Q.-G. CHEN AND D.-G. WANG
KODAI MATH. J.
38 (2015), 155-165

INDUCTION FUNCTORS FOR GROUP CORINGS
QuaN-GUO CHEN AND DING-GUuO WANG*

Abstract

In the paper, we prove that the induction functor stemming from every morphism
of group coring versus coring has a left adjoint, called ad-induction functor. The
separability of the induction functor is characterized, extending some results for
corings.

1. Introduction

As the generalization of coring, introduced by Sweedler [8] and revised by
Brzezinski [1], Caenepeel et al. introduced the group coring and developed Galois
theory for group corings in [2], which have become increasingly an interesting
subject to study. Some study of the new structure has been carried out in recent
papers (see [4], [6] and [10]).

Given an A-coring C, where A4 is an algebra over a fixed field k£, we have the
category .# € of all the right comodule over C. It follows from [I] that there
exists a pair of adjoint functor between the category .# € and the category .#,
of all the right A-modules. The extension of this result to the context of
Hopf group-coalgebras was made in the work of the authors in [10], that is,
there exists a pair of adjoint functor between the category .# %€ of all the right
G-C-comodule and the category .#, of all the right 4-modules. As we know,
an algebra A4 has a canonical A-coring structure over itself. A natural question
occurs to us: whether there exists a pair of adjoint functor between the category
M C of all the right G-C-comodule and the category .#” of all the right
comodules over a given B-coring, if so, how to characterize its separability. This
is done in this paper.

This paper is organized as follows.
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In Section 2, we recall some basic concepts such as group coring and
cotensor product. In Section 3, we use the notion of homomorphism of corings
to construct a pair of adjoint functors (the induction functor and its adjoint,
called here ad-induction functor). Finally, the separability of the induction
functor is characterized.

2. Preliminaries

Throughout this paper, we always let G be a group with the unit ¢ and k a
field.

2.1. Group corings. First recall from [2] that a G-group A-coring (or
shortly a G-A-coring) C is a family {C,},.; of A-bimodules together with a
family of A-bimodule maps

Aup:Cp—Co®Cp, ¢6:Co— A4
such that
(Aa.ﬁ ®y Cy) oAy, = (C, ®y Aﬂ‘},) o Ay py

and
(Ca ®y 8) o A%,e =Cy = (3 ®y Cy) o Ae,a
for all a,f,y€G.

Remark 2.1. 1If C is a G-A-coring, then C, is an ordinary A-coring in sense
of [8].

We use the following Sweedler-type notation for the comultiplication maps
A‘y__’ﬁi
Ay p(c) = c1,0 ®ucp),

for all c e Cu.
A right G-C-comodule M = {M,},_; is a family of right 4-modules, to-
gether with a family of right A-linear maps p¥ = {p;”ﬁ}a peGo
pajyﬁ:Mﬂc{)’_’Ma®A C/)’
such that
(Mm ®A Aﬁ-,}’) Opci‘f[)’y = (pzﬁul[f ®A C}’) Opci“[?,y
and
(Mz @AG) Opo]y@ =M,
for all o, f,y€ G.



INDUCTION FUNCTORS FOR GROUP CORINGS 157
We use the following Sweedler-type notation:

ﬂf.lp(m) = My, ®4 M1 g

for m e M.
A morphism between two right G-C-comodules M and N is a family of right
A-linear maps f = {f, : M, — N,},.c such that

(S ®4Cp) 0Py = Pop© fop-
The category of right G-C-comodules will be denoted by .#%C.

2.2. The cotensor product. Let D be a B-coring. Let M e.#” and
NeP /. First recall that the cotensor product M[JpN of M and N is given
by

MDDN: {Zm, ®BnieM®N’Zmi[0] ®Bm,~[1] ®Bn,-

= Z m; Qg nij—1) ®p Mifo] } )

that is, M[JpN fits an exact sequence
O*>]\4|:|DN*>]‘4()331\7:))Z‘l()DBDQBBZV7
where the two maps M @z N — M ®z D RN are pM @z N and M Qzp".

3. Separable homomorphisms of G-A-corings versus corings
Consider a G-A-coring C and a B-coring D, where 4 and B are both
k-algebra.

DEerINITION 3.1. A coring homomorphism is a pair (p,u), where y: A — B
is a homomorphism of algebras and ¢:C, — D is a homomorphism of
A-bimodules, and such that the following equations

Ip.po(p®y0)0A, .= Apop,
poe, =éepog,

where 8p p: D®, D — D ®pgD is the canonical map induced by .
Throughout the rest of this section, we always assume that there exists a
coring homomorphism (¢, u) between two corings C, and D.

3.1. The induction functor.

ProposiTION 3.2. The assignment M +— M, ®, B establishes a functor
(=), ®B: M — P
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Proof. Let pM = {pMy: Myg — M, ®, Cp}, s be a right G-C-comodule.
Define

pMU@AB N Me ®A B — Me‘ ®A B®BD7 m ®A b — M[Oﬂg] ®A IB ®B ¢(M[]7€]) . b
It is straightforward to check that M, ®, B is an object of .#”. In order to
show the assignment M — M, ®, B is functorial, we will prove that f, ®, B is a

homomorphism of right D-comodules for every morphism f = {f, : M, — N,}, s
in .#/%C€. 1In fact, for all me M, and b e B, we have

pM®1B o (f. @4 B)(m®,b) = (M), ®a 1 @po(f(m); o) b
= f(myo,) ®4 18 ®pp(m)q) - b
= (fe ®4 B®3 D) o p™® B (m®,b).
This ends the proof. O
3.2. The ad-induction functor. For each o € G, define
pPe1e B, C,—» D@ B®,Cypy b®yc—b-9(ci ) ®plp®ucp-
Lemma 33. B®,C={B®,C,},.; is a D-C-bicomodule.
Proof. 1t is sufficient to prove that the following diagram is commutative,

B®,4Ap

B@A Cy[)’ B®A C“ ®A C/)’
[)B®Amﬁl J/]B@)AQ ®4Cp

D®pB® A,
D®RpB®,Cy T DRy B®, G ®y Cp

Indeed, for all e B and c e Cy,

(pP®1“ ®,Ch) o (BR,Ayp)(b®yc)
=b-0(c1,0)(1,¢) ®p1p @4 (1,)2,2) ®a C2,p)
=b-p(c(1,e) ®r 15 R C2,0p)(1,0) ®a C.3p)2.5)
= (D ®p B®,s Ay p) 0 pP®1 (b ®, ).

This shows that BR, C ={B®, C,},.; is a D-C-bicomodule. O

ProPOSITION 3.4. We have a pair of adjoint functors (F,U) between the
categories M€ and My (the category of right B-module).
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Proof. Take M = {M,} and define

aeG>
F:4%C = Mg, M— M,Q,B.
For a morphism f = {f,: M, — M/} .. in 4%, we simply define

F(f) =/ ®4B.
Let us now define U. For N € .#p, and define
U:llyg— M%C, N—N®zB®,C),

where N ®p(B®,C) ={N ®3(B®,C,)},.; With the G-comodule structure
maps

po) = {Pg%m =N Qp(B®4Aup)}, pec-
Consider the map
(3.1) ¢ : Homg(M, ®, B,N) — Hom“(M,N ®;(B®, C)),
sending /" to ¢(f) = {4(f),},cq, Where
¢(f)y: My — N ®p(B®y Ca),¢(f),(m) = f(mp,q &4 1) ®p (15 ®4m)1,4)
and
¢ : Hom“(M,N ®3(B®, C)) — Homp(M, ®, B,N),g — ¢(g),
where

9(9)(m ®4b) = (N ®g (B ®4¢)(ge(m))) - b-

Let us check that ¢ and ¢ are mutually inverse:

P(0(9)),(m) = 9(g)(mp,q ®418) ®p (13 ®4my 4)
= (N ®g (B®,&)(ge(myp,e))) ®p (13 ®4m1,4))
= ((N @3 (B®,¢) ®p(B®y Cy))(ge(myo,) ®p s ®4myi )
= ((N @5 (BQ,¢)) ®(B®4 Cy))(gx(m) ) ®p 15 ®y gulm); )
(go(m) = n; @p (bi @4 ¢i) € N ®p (B®y Cy))
= (N®p(B®,¢) ®p(BR®,Cy))(ni ®p (bi ®y ci1,e)) ®p 18 Ry Ci2,2))
= n; - bip(e(cir,e))) ®p 15 ®4 Ci2,0)
=n; ®pbi ®4¢(Ci1,0)) " Ci(2.)
=n; ®pbi ® ¢; = gu(m)
For all me M,, and
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9o ¢(f)(m®,b) = (N ®5(B®4e)(p(f).(m)))-b
= (N ®g (B®,)(f(mp,q ®415) ®p (15 @smy.q)) - b
f( mo, ] ®A ) ﬂ(a(m[l el ))b
= [ (mp,q - e(mp,q) ®4b) = f(m ®,b).
This ends the proof. ]
For a G-A-coring C, recall from [10, Lemma 3.1] that there exists a pair
of adjoint functors (Fj, U;) between the categories .# % and .#, (the category of
right A-modules). Notice that the adjoint functors (F, U) in Proposition 3.4 are

the composition of the functors (Fj,U;) and the restriction/induction functor
induced by 4 — B:

MOC s My s Mp.

Next, take N € .#” and N[Jp(B ®, C,) denotes the cotensor product of N
and B®, C,. Let NOp(B®,C)={NOp(B®,C,)},cq- From the proof of
Prop. 3.4, we have

ProposITION 3.5. If C is flat as a left A-module (means that each C, is flat),
and N e MP°, M = {M,},.;ce #%C then NOp(B®, C) = {Np(BR, Cs)},cq
is an object of M @€ via the structure map {N ®g B ®, Avplypeg  (3.1) restricts
to an isomorphism '

Hom?” (M, ®, B,N) ~ Hom“(M,N[p(B®, C)).
Therefore, —(p(B®, C) is right adjoint to (—), ®4 B

Proof.  We have to show that, for all ) . n; ®p (b ® ¢;) e NOp(B®, Cup)
with o, f € G:

x = Z(”i ®p (bi ®4 ¢i1,2)) @ ci2,p € (NOp(B®y Ca)) ®y Cp.
For each o € G, we have an exact sequence
0— NOp(B®,4C,) = N®p(BR,C,) 3N QD Rp(B®,yCy).
Since Cg is flat, we have another exact sequence
0— (NOp(B®,4C,)) ®4Cs— N®p(B®,yC,) ®Cp
I N®D®p(B®,Cy) ® Cp.

Therefore, in order to show that x e (NOp(B®, C,)) ®, Cp, it suffices to show
that

(P" ®pB®4 Cu ®y Cp)(x) = (N ®pp" 1 @, Cp) ().
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Indeed, we have

(" ®pBR,4C, ®yCp)(x Z”l ®p i) ®pbi @4 Ci(1,4) R4 Ci2,p)
= Z ni0) ®p ni(1) ®p bi ® 4 Ci(1,4) @ Cit2,p)
i
= Z 1n; Qg bi - 9(Cit1,5)(1,¢)) @ Ci1,2)(2,4) O Ci2,p)
i

= (N ®50"®1% ®, Cy)(x).

So NOp(B®y )— {NOp(B®, Cy)},.; is an object of .#%€.
Take f € Hom?(M, ®,B,N), for all xe G and m e M,, since

(P" ®p(B®4 Cy)) o d(f),(m)
= (p" @p (B®4 C)(f (o, ®4 18) ®p (15 ®4mp14))
= (f @D ®3(BR,C.))(p™®1 B (myy g @4 15) ®p (15 @4my1,5))
= (f ®D ®p (B®, C.))(mp,d0,q ®a 1 ®p p(myo d1,0) ®p (18 @4 my1,5))
= (f ®pD ®p (B®, Cy)) (M), @415 Rp (M1 51,¢) ®p (18 @4 mi1,5)(2,5)))
= f(m),q ®418) ®p @M} 41.e)) ®p (18 Ry M1 4)(2,4))
= (N ®gp"®1“) 0 4(f),(m).

Hence it follows ¢(f),(m) e NOp(B®, Cy,). Conversely, let f € Homg(M. ®,
B,N). Assume that ¢(f),(m) e NOp(B®, Cy), by (3.1), it is sufficient to check
that

(32) (0" o f) = p((f ®p D) 0 p*-®4"),
In fact, for all « € G and m e M,, since
$((f @ D) o p¥®1F), (m)
= (f @ D)o p™®B(my g ®415) @p (15 @ my )
= f(m)0,¢0,e] ®a 18) ®p @(mo,d1,e) ®p (18 ®4m1,4))
= [ (myp,q) @4 15) ®p 0(m[1,5)(1,¢) ®p (15 @11, 5)2,4))
= (N ®pp"® )0 ¢(f)1(M)

(
(

and
d(p™ o 1),(m) = p¥ (f(mp.q ®415)) @ (15 ®4mp1,4)
= (" ®p (B®4 Cy)) 0 ¢(f),(m).

So we can get relation (3.2) from the assumption. O
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Let us finally describe the unit # of this adjunction in Prop. 3.5. Taking
M= {M,},.c€ #%C, the unit nM = (M} _. for (=), ®, B4 —-Op(B®,C)
at M is given by

7734(’”) = (myp,q ®413)0p(1s ®4my ).

Now, we shall achieve the main goal in this section. Before presenting the
main theorem, we first give the following remark which is necessary.

Remark 3.6. (1) Let M ={M,}, ;e #%C. For each aeG, M*=
{Mup}s. 1s a G-C-comodule via the structure map {p/f,”y :P%,y}ﬁ,yeo
(2) Let M = {M,},.. € .#°C be flat as a right A-module. Then the map

(m;‘,’, ®4B)®5(B®,C))

(M, ®,4 B) @ (B®, C,)

restricts to

M, ®,(Cp®4B) ®p(BR,C,)

(M ®4 B)Op(B®,C,) — M, ®,4 (Cs®,4 B)Up(BR, C,)
=M, ®,Cs®,B)0p(B®,C))
for all o, 8,y € G, where M,; ®, B, Cp ®, B are considered as right D-comodules

by applying the functor (-),®,B to M* CF and M,®,C;®,B via
Mot ®Apcﬁ®AB-

THEOREM 3.7. Assume that C is flat as a left A-module and every object in
MEE is flat as right A-module. The functor (=), ®,B: . #%C — 4P is sep-
arable if and only if there is a family of homomorphisms of A-bimodule

0=1{0":(C, ®;B)p(BRyC,) — ) e

such that .
(1) % on™ =e,
(2) O satisfies the following commutative diagram:

(A oy ~1 @1 B)@p(B®,4 Cop)
(Cx—l R4 B)DD(B Q4 Cov./)’) C/; ®4 ((C(aﬂ)*‘ ®y B) DD(B ®y C“ﬁ))

(C,1®4B)®p(B® Ay p) l@r@/ﬁw’)

(9(«)®AC
((Co ®4 B)p(B®y C,)) @4 Cp ! Cp

Proof. Assume that (—), ®, B is separable. By Rafael’s Theorem (see [7]),
there exists a natural transformation w: ((—), ®4B)0p(B®,C) — 1 ,6c such
that w o =1 (the identiy natural transformation.) Specially, considering G-C-
comodule C*' = {C,i plpec via Ayig, and applying o to it, we have

-1 41
0 = {wﬂc : (Cofl ®4 B)DD(B ®4 C/l’) - Co:*‘[)'}ﬂeG'
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Then we construct a family of k-linear maps 6 = {#},_,

o1
0(“) :gowf : (Ca—l ®A B)DD(B ®A C%) — 4.

From ¢ and o¢ ! being both right A-linear, it follows that the map 0™ is a right
A module morphlsm Next for all a € A, we consider a family of k-linear maps

f(a“ {fux }ﬁeG’

f[f’(aya ) 2 Corip = Gy, f/f(a,f )<C) =a-c.
It is checked easily that f“* is a morphism of .#% €. By the naturality of , we

have the following commutative diagram
et

(Cac*‘ ®A B) DD(B ®A C/j) /]—> Cm—lﬁ
(/iz(”"rl)®A B)DD(B®ACﬁ>l -1 J/I}MI)
(Cot ®4 B)Up(B®, Cp) RENYe) .y

for all € G. It follows from the above commutative diagram that wﬁ . is left
A-linear, thus 0 is left A-linear. Since

o (1) ®u 1) Op(1p ®y can)) = ¢
for any c e C,, we have
0" onl" (c) = 0"((ct 1) ®s 15)Op(15 ®y c2,)))

X—I
=¢&o C%C ((C(l,rl) ®.415)0p(13 ®y4 C(z,a))) =¢(c).
Now, for all ¢ e Cp, we consider the morphism
(c,0f) .
B Clapry = G ®a Cpyy

By the naturality of w, we have the following commutative diagram

cd—ec®,c.

(o)1
o™

(C(xp)*‘ ®y B)DD<B ®y Cy) (af) "'y

J(!}“"/!)@AB)DD(B@AC/;) - Jlf,"‘“/”
fa
(Cp ®y Clupy ®u B)Up(B®, C)) R—> Cp ®4 Cp)-
where
R = (R0 = Cy @4 Cly, e
It follows from the commutative diagram above that
T e @) = @0 (v)

for any ce Cg and x € ( (ap)~ B B)Op(B®, C,). Since c is arbitrary, we have
CW;) !

clp~

R(B )
C{);i C ®A
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The condition (2) in Theorem 3.7 follows from the following commutative
diagram

(Ap () —1 @4 B)@(B®.4 Cop)
(Corl ®4 B)DD(B ®4 Cx[)’) B C/J’ ®y4 (C(m/g)*l ®y B)DD(B ®4 Coc/f)
(u:/; w:}z(ﬂ-ﬁ)l
25
Ap.e
(C,-1 @4 B) ®p (BRy Ay p) Cp 4 Cp ®y Ce
lAe./; C/j@Agl
a)frl ®4Cp e®4Cp

(Cor ® B)Op(B®,4 Cy)) ®y4 Cp C®yCp — G

To prove the converse, we need to construct a natural transformation w
from the A-bimodule 6. Given a right G-C-comodule M = {M,},_., we define
a family of k-linear maps o™ = {wM} _., where o} can be defined by the
composition

(P;Wa,] ®4B)®p(B®,Cy)

(Me ®A B)DD(B ®A Coc) - Moc ®A ((Crl ®A B)DD(B ®A Ca))

M,®,0%

M,

It follows from 0 being A-linear that each w is right A-linear. Using the
following commutative diagrams

(/);XH/Q" ®4B)®5(B®,4Cap) My®, o(h)
(M, ®, B)Op(B®, Ca/?) — My ®y ((C(x‘/f)" ®,4 B)Op (B ®, Cx/f)) — My

J(ﬂ:"’ 1 ©1B)®3(B®,4 Csp) P2 ©4((Copy-1 ©4 B)@a(BO4Cop)
M, ®4((Cyt ®4 B)Up(B®4Cap))
(M.®,B)®5(B®,4A,5) JM1®A((A” ()1 ©4 B)®p(B®,4Cp)) oA
M, ®,4((C,1 ®4B)Op(B®4Asp)) M, ®A C/)’ ®A ((C(g/;’)" ®A B)DD(B ®A Cdﬂ))
M, ®,Cp@,0™
(M. ®4B)Op(B®4Cy)) ®4 Cp M, ®4 ((C,r ®4B)Op(B®4Cy)) ®4Cp M, ®,Cp

(P ®4B)®p(B®4C.)®4Cp M@0 ®,4Cp

shows that @™ is a morphism in .#%¢, and

M oM

M, - (M, ®, B)[Ip(B®, C,) M,
(p;uxl®AB)®B(B®AC1)l lM,(
(r,

pifel
M,®, f“i ; Ao(z)
M, @, Co 22 M, ®,((Cy ®4 B)Tp(B®, C)) 2240 M,

shows wM onM =idy,. It is easily to check that e is natural at M.
The proof is completed. O
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By considering on A the canonical A-coring structure, as a corollary of
Theorem 3.7, we have the main result of [10].

CoroLLARY 3.8 ([10]). For a G-A-coring €, the forgetful functor
F: %€ — iy is separable if and only if there exists a family of A-bimodules
0=1{0":C1 ®,C,— A}, such that

0(“)(6(/1,171) @4 Cézﬁa)) =e(c),
C(l,ﬁ) . H(aﬁ)(c(zﬁ—lrl) ®,4 d) = 9(@(0 ®A d(l.a)) . d(lﬂ)
Jor all ¢ € C., c€ C,-1, de Cy.
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