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THE CONFORMAL ROTATION NUMBER
OsaMU KOBAYASHI

Abstract

The rotation number of a planar closed curve is the total curvature divided by 2z.
This is a regular homotopy invariant of the curve. We shall generalize the rotation
number to a curve on a closed surface using conformal geometry of ambient surface.
This conformal rotational number is not integral in general. We shall show the
fractional part is relevant to harmonic 1-forms of the surface.

1. Introduction

Let M be a connected oriented closed surface with a Riemannian metric g.
The conformal Laplacian L, is defined as L,u = —A,u+ K,, where K, is the
Gauss curvature of g. If we denote by G, a Green function of L, with pole at
pe M, we have a flat surface (M,,g,) = (M\{p},e*%g). Then for a regular

closed curve y: S' — M, we set r(y,p) = %jx ds, which will be called relative

rotation number or conformal rotation number, where x is the curvature of y with
respect to g,. This is a conformally invariant with repect to g, and a regular
homotopy invariant of y, but not in general integer valued. We think of r(y, p)
as a function in p e M. It turns out that r(y, p) is not continuous for p e y(S!)
if y(M) # 0, but the differential extends smoothly on M, and we write «, for this
1-form. The main result of this paper is the following.

1
THEOREM 1.1. If y(M) <0, then mo&, is the harmonic form whose de

Rham cohomology class is the Poincaré dual of .

We shall also explain the relation between our conformal rotation number
and Reinhart’s mod y(M) invariant ([3]).
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2. Conformal Laplacian of a surface

Let (M,g) be a connected closed surface and K, the Gauss curvature of g¢.
The conformal Laplacian is defined as Lju = —Aju+ K,.

A 2.1. If G=e*g, then we have

c
Z
=

w Lou du, = 2)((M);
—v=const if Lyu= Lyv.

<

Proof. (4) is the Gauss-Bonnet theorem. The others are easily verified.
O

Now we assume moreover that M is oriented. x, denotes the curvature of
a regular curve 7.

Lemma 2.2. Suppose § = e*g and y is a regular curve.

1) J,xgdsg — [, x4 dsy = —[ () dsg, where v is the unit normal vector of y.
(2) If y=0U thenficgdsg flchs,, Ju(Agu) du,.
(3) If y=20U then f Kg dsg = 271)( — [u(Lgu) du,.

Proof. (1) is a direct calculation. (2) follows from (1). (3) is Gauss-
Bonnet. U

DEFINITION 2.3. G, € C*(M,) is called a Green functzon of L, with pole
at pe M if L,G, = ad) for some constant a, where ¢, is the Dirac 5 function at
p with repect to the metric g.

LemMMmaA 2.4.

(1) a = 2mx(M)

(2) G p is unique up to an additive constant
(3) G, —u is a Green function of e*

Proof. From Lemma 2.1. O

We remark that G, has no pole at p if y(M)=0.

COROLLARY 2.5. (M,,g,) is flat and its homothety class depends only on the
conformal class of (M, g).

PROPOSITION 2.6.  There is a Green function G,, and G,(x) + y(M) log d(x, p)
is continuous at p.
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Proof. We have a metric § = e**¢ which is flat near p. Let ue C*(M,)
be a function such that u(x) = —y(M) log d(x, p) near p and we have —Aju =

27()((M)519; near p. Put
O =
v(x) = { =P

Aju otherwise.

Then ve C*(M) and Aju=v— 271)((M)5g. It follows from the Gauss-Bonnet
theorem that [, (K5 —v) du; = 0. Hence we have w e C*(M) such that Agw =
Kj —v, and G, = u—|— w—24e C®(M\{p}) is the desired Green function. O

We will give a proof of the following classical theorem.
PROPOSITION 2.7.  Any metric g is conformal to a metric of constant curvature.

Proof. Case y(M)=0: The Poisson equation —Aju + K, = 0 is solvable.
Case y(M) <0: Let ue C*(M) be a solution of Lyu=2ny(M)/ [,, du,, and
put uy = u — min, u(x) and u_ = u — max, u(x). Because y(M) < 0 the method
of sub- and super-solutions (pp. 35-36 of [2]) is applicable, and we get
ve C*(M) such that Ly =e? 2ny(M)/ |, du, Case yx(M)>0: Take
peM and consider (M,,g,). We have gpzld(‘p, X) “ZM) g where A is a
fucntion continuous at p. Hence (M,,g,) is a complete flat surface with one
end because y(M) > 0. Therefore (M,,g,) is isometric to either (R? go) or
(S' x R/+1,g0). That is, (M,g) is conformal to (S2,go) or (RP? g). O

We set G(x,y) = Gy(y), x # ye M, and call it a Green kernel of L,.
ProposITION 2.8.  We can choose a Green kernel so that G(x,y) = G(y,Xx).

Proof.  Suppose g = e?g has constant Gauss curvature K. Take a_Green
function G, of L;. Note that G, is integrable and set G'(x,y) = G.(y) —
Jo Ge(») dy/fM dy. It is not hard to see that G'(x,y) = G'(y,x). G(x,y) =
G'(x,y) +u(x) +u(y) is the desired Green kernel. O

Remark 2.9. Let 0=/J9 <A <Ay <--- be the eigenvalues of —A;, and
¢; be eigenfunction with eigenvalue 4; such that [,, ¢:¢; = 0;. Then G'(x,y) =

2m(M) S ). (o [11)

In the case of nonpositive Euler characteristic (M), g,) is no longer complete,
that is, p may be regarded as a singular point rather than a point at infinity.
The following describes a local picture around p.

ProposITION 2.10.  Suppose y(M) < 0. Then there are neighborhoods U of
pand V of 0 in R%, and a mapping [ : U — V such that { is a ramified covering
of degree 1 — y(M) branched at p with f(p) =0 and g, = f*go, where gy is the
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Euclidean metric. In particular, there is a local coordinates x' and x* around p
such that g, = |x|"*™&; dxidx’ near p.

Proof. Routine and omitted. O

3. Rotation number relative to a reference point

Let (M,g) be as before and y:S' — M be a regular closed curve. For
pe M\y(S') we set

1
r(y,p) = EJ K ds,
,

where the curvature x of y and the line element ds are with respect to the flat
metric g,.

Lemma 3.1.

(1) r(y, p) depends only on the conformal class of g.

(2) If 7 is regularly homotopic to y in M,, then r(3,p) =r(y,p).

(3) Suppose that j is regularly homotopic to y in M, and that in the course
of homotopy the point p is passed once in such a way that p is in the left
of y and in the right of 9. Then r(j,p) =r(y, p) + x(M).

Proof. (1) Since x ds is invariant under homothety of ambient metric,
the result follows from Corollary 2.5. (2) We have only to consider a regular
homotopy whose support is very small. Then the result is evident because g,
is flat. (3) Let D be a sufficiently small disk around p with smooth boundary
¢=0D. Then it is easy to see that r(3, p) —r(y,p) =1 —r(c,p). On the other
hand we have, from Lemma 2.2 (3), r(c,p) =1 — y(M). O

CorOLLARY 3.2. 1r,: M — R/y(M)Z; r,(p)=r(y,p) mod y(M) is well-
defined and smooth.

Proof. From Lemma 2.2 (1) and Proposition 2.8 it follows that r(y, p) is
smooth in p ¢ y(S!). The result then follows from Lemma 3.1. O

ProrosITION 3.3, If y is null homologous in Hy(M,Z), then
(1) r(y. p) € Z;

(2) r(y,p), as a function of p, is locally constant for p ¢ y(S');
(3) r(y) :==r(y,p) mod y(M) is well-defined.

Proof. Let g be a point on p. Since g, is flat, we have holonomy ¢ :
n1(M,,q) — SO(2) = U(1). This is explicitly given as ¢([c]) = exp(—27r(c, p)).
Since U(1) is Abelian, and H|(M,,Z) = Hi(M,Z), ¢ induces a homomorphism
¢o: Hi(M,Z)— U(l). Hence ¢([y]) = 1, which implies (1). From Corollary 3.2
we get (2) because of (1). Then (3) follows from Lemma 3.1 (3). O
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For a regular closed curve y on M = S? we have r(y) =0 or 1 mod 2. It
is easy to see that this is a complete invariant of regular homotopy on S? (see
also [4]).

We note that the above definitions and arguments make sense for multiple
curve y:S'U---US' = M. Thus we have

CorOLLARY 3.4. If y is homologous to j in Hi(M,Z), r(y,p) —r(j,p) € Z
for pe M\(yU9), and its residue class modulo y(M), which will be denoted by
r(7,7), is independent of p.

Let u,...,4,, be regular curves which generate (M), where ¢g=
1 —y(M)/2. Then they constitute also a basis for H,(M,Z). Hence for 7y,
we have n; € Z such that y is homologous to 7 = > m;u;. The rotation number
defined by Reinhart [3] is r(y,7) in our terminology.

Suppose N is a compact surface with boundary and f: N — M is an
immersion. Obviously ¢ = f| 0N is null homologous. In this setting we have
a simple formula.

LEMMA 3.5. r(c,p) +myy(M) = x(N), where m, = #f~1(p).
Proof is easy and omitted.

CorOLLARY 3.6. If y(M) =0 then y(N)=r(c,p). If y(M)<0 then
x(N) <r(e, p).

4. Proof of Theorem 1.1

From Corollary 3.2 we have r(y,-) e C*(M\y). Thus o, =dr(y,-) = dr,
extends smoothly on M as a closed 1-form. Moreover Lemma 3.1 (3) yields the
following.

J Ofy:){(M)y-C,

where ¢ is a smooth l-cycle and “-” in the right hand side is the homology

1
intersection. Therefore if y(M) < 0, D o] € H) (M) is the Poincaré dual of
the cycle y. x(M)
The key of the proof is Proposition 2.8. We write K for K,.
—AGy(x) + K(x) =0 if p#x.

We see from Proposition 2.8 that

—-A,G,(x)+K(p)=0 if p#ux
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Therefore v being the unit normal vector of y, we have
“A6Gy(x) = ~0A,Gp(x) = (~A,Gp(x) + K(p) =0 i p £ x.

This together with Lemma 2.2 (1) shows that r(y,-) is harmonic in M\y, and
hence o, is harmonic.

5. Supplementary remarks

Regular homotopy of closed curves is completely described by Smale [4] in
terms of algebraic topology. We are interested in differential geometric interpre-
tation of regular homotopy. Our conformal rotation number is not a complete
invariant of regular homotopy. There is another non-trivial regular homotopy
invariant #(y) (see [5]). It is of interest to understand #(y) from differential
geometric point of view.

We distinguish the term ‘“‘rotation number” from “winding number.” The
winding number is also generalized to a curve y on a surface M, which is given as

w(y, po, Pw) = — (r(y, po) = r(7,px)), Po,Pw € M\,

x(M)
if (M) #0.
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