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NONHARMONIC NONLINEAR FOURIER FRAMES AND

CONVERGENCE OF CORRESPONDING FRAME SERIES

Yanfeng Shen, Youfa Li and Shouzhi Yang*

Abstract

Having redundancy, frames, compared with basis, can provide more robust rep-

resentation of a vector in application. By introducing nonharmonic nonlinear Fourier

frames, a method is established to construct such frames by perturbation. Based on a

special class of nonharmonic nonlinear Fourier frames, the convergence of its corre-

sponding frame operator is investigated, and the convergence rate, associated with the

coe‰cient sequence of the frame operator, is estimated. Finally, we also discuss the

equiconvergence of two di¤erent (nonlinear or linear) Fourier (basis or frame) series

of f A L2ð�p; pÞ.

1. Introduction

Riesz bases and frames, being able to stably and flexibly represent a signal,
have attracted much attention in the recent decade. Furthermore, nonlinear
Fourier transform has been utilized in many interesting application such as
tomography [16]. Recently Chen et al. [5] introduced a new family of nonlinear
fourier bases and explored their time-frequency aspects. Moreover, the integral
version of the nonlinear Fourier series, called Chirp transform, was studied
in [14]. All these works used uniformly sampling for representation. But in
several applications, such as magnetic resonance imaging (MRI), there are two
main di‰culties. On one hand, it is often di‰cult to sample uniformly; on the
other hand, even though uniformly sampling can be realized, there is a common
situation that sensing equipment may err in collecting uniform samples. In
order to overcome these di‰culties, data should be collected by non-uniformly
sampling and nonharmonic (nonlinear) Fourier frames need to be introduced.
Motivated by the stability of frames in application, we introduce nonharmonic
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nonlinear Fourier frames and discuss the convergence of corresponding series
representations.

In [14], the authors introduced Chirp transform based on the nonlinear
atoms and the nonlinear Fourier series originated from [5]. They showed that
the set of functions given by

E
fN
k ðtÞ :¼ eikfN ðtÞ; fNðtÞ ¼ fðtÞ=N; Ek A Zð1:1Þ

form an orthonormal basis of L2ðð�p; pÞ; dfNÞ, where N A N called the Blaschke
index of f. Unlike the classical linear orthonormal basis feiktgk AZ of L2ð�p; pÞ,
the more intricate phase function f with instantaneous frequency make (1.1)
seems to be more suitable for non-stationary time-frequency Fourier analysis.
An important type of f is that

yaðtÞ :¼ tþ 2 arctan
jaj sinðt� taÞ

1� jaj cosðt� taÞ
;ð1:2Þ

where a ¼ jajeita and jaj < 1. For a given window function g A L2ð�p; pÞ, Fu
et al. [9] established the Balian-Low theorem for a new kind of Gabor Riesz
bases, feikfN ðtÞgðt� nÞgk;n AZ. That is gðtÞ can not be well localized in both time
and frequency. In this article, the conditions for feilkfN ðtÞgk AZ to be a frame for
L2ðð�p; pÞ; dfNÞ are discussed. Moreover, some new perturbation results of the
nonlinear Fourier orthonormal bases feikfNgk AZ is established.

For convergence, in traditional Fourier series, if a 2p-periodic function
f A C has absolutely integrable n-th derivative, then its Fourier series f ðtÞ ¼P

k AZ cke
ikt, with ck ¼ h f ; eikti, converges uniformly and jcGkja k f ðnÞk1=kn for

k > 0. Bultheel and Carrette [2] also showed a similar result for Takenaka-
Malmquist system, a rational (nonlinear) orthonormal system. Note that the
convergence rate of Frourier coe‰cients plays an important role in applications.

In this article we investigate frame operator Sf ¼
P

k AZ h f ; eilkyaiyae
ilkya under

the same condition of f . On page 197 of [17], Theorem 15 discussed the equi-
convergence of Fourier series and nonharmonic Fourier series of f A L2ð�p; pÞ.
Motivated by this, as nonlinear Fourier basis and frame are introduced, we
investigate the equiconvergence of two di¤erent (nonlinear or linear) Fourier
(basis or frame) series of f .

This paper is organized as follows. We introduce some definitions and
notations about frame and Chirp transform in Section 1. Moreover, we estab-
lish su‰cient and necessary conditions for feilkfN ðtÞgk AZ being a frame for
L2ðð�p; pÞ; dfÞ. In Section 2, some perturbation results about feilkfN ðtÞgk AZ are
given. We discuss the convergence of frame operator with respect to a class
of nonharmonic nonlinear Fourier frames, and estimate the convergence rate
of its corresponding coe‰cient sequence in Section 3. Based on nonlinear (or
linear) Fourier frame (or basis), the equiconvergence of di¤erent series of
f A L2ð�p; pÞ is also investigated.

Frames were originally studied in the context of nonharmonic Fourier
series [8]. A thorough discussion can be found in [3] or [7]. For nonharmonic
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Fourier series one can also refer [17]. Now let us recall some basic notations
and results.

1.1. Frame and Riesz base. A set of f fkgk AZ is a frame for a separable
Hilbert space H, if there exist constants 0 < AaB < y such that

Ak f k2 a
X
k AZ

jh f ; fkij2 aBk f k2ð1:3Þ

for all f A H. The constants A and B are called frame bounds, and the frame
is called tight if A ¼ B.

Let f fkgk AZ be a frame for H. Then the frame operator

S : H ! H; Sf ¼
X
k AZ

h f ; fki fkð1:4Þ

is bounded, positive, and invertible. Thus for any f A H, one has

f ¼ SS�1f ¼
X
k AZ

h f ;S�1fki fk:ð1:5Þ

Recall that f fkgk AZ is a Riesz basis for H if f fkgk AZ is complete and there exist
constants 0 < AaB < y such that

A
X

jckj2 a k
X

ck fkk2 aB
X

jckj2ð1:6Þ

for all finite sequence fckg of complex scalars.

1.2. Chirp transform and series. Firstly, we consider the function spaces
L2ðð�p; pÞ; dmÞ, where m is a positive measure. The norm and inner product in
L2ðð�p; pÞ; dmÞ are defined as

k f km ¼
ð p
�p

j f ðtÞj2 dmðtÞ
� �1=2

and h f ; gim ¼
ð p
�p

f ðtÞgðtÞ dmðtÞ;

respectively. If mðtÞ ¼ t for t A R, L2ðð�p; pÞ; dmÞ is the common space
L2ð�p; pÞ. Furthermore, we assume in this paper that m satisfy the following
assumption.

Assumption 1. Let m be a positive measure, and satisfy
(1) m : R ! R with m A C1 and m 0 > 0;
(2) mðtþ 2kpÞ ¼ mðtÞ þ 2Nkp for all t A R, k A Z and some fixed N > 0.

Under the Assumption 1, it is direct to get the following properties of m.
Readers are referred to [14] for more details.
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Proposition 1.1. Let m : R ! R satisfy Assumption 1. Then
(i) The nonlinear phase function mN jð�p;pÞ : ð�p; pÞ ! ð�p; pÞ is a strictly

increasing bijective mapping, where mNðtÞ ¼ mðtÞ=N;
(ii) There exists a constant K such that

jmNðtÞ � tjaK ; Et A R;

and one may take K ¼ maxt A ð�p;pÞjmNðtÞ � tj;
(iii) m 0ðtÞ is a 2p-periodic function;
(iv) m 0ðtÞF 1, i.e., 0 < mint A ð�p;pÞ m

0ðtÞa m 0ðtÞamaxt A ð�p;pÞ m
0ðtÞ < y:

Remark 1.2. Obviously, yaðtÞ defined in (1.2) is a function satisfying
Assumption 1. Moreover, there are many other functions satisfying Assumption
1, for example the functions Nxþ sinðxÞ for any N A N with Nb 2.

It is easy to know that mN has same properties as m, by an abuse of nota-
tion, mN is used sometimes instead of m. The following function f satisfies the
Assumption 1, but is restricted on the interval ð�p; pÞ.

Definition 1.3. For f A L2ð�p; pÞ, we define the discrete Chirp transform
as

TfN f ðkÞ ¼
1

2p

ð p
�p

f ðtÞeikfN ðtÞ dfN ; k A Z:ð1:7Þ

Next, let T be discrete Fourier transform on L2ð�p; pÞ,

Tf ðkÞ ¼ 1

2p

ð p
�p

f ðtÞe�ikt dt; k A Z:

We also need the f-pushforward operator Ff f :¼ f � f�1. Note that Ff is an
isometry and its inverse satisfies F�1

f ¼ Ff�1 .
Now we have the relationship between discrete Chirp transform TfN and

discrete Fourier transform T,

TfN ¼ T �FfN and inverse T�1
fN

¼ Ff�1
N

�T�1:ð1:8Þ

Proposition 1.4 ([14, Theorem 3.2]). For any f A L2ðð�p; pÞ; dfNÞ, we have

f ðtÞ ¼
X
k AZ

cke
ikfN ðtÞ

with

ck ¼
1

2p

ð p
�p

f ðtÞe�ikfN dfN :
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Form now on, we concentrate on non-stationary time Fourier frame E
fN
L :¼

feilkfN ðtÞgk AZ of L2ðð�p; pÞ; dfNÞ, where flkgk AZ JR and L2ðð�p; pÞ; dfNÞ is
equipped with the inner product

h f ; gifN ¼
ð p
p

f ðtÞgðtÞ dfNðtÞ; f ; g A L2ðð�p; pÞ; dfNÞ

and the induced norm k � kfN . Specially, if fNðtÞ ¼ t for t A R, many valuable

works were obtained, see [4, 8, 10, 11, 12, 15, 17] and references therein.
Let I be a countable index. A set L :¼ flkgk A I is separated if there is some

d > 0 such that jlk � ljjb d for all j0 k and the constant d is called a separated
constant. If L is a finite union of separated sets, we say that L is relatively
separated. Given a relatively separated set L and r > 0, let n�ðrÞ denote the
minimal number of elements form L to be found in an interval of length r. The
lower Beurling density of L is defined by

D�ðLÞ ¼ lim
r!y

n�ðrÞ
r

:

Theorem 1.5. Let L ¼ flkgk AZ be a relatively separated sequence of real
numbers. Then the following holds:

(a) If D�ðLÞ > 1, then feilkfN ðtÞgk AZ forms a frame for L2ðð�p; pÞ; dfNÞ;
(b) If feilkfN ðtÞgk AZ forms a frame for L2ðð�p; pÞ; dfNÞ, then D�ðLÞb 1.

Proof. The fN -pushforward operator FfN and [7, Theorem 7.6.4] will be
used for proving. Here we just show the su‰cient case (a), and case (b) can
be proved similarly. If D�ðLÞ > 1, following [7, Theorem 7.6.4], we know that
feilktg is a frame of L2ð�p; pÞ, this means that for any f A L2ð�p; pÞ, there exists
0 < AaB < y such that

Ak f k2 a
X
k AZ

jh f ; eilktij2 aBk f k2:ð1:9Þ

Note that FfN is an isometry, one obtains that

h f ; eilkti ¼ hF�1
fN

f ;F�1
fN
eilktifN ¼ hFf�1

N
f ; eilkfN ðtÞifN

and

k f k2 ¼ kFf�1
N
f k2fN :

Thus (1.9) can be rewritten as,

AkFf�1
N
f k2fN a

X
k AZ

jhFf�1
N
f ; eilktifN j

2
aBkFf�1

N
f k2fN :

Now replacing FfN f by f in the above inequality, we can obtain the required
result. The proof is completed. r
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2. Perturbation results of nonlinear Fourier basis

In this section we focus on the stability of frames under perturbation.
Perturbation theory is one of main research issues in frames and its origins lie
in the celebrated works of Paley and Wiener [13] and Levinson [12]. Fur-
thermore, Kadec [11] gave the best constant followed from a theorem of [12,
Page 48].

For non-harmonic frames feilktgk AZ of exponentials in L2ð�p; pÞ, Kadec’s
celebrated 1=4 theorem in [11] tells us that feilktgk AZ is a Riesz basis for
L2ð�p; pÞ, when lk is close to k for all k A Z, that is to say,

sup
k AZ

jlk � kjaL; with L < 1=4:

When chirp transform and series are introduced, feikfN ðtÞgk AZ is exactly an
orthonormal basis of L2ðð�p; pÞ; dfNÞ and we have the following theorem.

Theorem 2.1. Let flkgk AZ be a real sequence. If there exists a constant
L < 1=4 such that

sup
k AZ

jlk � kjaL;ð2:1Þ

then feilkfN ðtÞgk AZ is a Riesz basis for L2ðð�p; pÞ; dfNÞ with bounds ðcosðpLÞ�
sinðpLÞÞ2 and ð2� cosðpLÞ þ sinðpLÞÞ2.

Proof. First we claim that feilkfN ðtÞgk AZ is a Riesz basis for L2ðð�p; pÞ; dfNÞ
if and only if feilktgk AZ is a Riesz basis for L2ð�p; pÞ. Here we just show the
su‰cient part, because of the necessary part is similar. By the definition of
Riesz basis, feilktgk AZ is complete in L2ð�p; pÞ and there exists constants
A;B > 0 such that

A
X
k

jckj2 a
X
k

cke
ilkt

�����
�����
2

aB
X
k

jckj2ð2:2Þ

for every finite scalar sequence fckg. Noting that fN -pushforward operator

FfN : L2ðð�p; pÞ; dfNÞ ! L2ð�p; pÞ

is an isometry and its inverse satisfies F�1
fN

¼ Ff�1
N
, we have

X
k

cke
ilkt

�����
�����
2

¼ Ff�1
N

X
k

cke
ilkt

 !�����
�����
2

fN

¼
X
k

cke
ilkfaðtÞ

�����
�����
2

fN

:

Then (2.2) is equivalent to

A
X
k

jckj2 a
X
k

cke
ilkfN ðtÞ

�����
�����
2

fN

aB
X
k

jckj2:ð2:3Þ
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Suppose that feilkfN ðtÞgk AZ is not complete in L2ðð�p; pÞ; dfNÞ. Then there

exists 00 f0 A L2ðð�p; pÞ; dfNÞ such that f0 A H?
0 with H0 ¼ spanfeilkfN ðtÞgk AZ.

Therefore,

0 ¼ h f0; e
ilkfN ðtÞifN ¼ hFfN f0;FfN e

ilkfN ðtÞi ¼ hFfN f0; e
ilkti

for any k A Z. This means FfN f0 A H?
1 , where H1 ¼ FfN ðH0Þ ¼ spanfeilktgk AZ.

On the other hand

00FfN f0 ¼ f0ðf�1ðtÞÞ A L2ð�p; pÞ:

It is a contradiction to the fact that feilktgk AZ is complete in L2ð�p; pÞ.
Now, under the condition of (2.1) with L < 1=4, by Kadec’s 1/4 theorem,

one obtains that feilktgk AZ is a Riesz basis for L2ð�p; pÞ and the first conclusion
follows.

Next we shall obtain the bounds. For any finite nonzero sequence ck, k A Z,
we have

X
k

cke
ilkfN ðtÞ

�����
�����
fN

¼
X
k

cke
ilkt

�����
�����a

X
k

cke
ikt

�����
�����þ

X
k

cke
iðlk�kÞt

�����
�����:

Since feikt; k A Zg is an orthonormal basis of L2ð�p; pÞ, we have

X
k

cke
ikt

�����
����� ¼ kfckgk AZk2:

By [1, Theorem 1], one obtains

X
k

cke
iðlk�kÞt

�����
�����a ð1� cosðpLÞ þ sinðpLÞÞ2kfckgk AZk2:

Thus

ðcosðpLÞ � sinðpLÞÞ2
X
k

jckj2 a
X
k

cke
ilkfN ðtÞ

�����
�����
2

fN

a ð2� cosðpLÞ þ sinðpLÞÞ2
X
k

jckj2:

This completes the proof. r

Similar to Theorem 2.1, we can also expand [4, Theorem 16.9], which was
proved independently by Balan [1] and Christensen [6], to nonlinear Fourier
frames case as follows.
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Theorem 2.2. Let fmkgk AZ, flkgk AZ be two real sequences and feimkfN ðtÞgk AZ
be a frame for L2ðð�p; pÞ; dfNÞ with bounds A and B. If there exists a constant
constant L < 1=4 such that,

sup
k AZ

jlk � mkjaL; and 1� cos pLþ sin pL < A=B;ð2:4Þ

then feilkfN ðtÞgk AZ is also a frame for L2ðð�p; pÞ; dfNÞ with bounds Að1� B=Að1�
cos pLþ sin pLÞÞ2 and Bð2� cos pLþ sin pLÞ2.

The following proposition analyzes the limit case of Theorem 2.1 and one
can refer [4, Theorem 16.9] for the classical nonharmonic Fourier frame case.

Proposition 2.3. Let flkgk AZ be a real sequence satisfying supk AZ jlk � kj
¼ 1=4. Then feilkfN ðtÞgk AZ is either an Riesz basis or not a frame of
L2ðð�p; pÞ; dfNÞ.

Proof. For any x A ½0; 1�, define lkðtÞ ¼ k þ xðlk � kÞ, then

supjlkðtÞ � kj ¼ x supjlk � kj ¼ x

4
:

and

supjlkðxÞ � lkj ¼ supjk þ xðlk � kÞ � lkj ¼ supjð1� xÞðlk � kÞj ¼ 1� x

4
:

Suppose that feilkfN ðtÞgk AZ is a frame for L2ðð�p; pÞ; dfNÞ with bounds 0 < Aa

B < y. By Theorem 2.2, if 1� cos
1� x

4
p

� �
þ sin

1� x

4
p

� �
< A=B and x A

ð0; 1�, which means 1b x > x0 :¼
4

p
arcsin

ffiffiffi
2

p

2
1� A

B

� � !
, then feilkðxÞfN ðtÞgk AZ

is a frame with bounds

AðxÞ :¼ A 1� B

A
1� cos

1� x

4
p

� �
þ sin

1� x

4
p

� �� �� �2

and

BðxÞ :¼ B 2� cos
1� x

4
p

� �
þ sin

1� x

4
p

� �� �2
:

While if x < 1, by Theorem 2.1 we have feilkfN ðtÞgk AZ is an Riesz basis, with the
same bounds as frame. Then

AðxÞ
X
k AZ

jckj2 a
X
k AZ

cke
ilkðxÞfN ðtÞ aBðxÞ

X
k AZ

jckj2
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for any finite nonzero sequence fckgk AZ. Let x ! 1. By sign-preserving theorem
of limit, we have

A
X
k AZ

jckj2 a
X
k AZ

cke
ilkfN ðtÞ aB

X
k AZ

jckj2:

Then feilkfN ðtÞgk AZ is also an Riesz basis with bounds the same as frame. The
proof is completed. r

3. Convergence

In this section, we give some generalizations about the convergence and
estimation of the coe‰cients, of the frame operator with respect to a special class
of nonharmonic nonlinear Fourier frame. Finally, Based on nonlinear (or linear)
Fourier frame (or basis), the equiconvergence of di¤erent series of f A L2ð�p; pÞ
is investigated.

Recall some results about Fourier series of 2p-periodic functions. For any
function f ðtÞ A Cq, i.e. with continuous q-th derivative and q A N, we have
that

f ðtÞ ¼
X
k AZ

cke
ikt with ck ¼

1

2p

ð p
�p

f ðtÞe�ikt dt:

The Fourier series is uniformly convergent and the Fourier coe‰cients are
bounded:

jc0ja k f k1 and jcGkja k f ðqÞk1=kq; for k > 0;ð3:1Þ

where f ðqÞðtÞ stands for the q-th derivative of the function f ðtÞ. Similar results
have been shown by Bultheel and Carrette [2, Theorem 1 and Corollary 2] for
Takenaka-Malmquist system. In the first part of this section, we aim at char-
acterizing the similar convergence and coe‰cient properties of the nonharmonic
nonlinear frames fE ya

lk
gk AZ. Before that we need two lemmas:

Lemma 3.1. Let hkðzÞ ¼
1þ az

zþ a

� �k
, with k A N and c ¼ jaj < 1. If z ¼ reit,

r > 0, then

1� rc

r� c

� �k
a jhkðzÞja

1þ rc

rþ c

� �k
; r > 1;

jhkðzÞj ¼ 1; r ¼ 1;

1þ rc

rþ c

� �k
a jhkðzÞja

1� rc

r� c

� �k
; r < 1:

8>>>>>>><
>>>>>>>:

ð3:2Þ

Proof. Suppose a ¼ ceix0 . When k ¼ 2, we have
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jh2ðzÞj ¼
1þ az

zþ a

� �2�����
����� ¼ 1þ az

zþ a

� �����
����
2

¼ 1þ creiðt�x0Þ

rþ ce�iðt�x0Þ

����
����
2

¼ 1þ 2rc cosðt� x0Þ þ r2c2

r2 þ 2rc cosðt� x0Þ þ c2

and define

rðtÞ :¼ 1þ 2rc cosðtÞ þ r2c2

r2 þ 2rc cosðtÞ þ c2
; t A ½�p; p�;

Note that

r 0ðtÞ ¼ 2rcð1� r2Þð1� c2Þ sinðtÞ
ðr2 þ 2rc cosðtÞ þ c2Þ2

; t A ½�p; p�:

one can easily show that,

1� rc

r� c

� �2
a jh2ðzÞja

1þ rc

rþ c

� �2
; r > 1;

jh2ðzÞj ¼ 1; r ¼ 1;

1þ rc

rþ c

� �2
a jh2ðzÞja

1� rc

r� c

� �2
; r < 1:

8>>>>>>><
>>>>>>>:

ð3:3Þ

Since jhkðtÞj ¼ jðh2ðtÞÞjk=2, the argument for k A N follows with some simple
adjustment. r

Lemma 3.2 ([2, Lemma 6]). Let x2 > x1 > 0 and qb 2. Then

q

ð x2
x1

eqðx�ln xÞ dxa Ix1<1½a�1
1 ð1� ðx1=~xxÞðq�1Þa1Þ� q

q� 1
eqx1�ðq�1Þ ln x1

þ Ix2>1½a�1
2 ð1� e�qa2ðx2�~xxÞÞ�eqðx2�ln x2Þ

where ~xx ¼ maxðx1;minðx2; 1ÞÞ with

a1 ¼ 1� q

q� 1
~xx
1� x1=~xx

lnð~xx=x1Þ
and a2 ¼ 1� x�1

2

lnðx2=~xxÞ
1� ~xx=x2

:

The indicator function Ix<y is one if x < y and zeros otherwise.

From now on, let flkgk AZ satisfy supk AZ jlk � kjaL < 1=4 and l1 > 1,
l�1 < �1, Then by Theorem 2.1, the set

E ya
lk

¼ eilkyaðtÞ ¼ z� a

1� az

� �lk
: jkj < N

( )
k AZ

144 yanfeng shen, youfa li and shouzhi yang



is a Riesz basis of L2ðð�p; pÞ; dyaÞ, where yaðtÞ is defined as in (1.2) and z ¼ eit.
Furthermore, for f A L2ðð�p; pÞ; dyaÞ, we have the frame operator,

Sf ðtÞ ¼
X
k AZ

bkE
ya
lk

¼
X
k AZ

h f ; eilkyaðtÞiyae
ilkyaðtÞð3:4Þ

and the partial sum of right series defined by,

ðSN f ÞðtÞ ¼
X
jkj<N

bkE
ya
lk
;ð3:5Þ

where bk ¼ h f ; eilkyaðtÞiya for k A Z. The analysis of convergence of the expan-
sion coe‰cients aGk leads to the following theorem.

Theorem 3.3. Let f ðtÞ be a 2p-periodic function having a continuous q-th
derivative with q > 2. Then the coe‰cients of frame operator Sf defined in (3.4)
satisfy

jb0jak f k1 and jbGkja K1ðc; qÞ
1

ln r̂r
þ K2

elk

q� 1

� �
k f ðqÞk1=ðelkÞ

q; kb 1;ð3:6Þ

where e ¼
ln

~rrþ c

1þ c~rr

ln ~rr
, c ¼ jaj with

~rrðc; q; kÞ ¼ min
�4q

ðk � 1Þ ln c

� �q=4
þ ðk=2Þq=ðk�2Þ

" #
þ 1þ cffiffiffiffiffi

cq
p þ 1

cðq� 1Þ

� �
; eq

 !

and r̂r ¼ limk!y ~rrðc; q; kÞ.

Proof. The statement for jb0ja k f k1 is trivial, Next, we only consider bk
with k > 0 (the case k < 0 can be obtained similarly). Firstly, we use the fact
that the function f ðtÞ can be expanded into Fourier series:

f ðtÞ ¼
X
n AZ

wne
int;

where the coe‰cients satisfy jw0ja k f k1 and jwGkja k f ðqÞk1=kq. So,

bk ¼ 1

2p

ð p
�p

X
n AZ

wne
inteilkyaðtÞ dyaðtÞ

¼ 1

2p

X
n AZ

wn

ð p
�p

einte�ilkyaðtÞ dyaðtÞ

¼ 1

2p

X
n AZ

wn

ð p
�p

einy�aðtÞe�ilkt dt

¼ i

2p

X
n AZ

wn

þ
jzj¼1

zþ a

1þ az

� �n
zlk�1 dz
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with z ¼ e�it. Here the fact y�1
a ðtÞ ¼ y�aðtÞ and eiy�aðtÞ ¼ z� a

1þ az

� �
are used, see

Section 7 and Lemma 7.1 in [14]. By Cauchy’s integral formula and lk � 1 > 0,

one obtains

þ
jzj¼1

zlk
zþ a

1þ az

� �n
dz

z
¼ 0 for na 0. Thus

bk ¼
i

2p

Xy
n¼1

wn

þ
jzj¼1

zþ a

1þ az

� �n
zlk�1 dz

¼ i

2p

Xn1
n¼1

wn

þ
jzj¼r1

zþ a

1þ az

� �n
zlk�1 dzþ i

2p

Xn2�1

n¼n1�1

wn

þ
jzj¼1

zþ a

1þ az

� �n
zlk�1 dz

þ i

2p

X
nbn2

wn

þ
jzj¼r2

zþ a

1þ az

� �n
zlk�1 dz

¼s II1 þ II2 þ II3

with appropriate jaj < r1 < 1 and r2 > 1, and integers n2 > n1 > 0 to be specified
below. Next, we estimate the bounds of II1, II2 and II3, separately.

(First sum) By Lemma 3.1, we have

jII1ja k f ðqÞk1r
lk
1

Xn1
n¼1

1� cr1
r1 � c

� �n�
nq:ð3:7Þ

Denote ~rr1 ¼
1� cr1
r1 � c

> 1. Then r1 ¼
1þ c~rr1
~rr1 þ c

. Thus (3.7) can be written as

jII1ja k f ðqÞk1
1þ c~rr1
~rr1 þ c

� �lkXn1
n¼1

~rrn
1=n

q:ð3:8Þ

Using Lemma 3.2, we obtain

Xn1
n¼1

~rrn
1=n

q
a qðln ~rr1Þ

q�1
e�q ln q

ð n1 ln ~rr1=q

ln ~rr1=q

eqðx�ln xÞ dx

a Ix1<1½a�1
1 ð1� ðx1=~xxÞðq�1Þa1Þ� ~rr1

q� 1

þ Ix2>1½a�1
2 ð1� e�qa2ðx2�~xxÞÞ� 1

ln ~rr1

~rrn1
1

n
q
1

¼s II11 þ II12;

where x1 ¼ ln ~rr1=q and x2 ¼ n1 ln ~rr1=q. Here the technique in [2, Theorem 1] is
used. Denote (as [2, Theorem 1])

~rr1 ¼ minð½ð~rr11 � 1Þ þ ~rr12� þ ð~rr13 � 1Þ; eqÞ;ð3:9Þ
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where

~rr11 ¼ 1þ q

k � 1

�4

ln c

� �q=4
; ~rr12 ¼ ðk=2Þq=ðk�2Þ and ~rr13 ¼ 1þ 1þ cffiffiffiffiffi

cq
p þ 1

cðq� 1Þ ;

with k satisfying jlk � kj < 1=4. Then

r̂r ¼ lim
k!y

~rrðc; q; kÞ ¼ min 1þ 1þ cffiffiffiffiffi
cq

p þ 1

cðq� 1Þ ; e
q

� �
:

Define n1 ¼ be1lkc with

0 < e1 ¼
ln

~rr1 þ c

1þ c~rr1
ln ~rr1

¼ ln r1

ln
r1 � c

1� cr1

:

Specifically if n1 ¼ 0, then it is trivial that II1 ¼ 0. Since
r1 � c

1� cr1
a r1 < 1, we

get that e1 a 1. As a result it is not di‰culty to show that

~rrn1
1

1þ c~rr1
~rr1 þ c

� �lk
< 1:

Next we show the boundedness of II1x1 :¼ Ix1<1½a�1
1 ð1� ðx1=~xxÞðq�1Þa1Þ� and

II1x2 :¼ Ix2>1½a�1
2 ð1� e�qa2ðx2�~xxÞÞ�. Since r̂ra ~r1r1 a eq, one obtains x10 :¼

ln r̂r

q
a

x1 a 1 and x20 :¼
n1 ln r̂r

q
a x2 a n1.

Boundedness of II1x1 . For x2 > 1, we have ~xx ¼ 1, then

a1 ¼ 1� q

q� 1
~xx
1� x1=~xx

lnð~xx=x1Þ
¼ 1� q

q� 1

x1 � 1

ln x1
:

Define lðxÞ :¼ 1� q

q� 1

x� 1

ln x
and mðxÞ :¼ 1� xðq�1ÞlðxÞ

lðxÞ with x A ½0; 1�. It is

not di‰cult to get 1� q

q� 1
a lðxÞa 1 and lðxÞ is a monotonically decreas-

ing function. Then there exists x0 A ð0; 1Þ such that lðx0Þ ¼ 0. Noting that
limx!x0 mðxÞ ¼ ðq� 1Þ lnð1=x0Þ and mðxÞ is continuous, then there exists C11 > 0
such that II1x1 < C11. It can be proved similarly when x2 a 1.

Boundedness of II1x2 . For x2 a 1, it is trivial. For x2 > 1, we have ~xx ¼ 1,
then

a�1
2 ð1� e�qa2ðx2�~xxÞÞ ¼ 1� e�qðx2�1�ln x2Þ

1� ln x2

x2 � 1

:
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Define ~llðxÞ :¼ 1� e�qðx�1�ln xÞ

1� ln x

x� 1

with x A ð0;yÞ. Noting that limx!0
~llðxÞ ¼

limx!1
~llðxÞ ¼ 0, limx!y

~llðxÞ ¼ 1 and ~llðxÞ is continuous, then there exists
C12 > 0 such that II1x1 < C12.

Next we show that

1þ c~rr1
~rr1 þ c

� �lk
� nq

1 ¼ ð�r
lk=q
1 � ln rlk

1 Þq ln
1� cr1
r1 � c

� ��q

< C13ð3:10Þ

with r1 ¼
1þ c~rr1
~rr1 þ c

and C13 ¼
q

e ln r̂r

� �q
. Actually (3.10) is clear since that

maxx A ½0;1� � x1=q ln x ¼ q=e and ln
1� cr1
r1 � c

¼ ln ~rr1 b ln r̂r.

As a result, we obtain from (3.7) that

jII1ja k f ðqÞk1
1þ c~rr1
~rr1 þ c

� �lk
n
q
1C11

eq

q� 1

�
n
q
1ð3:11Þ

þ k f ðqÞk1
1þ c~rr1
~rr1 þ c

� �lk
rn1
1 C12

1

n
q
1 ln r̂r

a k f ðqÞk1C13C11
eq

q� 1

�
n
q
1 þ k f ðqÞk1C12

1

n
q
1 ln r̂r

¼ C1ðc; qÞ
ln r̂r

k f ðqÞk1=n
q
1

with C1ðc; qÞ ¼ C11
q

e ln r̂r

� �q�1
qeq�1

q� 1
þ C12.

(Third sum) By Lemma 3.1, we have

jII3ja k f ðqÞk1r
lk
2

X
nbn2

1þ cr2
r2 þ c

� �n�
nq

a k f ðqÞk1r
lk
2

r2 þ c

ðr2 � 1Þð1� cÞ

� �
1þ cr2
r2 þ c

� �n2�
n
q
2 :

Define r2 ¼ 1þ ð1� cÞq�1 and n2 ¼ de2lke, where dxe means the smallest integer
not smaller than x and

e2 ¼ ln r2

�
ln

r2 þ c

1þ cr2

� �
b 1;

because of
r2 þ c

1þ cr2
a r2. Since x logð1þ xÞ is increasing on ½0;yÞ, we obtain
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e2 ¼ ln r2

�
ln

r2 þ c

1þ cr2

� �

¼ lnð1þ ð1� cÞq�1Þ
,

ln
ð1þ ð1� cÞq�1Þ þ c

1þ cð1þ ð1� cÞq�1Þ

 !

¼ lnð1þ ð1� cÞq�1Þ
,

ln 1þ ð1� cÞq

1þ cþ cð1� cÞq�1

" #

b
1þ cþ cð1� cÞq�1

1� c
b

1þ c

1� c
:

Thus r2 þ ca 3 and

jII3ja k f ðqÞk1
3

ð1� cÞq
�

de2lkeq

a k f ðqÞk1
3

ðð1� cÞe2Þq
�

l
q
k

a 3k f ðqÞk1=l
q
k :

(Second sum) Partitioning ½n1 þ 1; n2 � 1� into two parts ½n1 þ 1; blkc� and
½blkc þ 1; n2 � 1�, we may apply Lemma 3.1 to obtain,

jII2ja k f ðqÞk1
Xn2�1

n¼n1þ1

1

kq

a k f ðqÞk1
C2

q� 1

1� e
q�1
1

e
q�1
1

þ e
q�1
2 � 1

e
q�1
2

" #
1

l
q�1
k

aC2
e1lk

q� 1
ðð1� e

q�1
1 Þ þ ðe1Þq�1ð1� e

1�q
2 ÞÞ k f

ðqÞk1
ðe1lkÞq

¼ 2C2
e1lk

q� 1

k f ðqÞk1
ðe1lkÞq

:

Combing II1, II2 and II3, we have

jbkja
C1ðc; qÞ
ln r̂r

þ 3eq1

� �
þ 2C2

e1lk

q� 1

� �
k f ðqÞk1
ðe1lkÞq

a
K1ðc; qÞ
ln r̂r

þ K2
elk

q� 1

� �
k f ðqÞk1
ðelkÞq

with e ¼ e1, K1ðc; qÞ ¼ C1ðc; qÞ þ 3 ln r̂r and K2 ¼ 2C2. The proof is completed.
r
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Corollary 3.4. Let f ðtÞ satisfy the condition of Theorem 3.3. The frame
operator Sf ðtÞ and the partial sum ðSN f ÞðtÞ are defined by (3.4) and (3.5)
respectively. Then

lim
N!y

ðSN f ÞðtÞ ¼ Sf ðtÞð3:12Þ

uniformly in t A ½�p; p�, and the convergence rate at least as fast as 1=lq�2
N .

Proof. For N large enough, we have

jeNðtÞj ¼ jðSf ÞðtÞ � ðSN f ÞðtÞj ¼
X
kbN

ðbke�lkyaðtÞ þ a�ke
lkyaðtÞÞ

�����
�����

a 2
X
kbN

maxðjbkj; ja�kjÞje�lkyaðtÞj

a 2
X
kbN

K1
1

ln r
þ K2ðcÞ

elk

q� 1

� �
k f ðqÞk1=ðelkÞ

q;

where K1, K2 and ~rr is defined as in Theorem 3.3. Then the partial sum ðSN f ÞðtÞ
convergence to Sf ðtÞ uniformly in t with convergence rate 1=lq�2

N because of
q > 2. The proof is completed. r

Right now we have four methods of representing f A L2ð�p; pÞ. They are
Fourier basis feiktgk AZ, nonharmonic Fourier frame feilktgk AZ, nonlinear Fourier
basis feikyaðtÞgk AZ and nonharmonic nonlinear Fourier frame feilkyaðtÞgk AZ. For
convergence, it is well known that if a continuous function f ðtÞ is piecewise
smooth on ½�p; p�, then the traditional Fourier series of f ðtÞ is uniformly
convergent.

Young [17, Theorem 15] discussed the equiconvergence of Fourier series
and nonharmonic Fourier series of f A L2ð�p; pÞ, and showed that nonharmonic
Fourier series have, to a large extent, the same convergence and summability
properties as traditional Fourier series. Next we shall discuss equiconvergence of
two di¤erent (nonlinear) Fourier (basis or frame) series of f A L2ð�p; pÞ. Recall
that two series

P
an and

P
bn are said to be equiconvergent if their di¤erenceP

ðan � bnÞ converges to 0.

Theorem 3.5. Let flkgk AZ be a real sequence. Let feilkyaðtÞgk AZ be a Riesz
basis for L2ðð�p; pÞ; dyaÞ, and suppose that

sup
k

jlk � kj < y:

Then for each function f A L2ðð�p; pÞ; dyaÞ, the nonlinear Fourier series and
nonharmonic nonlinear Fourier series are uniformly equiconvergent on every com-
pact subset of ð�p; pÞ.
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Proof. Suppose d > 0 and f ðtÞ A L2ð�p; pÞ have two norm-convergent

expansions:
P

cke
ikyaðtÞ and

P
bke

ilkyaðtÞ. It is to be show that the di¤erencePn
k¼�nðckeikyaðtÞ � bke

ilkyaðtÞÞ convergence to 0 as n ! y, uniformly on ½�pþ d;
p� d�.

Since k f ðtÞkya ¼ k f ðy�aðtÞÞk, we have that gðtÞ :¼ f ðy�aðtÞÞ A L2ð�p; pÞ, and
has two expansion:

P
cke

ikt and
P

bke
ilkt. Note that yaðtÞ is a strictly increas-

ing bijective function with yaðGpÞ ¼Gp, by [17, Theorem 15], we have

Xn
k¼�n

ðckeikt � bke
ilktÞð3:13Þ

convergent to 0 uniformly on the interval ½y�að�pþ dÞ; y�aðp� dÞ�. If we
replace t by yaðtÞ in (3.13), then the desired conclusion follows. r

Unfortunately, other versions of Theorem 3.5 probably fail when we consider
the equiconvergence of traditional Fourier series and nonlinear Fourier series,
or the equiconvergence of traditional Fourier series and nonharmonic nonlinear
Fourier series of f A L2ð�p; pÞ. In the end, we give two results for illustrating
that argument.

Proposition 3.6. Suppose feikyaðtÞgk AZ be a orthonormal basis of

L2ðð�p; pÞ; yaÞ with a A ð�1;� 1
8 ð

ffiffiffiffiffi
35

p
�

ffiffiffi
3

p
ÞÞ. Let a 2p periodic function be

defined as

f ðtÞ ¼ 0; �pa t < 0;

1; 0a ta p:

	
ð3:14Þ

Then its traditional Fourier series and nonlinear Fourier series are not uniformly
equiconvergent on ½�pþ d; p� d� with d < 5p=6.

Proof. It is easy to get that f ðtÞ A L2ð�p; pÞ and f ðtÞ A L2ðð�p; pÞ; yaÞ.
By calculation we have its traditional Fourier partial sum, fnðtÞ ¼ 1=2þ
2

p

Pn
k¼1

1

2k � 1
sinð2k � 1Þt, and

lim
n!y

fnðtÞ ¼
f ðtÞ; 0 < jtj < p;

1=2; t ¼ �p; 0; p:

	

Next we discuss the corresponding non-linear Fourier partial sum,

f ya
n ðtÞ ¼

Xn
k¼�n

h f ; eikyaðtÞiyae
ikyaðtÞ ¼

Xn
k¼�n

h f ðy�aðtÞÞ; eiktieikyaðtÞ;ð3:15Þ

where y�1
a ðtÞ ¼ y�aðtÞ is used. Note that yaðtÞ ¼ t� 2 arctan

jaj sin t

1þ jaj cos t , we

have yaðtÞ is an increasing function with yað�pÞ ¼ �p, yað0Þ ¼ 0 and yaðpÞ ¼ p.
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Hence f ðy�aðtÞÞ ¼ f ðtÞ. Then

f ya
n ðtÞ ¼

Xn
k¼�n

h f ; eiktieikyaðtÞ ¼ fnðyaðtÞÞ ¼ 1=2þ 2

p

Xn
k¼1

1

2k � 1
sinð2k � 1ÞyaðtÞ:

We define

gnðtÞ :¼ fnðtÞ � f ya
n ðtÞ ¼ 2

p

Xn
k¼1

1

2k � 1
ðsinð2k � 1Þt� sinð2k � 1ÞyaðtÞÞ:

In the following we show that, gnðtÞ is not uniformly convergent on ½�pþ d;

p� d�. In fact for any n > 0, select tn ¼
p=2

4n� 1
, then

sinðð2k � 1ÞtnÞb sinðð2n� 1=2Þp=ð8n� 2ÞÞ ¼
ffiffiffi
2

p
=2; Ek ¼ nþ 1 � � � 2n:

Note that a A ð�1;� 1
8 ð

ffiffiffiffiffi
35

p
�

ffiffiffi
3

p
ÞÞ, by direct calculation we have

y 0
aðtÞ ¼

1� a2

1þ a2 � 2a cosðtÞ a
1� a2

1þ a2 � 2a cosðp=6Þ a 1=3;

and

yaðtÞa t=3; Et A ð0; p=6Þ:
Thus

sinðð2k � 1ÞyaðtnÞÞa sinðð2k � 1Þtn=3Þa sinðp=6Þ ¼ 1=2; Ek ¼ nþ 1 � � � 2n:
So we have

jg2nðtnÞ � gnðtnÞjb
2

p

X2n
k¼nþ1

ð
ffiffiffi
2

p
� 1Þ=2

2k � 1
b

ffiffiffi
2

p
� 1

4p
:ð3:16Þ

Thus gnðtÞ is not uniformly convergent on ½�pþ d; p� d� with d < 5p=6. The
proof is completed. r

Corollary 3.7. Under the conditions of Theorem 3.5, the traditional Fourier
series and nonharmonic nonlinear Fourier series of f ðtÞ, defined in (3.14), are not
uniformly equiconvergent on ½�pþ d; p� d� with d < 5p=6.

Proof. Suppose that f ðtÞ have three norm-convergent representations:P
dne

ikt,
P

cne
ikyaðtÞ and

P
bne

ilkyaðtÞ, where dn and cn have explicit expression as

in Proposition 3.6. By Theorem 3.5, for e0 ¼
ffiffiffi
2

p
� 1

16p
, there exists N > 0 such

that for any n > N

jhnðtÞj ¼
Xn
k¼�n

ðckeikyaðtÞ � bke
ilkyaðtÞÞ

�����
�����< e0
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with t A ½�pþ d; p� d� and d A ð0; pÞ. Then by the proof of Proposition 3.6,
we have

X2n
jkj¼nþ1

ðdkeiktn � bke
ilkyaðtnÞÞ

������
������b

X2n
jkj¼nþ1

ðdkeiktn � cke
ilkyaðtnÞÞ

������
������

�
X2n

jkj¼nþ1

ðckeikyaðtnÞ � bke
ilkyaðtnÞÞ

������
������

b jg2nðtnÞ � gnðtnÞj � jh2nðtnÞj � jhnðtnÞj

b
2

p

X2n
k¼nþ1

ð
ffiffiffi
2

p
� 1Þ=2

2k � 1
� 2e0 ¼

ffiffiffi
2

p
� 1

8p
;

where tn ¼
p=2

4n� 1
. Thus

Pn
k¼�nðdkeikt � bke

ilkyaðtÞÞ is not uniformly convergent

on ½�pþ d; p� d� with d < 5p=6. The proof is completed. r
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