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NONHARMONIC NONLINEAR FOURIER FRAMES AND
CONVERGENCE OF CORRESPONDING FRAME SERIES
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Abstract

Having redundancy, frames, compared with basis, can provide more robust rep-
resentation of a vector in application. By introducing nonharmonic nonlinear Fourier
frames, a method is established to construct such frames by perturbation. Based on a
special class of nonharmonic nonlinear Fourier frames, the convergence of its corre-
sponding frame operator is investigated, and the convergence rate, associated with the
coefficient sequence of the frame operator, is estimated. Finally, we also discuss the
equiconvergence of two different (nonlinear or linear) Fourier (basis or frame) series
of felL*(—n,n).

1. Introduction

Riesz bases and frames, being able to stably and flexibly represent a signal,
have attracted much attention in the recent decade. Furthermore, nonlinear
Fourier transform has been utilized in many interesting application such as
tomography [16]. Recently Chen et al. [5] introduced a new family of nonlinear
fourier bases and explored their time-frequency aspects. Moreover, the integral
version of the nonlinear Fourier series, called Chirp transform, was studied
in [14]. All these works used uniformly sampling for representation. But in
several applications, such as magnetic resonance imaging (MRI), there are two
main difficulties. On one hand, it is often difficult to sample uniformly; on the
other hand, even though uniformly sampling can be realized, there is a common
situation that sensing equipment may err in collecting uniform samples. In
order to overcome these difficulties, data should be collected by non-uniformly
sampling and nonharmonic (nonlinear) Fourier frames need to be introduced.
Motivated by the stability of frames in application, we introduce nonharmonic
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nonlinear Fourier frames and discuss the convergence of corresponding series
representations.

In [14], the authors introduced Chirp transform based on the nonlinear
atoms and the nonlinear Fourier series originated from [5]. They showed that
the set of functions given by

(1.1) EPV (1) == ™0 (1) = g(1)/N, VkeZ

form an orthonormal basis of L?((—=,x),d¢y), where N € N called the Blaschke
index of ¢. Unlike the classical linear orthonormal basis {¢*'}, _, of L*(~r,x),
the more intricate phase function ¢ with instantaneous frequency make (1.1)
seems to be more suitable for non-stationary time-frequency Fourier analysis.
An important type of ¢ is that

|la| sin(t — t,)

12 (1) =142 ,
(1.2) 04(t) := t + 2 arctan T— |a] cos(i— 1)

where a = |ale’™ and |a| < 1. For a given window function g e L*(—=,n), Fu
et al. [9] established the Balian-Low theorem for a new kind of Gabor Riesz
bases, {e*g(t —n)}, ,.,. Thatis g(¢) can not be well localized in both time
and frequency. In this article, the conditions for {e”#()}, , to be a frame for
L?*((—n,n),d¢y) are discussed. Moreover, some new perturbation results of the
nonlinear Fourier orthonormal bases {e*?v}, , is established.

For convergence, in traditional Fourier series, if a 2z-periodic function
f €% has absolutely integrable n-th derivative, then its Fourier series f(f) =
S ez cke™ with ¢ = (f, e, converges uniformly and |c.x| < ||f™|,/k" for
k > 0. Bultheel and Carrette [2] also showed a similar result for Takenaka-
Malmquist system, a rational (nonlinear) orthonormal system. Note that the
convergence rate of Frourier coefficients plays an important role in applications.
In this article we investigate frame operator Sf = >, _, {f, "%, ¢"l: under
the same condition of f. On page 197 of [17], Theorem 15 discussed the equi-
convergence of Fourier series and nonharmonic Fourier series of f € L*(—n, 7).
Motivated by this, as nonlinear Fourier basis and frame are introduced, we
investigate the equiconvergence of two different (nonlinear or linear) Fourier
(basis or frame) series of f.

This paper is organized as follows. We introduce some definitions and
notations about frame and Chirp transform in Section 1. Moreover, we estab-
lish sufficient and necessary conditions for {e”#+(} . being a frame for
L*((—n,7),d¢). In Section 2, some perturbation results about {e#v(")}, _ are
given. We discuss the convergence of frame operator with respect to a class
of nonharmonic nonlinear Fourier frames, and estimate the convergence rate
of its corresponding coefficient sequence in Section 3. Based on nonlinear (or
linear) Fourier frame (or basis), the equiconvergence of different series of
f e L*(—n,n) is also investigated.

Frames were originally studied in the context of nonharmonic Fourier
series [8]. A thorough discussion can be found in [3] or [7]. For nonharmonic
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Fourier series one can also refer [17]. Now let us recall some basic notations
and results.

1.1. Frame and Riesz base. A set of {fi},., is a frame for a separable
Hilbert space #, if there exist constants 0 < A < B < oo such that

(1.3) AlFI1P < YKL Sl < BIFII?

keZ

for all f'e #. The constants A and B are called frame bounds, and the frame
is called tight if 4 = B.
Let {fi}r.z be a frame for #. Then the frame operator

(14) S — A, Sf=Y {f fiole

keZ

is bounded, positive, and invertible. Thus for any f €, one has

(1.5) [=8ST = ST o ki

keZ

Recall that {fi}, ., is a Riesz basis for # if {f},., is complete and there exist
constants 0 < 4 < B < oo such that

(L6) A el < 1Y ekl < BY Jaf?

for all finite sequence {c;} of complex scalars.

1.2. Chirp transform and series. Firstly, we consider the function spaces
L?((—m,n),du), where u is a positive measure. The norm and inner product in
L*((—n,m),du) are defined as

s

n 1/2
1= ([ 0P aun) and <= a0 duco

-7

respectively. If u(t) =t for teR, L*((—=m,n),du) is the common space
L*(—n,n). Furthermore, we assume in this paper that u satisfy the following
assumption.

AssUMPTION 1. Let u be a positive measure, and satisfy
(1) #: R — R with ge C! and ' > 0;
(2) u(t+2km) = u(t) + 2Nkr for all teR, keZ and some fixed N > 0.

Under the Assumption 1, it is direct to get the following properties of wu.
Readers are referred to [14] for more details.
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ProrosITION 1.1.  Let u: R — R satisfy Assumption 1. Then

(i) The nonlinear phase function py|_, » : (—m,n) — (—m,n) is a strictly
increasing bijective mapping, where py(t) = u(t)/N,

(i) There exists a constant K such that

lun () — 1| < K, VieR,

and one may take K =maXc(_p x|ty () —1;
(iii) @'(¢) is a 2n-periodic function;
(IV) /,l/(l) ~1, ie, 0< minte(—n,n) /,l/(l) = ,u'(t) = maX;e (—z,x) ﬂ,(t) < o0.

Remark 1.2. Obviously, 0,(f) defined in (1.2) is a function satisfying
Assumption 1. Moreover, there are many other functions satisfying Assumption
1, for example the functions Nx + sin(x) for any N e N with N > 2.

It is easy to know that uy has same properties as x4, by an abuse of nota-
tion, u, is used sometimes instead of x. The following function ¢ satisfies the
Assumption 1, but is restricted on the interval (—x, 7).

DerINITION 1.3, For f e L?(—n,n), we define the discrete Chirp transform
as

(1.7) Ty, [ (k) = 2%] f)e* 0 dgy. kel

—T
Next, let 7 be discrete Fourier transform on L?(—r,7),

1
T 2n

Tf (k) J, f(e ™ dt, kel

We also need the ¢-pushforward operator @yf := f o ¢~'. Note that Dy is an
isometry and its inverse satisfies @ '—o ..

Now we have the relationship between discrete Chirp transform 7 and
discrete Fourier transform .7,

(1.8) T4y =T oDy and inverse Z[Nl =10 T

PROPOSITION 1.4 ([14, Theorem 3.2]). For any f € L*((—n,n),ddy), we have
@)= cre™)
keZ
with

(" y
o =37 | S0 dgy.
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_ Form now on, we concentrate on non-stationary time Fourier frame Ejf” =
{eMk(éN(t)}keZ of Lz((—n’ Tc)vd¢N)9 where {}*k}kel =R and Lz((_nv n)7d¢N) is
equipped with the inner product

a
sy, = J [(0)g(0) dpy (1), [ € L*((—n,m), dpy)

and the induced norm |- [, . Specially, if ¢y(7) =17 for 1€ R, many valuable
works were obtained, see [4, 8, 10, 11, 12, 15, 17] and references therein.

Let I be a countable index. A set A := {/x},.; is separated if there is some
0 > 0 such that |4 — 4| =6 for all j # k and the constant J is called a separated
constant. If A is a finite union of separated sets, we say that A is relatively
separated. Given a relatively separated set A and r >0, let n~(r) denote the
minimal number of elements form A to be found in an interval of length . The
lower Beurling density of A is defined by

D(A) = 1im ).

r—o0 r

THEOREM 1.5. Let A = {Ax},.z be a relatively separated sequence of real
numbers.  Then the following holds:

(a) If D=(A) > 1, then {0}, . forms a frame for L*((—n,n),ddy);

(b) If {e™WWOY, _, forms a frame for L*((—m,7),d¢y), then D~(A) > 1.

Proof. The ¢y-pushforward operator @4 and [7, Theorem 7.6.4] will be
used for proving. Here we just show the sufficient case (a), and case (b) can
be proved similarly. If D~ (A) > 1, following |7, Theorem 7.6.4], we know that
{e™} is a frame of L?>(—n, ), this means that for any f e L?(—nx,x), there exists
0 < A4 < B< o such that

2 N |2 2
(19) AFI7 < Y KS D < BISI,
keZ
Note that @y is an isometry, one obtains that
ety = (D, £, 1My = (D, 1 f e Dy,
and
2 _ 2
A7 = 11y fllg, -
Thus (1.9) can be rewritten as,
2 i 2 2
A0y flly, < > K@y f 10y, I” < BI®ya 1l
kel

Now replacing @4 f by f in the above inequality, we can obtain the required
result. The proof is completed. O
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2. Perturbation results of nonlinear Fourier basis

In this section we focus on the stability of frames under perturbation.
Perturbation theory is one of main research issues in frames and its origins lie
in the celebrated works of Paley and Wiener [13] and Levinson [12]. Fur-
thermore, Kadec [11] gave the best constant followed from a theorem of [12,
Page 48].

For non-harmonic frames {e"#'},_, of exponentials in L*(—=,7), Kadec’s
celebrated 1/4 theorem in [11] tells us that {e'}, _, is a Riesz basis for
L?*(—n,7), when J; is close to k for all k € Z, that is to say,

sup |k —k| <L, with L <1/4.
kel

When chirp transform and series are introduced, {e*#v()} _, is exactly an
orthonormal basis of L?>((—n,7),d¢y) and we have the following theorem.

THEOREM 2.1. Let {x}.z be a real sequence. If there exists a constant
L < 1/4 such that

(2.1) sup |Ak —k| < L,

keZ
then {e¥xW)}, . is a Riesz basis for L*((—n,7),d¢y) with bounds (cos(nL)—
sin(zL))* and (2 — cos(zL) + sin(zL))>.

Proof.  First we claim that {e"#¥()}, _ is a Riesz basis for L?((—=, ), dpy)
if and only if {e'}, _, is a Riesz basis for L*(—z,n). Here we just show the
sufficient part, because of the necessary part is similar. By the definition of
Riesz basis, {e”*'},_, is complete in L?>(—z,7) and there exists constants
A, B >0 such that

2
S| <8 ol
k k

for every finite scalar sequence {c;}. Noting that ¢y-pushforward operator

(2.2) A al® <
k

q)(bN : Lz((_nv n)7d¢N) - Lz(_n’ 75)

is an isometry and its inverse satisfies (I),/j: = d)(ml, we have

Z Ckel'j.kt q)¢;yl (Z Ckeiﬂj\»[> Z Ckei/lk(ﬁ“(l)
k ‘ k k

Then (2.2) is equivalent to

2 2

2
Py o

2
< BZ |Ck|2.

Py k

(2.3) A e’ <
k

E c](ei;-k¢,x'(t)
k
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Suppose that {e”#¥}, _, is not complete in L?((—n,7),d¢y). Then there
exists 0 # fy € L>((—x,7),d¢y) such that fy e #;- with A = span{eixdn(D}, .
Therefore,

0= <f0 iZkpy (1) >¢N — <q)¢NfO’ (D¢N€i;“k¢‘\'(1)> _ <(D¢Nf07 ei/lkt>

for any k € Z. This means @y, f € #;", where #q = @, (#y) = span{e’'}, _,.
On the other hand

0# Dy, fo=fol¢™' (1)) € L*(~m, ).

It is a contradiction to the fact that {e”’},_, is complete in L*(—=,7).
Now, under the condition of (2.1) with L < 1/4, by Kadec’s 1/4 theorem,
one obtains that {e”+'}, _, is a Riesz basis for L?(—n,x) and the first conclusion
follows.
Next we shall obtain the bounds. For any finite nonzero sequence ¢, k € Z,
we have

§ Ckel'ln/(¢~ E Lkel)j\l § ckeikl E Ckel'()v/\»—k)l
k k k

Since {e*' k e Z} is an orthonormal basis of L*(—r,7), we have

Z r eikt
k

By [1, Theorem 1], one obtains

by

= [{exdrezlla:

I'(/l/cfk)l

< (1 —cos(nL) + sin(aL))*|[{ei}rezla-

Thus
2
(cos(nL) — sin(nL)) Z"k‘ che’%"‘ﬁ”’m
k by
< (2= cos(nL) + sin(zL))* > |ei]*.
k
This completes the proof. O

Similar to Theorem 2.1, we can also expand [4, Theorem 16.9], which was
proved independently by Balan [1] and Christensen [6], to nonlinear Fourier
frames case as follows.
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THEOREM 2.2, Let {4} oz, {2 }ieg be two real sequences and {1}, _,
be a frame for L*((—n,n),d¢y) with bounds A and B. If there exists a constant
constant L < 1/4 such that,

(2.4) sup |[Ax — | <L, and 1—cosnL+sinnl < A/B,
keZ

then {e™I Y, _, is also a frame for L*((—n,x),dpy) with bounds A(1 — B/A(1 —
cos 7L + sin 7L))* and B(2 — cos nL + sin L)%,

The following proposition analyzes the limit case of Theorem 2.1 and one
can refer [4, Theorem 16.9] for the classical nonharmonic Fourier frame case.

PROPOSITION 2.3. Let {lk}k 7 be a real sequence satisfying supy.y |k — k|
=1/4. Then {e™WY _, is either an Riesz basis or not a frame of

L((=m,7),ddy).
Proof. For any x e [0,1], define Ax(z) = k + x(4 — k), then
sup| k(1) — k| = x sup| Ak — k| = -

and

1 —x
1

sup| A (x) — k| = suplk + x(4 — k) — | = sup|(l — x) (4 — k)| =

Suppose that {e™#v}, _ is a frame for L?((—n,7x),d¢y) with bounds 0 < 4 <
_xn) < A/B and xe€

B < 0. By Theorem 2.2, if 1 —cos Yy + sin

4 2 A -
(0,1], which means 1> x > xj :=— arcsin <§ (1 - E))’ then {eWdn(0y
is a frame with bounds T

O (R e )
e O e )

While if x < 1, by Theorem 2.1 we have {e¥()}, _, is an Riesz basis, with the
same bounds as frame. Then

X)Z|Ck| > eI < B(x Z|Ck|

keZ keZ keZ

and
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for any finite nonzero sequence {cx},.z. Let x — 1. By sign-preserving theorem
of limit, we have

Ay lal? < Y e <BY Jaf

keZ keZ keZ

Then {1}, _, is also an Riesz basis with bounds the same as frame. The
proof is completed. O

3. Convergence

In this section, we give some generalizations about the convergence and
estimation of the coefficients, of the frame operator with respect to a special class
of nonharmonic nonlinear Fourier frame. Finally, Based on nonlinear (or linear)
Fourier frame (or basis), the equiconvergence of different series of f € L?*(—n, )
is investigated.

Recall some results about Fourier series of 2z-periodic functions. For any
function f(r) € ¥4, i.e. with continuous ¢-th derivative and ¢ €N, we have
that

. . 1 /4 )
f(l) = Z Ckelkt with ¢, = Tjinf(t)eﬂkt dt.

keZ n

The Fourier series is uniformly convergent and the Fourier coefficients are
bounded:

(3-1) leol < If1ly and Jei| <179 /K7, for k>0,

where f(@(t) stands for the g-th derivative of the function f(f). Similar results
have been shown by Bultheel and Carrette [2, Theorem 1 and Corollary 2] for
Takenaka-Malmquist system. In the first part of this section, we aim at char-
acterizing the similar convergence and coefficient properties of the nonharmonic
nonlinear frames {E f:}kez. Before that we need two lemmas:

1 4 az\* , ,
Lemma 3.1, Let Iy(z) = (Z—:_C;Z) , with ke N and ¢ = |a| < 1. If z = pe",

p >0, then
1 — pc\f <l+pc)k
< |h(2)] < , p>1,
(52%) <= (5E)

(3-2) e (2)] = 1, p=1

1+ pe\ 1—pe\
< |h <|—— 1.
(p+6) < k(z)|_<p—c e

Proof. Suppose a = ce’. When k =2, we have
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Lraz\'| _|(1+az\[’
|ha(2)] = ( Hz) '( HZ)‘
z+a Zt+a
HE epei=a)|? _ 1+2pccos(t — &) +p*c?
ptee )| T pT2pecos(t— &) + 2
and define
1 4 2pc cos(t) + p2c?
t) = rel-
(1) p%+2pccos(t) +¢2 €l
Note that
2pe(1 = p?)(1 = ) sin(z
A1) = pe(l —p7)(1 — ¢%) sin(z) te[—m,n.

(p? + 2pc cos(t) + ¢2)*

one can easily show that,

1 —pc 2 1+ pc 2
<|h < 1
(p—C) <| 2(2)_<p+0>’ Pn
(3-3) ha(2)] =1, p=1
1+ pc\? (1 —pc)2
<|m@@|<(—=), p<l.
(S52) <mei=(522). »
Since |h(1)| = |(ha(1))|*/?, the argument for k e N follows with some simple
adjustment. O

LemMa 3.2 ([2, Lemma 6]). Let x2 > x; >0 and ¢ >2. Then

qrz 1) e < Ly [y T (1 = (g /%) 47D q - pere
X1 B

+ 1x2>1 [0(2’1(1 _ e*qotz(xzfi))]eq(xzfln x2)
where X = max(x;, min(xy, 1)) with

g _l—x/x
o - lxln(f/xl) and o X5

The indicator function I.., is one if x < y and zeros otherwise.

From now on, let {ix},., satisfy sup,.z|Ax —k| <L <1/4 and 4; > 1,
A-1 < —1, Then by Theorem 2.1, the set

E(’a — eilk@u(l) — -—4a ’ N |k‘ < N
7k 1 —az keZ
€
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is a Riesz basis of L?>((—=,x),d0,), where 0,(t) is defined as in (1.2) and z = e™.
Furthermore, for f € L?((—n,n),d0,), we have the frame operator,

(3.4) SF(t) =D b =3 (f ey, it
keZ keZ
and the partial sum of right series defined by,
(3.5) (Sxf) (1) =Y bekyy,
|k|<N

where by = {f ,eiik‘)‘t(’)ﬁu for ke Z. The analysis of convergence of the expan-
sion coefficients a4, leads to the following theorem.

THEOREM 3.3. Let f(t) be a 2m-periodic function having a continuous q-th
derivative with q > 2. Then the coefficients of frame operator Sf defined in (3.4)
satisfy

1 ex
B ol <7l and bl < (Kileag) g+ K 20 79 o k> 1

p+c
I+
In p

- —4q " /(k-2)
p(c, ¢4, k) = min <(k—1)lnc> + (k/2)*
and p =limy_, p(c,q,k).

In
where ¢ =

, ¢ = |a| with

B raiel)

Proof. The statement for |by| < || f||; is trivial, Next, we only consider by
with k > 0 (the case kK < 0 can be obtained similarly). Firstly, we use the fact
that the function f(¢r) can be expanded into Fourier series:

1) = Z wpe™,

neZ

where the coefficients satisfy |wo| < || f||; and |wix| < [|f9],/k9. So,

J Zw e ei0a) d0,(1)

“Tnel

1 Y
_ 272 W"J emt —idi04(2) dea( )

nneZ -n

T
=_— w,,J elale=i4t

27TI’LEZ -n

i z+a\ ,
= — w, - Lk d

znz " =1 (1 + az) : -
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z—a
1+az
Section 7 and Lemma 7.1 in [14]. By Cauchy’s integral formula and 1; — 1 > 0,

. a\'d
one obtains ff z% <lz—tjz> 72 =0 for n<0. Thus
|z|=1

i & z+a |
= — Wy, =l gz
27‘[’1221 f 1( +az>

n i ny—1 —\"
_iN Wn{} z+ay - lgr g b i: W"El; EEAN -1y
2n |z|=p 14+ az 2n |z]=1 1+az

n=1 =P n=n;—1
+—ZW,,E|; (Z+a)zik1dz

n>m lz|=p, 1+az

21, + 10, + T4

with z = e, Here the fact 0,'(r) = 0_,(¢) and () = ( are used, see

with appropriate |a| < p; < 1 and p, > 1, and integers n, > n; > 0 to be specified
below. Next, we estimate the bounds of II;, II, and II3, separately.
(First sum) By Lemma 3.1, we have

(37) 0 < U ofe 30 () e

n=1
1— 1+c¢p .
Denote p, = P 1. Then pL= ~+ Pr . Thus (3.7) can be written as
pr—c p1tc
+Cp~ Ak my .
(8 < 170, (52 S e
n=1
Using Lemma 3.2, we obtain
niInpy/q
Zp /n? < q(ln p,)" e*qln"J eI x) gy
Inp,/q

< Lyl (1= (/20 P

+ Lo>1 [d71(1 — e*litxz(xzfx))} L ﬁ_lm
x>1% n5 o
= Iy + 1,

where x; =1n p,/q and x, = n; In p;/q. Here the technique in [2, Theorem 1] is
used. Denote (as [2, Theorem 1])

(3.9) pr=min([(py — 1) + ppo] + (P13 — 1), €7),
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where

14—(:+ 1
Veq o clg—1)°

_ ) A a/(k=2) ;
=1+ — 1<l pro = (k/2) and pj3 =1+

with k satisfying |4 — k| < 1/4. Then

L . 1+c 1
/\: = q
p /}LIEC ple,q,k) m1n<1 + e + e )

Define n; = |g14¢] with

In ﬁl‘*‘f’
0<e — l+cpp  Inp

1 —cp,

Specifically if 7; = 0, then it is trivial that I, = 0. Since 1” 1 Cpc <p <1, we
- 1

get that &g < 1. As a result it is not difficulty to show that

1 -\
! ( - c/)l) <1
prtc

Next we show the boundedness of I, := I, [e;! (1 — (x;/%)“ V") and
. . . . In
Iy, := IxZ>1[a51(1 — e"f“Z(XZ*’”)]. Since p < p; < e?, one obtains xjo := % <
In 5
x1 <1 and xyp := il qnp < x; <n.
Boundedness of II;,,. For x; > 1, we have x =1, then
1 - X -1
DR ek V. S T |
qg—1 In(x/x1) g—1 Inx
-1 1 — x(¢=Dix) .
Define A(x):=1 _qqu )in—x and u(x) := ))i(x) with xe[0,1]. Tt is
not difficult to get I—L1 < A(x) <1 and A(x) is a monotonically decreas-

ing function. Then there exists xo € (0,1) such that A(xo) =0. Noting that
limy_, u(x)=(g¢—1)In(1/xy) and u(x) is continuous, then there exists C;; > 0
such that II;,, < Cj;. It can be proved similarly when x, < 1.

Boundedness of II;,,. For x; <1, it is trivial. For x, > 1, we have x =1,
then

—¢(x2—1—In >
a{l(l _ e*qxz(xz*)?)) _ 1 — e q( 2 nrz)

1— 11’1)62

XQ—I
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3 | _ g—d(x-1-Inx) B
Define A(x) ::e—lnx with x e (0,00). Noting that lim,_¢ A(x) =

x—1
lim,_; A(x) =0, lim,., A(x)=1 and A(x) is continuous, then there exists
Ci» > 0 such that Hlx1 < Cyz.
Next we show that

1+cp\* e/ P 1—cp\ !
3.10 ) pd = (—pii] beya [ ——F1 C
( ) </51+c) m ( 1 npl) npl_c < (Cp3
. 1 D g ] )
with p, :ﬂ and Ci3 =( q A>. Actually (3.10) is clear since that
pp+c elnp
max,c . — xV71In x = A =P _np >p
xefo,1] —X/?Inx=g/e and In e A =g
-
As a result, we obtain from (3.7) that
14 ¢p V' el
3.11 | < ||f@ 1 i1c q
N G e T
l+c¢p &
(9) 1 me,
U (GER) o o
a 1
<1 f D) CraCyy - q @ ¢
<1/ Cis NS nf + |1/, LTI
7C1(C7q) (q) q
= S
g=1_ _q-1
. q qe
h = 4 .
with C(c, q) C11<€]nﬁ> q_1—|—C12

(Third sum) By Lemma 3.1, we have

. A 1 +cp, Y
Il < || 7@, pl 2 q
sl < 17l 3 (S22 )

n=np

' ~ 1+ cpy\™
< [ F@ | i ptc 2 a
=17 e (<p2 —N-0)\p+c) /™

Define p, = 1 + (1 — ¢)?" and ny = [e24(], where [x] means the smallest integer

not smaller than x and
prtc
=1 1 > 1,
a1 55)

<p,. Since xlog(l + x) is increasing on [0, c0), we obtain

prtc

because of
1 + cpPy
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prtc
82:1np2/(lnlicp2)
_ oyt (I+(1-0"H+e
=In(l1+ (1 —¢) )/(ln 1+c(1+(1—c)q1)>

) et (1—c)?
_ln(1+(1 )q )/lnl1+1+c—|—c(l _C)q—1‘|

>1+c+c(1—c)q_ 1+c¢
- l1-¢ T 1-c

Thus p, + ¢ <3 and

3
0] < 170l g/ Teadel®

3
o 7 q
< ||f ”l ((1 _ 0)82)(1/}%
<3|/ /4.

(Second sum) Partitioning [n; + 1,1, — 1] into two parts [n; + 1, [A]] and
[[4k] + 1,ny — 1], we may apply Lemma 3.1 to obtain,

}12—1 1
(2) _
Ll < 1790 Y
n=nj+1
G [1—e" 1] 1
S A e T = e = e v
q & & ;Lk
&1k _1 ~1 1- Hf(‘1)||l
< 1 — q q 1— q
<G _1(( el )+ () (1—¢ )>(811k)q

Combing II;, II; and II3, we have

|bel < {(CH“*Q)4363>%2CE “j*] L2,

Inp q—1] (e14)?
Ki(e,q) s | ISy
< K
—{1np'*2q—1(ugq

with ¢ = ¢, Ki(c,q) = Ci(c,q) +3Inp and K, =2C,. The proof is completed.
O
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COROLLARY 3.4. Let f(t) satisfy the condition of Theorem 3.3. The frame

operator Sf(t) and the partial sum (Syf)(t) are defined by (3.4) and (3.5)
respectively.  Then

(3.12) lim (S/)(0) = /(1)
uniformly in t € [—n, x|, and the convergence rate at least as fast as l/i]’{fz.

Proof. For N large enough, we have

ex(0] = (7)) = (Sx/)(0)] = | D (bee "0 + a_ k)

k=N
<23 max(lbel o eDle 0
k=N
<2 Y (K Kl 1 ),
k>N np q-1

where K, K, and p is defined as in Theorem 3.3. Then the partial sum (Syf)(¢)
convergence to Sf(f) uniformly in ¢ with convergence rate 1 /}./‘{,_2 because of
q > 2. The proof is completed. O

Right now we have four methods of representing f € L?>(—n,n). They are
Fourier basis {¢*}, _,, nonharmonic Fourier frame {e*'}, _,, nonlinear Fourier
basis {e*%(}, _, and nonharmonic nonlinear Fourier frame {e"%(®}, . For
convergence, it is well known that if a continuous function f(¢) is piecewise
smooth on [—=, 7], then the traditional Fourier series of f(f) is uniformly
convergent.

Young [17, Theorem 15] discussed the equiconvergence of Fourier series
and nonharmonic Fourier series of f € L?>(—n,n), and showed that nonharmonic
Fourier series have, to a large extent, the same convergence and summability
properties as traditional Fourier series. Next we shall discuss equiconvergence of
two different (nonlinear) Fourier (basis or frame) series of f € L*(—n, 7). Recall
that two series Y a, and > b, are said to be equiconvergent if their difference
> (a, — b,) converges to 0.

THEOREM 3.5. Let {A}, ., be a real sequence. Let {e*%W}, . be a Riesz
basis for L*((—n,n),d0,), and suppose that

sup |4 — k| < 0.
k
Then for each function f e L*((—n,n),d0,), the nonlinear Fourier series and

nonharmonic nonlinear Fourier series are uniformly equiconvergent on every com-
pact subset of (—x, 7).
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Proof. Suppose d >0 and f(f) e L?(—n,n) have two norm-convergent
expansions: 3 cze™ () and 3 bre™%® Tt is to be show that the difference
S (cpe0a) — pyet0d0)) convergence to 0 as n — co, uniformly on [~z + 6,
n—9).

éince I/ (@)lg, = I/ (0-a(2))]l, we have that g(z) := f(0-4(?)) € L?*(—n,n), and
has two expansion: Y cre® and 3 bre™!. Note that 0,(¢) is a strictly increas-
ing bijective function with 0,(+n) = +x, by [17, Theorem 15], we have

n

(3.13) > (cke™ — bre™)

k=—n

convergent to O uniformly on the interval [0_,(—n+9),0_,(m —0)]. If we
replace ¢ by 6,(¢) in (3.13), then the desired conclusion follows. O

Unfortunately, other versions of Theorem 3.5 probably fail when we consider
the equiconvergence of traditional Fourier series and nonlinear Fourier series,
or the equiconvergence of traditional Fourier series and nonharmonic nonlinear
Fourier series of f € L>(—n,n). In the end, we give two results for illustrating
that argument.

PROPOSITION 3.6, Suppose {e™*%DY, . be a orthonormal basis of
L*((-m,m),0,) with ae(—1,—1(V35—+V3)). Let a 2n periodic function be
defined as

(3.14) f(0) :{

Then its traditional Fourier series and nonlinear Fourier series are not uniformly
equiconvergent on [—m+d,7 —d] with d < 5n/6.

Proof. 1Tt is easy to get that f(¢)e L*(—n,n) and f(¢) € L*((—n,7),0,).
By calculation we have its traditional Fourier partial sum, f,(r)=1/2+

2 1 .
;Zkzl 1 sin(2k — 1)¢, and

@), 0<|f<m,

lim (1) = { 1/2, t=-n0,7

Next we discuss the corresponding non-linear Fourier partial sum,

(B15) £ = 30 CFreH 03, M0 = 37 CF(0 (1)), eH3el,

k=—n k=—n

|a| sin ¢
1+ |a| cos ¢’
have 0,(¢) is an increasing function with 0,(—n) = —x, 6,(0) = 0 and 0,(n) = 7.

where 0'(f) = 0_,(r) is used. Note that 0,(f) = ¢ — 2 arctan
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Hence f(0_,(t)) = f(¢). Then

fla(t) = Z (f e®ye®0aD) — £.(0,(1)) = 1/2+%Zn;2k%1 sin(2k — 1)0,(2).
k=1

k=-n
We define

n

9u(0) == £u(0) = f72(0) = 23" 5 (sin(2k — 1)t —sin(2k — 1)0,(0)).
k=1

In the following we show that, g¢,(z) is not uniformly convergent on [—7 + 9,
/2
4n -1’

sin((2k — 1)) > sin((2n — 1/2)n/(8n —2)) =V2/2, Vk=n+1---2n.
Note that a e (—1,—%(\/3— —+/3)), by direct calculation we have
1 —d? 1 —d?
0' () = ¢ < ¢
“ 1 +a?>—2acos(t) — 1+ a*>—2acos(n/6)

n—0]. In fact for any n > 0, select ¢, = then

<1/3,

and
0,(1) <t/3, Vte(0,7/6).
Thus
sin((2k — 1)0,(t,)) < sin((2k — 1)t,/3) <sin(n/6) =1/2, Vk=n+1---2n.

So we have

23 (V2-1)/2 _ V2-1
~l n\tn) = Yn\tn > — > .

(3.16) ol —aai)| = £ 35 S5 =

Thus g,() is not uniformly convergent on [—7 +dJ,7 —J] with J < 57/6. The

proof is completed. ]

COROLLARY 3.7. Under the conditions of Theorem 3.5, the traditional Fourier
series and nonharmonic nonlinear Fourier series of f(t), defined in (3.14), are not
uniformly equiconvergent on [—m+ 0,7 — 0| with d < 5xn/6.

Proof. Suppose that f(f) have three norm-convergent representations:
St dye™ 3 e and 3 b,e%) | where d, and ¢, have explicit expression as

2 -1
———, there exists N > 0 such

in Proposition 3.6. By Theorem 3.5, for ¢ = T6n

that for any n > N

n
n = . - 0 &0
(1) = | S (cxe™® 0 — pret 0ty <
k=-n
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with te[-n+0J,n—0] and J € (0,7). Then by the proof of Proposition 3.6,
we have

2n 2n
§ (dkezktn o bke”l"o“(’")) > § (dkezktn _ Ckemk(){,(r,,))
|k|=n+1 |k|=n+1
2n
_ E (ckelk()u ’n bkeMk t/(’n))
|k|=n+1

> [g2n(tn) — gn(tn)| — |h2n(tn)| — |Bn(20)]
L2 & (VI-1)2 Vil

—2g =Y,
n5 2k — 1 8
2 . y . .
where 1, = 47z/ T Thus Z,’f:fn(dke’k’ - b,ce"k‘)“(’)) is not uniformly convergent
n [-n+0,7—0d] with § < 57/6. The proof is completed. O
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