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GLOBAL ISOMETRIC EMBEDDINGS OF MULTIPLE
WARPED PRODUCT METRICS INTO QUADRICS

HEUDSON MIRANDOLA AND FELICIANO VITORIO

Abstract

In this paper, we construct smooth isometric embeddings of multiple warped
product manifolds in quadrics of semi-Euclidean spaces. Our main theorem generalizes
previous results as given by Blanusa, Rozendorn, Henke and Azov.

1. Introduction

By fundamental works of Nash [19], Gromov and Rokhlin [11] and Giinther
[12] we know that every n-dimensional smooth Riemannian manifold admits a
smooth isometric embedding! in an N-dimensional Euclidean space R", for some
N < ¢(n) =max{n(n+5)/2,n(n+3)/2+5}. The estimate c(n) was given by
Giinther [12]; Nash’s and Gromov-Rokhlin’s estimates are larger than this upper
bound. Since then, the problem of finding the lowest possible codimension is
one of the major open problems in the theory of isometric immersion. For
books and surveys about this subject see Gromov and Rokhlin [11], Jacobowitz
[18], Poznyak and Sokolov [22], Aminov [1], Dajczer [8], Borisenko [6] and Han
and Hong [13]. On the other hand, since the results of Nash, Gromov and
Rokhlin and Giinther follow as a consequence of existence theorems for certain
PDE’s, it is also an interesting problem to give the explicit construction of
isometric immersions of a given Riemannian metric M" in R™, mainly if the
attained codimension is strictly less than ¢(n) —n. This is the point of view of
the present paper.

Blanusa [4, 5] gave a method to construct injective smooth isometric
immersions of the hyperbolic plane H? in R® and in the standard spherical
space S®.  Poznyak [21] wrote about Blanusa’s surface: ““There is no doubt that
this result is one of the most elegant in the theory of immersion of two-dimensional
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manifolds in Euclidean space”. Blanusa also constructed injective isometric
immersions of H” in R*> and of an infinite Mdbius band with hyperbolic
metric in R® and in S'°. His method was used and modified in further works:
(i) Rozendorn [23] constructed non-injective smooth isometric immersions of
the plane R? with the warped product metric of the form do? = di® + f(1)* dx?
in R° (this class of surfaces includes H? with the metric d* + e* dx?). Note
that a celebrated theorem of Hilbert [17] states that H? cannot be isometrically
immersed in R®. However, the existence of an isometric immersion of H? in
R* or even an injective isometric immersion of H? in R? is still an open problem
(a partial answer to the first problem was given by Sabitov [24]). (ii) Henke
[14, 15] exhibited isometric immersions of H” in R*~* and in $*~3. (iii) Henke
and Nettekoven [16] showed that H” can be isometrically embedded in
R% % whose image is the graph of a smooth map g:R" — R % (iv) Azov
[2] considered the space R”" =R x R""! with one of the following metrics:
do? =di* + f(1)? ZJ’ZII dx; or do* = g(x1)? > dx; and constructed isometric
immersions in R*~* and He also announced in [3] the construction of
isometric immersions of these classes of metrics in R and S** if n > 2.
In this paper we deal with product manifolds M” = I x R""!, where I is an
open interval, endowed with a multiple warped product metric of the form:

S4n73

(1) do® = p(t)* di* + (1) dx} + -+ + 1, (1) dx;_,
where p(t), n;(t), with el and j=1,...,n— 1, are positive smooth functions
and dxi,...,dx,_; are the canonical coframes of R"~!. This class of metrics

includes both Azov’s metrics. We will modify Blanusa’s method to exhibit
isometric immersions and, mainly, embeddings of this class of metrics in quadrics
of semi-Euclidean spaces. It is worth to mention that, in general, the immersions
obtained by Rozendorn, Henke and Azov are not injective. Based on this, we
consider such embeddings the main contribution of the present work. There
exists a wide literature about aspects of rigidity and nonimmersibility of these
spaces (see for instance Nolker [20], Chen [7], Florit [10], Dajczer and Tojeiro [9]
and references therein).

We recall that the semi-Euclidean space R, with a € {0,...,n}, is simply
the space R” with the inner product of signature (a,n —a) given by

(2) (y=—dxf — - —dxE 4 dx 4+ dx,

where dx;, with j=1,...,n, denote the canonical coframes of R". For a given
¢ >0, let S?(c) and H)(—c) be the following quadratic hypersurfaces (or, simply,
quadrics):

Si(c) = {x e Ry Cx,x) = 1/ck;
H!(—c) = {x e R] [{x,x) = —1/c}.

Both hypersurfaces are semi-Riemannian manifolds with signature (a,n — a) and
constant curvatures ¢ and —c, respectively. If a =0, then Sj(c) = S"(c) is the
standard sphere and H{(—c¢) = H"(—c¢) is the hyperbolic space. If a =1, the
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semi-Riemannian universal covering spaces of S{(1) and Hj(—1) are called de
Sitter dS” and anti-de Sitter 4dS” spaces, respectively.
Our main result is

Turorem 1.1. Let M" =1 x R"™" be as given in (1). Then, for all ¢ >0
and a€{0,...,.n— 1}, the manifold M" admits:

(i) isometric immersions in R332 §I=3724(0) " apd H"374(—¢);

(ii) isometric embeddings in RY"7-% S¥n=5-6a(cy apg HET3(—¢).
Moreover, all immersions and embeddings above are smooth and given explicitly.

In Remark 1 (see Section 3), we observe that all immersions referred in Item
(i) of Theorem 1.1 are not injective, provided that a <n — 1.

Based on Theorem 1.1, it is natural to ask if every n-dimensional Rieman-
nian manifold M” can be isometrically immersed in a semi-Euclidean RY with
a>0 and N strictly less than the dimension c¢(n) obtained by Glnther [12].

As an application of Theorem 1.1 we generalize Rozendorn’s surfaces [23].
We have the following.

COROLLARY 1.1. Let M? =1 xR be a warped product surface as given in
(1).  Then, for all ¢ >0, the surface M?> admits:

(i) non-injective isometric immersions in R, H>(—c), 8°(c) and dS>(c);

(ii) isometric embeddings in R°, H’(—c), S''(c), R}, AdS*(—c) and dS>(c).
Moreover, all immersions and embeddings above are smooth and given explicitly.

The space Sol; is a simply connected homogeneous 3-dimensional space
whose isometry group has dimension 3. It is one of the eight models of the
Thurston geometry and it can be viewed as R® with the metric ds*> = df> +
e? dx? 4+ e~ dy?. 1Tt follows directly from Theorem 1.1 the following

COROLLARY 1.2. For all ¢ > 0, the space Sol; admits:
(i) non-injective isometric immersions in R°, H’(—c), S°(c), R}, dS7(c),
AdS?(—c);
(ii) isometric embeddings in R, H'(—c), SY(c), R, 4dS"(—c) and
ds"(c).
Moreover, all immersions and embeddings above are smooth and given explicitly.

Let f;: M; — R, with [ =1,...,k, be smooth isometric immersions of the
manifold (Mj,g;) in R™. Let I be an open interval and p(7), #;(¢), with 1€l
and / = 1,... k, positive smooth functions. It is simple to show that the product
manifold M =1 x M; x --- x M; with the warped product metric

2 2 2
(3) g=p(0)* de* +ny(1)°g1 + - +mi (1) gk
can be isometrically immersed in 7 x R™ x --- x R"™ with the metric

do® = p(t)® dr* + 1, (1)°61 + - + 0. ()0,
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where d; denotes the Euclidean metric of R. Thus it follows as a consequence
of Theorem 1.1 the following result.

COROLLARY 1.3. With the notations being as above, we consider n =
n+---+n and ae{0,...,n}. For all ¢ >0, the manifold M admits:
(i) isometric immersions in R¥"F1724 St1=2a(0y gpg HH1-a(_¢);
(ii) isometric embeddings in R3"T1-64 88113764 () gnd H3"175¢(_¢), provided
that each f; is an embedding.

We would like to thank the referee for carefully reading the first version
of this manuscript, pointing out mistakes which helped us to improve the
manuscript.

2. Preliminaries

We recall Blanusa’s functions lﬁl,x/}z : R — R defined by

R u+1 . u
i) =[] ar and oo =7 ] e ae

2

where 4 = [} &(7) dv and &(u) = sin(au)e /@) if 4 e R\Z, and &(u) = 0, if
ueZ. Blanusa proved in [4] that these functions are smooth, non-negative and
satisfy:

(a) ¥; is periodic with period 2, for all j=1,2;

(b) lﬁf + l/?% = 1, everywhere; R

(c) all the derivatives (21 + 1) = y{"(21) = 0, for all /¢ Z.

The next two lemmas will be useful to prove Theorem 1.1. They are simple
consequences of Items (a), (b) and (c) above. To state them, let / be an open
interval and y:7 — R an increasing smooth diffeomorphism. Consider the
sequence t; = y~!(k), with ke Z. The first lemma says the following.

Lemma 2.1. The functions ; = lﬁj oy: I — R are smooth, non-negative and
satisfy the following properties:
U (D) + 4y (0)> =1,  everywhere in I
(4) V() W) =¥ (() (w+2)), for all ueR and j=1,2;
W (o) = i (t) =0, for all k>0 and integers 1.

Let S1,S,: 1 — (0,00) be any positive step functions satisfying

(5)

for each integer /.
The second lemma follows easily from Lemma 2.1.

S) is constant on each interval [ty ,ty3);
S, is constant on each interval [ty ty2);
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o . n(@y;(t)
LemMA 2.2. For any ne C*(I), the functions S with tel and
Jj=1,2, are smooth and their derivatives satisfy (1)
dr
d* (o) gx WOY;(0)
ar\"s0 ) s

for all integers k > 0.

3. Proof of Theorem 1.1

First we consider the map #(¢) = (i,(¢),...,n,_,(¢)), with t € I, where each
function #; is being as in (1). Consider the map /4:R — R? given by h(u) =
(cosh(u),sinh(x)). Consider also the map ¢ = (¢;,9,) : I x R — R* where each
map ¢;: [ xR — R?, with j=1,2, is given by
U0

Si(1)

The map ¢ is introduced in [16] for the case that / =R and y is the identity
function. By using Lemma 2.2, we obtain

(6) 0;(t,u) (cos(S;(1)u), sin(S;(1)u)).

) w = n7;.(1)(cosh(u), sinh(u));
W — 4(¢)(sinh(u), cosh(u));
a<nk<t>;,<z, w) _ <nk<;>ja(bl,«)<r>>’ (cos(S;(1)u), sin(S; (1)u));
W = i (O, (1) (—sin(S;(1)u), cos(S;(1)u));

for all j=1,2, tel, ueR and k=1,... ,n—1.

Now, set a€{0,...,n— 1} and let b=n—1—a. First we consider b > 0.
We will see that the case b =0 is easier. We write the semi-Euclidean space
Ri#1=4-2a — R20+4b jsometrically as the following form

R2a+4h — (R%)a > R4b — R% Y R% % R4b.
———
a times

We denote by x=(xi,...,X.,45) the coordinates of R" ! = R, Let
P : R — R® and P, : R“*’ — R’ be the standard orthogonal projections

X=Pi(x1,..., Xayp) = (X1,..., Xa)

X = PZ(xla"'axa+b) = (xa+17"'7xa+b)'
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Consider the maps
(8) 7(t) = Pi(n(¢)) and 7(1) = P2(n(2)),

with tel and let 7x/h:1xR"" — (R})? and 7% ¢: 1 x R"" — R* be the
maps given by

(9) (ﬁ * h)([’ Xlyeeos Xa+b) = (’71(f)h(xl)7 s arla(t)h(xa)) € (Rlz)a;
(77 * ¢)(Z’ Xlyeoe 7xa+b) = (’7a+1([)(p([3 xa+1)7 IR ’7a+b(t)¢(ta xct+b)) € R4h'

Since 4 (u) € R and ¢(,u) € R*, by using (7), the pull-back symmetric tensors by
7= h and 77 * ¢ must satisfy

(10)  (GF*h)*(D) = =7 O] d* +my(0)* dxd + -+, (1) dx?;
(71 % 0)*({,) = e(t) d + 5,y (7 dX2 ) + -+ (1) dX2,,,

where |7/ (1)]* = #](1)> +---+5,(1)* and &: I — [0, 0) is given by

a+b N2 "2
(11) o(t)? = ;1 ((ﬂr(gll@)(;))) +(<’7'(2:i§>(5)))

For the step functions S;,S>: 1 — (0, 00) defined as in (5), we can choose
the steps Siy, | ¢, and S2|y, ¢y, with integer /, sufficiently large so that, for
all r=a+1,...,a+b, it holds

(12) (0, (0)')? < 35 S0,

for all el and j=1,2. We obtain p(1)> —&(r)* > p(1)> — 2&(1)*> > 0, for all
tel.
Let f:1xR" ! = R¥ 32 - R x (R})“ x R* be the map

(j Vo) 17 OF = o(0) e« he. 007 ol0.3) ).

If b =0, we define f(z,x) simply by omitting ¢(¢) and 7 % ¢(, x) in the expression
of f(t,x) above. By using (10), we obtain

L) = () + 7 (0] = e(0)?) di + (7% ) () + (7 % 9) (<))
= l)(f>2 di* + ’71(t)2 dxj + -+ 77a+b(t)2 dx2+b
= do?.

This implies that f: M" — Rj”_3_2" is a smooth isometric immersion.
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We fix ¢ > 0. First we assume b > 0. We choose the step functions Sj, S>
sufficiently large so that (12) holds. Let «:7 — [0,00) be the function given
by

atb 2 2 2 2
n ()Y ()" n()"Ys (1)
13 1) = + .
1 0 Z( S0P S0 )
Note that o) = (G ~ ¢(t, x), ;7 * o(t,x)>.
Let fi: I x R"™ ! - R¥ 274 =R} x R* x (Rf)“ x R* be the map

a+1

Su(t,x) = (\/1/c+ a(t)h(04(1) 1),7 * h(t,x),7 * (t,x)),

where 6, : I — R is the function defined by

AN

eh,u):j; ﬁ p(r)z_mum .

If =0, we define f;(¢,x) simply by omitting &(¢), «(z) and 7 x ¢(z,x) in the
expressions of 0,(r) and f;(s,x) above. By (12), we have p(1)> —e(r)* > 0.
Thus, in both cases b = 0 and b > 0, we have that 0, is well defined, smooth and
increasing.

It is easy to see that <fi(,x), fi(t,x)> = —(1/c + a(t)) + [7(1)|* = |7(1)]* +
a(f) = —1/c, hence the image of f; is contained in HY">~“(—¢). By using (10),

/ 2
PR iU

+ (1 + a(z>>o,;<z>2 + 7)) | dr?
PO

+ (7 x ) (D) + T x9) (L))
=p(1)* d® + (1) dx] + -+ 1, (0)7 dxZ,

This implies that fj, : M" — H*37%(—¢) is an isometric immersion.
Now, choose the step functions S;, S, sufficiently large so that (12) is
satisfied and, moreover, for all r=a+1,...,a+ b, it holds

(14) n 0 < oS0,

forall el and j=1,2. By (13) and (14), we obtain 0 < a(?) < 4%, forall rel.
Let f;: I xR" ! = Rg”‘z_z” =R?x (Rlz)” x R* be the map defined by

fs(tv x) = ( I/C - ﬁ(t)g(es(t))vﬁ * h(tv x)?ﬁ * (ﬂ([, X)),
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where f(1) = a(t) — |7i()|*, with rel, g(u) = (cos(u),sin(u)), with ueR, and
0, : I — R is the function given by

t i T 2
00 = [ ||+ 0P s - | a
o\ 2B 4(;-00)

If b =0, we define f(¢,x) by omitting &(¢), o(¢) and 7 * ¢(¢, x) in the expressions
of () and f;(¢,x) above.

Cram 3.1. We can choose steps functions Sy, S,, sufficiently large so that
the function Oy is well defined and smooth.

In fact, first we assume b =0. In this case, by definition, we have f(¢)
1
= —[7()". Hence, ——p(0)>[7(|". Moreover, ()" =447 (1),7(1)>* <
47" ()1 1(0)*. Thus,

172
AU <P
3(;-n0)

By (12), we have p(1)> — &(£)> > 0. Thus we conclude that 6, is well defined and

. 1 1 .
smooth. Now, assume b > 0. By (14), it holds — — f(¢) > — — a(¢) > 0. Using
Lemma 2.2, we have ¢ ¢

(15) () — Z‘f[( ()n(ﬁ;)()ﬁ(m()x(b;)())].
r=a+1

1rn\2
Since f'(t) = o'(¢) — 2<7'(¢),7(t)», we obtain § Ef) < (1) + 7' (0)|*|7i(1)|, where

0:1—10,00) is the continuous function given by

o (1)°

(16) ot) == —fx'(t)<ﬁ’(t),ﬁ(f)>’~

1 1
Using that — —ﬂ( )= o a(t) + 7)) > 2—+ [7i()|%, it holds that

4(1 ) <5 2(5(l)+|f7(l)|2|f7’(f)|2)-



MULTIPLE WARPED PRODUCT METRICS INTO QUADRICS 127

This implies that

1rn\2 ~ 2
P02 + 17O = o) =02 p(0? = o + 17 O | 1~ 1
4(;-0) 2o+ lito)
6
2+ i)
- (T = 00)
ot ()

where I': I — R is the continuous function given by

_ o2
0 = (210 ) | 0 et + 0P | 1 - 1O

Ny
0]

Since the step functions S; and S, satisfy (12), we obtain I'(¢) > 0, for all € 1.
Furthermore, if S;(¢) and S>(f) become larger, then I'(z) > 0 increases and d(¢)
is as smaller as we want. So, we choose each step of S; and S, sufficiently large
so that () < I'(¢), for all ze . This implies that

(17) 02 + 70 et - — 25
4(; - ﬁ(ﬁ)

for all tel. Claim 3.1 is proved.
It is easy to see that {fi(z,x), fi(t,x)> = 1/c, hence the image of f; is
contained in S¥3%(¢). By using (10),

1rn\2
1) = [ At (= B0 )50 | i+ e (<) + (0 (<)
4(;-0)

= P(t)z dr* + ’71(02 dxi+ -+ ’7a+b(t)2 dx2+b'

This implies that f;: M" — S} 372(¢) is an isometric immersion. Item (i) is
proved.

Remark 1. The immersions f, f;, and f; are not injective, if b >0. In

fact, we take r=ty, for some integer k. Let x'=(x],...,x},,) and x? =

(x7,...,x2,) be vectors satisfying the following.
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@) (xl,.oxh)y=(x3,...,x2);
(ii) Si(0)x! = Si(£)x? + 2xl,, for some integer [, with r=a+1,...,a+b
and /. # 0 for some r.
Notice that 7 % h(t,x') =7 x h(t,x?), since (x{,...,x!)=(x},...,x2). Since
Ya(1) = 5 (tax) = 0 and (cos(S1(1)x;}), sin(S1(1)x))) = (cos(S1(1)x7), Sln(Sl(f)xrz));
we obtain

(1) (Cos(S (1)), sin(S)(1)x1)) = v (1)(cos(Sy(1)2), s (S5 (£):2).
This implies that 77 « ¢(¢,x') =7 x ¢(t,x*). Since the first coordinates of f, f,
and f; depend only on ¢, it follows that f(z,x') = f(t,x?), fu(t,x") = fi(t,x?),
and fi(t,x') = f;(t,x*). Thus, the immersions f, f, and f; are not injective.

Now we will prove Item (ii). We will continue to assume the notations

being as given in the proof of Item (i). Let 77 : R — (O,g) and 75 : R — R be
the smooth functions

(18) Ty (u) = %(1 +tanh(u)) and Th(u) = J: 1 - T}(z)* dr.

Note that 7, is smooth since 7; is analytic and 7 (u) :g sech?(u) < %< L.

Consider the map ¢ = (@1, ¢y, P12:0») : I x R — R® where each map
;I x R—R? with i, j=1,2, is defined by

(19) (1) = S0 (cos(T8 1) sin(Ti 01
Consider the map

(20) (’7 * @)(L X1y .- 7xa+b) = (na+l (l)(ﬁ(ta xtl+1)7 s 777a+b(l)¢(l> xtl+b)) € R8b7

with eI and x e R"' = R“?. Since T{(1)* + T4(1)* = Y, (1) + ¢»(1)* = 1, by
using Lemma 2.2, it follows similarly as in (10) that the pull-back symmetric
tensor by the map 7 x ¢ : I x R"™' — R® satisfies

(21) (% 9) (<) = 26(0)> di* 4 10y (07 dxgy + -+ 10 ()7 dxg s
where ¢:1 — [0,00) is the smooth function defined as in (11). We choose
the step functlons S; and S, so that (12) is satisfied. This implies that
p(1)* — 23( )> > 0.
Let f:1xR"" = R 7% - R x (R?)“ x R* be the map

9= ([ Voor 0 = 250" s e, 000 ).

where 77 x /1 : I x R"! — (R})“ is the map defined as in (9). If b =0, we define
1, x) by simply omitting &(¢) and 7 x ¢(z,x) in the definition of 7 (t x) above.
By using (10) and (21), it is easy to conclude that f: M" — R¥77764 i an
isometric immersion.
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Cram 3.2. The immersion f is injective.

In fact, assume that (', x") = f(12,x?), for some ', 2 eI and x', x> e R" .
We write x/ = (x{,...,x/,,), with j=1,2. Using that the function

JW 40P - 20 dr, rel,

is increasing, we obtain ¢! = ¢2. Since lﬂl + lﬁ% = 1, we can assume, without loss
of generality, that v, (¢ 'Y 0. Using that n,(f) >0, for all i=1,...,a+b and
(', x") = f(1',x?), we have h(xk) h(x}) and ¢, (¢',x}) = ¢, (¢!, x2), for all
k=1,...,a and r=a+1,...,a+b. These imply that

sinh(x}) = sinh(x7) and sin(71(S)(z")x!)) = sin(T3(S; (¢")x2)),

forall k=1,...,aand r=a+1,...,a+b. Since Si(t') >0 and the functions
sinh(u) and sin(7}(u)), with u € R, are injective, we obtain that x! = x?. Claim

3.2 is proved.
Cram 3.3. f: M" — R 7% s an isometric embedding.

We just need to show that the inverse map U fU xR ST xR
continuous. In fact, let y,, = Sty X7, X)) be a sequence that converges to
a point y.,, = f(t%,x{’“, ...,x;” ;). Since the function s(#) is the first coordinate
of f(t,x), we obtain lim s(z,) = s(f,). This implies that lim ¢,, = ., since
s: I — R is a diffeomorphism of I onto its image s(/). Since the coordinates
of the map #(¢) = (n,(¢),...,n,_,(f)) are positive and smooth, we obtain

() lim h(x}") = h(x7)

(b) lim gp_/z(tmvxr ) - go]z( w0y Xy )9
forall i,j=1,2, k=1,...,aand r=a+1,...,n—1. It follows from (a) that
lim x;" = x°, for all k: 1,...,a, since /1(u) = (cosh(u),sinh(u)) and sinh(u),
with u e R, is a diffeomorphism. Now, using that ¥, (z,)* + Y,(1,)* = 1, we
can assume that ,(¢,) # 0. Since y;(¢,,) > 0, we obtain that S; is a posi-
tive constant function in a neighborhood of f,. This implies that Si(z,) =
S1(t5) > 0, for sufficiently large m. Since lim ¥, (¢,) = ¥,(t) > 0, we obtain
from (b) and (19) that

lim cos(T} (S (1, )x™)) = lim iig:; P(py(tm, X)) = iigj; P(p(te, X))
= cos(T1(Si(15)x,")),

for all r=a+1,...,n—1, where P:R?>— R is the projection P(u,v)= u.
Again using that Sj(¢,,) >0 and since cos(7;(u)) is a diffeomorphism of R
onto (0,1), 1t follows that lim x” = x°, for all r=a+1,...,n—1. We con-
clude that 7! is continuous. Claim 3.3 is proved.
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Let f,: 1 x R"1 — R¥7675%¢ = R? x R x (R?)* x R® be the map

22) ﬂ(z,x):( %+2d(l)h(9h(t)),ﬁ(l)7ﬁ*h(LX),ﬁ*cﬁ(ZJ)),

where o : I — [0, c0) is as defined in (13) and 6y : I — R is the function given by

()’

(23) 0,(1) = J o p(1)* = 2e(r)* + i dr.

1
hAl =42 42
-+ 21(2) -+ 21(2)

If b=0, we define f,(z,x) simply by omitting a(7), &(r) and 7 * ¢(z,x) in the

expressions of 0,(¢) and f,(z,x) above. R
By (12), we have p(f)* —2¢(r)* > 0. This implies that 6;:7 — R is well
defined, smooth and increasing.

Note that (f,(t,x)f,(t,x)> = — %4—20(([) + 1701 = 170 + 2a(t) = _%_

Thus the image of f, is contained in H¥"~774(—¢). By a standard computation,

1(\2 R
G <) = | =7 (20 )y + 17 0O |
Z+2oc(l)

+ (%) () + (7% 9) (<))
= p(0)* dr? 4 (1) dx] + - (07 g
Thus f,: M" — H3"~77%4(—¢) is an isometric immersion.
CLamm 3.4. The immersion f,, is injective.

In fact, assume that f,(r',x!) = £, (1%, x2). Using (22), we have

%+2a(l‘)h(éh(tl)): %+2a(z2)h(9h(12)).
Since <h(u),h(u)) = —1, for all u e R, we obtain %+2oc(t1) :%4’20(([2), hence

h(0,(t")) = h(04(¢%)). This implies that 7' =72, since the function sinh(0,()),
with ¢ e I, is increasing. The argument to show that x! = x? is similar the one
as given in Claim 3.2. Claim 3.4 is proved.

CLAM 3.5. f,: M" — H3""7=%4(—¢) is an isometric embedding.
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In fact, we just need to prove that the inverse map )" I xR =
IxR"1is continuous. Let y, = f,(tx, x™) be a sequence that converges to a
point y,, = f,(t,x*). Using (22), we obtain

lim %+2a(zm)h(0h(zm)): %+2a(rw)h(éh(tw)).

1 1
Using  <{h(u),h(u)y =—1, we obtain lim <E + 20(([,,1)) = Z+ 20(t) > 0,

hence  1im /(0)(t,)) = h(04(t,0)). This  implies that lim sinh(7(0)(2n))) =
sinh(71(0x(ts))). Using that sinh(7(0,(¢))) is a diffeomorphism of I onto
its image, it follows that lim z,, = t,,. The argument to show that lim x” = x*
is also similar to Claim 3.3. Thus Claim 3.5 is proved.

Now let f,: 1 x R" 1 — R348« — R4 5 (R})“ x R® be the map

_12
04 Sy = \/§+'”(Q' o6 O0), 7% W), 7% 6(0) |

where  %(u) = (cos(T(u)), sin(71(u)), cos(T2(u)),sin(T2(u))), with ueR. Fur-
ther, the function o : I — [0, c0) is given as in (13), and 6, : I — R is defined by

T G0 )
o= | I
2c+ 5 — a(7)

where G : I — R is the function

A
—a(t) + = 17(1)]|
G(1) :p(l)2+|ﬁ'(t)|2—2s(t)2—2(< 2 )> .
1 q@"
4 20+ > a(t)

If b =0, we define f. by simply omitting o(¢) and 7 * ¢(z,x) in the definitions of
0,(t) and f,(¢,x) above.
We claim that we can choose the step functions S| and S, sufficiently large

2

o 1
so that 6, is well defined and smooth. By (14), we already have %" a(t) > 0.
Furthermore, by a simple computation, ¢
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o (1) = 20 (1)< (1), (1))

I
=+ 1i(2)? — 2a(1)
o(t) and o'(z) as smaller as we want if S;(¢) and S»(¢) become larger. Thus, we
can choose the step functions S; and S sufficiently large so that A(z) < p(1)%.
This implies that 6,(z) is well defined, smooth and increasing.
R A . .
Note that {/(t,), f(t,x)) =~ since |€(u)|* =2, |7 * ¢(1,x)|* = 2u(r) and

Gj % h(t,x),7 % h(t,x)> = —|7i(£)]*. Thus the image f,(I x R"™) < §¥=5-6¢(¢),
By a direct computation, we show that

(0ezm0))
—a(t) + 57 () 2 A
ACOE 2 - <2LC+M - oc(t)) '(1)* | dr?

LR 220 ?

Note that we can take &(r),

where A(f) = 2¢(1) +

+ (7 * 1) (D) + 7 9)" (<))
= p(t)7 dr* +n,(8)7 dxF + -+ (07 dx2,,

This implies that £, : M”" — S¥"77%(¢) is an isometric immersion.

CLAM 3.6. The immersion f, is injective.

In fact, assume that £,(:!, x) = £.(/2, x2), for some ¢!, /2 € I and x',x2 e R""!.
Using (24),

Vs P = 2stey0.e) = 1 - 2wy )

Since |(€( ())| =2, for all 7€, we obtain |7(s")|* — 2u(s') = |7(t 2 — 20(t?),
hence (6(0( 1)) = %(6,(r*)). This implies that ¢! = /2, since sin(T}(6,(1))), with
tel, is increasing. The argument to show that x! = x? is similar to that one
given in Claim 3.2.

CLaM 3.7. f.: M" — S¥"7%(¢) is an isometric embedding.

In fact, we just need to prove that the inverse map ( )7 AU xR S
I xR"! is continuous. Let y,, = ﬁ(tm, ") be a sequence that converges to a
point y, = f(t,x*). Using (24),

lim \/ + 177 (tm) 20(t)% (é (tm)) = \/%+ W(lso)|2 - 20((1‘30)(5(@(100)).

Since _ |%(0 (z))|2 =2, for all tel, we have lim(|f(t,)|*> —20(t,)) =
7(t.0)|* — 20(t,) >0, hence lim %(6), ( m)) = €(0,(t)). This implies that
lim sin(71(05(¢))) = sin(T1(6,(¢))). Using that sin(7)(6,(¢))) is a diffeomor-
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phism of I onto its image, it follows that lim ¢, = ¢,,. The argument to show
that lim x™ = x* is similar to Claim 3.3. Thus, Claim 3.7 is proved. Theorem
1.1 is proved.
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