (BGy) = R(Gy)" =~ R(G)" = K

alg top

(BG),

where R(Gy)" (resp. R(G)") is the k-representation (resp. complex representation)
ring completed by the augmentation ideal, and BG) and BG are their classifying
spaces.

Atiyah had conjectured in [At] that F/(BG)= F; (BG) for all finite groups.
Weiss [Th] showed this does not hold for G = A4. Counter examples of p-
groups were given by Leary-Yagita [Le-Ya] when G is rank,(G) =2 of class 3
with p>35. We will see for the same group G, F?**(BGy) # F,i 2 (BGy) =
Fti;+2(BGk)'

We study these filtrations detailedly for connected groups (0,, SO,,...). In
particular we show

THEOREM 1.1. (Let k be an algebraically closed field.) For G = Spin;, there

is an element x in Ky (BGy) such that

0#xe gr;‘(BGk), 0#xe gr;eo(BGk), 0#xe grtgop(BG).

These facts also hold for the extraspecial 2-group 21*6.

Remark. Quite recently B. Totaro published paper [To2]. In §15 in this
paper, he gives examples such that

Irgeo(BG) () # 97105 (BG) )

for all primes p.

We consider the different type of examples, which satisfy (1.1). (See also
[Ga-Za|, [Za].) Here we do not assume that k is algebraically closed. Let us
write by M(X) the (pure) motive of X, and by M, = (M,) the Rost motive for
a nonzero pure symbol a € KM, (k)/p ((Rol,2], [Su-Jo]). We consider the cases
X such that

(1.2) M(X) =~ M, ® A(X)

where A(X) is a sum of k-Tate motives. Then we can see that (1.1) is satisfied
by the result from ([Vi-Ya], [Ya6]).

Some cases of flag manifolds G/P satisfy (1.2) ([Ca-Pe-Se-Za], [Ni-Se-Za],
[Pe-Se-Za]). We consider the exceptional Lie group G,. Let G and Ty be
the corresponding splitting reductive group and its splitting maximal torus. Let
us write by Gy, the nontrivial G; -torsor (induced from a Rost cohomological
invariant 0 # a € KM (k)/2, [Ga-Me-Se]). (Namely, Gy /Ty is a twisted form
of G,/T.) Then for p=2 X = Gy «/T} satisfies (1.2) ([Bo], [Pe-Se-Za)).
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Note that H*(G,/T) is torsion free, and we have
Iy (Go i/ Tk) = gr1,,(G2/T) = H* (G2 T).
By using the fact that CH*(Ga,x/T%) is generated by Chern classes, we can show

THEOREM 1.2.  Let Gy be the nontrivial G, i-torsor for the Rost cohomolog-
ical invariant in KM (k)/2. Then we have

r7(G2/ T) = gryey(Gok/ Te) = CH* (Go,e/ Th).

From (1.1), the gamma filtration is defined purely topologically. Thus we
see that this topological invariant is isomorphic to a purely algebraic geometric
object such as the Chow ring of twisted form.

2. Filtrations

We first recall the topological filtration defined by Atiyah. Let Y be a
topological space (e.g., a CW-complex). Let K*(Y) be the complex K-theory;
the Grothendieck group generated by complex bundles over Y. Let Y’ be an
i-dimensional skeleton of Y. Define the topological filtration of K*(Y) by

Fiop(Y) = Ker(K*(Y) — K*(Y"))

and the associated graded algebra grmp(Y) mp( Y) /F,’U;I( Y).

We consider the long exact sequence (exact couple)
,__}K*(Yi/Yiq)_}K*(Yi)HK*(Yifl)iK*H(Yi/Yifl)_)
Here we have K*(Y!/Y ) ~K*® H*(Y'/Y'™!), which induces the (well
known) AHss
E;Y(Y)=H (Y)®K* = K*(Y).
By the construction of the spectral sequence, we have

Lemma 2.1 (Atiyah [At]). gr;, (Y) = E3LO(Y).

Next we consider the geometric filtration. Let X be a smooth algebraic
varlety over a subfield k of C. Let K} ,(X) be the algebraic K-theory which
is the Grothendiek group generated by k vector bundles over X. It is also
isomorphic to the Grothendieck group genrated by coherent sheaves over X (we
assumed X smooth). This K-theory can be written by the motivic K-theory
AK**(Y) ([Vol,2], ie

i (X) = @, AR (X

In particular K alq X) =@, AK**(X
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The geometric filtration ([Gr]) is defined as
F2 (X)) = {[0y]| codimy V > i}

geo

(afnd FioN(X) = Fi, (X)) where Oy is the structural sheaf of closed subvariety V/
of X.

We recall the algebraic cobordism MGL**(—) [Vol] and let us write
MGL**(X) = Q*(X), in fact, this is isomorphic to the algebraic cobordism

defined by Levine and Morel ([Le-Mol,2], [Vol,2]). Recall
Q*(Spec(k)) = Q*(pt.) = MU*(pt.) = MU*

where MU* = Z[x;, x2,...], |x;] = —2i is the complex cobordism ring. Then we
have the isomorphism

Q" (X)Quu-Z = CH*(X), Q' (X)®uu- K=K

alg (X)

where the MU* module structure of K* is given by Todd genus (see §3 below).
Each element x € Q*(X) is represented by a projective map x = [f : M — X]
with codimy M =i and M smooth ([Le-Mol,2]), namely, x = f.(1,) for 1) €

Q°(M) and f, is the Gysin map. Then the geometric filtration is also defined as
FA(X)={f.(ly)| f: M — X and codimy M > i}

geo
since f.(M) = [Opy] in K (X).
Here we recall the motivic AHss ([Ya3, 4])

AE;* (X)) = H (X;K*") = AK** (X).

(Of course this spectral sequence is not defined using skeleton as the topolog-
ical case. But we assume the existence of the AHss converging to the motivic
K-theory AK** (X).) Note that

AEZ (X) = H**(X;K*") = CH*(X) @ K*".

Hence AEZ*%(X) is a quotient of CH*(X) by dimensional reason of degree
of differential d, (i.e., d,AE****"(X)=0). Thus we have

LEMMA 2.2. grjjo(X) ~ AEZ0(X).

Proof. Let ¢: Q"(X)® K* — K*(X). Then
FA(X)=q{fu(ly) eQ(X)|f: M — X and codimy M > i}.

geo

Let ¢’ : Q*(X) — CH*(X) and ¢" : CH*(X) — EZ**%. Then ¢|(Q*(X)®1) =
", !

q"q’. Thus we have
F2i (X)/F21+2(X) — qNCHl(X)

geo geo

since ¢’ is an epimorphism. O

~ Lemma 2.3.1 Let tc: KJ),(X) — K (X(C)) be the realization map. Then
Fuoo(X) = (1¢) ~ Fppp (X (C)).

geo top
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Proof. Let us write K,?)p(X(C)) simply by K(X). The Gysin map
fi : K(M) — K(X) is defined by using Thom isomorphism

K(M) =~ K(Thy(M)) — K(X).
Let codimy M >i. For an 2i-skeleton X% of X(C), we can show that the map
K(Thy(M)) — K(X) — K(X*)
is zero. Because the above composition map is rewritten
K(Thy(M)) — K(Thy(M)*) — K(X%).

Its first map is zero, because H*(Thy(M)) = 0 for x < 2i and the exact sequence
(exact couple) for K-theory for skeletons of X (see the definition of the AHss).
O

At last, we consider the gamma filtration. Let /l"'(x) be the exterior power
of the vector bundle x e K;)lg(X) and A,(x) =>_2A'(x)t’. Let us denote

Ay (x) = pi(x) = Z y (X1
The Gamma filtration is defined as
FP(X) = {p" () ooy (o) [ - i >, x5 € Ky (X))
Then we can see F)(X) < Fj,,(X) (Proposition 12.5 in [At], Atiyah proved

: - geo
FJ(X) = F,(X) in Kip(X). However the arguments work also in Kf,q(X) and
this fact is well known [Ga-Za]. [Ju].) Let ¢: Kf,g(X ) — Z be the augmentation

map and ¢;(x) € H*/(X) the Chern class. Recall ¢” : CH*(X) — E***° be the
quotient map. Then (p. 63 in [At]) we have

q"(en(x)) = " (x — &(x))]-

LemMA 2.4 (Atiyah). The condition F¥(Y)=F2(Y) (resp. FF*(X)=
F (X)) is equivalent to that E72°(Y) (resp. AEZ-*°(X)) is (multiplicatively)

generated by Chern classes in H*(Y) (resp. CH*(X)).

3. Morava K-theory (K-theory localized at p)

In this paper, we assume that p is a fixed prime number and consider only
cohomology theories (Chow rings) localized at this prime p. Namely, for the
notation 4*(X) means A*(X), in this paper. In particular, Z always means
Z, and MU*(X) means MU"(X), throughout this paper.

Let AMU** (X) = MGL** (X) and recall MU* = Z|[x1,...,Xp,...], deg(x;)
= (—2i,—i). Given a sequence S = (x;,X;,...) of generators, we can construct
generalized cohomology theory (in the A'-homotopy category) such that

tc: AMU(S)"" (X) — MU(S)*(X(C)) with MU(S)" = MU*/(S).
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In particular letting x,»_ = v, and S = (x;|i # p" — 1), we have the motivic
BP-theory ([Ya3,5))

ABP**(X) with MU*/(S) =~ BP* = Z[v|,vs,.. .
Then we have the isomorphisms ([Ya3])
ABP** (X) =~ MGL"* (X) ® - BP*,
MGL** (X) = ABP** (X) ®pp- MU".
Similarly, we can construct the motivic connective Morava K-theory such that
Ak(n)* (X)) with k(n)* = Z/p[va],

and the integral connected K-theory Alg(n)*’*/(X) with k(n) = Z[v,]. Moreover
let the (usual) motivic Morava K-theory

AK(n) "7 (X) = Ak(n) " (X)), AR ()" (X) = Ak(n)"™" (X))
By the Landweber exact functor theorem ([Ra], [Hal), it is well known that
AK* (X) = (AMU** (X) ® - Z) ® Z[B, B]

where the MU*-module structure of Z is given by the Todd genus, and B is
the Bott periodicity with deg(B) = (—2,—1). Since the Todd genus of v; (resp.
v, i>1)is 1 (resp. 0), we can write

AK** (X) = ABP** (X) ®gp- Z[B,B™"] identifying B"~"' = v.

Then we have

LemMA 3.1. There is a natural isomorphism

AR (X) = AR(1)"" (X) @) ZIB,B™"] identifying v, = B'~".

Proof. Recall that we have the natural map (by the construction of
AMU(S))

p: ABP* (X) ®@pp Z[B,B™'] — AK(1)""(X) @) ZB. B7"].
Of course, the functor
A— AQgy Z[B, B = A®Z{1,B,...,B"?}
is exact, and we have the spectral sequence
;™" (AR (1)) @y ZIB. B = AK(1)"" (X) ® - Z[B. B~').
Since for a BP*(BP) module 4, the functor
A~ AQpp Z[B,B™']
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is exact from the Landweber exact functor theorem, we have the spectral
sequence from the AHss for 4ABP** (X)

E;""""(ABP) ®pp- Z|B, B~'| = ABP** (X) ®pp- Z[B,B"],

which is compatible with the map p. The E,-term of the both spectral sequences
are isomorphic to

H**(X:Z)® Z|B,B"].
Therefore the two spectral sequences are isomorphic. O

We also note from the arguments in the above proof.

LEMMA 3.2. Let E(~ABP):"*/’*, (resp. E(AK(1))"*"*") be the AHss coverging
to ABP**(X) (resp. AK(1)**(X)). Then we have

i

E(ABP)"""" @pp- K(1)" = E(AK(1));7).

_ From above lemmas, it is sufficient to consider the Morava K-theory
AK(1)"" (X) when we want to study 4K “(X). Hereafter of this paper, we
only consider the theories AK(1)** (X) and Ak(1)"* (X) instead of AK** (X)
or K, (X). (We only consider the cohomology theories and Chow rings lo-
calied at p.)

We assume the following assumption

(X) = Ky, (X(C))  (and K,,(X(C)) =0).

(*) Ky top

alg

That is equivalent to
(¥) AK(1)**(X) = K(1)*(X(C)) (and K(1)*"'(X(C)) =0).
From Lemma 2.3, we have

Fy(X) € Fyp(X) © Fy, (X (0)).
Here we note that the gamma filtrations of topogical and algebraic geometrical
are same, ie., F(X) = F(X(C)). So we have the maps of associated graded
rings

gr;(X) ggeo(X) - gr;)p(X(C))

LemMa 3.3, gr}(X) = gr.. (X).

gr, geo

Proof. 1f 0 +# xegr(X), then x =¢(&) € AK(1 1)**(X) for some bundle
& In CH*(X), we know c1(&) = ¢ (det(&)) which is determined by the line
bundle det(¢). Line bundles are determined by Pic(X) = CH'(X). So 0 # xe
CH'(X). O
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LemMa 3.4. If an element ye AK(1)***(X) is represented by 0 # y (resp.
Yy i gri(X) (resp. gri,(X), gri,(X(C))), then
i<j<k, and i=k=j mod?2(p—1)).

Proof. The element y is represented

y=uv}y e AR(1)* " (X)/F*" y =v{y" e AK(1)** (X)/F !

geo

for some s,t € Z. O

_ Remark. The above fact does not hold for y € K7 (X) (which is a sum of
K(l)z*'*(X), 0<x<p-—2). Let us write

y=b b D R,
with b’ € K(1)"* and y;, e F2 (Y). Suppose j < k. Then this means that there

- " top
is s such that 0 # y; € gr/,(X) with s —j =0 mod(2p —2). Of course if s # k,
then k —j # 0 mod(2p —2).
To study the difference of F_, (X) and Fj (X(C)), we consider AHss
E** (BP) converging to BP*(X). Suppose that
[0l ® x] € BP* ® H*(X(C)) =~ E(BP)}"™

is an permanent cycle, but [x] € H*(X(C)) itself is not (i.e., d.(x) # 0 for some r).
Let x' € BP*(X(C)) be a corresponding element for [vy ® x] in E%*
LEmMMA 3.5. Let x e H*(X(C)) and x' € BP* (X(C)) be elements with the
assumption above. Suppose that
0 # x" e BP*(X(C)) @pp Z[v1,v7'] = K(1)"(X(C))
and that x' € BP* (X(C)) ®pp- Z is in the image of the Totaro cycle map
CH" (X) — BP* (X(C)) ®gp- Z.

Then 0 # x' € grtzo’;)(X(C)), but 0 # x' e grjf);_pﬂ)(X)).

Proof. In this case #' =% —(p—1) in the above arguments. Let xe€
HY(X(C)). In fact x'eIm(CH7*'(X)) and 0 # x’ e grZ ™ (x(C)), but
0# x' = [0n ®x] € gryy, (X(C)). O

Next we consider the cases gr; (X) = gry,(X(C)). From the Atiyah theorem
(Lemma 2.4), the following lemma is immediate.

Lemma 3.6.  Suppose (x) and suppose that the infinity term E2%(K(1))
(of the AHss for K(1)"(X(C))) is generated by Chern classes in H*(X) for all
x> N. Then for all x > N, we have

gr2*(X) = EX(R(1)"(X(C))) for all = N.
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Lemma 3.7 (Lemma 2.8 in [Yad]). Suppose (x) and that H*(X(C)) is
generated by Chern classes. Then we have

CH*(X)=H*(X(C)) for x<p—1.
Moreover if X(C) is simply connected (resp. 3-connected), then we have an
isomorphisms for x* < p (resp. * < p+1)
CH*(X)®Z, = H*(X(C);Z,).

Proof. By the assumption, we see
gry"(X) = grys,(X) = gr7,, (X (C)).
To compute the last graded ring, we consider AHss
Ey"(K(1) = H'(X:K(1)") = K(1)"(X(C)).
Here K(1)* = Z[vy,v;'] with |v1| = —2p +2. Tt is well known that the first non
zero differential is
dyp—1(x) = v1 ® Q1(x) mod(p).

So each element in H?*(X(C)) is not targent of any differential d, when * <
p—1. (Of course d,(x) =0 for Chern classes x.) Hence we have gr,zo*p(X (0))
~ H>*(X(C)) for x < p—1. ) /

Similarly, considering AHss converging to AK(1)"" (X), we have the iso-
morphism gr> (X) = CH*(X) for x < p — 1. Here we use the fact E; (4K (1))
~ CH*(X). Thus the isomorphism of the geometric and toplogical filtrations,
gives the first statements.

From the isomorphism

H"'(X;Z/p) = H'(X(C); Z/p) = 0.
we see that H'!(X;Z) is p-divisible. Since the image of the differential of
p-divisible elements are also p-divisible,
HY(X(C)) = gri(X)
~ grgzepo(X) ~ CHY(X)/(p — divisible).
Hence we have the second isomorphism. (In 3-connected cases, the isomorphism
is seen similarly for * < p+1.) O

Remark. The first statement in the above lemma is also proved by the
Riemann-Roch formula without denominators, namely, the composition map
CH'(X) — grl,(X) = CH'(X)

eo
is multiplication by (—1)""'(i — 1)I. Hence we get CH'(X) = gr},,(X) for i < p.
Moreover we know that CH'(X) is represented by the i-th Chern class ¢;(¢) for
some bundle &.
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Remark. Lemma 2.8 in [Yad] was mnot correct (assumed gry, (X) =
griop(X(C)) there). Hence the assumption of Lemma 2.8 in [Ya4] is not suffi-
cient, and it should be changed as above Lemma 3.7.

4. Classifying spaces BG for finite groups

Let G be a compact Lie group (e.g., a finite group) and Gj be the correspond-
ing algebraic group over an algebraically closed field £ in C. Then by Merkurjev
and Totaro ([Tol]), we have the isomorphisms
(1.1) K’ (BGy) =~ R(Gy)" =~ R(G)" = K

alg top

(BG),

where R(Gy)" (resp. R(G)") is the k-representation (resp. complex representation)

ring completed by the augmentation ideal and Kflg(BGk) (resp. Kgp(BG)) is the

K-theory generated by k-bundles (resp. complex bundles) of the classifying space
BGy. (resp. BG).

When £k is algebraically closed, we write BG;, by BG simply. For Section
4-6, we assume k is algebraically closed.

In this section, we consider cases that G are finite groups. At first, we
consider the case G = Z/p". Then H*(BG) = Z[y]/(p"y), |¥| =2 and y; = ¢ (e)
for a nonzero linear representation e. So all three filtrations are the same. The
similar fact holds for its product.

THEOREM 4.1 (p=2, r=1 case by Atiyah [At]). Let q=p" and G =
D" Z/q. Then

9rrop(BG) = Z[y1, ..., yal/(qyi, y]vi — yiv]).

Hence the three filtrations are the same.

Proof.  Let Qj = f, be the higher Bockstein. The integral cohomology is
isomorphic to a subring of the mod ¢ cohomology

H*(BG) « H*(BG;Z/q), when x> 0.

Here H*(BG;Z/q) =Z/q[y1,...,ya] ® Ax1,...,x,) with Qj(x;) = y;, and we
know

H*(BG) =Z/q(y1, .-, ya{Qo(xiy - xi)) |1 < iy < -+ ig <}
with Qf(x;, - x;) = 3o (= 1)y - Ky - xi
We consider the AHss converging to K(1)"(BG). We define the weight
degree for elements in this AHss by

w(vr) =0, w(y)=0, wl)=1
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so that w(Q(x; ---x;)) =s—1. We will prove

(1) (weight = 0) ﬂE;{;*I =Z/q(y1, - vl /]y = viv])  for x>0,
(2) (weight = 1) ﬂEZT/ =0.
Then we can prove this theorem by the following arguments.

We consider the AHss converging to the motivic 4K(1)"(BG). The
weight w(x) of an element xe H** (X :Z/q) is defined as 2+ —x. Since
x;€e HY'Y(BG;Z/q) and y; e H>'(BG;Z/q), their weights are in fact w(x;) = 1
and w(y;) =0. The degree of the motivic AHss is

deg(dy—1) = 2r—1,r—1,-2(r=1)) with (r—1)=0 mod(p — 1),
namely, w(dy_1) = —1 which means
dy—1 (weight = s) = (weight = s — 1).

From (2), (weight = 0)-parts are not a target of any diffrential d»,_; for r > gq.
By the naturality of realization map from the motivic AHss to the usual AHss,
we get the same fact for the AHss for K(1)"(BG). Since K(1)"(BG) is generated
by only weght = 0 eclements, we have the theorem. .

The first nonzero differential is known dzq,l(x,-):vll””"*p yi [Ya3].
Hereafter let v; =1 for ease of notations. We see (1) from

dhy—1(04(x1x2)) = dag—1(y1X2 — y2x1) = y1y§ — yiya.

Now we prove (2). Let x e Ker(dy—1) and x = a;Qj(x;x;). Then (since
d, is a derivation)

drg1(x) = ay(yiyl — yiy) =0 in Z/qlyr, ..., yal.

Here we consider them in mod(x;, y;|i > 4). Then we see a;» = aj,y3 and we
see (by dividing y;y2y3)

—1 -1 —1 -1 —1 —1
ap, (v =y ) +an(yi -y ) ay (i -y =0.

This implies that af, € ideal(y{', 4", y{™'). Moreover we see that > con-
tains y7. Similarly a»3;, aj3 contains p{ and pJ respectively.
On the other hand, we see

drg—1(Qy(x1x2x3)) = g1 (Z y1x2X3)
=Y yivix =Y yixayl = yivixa =Yy
= Z y3(y1xs = y3xy) = — Z 10 (x2x3)

Taking off a”dy_1Qy(x1x2x3) for some adequate a” € Z/q[yi,..., ], we can
prove (2). O
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Recall that a group G is called an extraspecial p-group if its center
Z(G) = Z/p and there is a central extension
2n

0—-Z/p—G—PZL/p—0.
1+2n l+2n.

For each prime p, such groups have only two types, namely, p.
(e.g., 21" = Dy the dihedral group (of order 8), 2!*2 ~ Qg the quaternion group).
We here only write down the case p}fz for p > 3. The cohomology is known
([Yal4])

H"(BG) = (Y @ B) ® Z[c,)/(p*cy)

where Y = Z[y1, y2l/(pyi, 11¥5 — ¥{32), B=Z/p{cs,...,c,1} and y; = ci(e))
and ¢; = ¢;(£) for some linear representations ¢; and p-dimensional representation
¢. Hence the even dimensional part of this cohomology is generated by Chern
classes and all three filtrations are the same. The odd degree part is

H*"(BG) = Y ®@ Z/plc,){ar, a2}/ (321 — yraz, Yyar — @) |ai| = 3.
THEOREM 4.2. Let G = p'*? and p >3. Then
9rp(BG) = Y @ (Z{c,} ® B) ® Zlc,]/(p*cy).
Proof. We know the Milnor cohomology operation
v dy 1 = Q1 - H™(BG) — H"*"(BG)
is injective and Q) (a;) = yic,. Hence we see
gr K(1)"(BG) = E;* = K(1)" ® H""(BG)/(QH*"(BG))
= K(1)" ® H""(BG)/(yicy)- O

When p > 5, the groups of rank, G = 2 are classified by Blackburn. When

groups are of class 2 (i.e., [G,[G,G]] = 1), cohomology rings are generated by

Chern classes ([Le-Ya], [Yal]), and hence all three filtrations are the same.
Define the class 3 p-group (i.e., [G,[G,G]] # 1) by

G(4,1) =<a,b,c|a’ =b" = ¢ =[b,c] = 1,]a,b™"] = ¢, [a,c] = b>.

Let G = G(4,1). Then there is an element x,.; € H?*2(BG) [Le-Ya], [Ya]
such that it is a permanent cycle in AHss for K(1)*(BG) and x,.; is not
represented by Chern class. But all elemnts in H¢*(BG) is represented by
transfers of Chern classes [Yal]. Of course Chow rings have the transfer map.
Hence we have

 Taeorem 4.3. Let p>5 and G = G(4,1). Then gr;,,(BG) = gr,,,(BG) but
gr,(BG) & gry,,(BG) for i=4,2p+2.

Proof. The first isomorphism follows from that all elements in H**"(BG) is

represented by transfer of Chern classes. The second statement follows from that
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Xp+1 1s not represented by Chern classes and the element x,1 € E2T20 represents
a nonzero element in gr;1 (BG) from Lemma 3.4. O

5. Connected groups with p =2

Throughout this section, let p =2. At first we consider the case G = O,.
The mod 2 cohomology of the classifying space BO, of the n-th orthogonal
group is

H*(BO,;Z/2) =~ H*((BZ/2)";Z/2)% = Z/2[w1,...,w,]

where S, is the n-th symmetry group, w; is the Stiefel-Whiteney class which
restricts the elementary symmetric polynomial in Z/2[xy,...,x,]. Each element

w? is represented by Chern class ¢; of the induced representation O, — U,. Let

us write w? by ¢;. g
Recall the Milnor operation Q; which is defined Qy =  and Q; = [Q;_1, P?" .
Let us write by Q(i) the exteria algebra A(Qp,...,Q;). W. S. Wilson ([Wi],

[Ko-Ya]) found a good Q(i)-module decomposition for BO,, namely,

H*(BO,;Z/2) = @ Q(i)G; with Qy--- 0iGi € Z)2[cy, ..., e
i=—1

Let us write by P(n)" = BP*/(p,...,v;.1). The BP*-theory is then computed
Hence we have K(1)"(BG) =~ K(1)"(G_1 ® QyGp).
Moreover, by Wilson, it is known that
BP*(BO,) = BP*[[c1,...,cill/(c1 —¢f,...,cn—c)
where ¢; is the conjugation of ¢;, Hence K(1)"(BG) is generated by Chern
classes from H*(BG). Thus from Lemma 2.4, all filtrations are same.

Here Gjy_; is quite complicated (see for details [Wi]), namely, it is generated
by symmetric functions

2i1+1 2ig+1 27 2jq
§ :xl XX Ny kg sm,

with 0 <ij <--- < and 0 < j; <--- < j,; and if the number of j equal to j, is
odd, then there is some s < k such that 2i; +2°% < 2j, < 2i; + 2*+1.

Thus when k < 1, there is not above j,, that means numbers of j = j, are
always even.

THEOREM 5.1. Let G = O,. Then all three fitrations are the same, and
griop(BG) = A® B/2 with (y; = x2 so that 3 y1 = ¢1)

4= Z{Z(ylyz)jl --~(y2s,1yzs)-/‘} B= Z{Z yi(rays)” "'(yzsyzm)jj}.

(Note A/2 = G_ and B/2 = QyGy.)
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Example. When G = 0,, we have the isomorphism
g,y (BG) = Zc]) ® Z/2[cy].

When G = SOy, (since SO,uq X Z/2 = O,44), the situations are same. Let
G = SO,,. Then from Field, we have ([Fi], [Ma-Vi], [In-Ya])

CH*(BG) = Z[cy, ... caul{ym} ® CH*(BO2,)/(c1),
BP*(BG) = BP"[cs, ..., con[{yn} @ BP*(BOs,)/(F)
where F| = Ker(Bdet*) and y3 = (—1)"2?""2¢y,. Hence
Yo = (=1)" 2"y, € H*(BG) 3.
THEOREM 5.2. Let G = SOy, and n > 3. Then
97 1op(BG) = g1y, (BG) = Zlca, e, . . ., conl{y2n} @ g1y, (BOw)/ (c1).

However we have gr)"(BG)  gr; (BG).

geo

We note when G = SO,, all the three filtrations are same, since y4 is
represented by Chern classes. By Field, it is shown that just (n — 1)!y, (for
n > 2) is represented by Chern classes (Theorem 8, Corollary 2 in [Fi]). Thus we
have

ProrosITION 5.3. Let G = SOypy1) and p #2. Then
gr;(BG) = Zplca, . .-, cpia] ® (Zip{1, '} ® Z/p{»})
with |y'|=2(p+1) and |y| =4

Next, we consider the exceptional Lie group G,. Let G = G,. Its mod(2)
cohomology is well known

H*(BG;Z/2) = Z/2[w4, we, wi]
and integral cohomology is
H*(BG) = Zlwa, co) @ (Z{1} @ Z/2w7) {wr}).
We can compute the AHss for BP*(BG) ([Ko-Ya], [Sc-Yal)
gr BP*(BG) =~ Z[ca, c6) ® (BP*{1,2w4} @ P(3)"[c7]{c7}).

Here we can show the element {2w4} is represented by a Chern class ¢;. We see
K(1)"(BG) = K(1)"[c4, c6] ® {1,2w4}), and ([Ya3], [Gu])

CH*(BG) = BP*(BG) ®pp Z = Z[c}, cs, cs, ¢1]/((ch)* — dea, 2¢7).
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THEOREM 5.4. Let G = Gy. Then all three filtrations are the same

gry,,(BG) = CH*(BG)/(c7) = Z[c}, ca, c)/((ch)” — 4cs).

Next we study the case G = Spin;. Its mod(2) cohomology is
H*(BG;Z/2) = Z/2][wa, wg, w7, ws].
The infinity term of the AHss for BP*(BG) is still computed
gr BP*(BG) = Zcs, c6) ® (BP*[cs]{1,2wa, 2wg, 2waws, v1ws}
® P(3)"[e7{er} @ P(4) [er, csl{cres}).
Hence we see
gr K(1)"(BG) = K(1)*[c4, cs, cg] {1, 2wy, 2wg, 2wqwg, vywg}.

Here it is known that 2wy, 2wg, 2wywg are represented by Chern classes. Write
them by cj, ¢y, ¢s. But it is proved (Theorem 6.2 in [Sc-Yal) that vywg is not
represented by (transfer) of Chern classes while it is in the image of cycle map.
Let c/(¢) = [vyws] ([Gu], Lemma 9.6 in [Ya], §9 in [Ka-Te-Ya]). Totraro’s
conjecture also holds this case

CH*(BG) ~ BP*(BG) ®p- Z
= Zles, c6,¢5] @ (Z{1, 05, ¢4, ¢} @ Z/2{E} @ Z/2[c7){er})

with |£| = 6. Moreover, we can prove

LemMmA 5.5. Let G = Spin;. Any element x € BP*(BG) such that
0 # x = [vywgla € BP*(BP) with a € Z[ca, cg, c3),

can not be generated by Chern classes of BP*-theory.

Proof. Let N=Z(G)=1Z/2 be the center of G and N ® 4 is a maximal
elementary abelian 2-subgroup of G, so 4 ~ (Z/2)’. A representation & of G is
said to be a spin representation, if £|N # 0. For a nonspin representation 7,
we know the total Chern class

C(’l)|N®A = c(n)| 4 € BP"[c4, ¢, 7).
For a spin representation y, we have
(Oly = (1 +u)" € BP*(BN) = BP*[u]/([2](w)) |u =2

where [2](u) = 2u + vju® + - - - is the 2-th product of the BP*-formal group laws.
Here we note s = 8s’ since cg|y = ub. It is known that vywg|y = vju* [Sc-Yal.
Then

s

c(ly = (1+8u+28u> + - +ub)".
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Here we can compute in BP*(BN) by using [2](u) =0
8u = dvju’ = 21)12u3 = vfu“, 28u% = 14vu’ = 71)12u4, .

Thus we see that vju* is not represented by the restriction of Chern classes.

(However v?u* has its possibility, in fact |v;ws| =4 and it is represented by the
Chern class ¢;.)
Of course c(y ®n) = c(y)c(n), we get the lemma. O

THEOREM 5.6. Let G = Spin;. Then
9 1op(BG) = Zcy, co, ws]{1, 2},
gry(BG) = Zlcs, ¢, ¢s[(Z{1, 5, ¢, g} @ Z/2{<})

where deg(£) =6 (resp. =4) if a=geo (if o =7).

Remark. K(1)*(BG) is generated as a K(1)*[cs, cs, cg]-module by

{1, 2wy, 2wg, 2waws, viWs}.

Since v;! € K(1)*, we have wg e K(1)"(BG). Hence K(1)*(BG) is generatd as
a K(1)"[c4, cg, cg]-algebra by {1,2wg, wg}.

Remark. The graded ring gry,,(BG) is also written as gr;(BG) in the right
hand side ring of the second isomorphism in the above theorem, with identifying
E=wsg, ¢y =2wg, cf = chws.

Recall that 2]++2” is the extraspecial 2-group, which is isomorphic to the
central product of n-copies of the dihedral group Dg of order 8. Let G =217,
There is an inclusion 7 : G < Spin; and its induced map i* : H*(B Spiny; Z/2) —
H*(BG;Z/2) is also injective by Quillen [Qu]. Let j:Z/2=Z(G) < G. Then
it is know [Qu], [Sc-Ya] j*i*(ws) =u* € Z[u]/(2u) = H*(BZ(G)). Hence we
have in K(1)"-theory

Frit(viws) = vju* # 0 e K(1)"(BZ(G)) = K(1)*[u)/2u — v1u?).
This element vy ® wg is not generated by Chern classes also in H*(BG). Hence
we have

COROLLARY 5.7. Let G =2*%" Then there is an element x € AK(1)*(BG)
such that

0#xe gr?(BG), x=_¢e gr;m(BG), and x =wgegrd (BG).

top

6. Connected groups for p odd

In this section, we assume p > 3. At first we consider the case G = PGL,.
Its mod p cohomolgy is given by Vistoli and Kameko-Yagita ([Vi], [Ka-Ya]),
namely, there is a short exact sequence

0—M/p— H(BG;Z/p) — N —0
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where M = Z[x4,xg,...,x5| additively (but not as rings), and N=N'®
A(Qo, Q1){uz}, [uz| = 2 for some Z/p-module N'.  (H**"(BG),, is not generated
by Chern classes (in facts QpQ;(uy) is not represented by a Chern class).

The BP-theory BP*(BG) is also studied. There is a short exact sequence

0— BP*® M — gr BP*(BG) — N" — 0

where gr N” = P(3)" @ N'{QoQi(u)}. In particular, QyQi(u2) is v;-torsion,
and hence its becomes zero in K(1)"(BG). Therefore we see additively
gr* K(1)°(BG) ~ M. Totaro’s conjecture also holds this case. Thus we have

THEOREM 6.1. Let G = PGL,. Then
91y (BG) = gr,,,(BG) (= M additively).
When p = 3, the ring structure of M is known
(x) M/3=Z/3[er,¢5,06]/(c3 = (¢3))
where ¢, ¢}, ¢ are Chern classes for some representations. Hence

M@y = gr;(BPL3) 5, = gr,,,(BPL3) ).

geo

The fact (x) is explicitly written
ey =cy(sh), ¢ =c3(Sym*(E)), 6= co(sh)

in the notation in Theorem 1.1 and Proposition 1.2 in [Ve] by Vezzosi and
Theorem 3.7 (a) in Vistoli [Vit]. Vistoli gives corrected generators and relations
(for example, y =0 for y in [Ve]).

However, for p > 5, it seems unknown that M above is generated by Chern
classes or not.

For exceptional Lie groups, we can compute BP*(BG) except for (G, p) =
(Es,p=3). So we know gry, (BG), but it seems not so easy to compute
CH*(BG) now, and gr,,,(BG) seems unknown. For example, when G =F}
we can compute BP*(BG). The mod(3) cohomology is generated by x4, xs, X9,
X20,X21,... (by Toda). The BP-theory is computed

gr BP*(BG) = BP*[Clg, C24H1, 3X4} @ BP* ® E @ P(3)*[x26]{x26}
where E = Z[xa4,x3]{ab|a,b € {x4,x3,x20}}. Hence we have
gr f((l)*(BG) = K(l)* ® (Z[Clg, 6’24]{17 3X4} &) E)

It is now unknown whether the element x7 € E (or xsx7 € E) is in the image of
the cycle map (see (2.4) and the proof of Lemma 3.1 in [Ya2]). If it is so, then
gr.,(BG) = gry,,(BG), otherwise gry,,(BG) # gry,,(BG) for i=12,16.

geo top
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7. Rost motives

In this section, we do not assume that k is algebraically closed. At first,
we recall the (generalized) Rost motive ([Rol,2]). Let M(X) be the motive of
(smooth) variety X. For a non zero symbol a = {ay,...,a,} in the mod 2
Milnor K-theory Kn’fl(k)/Z, let ¢, = <<ao,...,anyy be the (n+ 1)-fold Pfister
form. Let X, be the projective quadric of dimension 2"*! —2 defined by ¢,.
The Rost motive M,(= M, ) is a direct summand of the motive M(X, ) rep-
resenting X, so that M(X, )= M, ® M(P*" ).

Moreover for an odd prime p and nonzero symbol 0 #aeKn’[{l /p, we
can define ([Ro2], [Vo4,5], [Su-Jo]) the generalized Rost motive M,, which is
irreducible and is split over K/k if and only if a|, =0 (as the case p =2).

The Chow group of the Rost motive is well known. Let k be an algebraic
closure of k, X|; = X ®,k, and i : CH*(X) — CH*(X|;) the restriction map.

Lemma 7.1 (Rost [Rol,2], [Vo4], [Vi-Ya], [Ya5,6]). The Chow group
CH*(M,) is only dependent on n. There are isomorphisms

CH*(M,) = Z{1} ® (Z{co} ® Z/p{c1,...,ca1 )]/ (ciy"™")
and CH™(M,|;) = Z[y]/(y")

where 2 deg(y) = |y| =2(p" '+ -+ p+1) and |c;| = |y| +2 —2p". Moreover
the restriction map is given by ir(co) = py and ir(c;) =0 for i >0.

Remark. The element y does not exist in CH*(M,) while c¢;y exists.
Usually CH*(M,) is defined only additively, however when CH*(M,) has the
natural ring structure (e.g., p = 2), the multiplications are given by ¢; - ¢; = 0 for
all 0<i,j<n-—1.

For the simplicity of notation, hereafter we always write by Q*(X) the
BP*-version of the algebraic cobordism

Q*(X) ® - BP* =~ ABP™*(X).

Hence we mean Q* = BP* hereafter.
Let I, be the ideal in Q* generated by vy,...,v, 1, i.€.,

I, = (]7 = Uo,v1,...,vn,1) c QF.

Then it is well known that [, and I, are the only prime ideals stable under the
Landweber-Novikov cohomology operations ([Ra]) in Q.

The category of cobordism motives is defined and studied in [Vi-Ya]. In
particular, we can define the algebraic cobordism of motives. The following is
the main result in [Vi-Ya] (in [Ya5] for odd primes).

LemMa 7.2 ([Vi-Ya|, [Ya5]). The restriction map
i 2 QN (Ma) — Q (M) = Q°[y]/(»")
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is injective and there is an Q*-module isomorphism
Q (M) 2 Q {1} @ L{y,....y" "} « Q[y]/(»")
such that viy = ¢; in Q*(M,) ®q+-Z =~ CH*(M,).

We consider the following assumption for X.

ASSUMPTION (*). There is an isomorphism of motives

M(X) =M, ®AX) with A(X)~@PT"

S

where T is the k-Tate module.

LemmA 7.3. Suppose Assumption (). Then
Ky (X) = Koy (X1p) = K, (X(C)).
Proof.  Since M(X|) is a sum of k-Tate modules, we have the isomorphism
alJ(X|k) thp(X(C)) from
Kag(T) = Koy (S*1]7) = Ky, (S?).

For the first isomorphism, we only need to show K

alJ(M ) = alJ(M‘ )
Recall
Q*(M,) = BP* @ Ideal(p,v1,...,v,1)[y]/(3")

by ¢ +— v;y. Hence vic; =vic;. Therefore for i>1, we see ¢;=0 1in
AK(1)**(M,) where v; =0. So we have

AK(1)*" (M) = K(1) {1} @ K(1) " {co, 1} 1]/ (vrco = per, y"7)
= K(){1} @ K(1)"{er} [}/ (")
= K()"{1} @ K(1)"{o1y} ]/ (")
= K(1)"[1)/(7) = AR (1) (M, ). O

8. Flag manifolds G/T

Now we consider the flag variety G/T. Let G be a simply connected Lie
group and 7' the maximal torus. Moreover we assume that its cohomology is

H*(GiZ/p) = Z/p[y]/(»") @ Alx1,...,x/)

with |y| =2(p+1) and |x;| = odd. Then it is well known that the cohomology
of G/T is torsion free ([Tod]) and

H*(G/T) = Zly,t1,...,t/)/(fy,b1,...,bs)
where f, = y? mod Ideal(t;) and (by,...,b,) is a regular sequence in Z[ti, ..., t/].
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Let k& be a subfield of C which contains primitive p-th root of the unity.
Let us denote by Gj the split reductive group over k which corresponds G. By
definition, a Gj-torsor Gy over k is a variety over k with a free Gj-action such
that the quotient variety is Spec(k). A Gy-torsor over k is called trivial, if it is
isomorphic to Gy or equivalently it has a k-rational point. In this paper by Gy,
we mean a nontrivial torsor at any finite extension K/k coprime to p.

Let H be a subgroup of G. Given a torsor G, over k, we can form the
twisted form of G/H by

(Gk X Gk/Hk)/Gk = Gk/Hk.

Letting X = G/T, we consider cases such that Assumption (*) in §7 hold.
By [Pe-Se-Za], exceptional Lie groups (G, p =2) and (Fs, p = 3) are such cases.
The filtrations of K-theory of such spaces are also studied by Garibardi and
Zainouline ([Ga-Za], [Za], [Ju]) as the twisted gamma filtrations.

At first, we consider the case (G, p) = (G2,2). We recall the cohomology
from Toda-Watanabe [To-Wa,

H*(G/T;Z) = Zt, 1, )/ (1} + 1, + 13,15 — 29, y°)

with |/ =2 and |y|=6. Let P be the maximal parabolic subgroup such
that G/P is isomorphic to a quadric. Then we have H*(P/T) =~ Z{l,5} (see
[To-Wal, [Ya6])

H'(G/P,Z) = Z[0, y]/ (53 — 29, %) = Z{1, y} ® {1, 12, 13}
Of course this is isomorphic to gr; (G/P).

top

Since G/P is a quadric, we have the decomposition ([Bo], §7 in [Pe-Se-Za))
M(Gk/Pk) = Mz ) Mz(l) D M2(2)

THEOREM 8.1 (Theorem 5.2 in [Ya6)). There is a ring isomorphism
gr.j(G/P) = grg*eo(Gk/Pk) = CH*(Gk/Pk)

= Zo)[t2,ul/ (15, 2u, 5u,u®) = L[] /(15) © Z/2[1]/ (13){u}
with || =2, |u| =4
Proof. Recall that from Lemma 7.2,
Q" (M) = Q*{1,2y, vy} = Q*{1, y}.
From the decomposition of the motive, we have the Q*-module isomorphism
Q (Gi/P) = Q" {1,019,2} ® {1, 12,5} = Q*(Gi/ Py).
Since CH*(X) = Q"(X) ®q- Z, we have the isomorphism
CH*(Gi/Pr) = Z{1,20}{1, 1,5} ® Z/2{v1 y}{1, 1, 55 }.
(Note 2v1y = v1(2y) € Q<°Q*(Gy/Py).)
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Here the multiplications are given as follows. Since 2y = tg mod(Q<0) in
Q*(Gi/Ty), we can take 2y =13 € CH*(G/Py) so that

Z{1,2y{1, 12,5} = Z[n]/(13) = CH*(G/Py).

Let us write u = v1y in CH*(Gx/Ty). Then 3u=2yv;y =0 and u*> = v7y*> =0
in Q*(Gr/Tr) ®q+Z. Hence we have the second isomorphism in the theorem.

Since |u| = 4, the element u is represented by Chern classes, we see the first
isomorphism. O

Remark. The space Gy/Ty is isomorphic to the quadric defined by the
maximal neighbor of the 3-Pfister form. Hence its Chow ring is computed in
[Ya6].

It is well known that the representations (over C)) are written as

R(G/T) = R(T)/R(G).

Therefore each element which is represented by Chern classes is written as an
element in Q*(Gy/Tk)

(&) =[O0+ htr + Jat2) e Q*[t1, 1] A€ Z)2
modulo ((1,)Q<°Q*(G/Ty)). By the similar arguments, we have (see Theorem
5.3 in [Yao6))
THEOREM 8.2. There are ring isomorphisms
gri(G/T) = CH*(Gy/Ty) = Zty, 1]/ (15, 2u, t3u, u?)

where u =t + 11t + 13.

Proof. The Chow ring is isomorphic to
(x) CH™(Gi/Tk) = CH(Gi/Pi){1, 11}
= ({1, 29} @ Z/2{v1y}){1, 2, 5}{1, 11}
Here 2y =13. Since viy e (11,1) and vy =0e CH*(Gy/T), we see
vy = A+ i+ 13)  mod((1, 12)Q"Q"(Gr/Ty))

for AeZ. We can take A=1 mod(2). Otherwise v,y =0€eQ"(Gy/Ti)/2,
which is an QF/2-free, and this is a contradiction. Hence we can take
tl2 + t1t2+t§ as v1y. Hence in CH*(Gy/Ty) we have the relation

(B)°=0, (Bu=0, u>=0, 2u=0. ]
Next we consider the case (G, p) = (F4,3). Let Gi be a nontrivial Gj-torsor

at 3 as previous sections. Let P, be a maximal parabolic subgroup of G, given
by the first three vertexes
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of the Dynkin diagram. Then Nikolenko-Semenov-Zainoulline ([Ni-Se-Za])
showed that there is an isomorphism

M(Gy/Py) = éoMz(i).
We first recall the ordinary cohomology of G/P ([Is-To], [Du-Za]).
H'(G/P)5y = Zlt,y|/(rs,r12), 1| =2, [y|=38
where rg = 3y> — 18 and rj, = 26y3 — 5¢'2. Hence we can rewrite
H*(G/P) = Z{1,t,...."Y ® {1, y,y*}.
Recall the Rost motive CH*(M,|;) = Z[y]/(»?),
CH*(M>) = Z{1} ® Z{3y,3*} @ Z/3{v1 y, 01 y*}.

Of course, the above ye CH*(M,) can be identified with the same named
element in H*(Gy/Py) by the restriction map CH*(M,) — CH*(M,|;) <
CH*(Gy/Py). From the above isomorphism, we have the decomposition

(*) CH*(Gy/Py) = Z{1,t,...,1"} ® (Z{1,3y,3y*} ® Z/3{viy,v1*}).
The ring structure is given as follows.
ProposITION 8.3 (Theorem 6.2 in [Ya6]).
900Gk / Pr) = CH™(Gy/ Py)
> Z[t,b,a1,a)/(t'S, 3b,b* = 318, ba;, 3a;, t3a;, aray)
~7Z{1,t,....,1"} ® (Z{1,/3t*, %}y ® Z/3{a,, as})
where |b| =8 and |a1| =4, |ay| = 12.
Proof.  From the relation rg in CH*(G/P), we have
3y =¥+ ox e Q*(G/P) for ve Q.
Hence we can take ¢3 instead of 3y? in (). Of course
(3y)% =31 + 3vx € Q" (G / Py).

Hence we write by b= ./3t* the element 3y. Write by a;, a, the elements
vy, v1y? respectively. Elements in I,Q<" c Q(Gy/P) reduces to zero in
CH*(Gy/Ty). Therefore we have the desired multiplicative results. O

The element » =3y is represented by a Chern class ¢4(&) for some ¢ by
the Riemann-Roch theorem without denominators. Unfortunately, we do not
know if @, = v;y? are Chern classes in CH*(Gy/P;) or not.
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PROPOSITION 8.4. If ay = v1y* € CH*(Gy/Py) is represented by a Chern
class, then gr,(G/P) =~ CH*(Gr/Py). Otherwise
gr,(G/P) = Z[t,b,a]/(1'°, 8b,b> = 348, bay, 3ay, Bay, a})
where |b| =8 and |a,| = 4.

Proof. 1f v;y*> is not represented by Chern class of CH*(Gy/Pk) (or
Q*(Gi/Py)), then the corresponding nonzero element in gr,(G/T) is v}y?,
which is written as (v;y)? = (a1)% O

9. Filtrations of the Morava K-theory

For most groups G in the preceding sections, it is known that K(n)°“(BG)
— 0 (while Kriz gave some examples with K(7)°“(BG) # 0). Hereafter, we only
consider spaces X such that
(9.1) K(m)*“(xX(€)) = K(m)*“(X(C)) =0,
(9.2) K(n)"(X(C)) = AK(n)*""(X).
Then we can define the three filtrations for the Morava K(n)-theory

F(n);,, = Ker(K(n)"(X(C) — K(n)"(X(C)*),

Fn)gey = /(1) | /- M — X and codimy M 2 i}
F(m))' = {ey ") - e ") [y = ),

and let us write the associated graded algebras

gr(n); (X)), gr(n) g, (X),  gr(n),,, (X(C)).
K(n)(

Here ¢; " (x;) is the Chern class for 4K (n)*’*l-theory for some k-representation
X;: X — BGLy. This Chern class is induced from the isomorphism

AK(n)**(BGLy) = K(n)* ®pp- Q*(BGLYy),

in fact, it is well known that in Q*(X), we can define Chern classes canonically
(see [Mo-Le] for example). However each element in K(n)*(X(C)) (for n > 2)
need not to be represented by K(n)-theory Chern classes. Hence we need the
assumption

(9.3) FY = K(n)" (X).

(However, we also consider the cases where (9.3) is not assumed.) Of course
the assumptions are satisfied for K(1)"-theory, if they are so for K(1)"-theory.
Recall P(n)*(X) be the cohomology theory with the coefficient

P(n)" = BP*/(p,v1,...,0n1).
It is well known, for all X,

P(n)"(X) @pp K(n)" = K(n)"(X).
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Let us write by E(P(n))"" (resp. E(K(n))"*') the AHss converging to P(n)*(X)
(resp. K(n)"(X)). Then we have

E(P(n);" @pp K(n)" = E(K(n));"".

If (9.1)-(9.3) are satisfied, then K(n)-version (exchanging BP*(X) to
P(n)"(X)) of all lemmas in §2 also hold.

LemMa 9.1.  Suppose (9.1) for all n > 1, and that Q*(X)/p = BP*(X(C))/p
and it is generated by (BP*-)Chern classes. Then (9.2) and (9.3) are satisfied and

gr(n); (X) = gr(n) ,(X).

Proof.  We consider the maps
Q(X) @pp- K(n)" % AK(n) " (X) 5 K(n)" (X(C)).
Here the map p, is an epimorphism because Q*(X) (resp. AK(n)*"*(X)) is
generated as a BP*-module (resp. K(n)"-module) by elements in CH*(X).
On the other hand by Ravenel-Wilson-Yagita [Ra-Wi-Ya], we know that
(9.1) implies
K(n)"(X(C)) = K(n)" ®pp- BP*(X(C)).

From the supposion in the theorem, we see that p,p, is an isomorphism. This
means that p;, p, are also isomorphisms. O

The assumptions in the above lemma are satisfied for X = BG, G = finite
abelian, p'*?, 0,, G, and PGL3 (p = 3).
Of course gry,,(X) and gr(n),,(X) are quite different. Let G=Z/p. Then

n

K(n)"(BG) = K(n)"(y]/(3").
and this is generated by Chern classes in H*(BG;Z/p).

THEOREM 9.2. Let G=P"Z/p. Then all three filtrations of K(n)"(BG)
are same and

n

gr(n),(BG) = Z/p[y1,..., vl /(3] .-, ).
Similarly, we have

THEOREM 9.3. Let G= 0, and p=2. Then all three filtrations of
K(n)"(BG) are same and

gr(n) 5, (BG) = {Z Py (e yepa) ™ "'(J’2k+1y2k+z)j2’”l}

where 0 < i) <+ <ig<2"<i, <+ <.

For example, gr(n),,, = Z/2[c:] ® Z/2{cic]|i+2j <2"}.
Next we consider the case G = S0, Recall for m >3, y,, is not rep-

resented by Chern classes
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THEOREM 9.4. Let G = SOy, p=2 and m > 2. Then

gr(n);co(BG) = Z[C27 C4y- - 7C2m]{y2m} @ gr(n);w(BOZm)/(cl).
However gr(n);(BG) # gr(n),,,(BG) # gr(n),,,(BG).

geo

Proof:  We only need the second non-isomorphism of the second statement.
Since yo, = (—1)"2""'w,,, € H*(BG) is zero in H*(BG;Z/2). Hence 0 # yy, €
P(n)*(BG) is represented in the AHss converging to P(n)"(BG) as element in
E;Z:*/ with *’ <0 and * > 2m. O

Next consider the case G =G, (and p =2). By the computation of the
AHss for P(1)"(BG) (= BP*(BG;Z/2)), we have
K(1)"(BG) = K(1)"[cq, c6]{1,v1w6 }
By the direct computation of the AHss for K(2)"(BG), we see
K(2)"(BG) ~ K(2)"[ca, c6){1, wawe}.

Thus we have

THEOREM 9.5. Let G =Gy and p=2. Then

gr(i),(BG) = Z/2[cs, c6){1, a}

cace |la| =10 if i=2. o =top

where a*> ={ ¢s |a| =6 if i=1. a=top

0 |la|=4 if i=1,2. a+#top.
Proof. The above a is represented as a = wywg (resp. wg, viwg, VaWaWe)

when i =2, a=top (resp. i=1, o =top, i=1 o # top), and i =2 o # top)).
O

When n > 1, the geometric and topological filtrations are quite different.

THEOREM 9.6. Let G be a simply connected simple Lie group such that
H*(G) has p-torsion. Then for n>1

gr(n)s,(BG) # 0 but gr(n);, (BG) = 0.

top

Proof. The space BG is 3-connected and H*(BG) = Z (so H*(BG;Z/p) =
Z/p). Let us write by x its 4-dimensional generator. To see gr(n), (BG) =0,

top(
we only need to show

(%) d2p”—1(x) =0, ® Qu(x) #0
in the AHss converging to K(n)"(BG).
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For these groups, it is well known that there are embedding G, = G for
p=2,(Fs=Gfor p=3and G=Eg for p=15). We will prove () for G = F4
and p =3, then we can see (x) for the other groups when p =3. (The other
primes cases are similar).

Let G=F; and p=3. Then G has a maximal elementary p-group A4 =~
(Z/3)°. We consider the restriction map for i: 4 G,

i*: H*(BG;Z/p) — H*(BA;Z/p) = Z/p[y1, y2, 3] @ A(x1,x2,X3).

The restriction image is i*(x) = Qo(x1x2x3) (see [Ka-Te-Ya]). Hence we show

i"(On(x)) = 0uQo(x1x2x3) = ny”yzxg #0.

By [Ka-Ya2], it is known that px € H*(BG) is represented as the Chern class
¢, for some representation. Hence gr(n)? (BG) #0. Thus we have the theorem.

geo
]

Now we recall arguments for quadrics. Let m =2m’ + 1, and let us write
the quadratic form ¢(x) defined by

2
(X1, Xm) = X1X2 + -+ X2 X1 + X,

and the projective quadric X, defined by the quadratic form g. Then it is well
known that (in fact SO(m) acts on the affine quadric in A" —0)

X, = SO(m)/(SO(m — 2) x SO(2)).

Let G = SO(m) and P = SO(m — 2) x SO(2). Then the quadric ¢ is always split
over k and we know CH*(Gy/Pyx) = CH*(X,).

In particular we consider the case m =2""' — 1. Let p={-1} e KM(k)/2
= k*/(k*)*>. We consider fields k such that

0% p" e KM\ (k)/2.

Define the quadratic form ¢’ by ¢'(x1,...,X,) = x? +---+x2. Then this ¢’ is a
subform of {({—1,...,~1>) = ¢,.. the (n+ 1)-th Pfister form associated to prL
(That is, ¢’ is the maximal neighbor of the (n+ 1)-th Pfister form.) Of course
ql; = ¢'|; and we can identify Gy/Py = X,;. From Lemma 7.2 (or Rost’s result),
we know

CH*(Xylp) = Z[t, )/ (7" = 29, »?).
As stated in §7, there is a decomposition of motives
M(Xy) = M, ®Z/2[4/(t* ).
Hence we have the additive isomorphism

CH*(Xy) = Z[/(f* ") @ (Z{1, cn0} ® Z/2{cn 1, - Cun1})-
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With identification #2"~! =2y = ¢, o, and u; = ¢, ; for i > 0, we also get the ring
isomorphism

THEOREM 9.7 ([Ya6]). Let 0 # p"™' € KM, (k)/2 and let Gy Py be the above
quadric X,. Then there is a ring isomorphism

CH*(Gy/Py) = Z[t}/(tzw’z) ®Z/2[4/( Nu,. .., w1}

where u; = v;y € Q*(Gr/p) ®q+ Zppy so wu; =0. Hence for 1 <i<n-—1, we
have

97(i) oo (Gr/ Pr) = ZI1 /(" 72) @ Z/2[1] /(") {ui}.

Proof. In K(i)"(X), we see v; = 0 for i # j. Since vju; = vu;, we see u; = 0
for i # j. Ol
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