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THE CONFORMAL ROTATION NUMBER

Osamu Kobayashi

Abstract

The rotation number of a planar closed curve is the total curvature divided by 2p.

This is a regular homotopy invariant of the curve. We shall generalize the rotation

number to a curve on a closed surface using conformal geometry of ambient surface.

This conformal rotational number is not integral in general. We shall show the

fractional part is relevant to harmonic 1-forms of the surface.

1. Introduction

Let M be a connected oriented closed surface with a Riemannian metric g.
The conformal Laplacian Lg is defined as Lgu ¼ �Dguþ Kg, where Kg is the
Gauss curvature of g. If we denote by Gp a Green function of Lg with pole at
p A M, we have a flat surface ðMp; gpÞ ¼ ðMnfpg; e2GpgÞ. Then for a regular

closed curve g : S1 ! Mp we set rðg; pÞ ¼ 1

2p

Ð
g
k ds, which will be called relative

rotation number or conformal rotation number, where k is the curvature of g with
respect to gp. This is a conformally invariant with repect to g, and a regular
homotopy invariant of g, but not in general integer valued. We think of rðg; pÞ
as a function in p A M. It turns out that rðg; pÞ is not continuous for p A gðS1Þ
if wðMÞ0 0, but the di¤erential extends smoothly on M, and we write ag for this
1-form. The main result of this paper is the following.

Theorem 1.1. If wðMÞ < 0, then
1

wðMÞ ag is the harmonic form whose de

Rham cohomology class is the Poincaré dual of g.

We shall also explain the relation between our conformal rotation number
and Reinhart’s mod wðMÞ invariant ([3]).
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2. Conformal Laplacian of a surface

Let ðM; gÞ be a connected closed surface and Kg the Gauss curvature of g.
The conformal Laplacian is defined as Lgu ¼ �Dguþ Kg.

Lemma 2.1. If ~gg ¼ e2ug, then we have
(1) Lgu ¼ e2uK~gg;
(2) Lgv ¼ e2uL~ggðv� uÞ;
(3) Dgv ¼ e2uD~ggv;
(4)

Ð
M
Lgu dmg ¼ 2wðMÞ;

(5) u� v ¼ const if Lgu ¼ Lgv.

Proof. (4) is the Gauss-Bonnet theorem. The others are easily verified.
r

Now we assume moreover that M is oriented. kg denotes the curvature of
a regular curve g.

Lemma 2.2. Suppose ~gg ¼ e2ug and g is a regular curve.
(1)

Ð
g
k~gg ds~gg �

Ð
g
kg dsg ¼ �

Ð
g
ðqnuÞ dsg, where n is the unit normal vector of g.

(2) If g ¼ qU then
Ð
g
k~gg ds~gg �

Ð
g
kg dsg ¼

Ð
U
ðDguÞ dmg.

(3) If g ¼ qU then
Ð
g
k~gg ds~gg ¼ 2pwðUÞ �

Ð
U
ðLguÞ dmg.

Proof. (1) is a direct calculation. (2) follows from (1). (3) is Gauss-
Bonnet. r

Definition 2.3. Gp A CyðMpÞ is called a Green function of Lg with pole
at p A M if LgGp ¼ adgp for some constant a, where dgp is the Dirac d-function at
p with repect to the metric g.

Lemma 2.4.
(1) a ¼ 2pwðMÞ.
(2) Gp is unique up to an additive constant.
(3) Gp � u is a Green function of e2ug.

Proof. From Lemma 2.1. r

We remark that Gp has no pole at p if wðMÞ ¼ 0.

Corollary 2.5. ðMp; gpÞ is flat and its homothety class depends only on the
conformal class of ðM; gÞ.

Proposition 2.6. There is a Green function Gp, and GpðxÞþ wðMÞ log dðx; pÞ
is continuous at p.
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Proof. We have a metric ~gg ¼ e2lg which is flat near p. Let u A CyðMpÞ
be a function such that uðxÞ ¼ �wðMÞ log ~ddðx; pÞ near p and we have �D~ggu ¼
2pwðMÞd~ggp near p. Put

vðxÞ ¼
0 x ¼ p

D~ggu otherwise:

�

Then v A CyðMÞ and D~ggu ¼ v� 2pwðMÞd~ggp. It follows from the Gauss-Bonnet
theorem that

Ð
M
ðK~gg � vÞ dm~gg ¼ 0. Hence we have w A CyðMÞ such that D~ggw ¼

K~gg � v, and Gp ¼ uþ w� l A CyðMnfpgÞ is the desired Green function. r

We will give a proof of the following classical theorem.

Proposition 2.7. Any metric g is conformal to a metric of constant curvature.

Proof. Case wðMÞ ¼ 0: The Poisson equation �Dguþ Kg ¼ 0 is solvable.
Case wðMÞ < 0: Let u A CyðMÞ be a solution of Lgu ¼ 2pwðMÞ=

Ð
M

dmg, and
put uþ ¼ u�minx uðxÞ and u� ¼ u�maxx uðxÞ. Because wðMÞ < 0 the method
of sub- and super-solutions (pp. 35–36 of [2]) is applicable, and we get
v A CyðMÞ such that Lgv ¼ e2v � 2pwðMÞ=

Ð
M

dmg. Case wðMÞ > 0: Take
p A M and consider ðMp; gpÞ. We have gp ¼ ldðp; xÞ�2wðMÞ

g, where l is a
fucntion continuous at p. Hence ðMp; gpÞ is a complete flat surface with one
end because wðMÞ > 0. Therefore ðMp; gpÞ is isometric to either ðR2; g0Þ or
ðS1 � R=G1; g0Þ. That is, ðM; gÞ is conformal to ðS2; g0Þ or ðRP2; g0Þ. r

We set Gðx; yÞ ¼ GxðyÞ, x0 y A M, and call it a Green kernel of Lg.

Proposition 2.8. We can choose a Green kernel so that Gðx; yÞ ¼ Gðy; xÞ.

Proof. Suppose ~gg ¼ e2ug has constant Gauss curvature ~KK . Take a Green
function ~GGp of L~gg. Note that ~GGp is integrable and set G 0ðx; yÞ ¼ ~GGxðyÞ�Ð
M
GxðyÞ dy=

Ð
M

dy. It is not hard to see that G 0ðx; yÞ ¼ G 0ðy; xÞ. Gðx; yÞ ¼
G 0ðx; yÞ þ uðxÞ þ uðyÞ is the desired Green kernel. r

Remark 2.9. Let 0 ¼ l0 < l1 a l2 a � � � be the eigenvalues of �D~gg, and
fi be eigenfunction with eigenvalue li such that

Ð
M
fifj ¼ dij. Then G 0ðx; yÞ ¼

2pwðMÞ
P

k>0

1

lk
fkðxÞfkðyÞ. (cf. [1].)

In the case of nonpositive Euler characteristic ðMp; gpÞ is no longer complete,
that is, p may be regarded as a singular point rather than a point at infinity.
The following describes a local picture around p.

Proposition 2.10. Suppose wðMÞa 0. Then there are neighborhoods U of
p and V of 0 in R2, and a mapping f : U ! V such that f is a ramified covering
of degree 1� wðMÞ branched at p with f ðpÞ ¼ 0 and gp ¼ f �g0, where g0 is the
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Euclidean metric. In particular, there is a local coordinates x1 and x2 around p

such that gp ¼ jxj�2wðMÞ
dij dx

idx j near p.

Proof. Routine and omitted. r

3. Rotation number relative to a reference point

Let ðM; gÞ be as before and g : S1 ! M be a regular closed curve. For
p A MngðS1Þ we set

rðg; pÞ ¼ 1

2p

ð
g

k ds;

where the curvature k of g and the line element ds are with respect to the flat
metric gp.

Lemma 3.1.
(1) rðg; pÞ depends only on the conformal class of g.
(2) If ~gg is regularly homotopic to g in Mp, then rð~gg; pÞ ¼ rðg; pÞ.
(3) Suppose that ~gg is regularly homotopic to g in M, and that in the course

of homotopy the point p is passed once in such a way that p is in the left
of g and in the right of ~gg. Then rð~gg; pÞ ¼ rðg; pÞ þ wðMÞ.

Proof. (1) Since k ds is invariant under homothety of ambient metric,
the result follows from Corollary 2.5. (2) We have only to consider a regular
homotopy whose support is very small. Then the result is evident because gp
is flat. (3) Let D be a su‰ciently small disk around p with smooth boundary
c ¼ qD. Then it is easy to see that rð~gg; pÞ � rðg; pÞ ¼ 1� rðc; pÞ. On the other
hand we have, from Lemma 2.2 (3), rðc; pÞ ¼ 1� wðMÞ. r

Corollary 3.2. rg : M ! R=wðMÞZ; rgðpÞ ¼ rðg; pÞ mod wðMÞ is well-
defined and smooth.

Proof. From Lemma 2.2 (1) and Proposition 2.8 it follows that rðg; pÞ is
smooth in p B gðS1Þ. The result then follows from Lemma 3.1. r

Proposition 3.3. If g is null homologous in H1ðM;ZÞ, then
(1) rðg; pÞ A Z;
(2) rðg; pÞ, as a function of p, is locally constant for p B gðS1Þ;
(3) rðgÞ :¼ rðg; pÞ mod wðMÞ is well-defined.

Proof. Let q be a point on g. Since gp is flat, we have holonomy j :
p1ðMp; qÞ ! SOð2Þ ¼ Uð1Þ. This is explicitly given as jð½c�Þ ¼ expð�2prðc; pÞÞ.
Since Uð1Þ is Abelian, and H1ðMp;ZÞ ¼ H1ðM;ZÞ, j induces a homomorphism
j : H1ðM;ZÞ ! Uð1Þ. Hence jð½g�Þ ¼ 1, which implies (1). From Corollary 3.2
we get (2) because of (1). Then (3) follows from Lemma 3.1 (3). r
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For a regular closed curve g on M ¼ S2 we have rðgÞ ¼ 0 or 1 mod 2. It
is easy to see that this is a complete invariant of regular homotopy on S2 (see
also [4]).

We note that the above definitions and arguments make sense for multiple
curve g : S1 U � � �US1 ! M. Thus we have

Corollary 3.4. If g is homologous to ~gg in H1ðM;ZÞ, rðg; pÞ � rð~gg; pÞ A Z
for p A MnðgU ~ggÞ, and its residue class modulo wðMÞ, which will be denoted by
rðg; ~ggÞ, is independent of p.

Let m1; . . . ; m2g be regular curves which generate p1ðMÞ, where g ¼
1� wðMÞ=2. Then they constitute also a basis for H1ðM;ZÞ. Hence for g,
we have ni A Z such that g is homologous to ~gg ¼

P
nimi. The rotation number

defined by Reinhart [3] is rðg; ~ggÞ in our terminology.
Suppose N is a compact surface with boundary and f : N ! M is an

immersion. Obviously c ¼ f j qN is null homologous. In this setting we have
a simple formula.

Lemma 3.5. rðc; pÞ þmpwðMÞ ¼ wðNÞ, where mp ¼af �1ðpÞ.

Proof is easy and omitted.

Corollary 3.6. If wðMÞb 0 then wðNÞb rðc; pÞ. If wðMÞa 0 then
wðNÞa rðc; pÞ.

4. Proof of Theorem 1.1

From Corollary 3.2 we have rðg; �Þ A CyðMngÞ. Thus ag ¼ drðg; �Þ ¼ drg
extends smoothly on M as a closed 1-form. Moreover Lemma 3.1 (3) yields the
following. ð

c

ag ¼ wðMÞg � c;

where c is a smooth 1-cycle and ‘‘�’’ in the right hand side is the homology

intersection. Therefore if wðMÞ < 0,
1

wðMÞ ½ag� A H 1
DRðMÞ is the Poincaré dual of

the cycle g.
The key of the proof is Proposition 2.8. We write K for Kg.

�DxGpðxÞ þ KðxÞ ¼ 0 if p0 x:

We see from Proposition 2.8 that

�DpGpðxÞ þ KðpÞ ¼ 0 if p0 x:
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Therefore n being the unit normal vector of g, we have

�DpqnGpðxÞ ¼ �qnDpGpðxÞ ¼ qnð�DpGpðxÞ þ KðpÞÞ ¼ 0 if p0 x:

This together with Lemma 2.2 (1) shows that rðg; �Þ is harmonic in Mng, and
hence ag is harmonic.

5. Supplementary remarks

Regular homotopy of closed curves is completely described by Smale [4] in
terms of algebraic topology. We are interested in di¤erential geometric interpre-
tation of regular homotopy. Our conformal rotation number is not a complete
invariant of regular homotopy. There is another non-trivial regular homotopy
invariant tðgÞ (see [5]). It is of interest to understand tðgÞ from di¤erential
geometric point of view.

We distinguish the term ‘‘rotation number’’ from ‘‘winding number.’’ The
winding number is also generalized to a curve g on a surface M, which is given as

wðg; p0; pyÞ ¼ � 1

wðMÞ ðrðg; p0Þ � rðg; pyÞÞ; p0; py A Mng;

if wðMÞ0 0.
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