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ALGEBRAIC DEPENDENCES OF MEROMORPHIC MAPPINGS
SHARING FEW HYPERPLANES COUNTING TRUNCATED
MULTIPLICITIES

Duc QuANG S1 aND NGoc QUYNH LE

Abstract

In this article, we study algebraic dependences of three meromorphic mappings
which share few hyperplanes counting truncated multiplicities.

1. Introduction

In 1926, R. Nevanlinna showed that two distinct non-constant meromorphic
functions f and ¢ on the complex plane C cannot have the same inverse images
for five distinct values, and that g is a special type of linear fractional trans-
formation of f if they have the same inverse images counted with multiplicities
for four distinct values.

In 1975, H. Fujimoto [4] generalized Nevanlinna’s result to the case of
meromorphic mappings of C" into PY(C). He proved that for two linearly non-
degenerate meromorphic mappings f and ¢ of C" into PV (C), if they have the
same inverse images, counted with multiplicities for (3N +2) hyperplanes in
P"(C) located in general position, then f =g, and that there exists a projective
linear transformation L of P¥(C) to itself such that g = L- f if they have the
same inverse images counted with multiplicities for (3N + 1) hyperplanes in
PY(C) located in general position. Since that time, the finiteness problem for
meromorphic mappings sharing few hyperplanes has been studied intensively by
many authors.

We state here the recent best results on this problem of Chen-Yan [2] and
Quang [10].

Let f be a linearly non-degenerate meromorphic mapping of C” into PV (C).
Take ¢ hyperplanes Hi,...,H, in PV (C) in general position with

a) dim(Zero(f, H;)NZero(f,H;)) <n—2 for all 1 <i< j<gq.
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For each positive integer (or +o0) d, denote by 7 ({H;} 17f d) the set of
all linearly non-degenerate meromorphic mappings g of C”" into PV (C) such that

b) min{v(, 57y, M} = min{v; p), M}, (1 <j<gq), and

& g=f on L, Zerol/. ).
By Lemma 3.1 in [10] we see that if ¢ >2N +2 then each meromorphic
mapping satisfying the conditions b) and c) will be linearly non-degenerate.
Therefore the condition on the linearly non-degeneracy of the mappings ¢ in
the definition of the family 7 ({H;}’,, f,d) is not necessary in the case where
g >2N +2. ‘

In 2009, Z. Chen and Q. Yan [2] showed that:

THEOREM A (see [2, Main Theorem]). If g > 2N + 3 then g, = g> for any
dgi, 92 € f({Hi}lg:pf? 1)

Recently, the first author [10] proved that:

THeoREM B (see [10, Theorem 1.1]). If ¢=>2N+2 and N >2 then
F{H}L,, [, 1) contains at most two mappings.

However, we note that there is a gap in the proof of [10, Theorem 1.1].
For detail, the inequality (3.26) in [10, Lemma 3.20] does not holds. Hence the
inequality of [10, Lemma 3.20(ii)] may not hold. In order to fix thls gap, we
need to slightly change the estimate of this inequality by adding Ny M (r) to
its right-hand side. The rest of the proof is still valid for the case where N > 3.
In the last past of this paper, we would like to give a correction for the proof of this
theorem when N > 3. Theorem B (including the case where N = 2) has also been
proved and improved in a recent work of the first author [11] by another way.

We would also like to note that so far, all results on the finiteness problem
have still been restricted to the case where meromorphic mappings share at least
2N + 2 hyperplanes and they are identity on the inverse images of all these
hyperplanes. Then the following questions arise naturally.

a) Is there any relation between meromorphic mappings sharing ¢ hyper-
planes regardless of multiplicity with ¢ < 2N + 2?

b) Is there any relation between meromorphic mappings sharing few hyper-
planes regardless of multiplicity with smaller identity set?

In this paper we will show that these mappings are algebraically dependent
in some particular cases. Our main results are stated as follows.

For each real number x, denote by [x] the integer part of x, i.e., [x] is the
maximal integer which does not exceed x.

THEOREM 1.1. Let fi, fa, f3 be three linearly non-degenerate meromorphic
mappings of C" into PY(C). Let {H;}!, be a family of q hyperplanes of PY(C)
in general position with

dim(Zero(fi,H;) NZero(f1,H;)) <n—2 (1<i<j<yq).
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Assume that the following conditions are satisfied.
(@) min{vi s g, N} = mln{vf2 )y N} =min{v s gy, N} (1 <i<gq),
(b) fi=rfa= faonU,]ZerOfl, i)
2N + 54 V28N2 + 20N + 1
If 4> 7]

. . g
(i) There exist {5} + 1 hyperplanes H;, ..., H;

then one of the following assertions holds:

i Such that

(fuaHi]):(fuvHiz):_“ (fb!? ig/3+ 1)
(wail) (fvaiz) (ftv ilg/31+ )7

(i) infonfz=0.

(I<u<v<3),

THEOREM 1.2. Let fi, f>, f3 be three linearly non-degenerate meromorphic
mappings of C" into PY(C)and let Hy,...,H, be g hyperplanes of PV (C) in
general position with

dim(Zero(fi, H;) N Zero(f1,H;)) <n—2 (1<i<j<gq).

Assume that the following conditions are satisfied:
(@) fi is linearly non-degenerate over %y,
(b) min{vi s gy, N} =min{v( s g, N} =min{v s ), N} (1<i<qg—N-—1),

(C) fl f2 f3 on Uz q— NUu IZCI'O fua z)
1
If q > 3{N;L }—&—N + 1, then one of the following assertions holds:

(i) There exist {T] + 1 hyperplanes H,,, ..., Hy .., such that
(meil) _ (meiz) ... (fuv w+1)/2 1)
(fvv Hil) (fb7 Hiz) (fv H(N+1)/2+ 1) ’

i) finfonfs=0.

Acknowledgements. The authors would like to thank the referee for his/her
helpfull comments on the first version of this paper, which improved the quality
of the paper.

2. Basic notions and auxiliary results from Nevanlinna theory
2.1. Weset ||z| = (|z1]* + - + |z4|*)"/? for z = (z1,...,2,) € C" and define

B(r):={zeC":||z|| <r}, SGr)={zeC":|z|=r} (0<r< ).
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Define

vu-1(2) := (dd‘||z]|*)""" and
oa(z) :=d° log||z||* A (dd¢ log||z]|>)"™" on C™\{0}.

2.2. Let F be a nonzero holomorphic function on a domain Q in C”.
For a set o = (ay,...,0,) of nonnegative integers, we set || = oy + -+ + o, and

o E
9D°F = —z———5—. We define the map v :Q — Z by
0*zy---0"z,

vp(z) ;= max{m: Z°F(z) =0 for all a with |«| <m} (z€Q).

We mean by a divisor on a domain Q in C" a map v: Q — Z such that, for
each a € Q, there are nonzero holomorphic functions F and G on a connected
neighborhood U = Q of a such that v(z) = vr(z) — vg(z) for each z € U outside
an analytic set of dimension <n —2. Two divisors are regarded as the same if
they are identical outside an analytic set of dimension <n —2. For a divisor v
on Q we define Supp(v) := {z:v(z) # 0}, which is a purely (n — 1)-dimensional
analytic subset of Q or empty.

Take a nonzero meromorphic function ¢ on a domain Q in C". For each
a e Q, we choose nonzero holomorphic functions F and G on a neighborhood

F .
U = Q such that ¢ = con U and dim(F~1(0)NG~1(0)) < n —2, and we define

the divisors v,, V;O by v, = vr, v, =g, which are independent of choices of
F and G and so globally well-defined on Q.

2.3. For a divisor v on C" and for positive integers k, M (maybe M = o),
we define the counting function of v by

V(M) (Z) = min{M, V(Z)}7

L) (2) = { min{M,v(z)} if v(z) >k
k20 if v(z) <k.

fSupp(v)ﬂB(r) v(z)ou—y if n>2,

n(t) = > v(z2) ifn=1.
|z|<t
Similarly, we define n(™)(¢) and niﬂ,f)(t)

Define
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Similarly, we define N(r,v™)) and N(r, v(j,f)) and denote them by N ™) (r, v)
and NS,‘(J)(r, v) respectively.

Let ¢ be a nonzero meromorphic function on C". Define

N!ﬂ(r) :N(rvv(ﬂ)7 Nng)(r) :N<M)(r7v!ﬂ)7 N(M) (r) :N<M)(r’ (v¢)>k)'

0, >k

For brevity we will omit the character (M) if M = 0.

24. Let f:C"—PY(C) be a meromorphic mapping. For arbitrarily

fixed homogeneous coordinates (wp:---:wy) on PY(C), we take a reduced
representation f = (fp:---: fy), which means that each f; is a holomorphic
function on C" and f(z) = (fo(z) : --- : fn(z)) outside the analytic set {fo =--- =

fv =0} of co-dimension >2. Set ||| = (|fol>+ -+ |fv])"*
We define the characteristic function of f as follows

T)(r) = j log|| |l —J log||/ o
S(r) s(1)

Let H be a hyperplanes PY(C) defined by H = {(wo : ---wy) : S, awi = 0}.
We define

11 1] 11 el
T R e L e
my. (1) L<,.> E )l JS(I) T Fa)]

where (f,H) =YX aif; and [[H|| = (2, |ail*)' .

Let ¢ be a nonzero meromorphic function on C”, which are occasionally
regarded as a meromorphic map into Pl(C). The proximity function of ¢ is
defined by

mirg) = | 1ogmax(ol. N

S(r

The Nevanlinna characteristic function of ¢ defined by

T(V, (0) = m(r, (0) + Nl/(p(r)'
Then
T,(r)=T(r,p)+ O(1).

The meromorphic function ¢ is said to be “small” (with respect to f) if
| T,(r) = o(Ty(r)). Here by the notation “|| P” we mean the assertion P
holds for all re [0, 0) excluding a Borel subset E of the interval [0, c0) with
Jpdr < 0.

We denote by %y the field of all small (with respect to f) meromorphic
functions on C". The mapping f is said to be linearly non-degenerate over %
if the family {fo,...,f,} is independent over #, for some its representations

(foie:fu)
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Let {Hl-}f’:1 (g=N+1) be a set of ¢ hyperplanes in PV(C). We say
that {H} 1 are in general position if for any 1 <ij <--- <iyy; < ¢ we have

ON+ H

THEOREM 2.5 (Second Main Theorem for meromorphic mappings with
hyperplanes). Let f:C" — PY(C) be a linearly non-degenerate meromorphic
mapping. Let {H;}_, (¢ = N +2) be a set of q hyperplanes in P"(C) in general
position.  Then

q
(g =N =DTy(r) < 3Ny (1) +o(Tr (1),

i=1

3. Proof of Main Theorems

In order to prove the main theorems, we need the following lemma.

LEmMMA 3. Let f and g be linearly non-degenerate meromorphic mappings
of C" into PN(C). Let {H;}L, be a set of q hyperplanes in PY(C) in general
position.  Assume that

Zero(f, H;) = Zero(g,H;) (1 <i<gq).
If q= N +2, then
| Tr(r) = O(Ty(r)) and | Ty(r) = O(Ty(r)).

Proof. By the Second Main Theorem, we have

N+2

| Ty (r) < ZN r) +o(Ty(r))

N+42
< ZNNé?H r) + o(Ty(r))
N+2 |
= N NN (1) + o(Ty(r) < NN +2)T,(r) + o(Ty(r).
i=1
Therefore, || Ty(r) = O(T,(r)). Similarly, we have || T,(r) = O(Ty(r)). [ |

Proof of Theorem 1.1. Suppose that fin oA f3#0. For each 1 <i<g,
we set

(1) = DNy (1) = NGy (1):

u=1



ALGEBRAIC DEPENDENCES OF MEROMORPHIC MAPPINGS 103

We denote by .# the set of all permutations of the g-tuple (1,...,q), that
means

I ={I=(ir,....0) {ir,.... i,y ={1,...,q}}.
For each I = (iy,...,i;) € .# we define the subset E; of [1,4+00) as follows
={r=1:Ny(r)=---=N,(r)}.

It is clear that (J,_, E; =[l,+0o). Therefore, there exists an element I of
# satisfying jE dr = +oo We may assume [y = (1,2,...,¢q) by rearranging if
necessary. Then, we have Ny(r) > Na(r) > --- > N, ,(r) for all re Ej,.

We consider .#*> as a vector space over the field .#, where by .# we denote
the field of all meromorphic functions on C". For each i=1,...,q, we set

= ((fi, H), (fo. Hi), (3, Hy)) € M.
We put

t=min{i: Vi A V; # 0}.

Then we have VAV, =0 for all 1 <i<j<t.
We distinguish the following two cases.

Case 1. > E] + 1. This implies that

(fka1>:(fk7H2):“. (fk7 q/3+1)
(i, Hy) (i, H) (f1, Higy341)

The assertion (i) holds in this case.

(1 <k,1<3).

CAsE 2. t< [%} +1. We have Vi AV, #£0. Since fiA fonf3 £0, there
exists an index s (f<s < N +1) such that V; AV, AV;#0. This means that

(fi,Hy) (fi,H)  (fi, Hy)
P := det (f27H1) (f27Hl) ( s) #0.
(fs, Hi) (f3,H) (f3,Hy)
For zgéU 1(f,) UU#] (Zero(fy, Hir) N Zero(fi, H;)), we consider the

following four subcases

Suscase 1. Let z be a zero of (fi,H;). We set m=min{vi, p,(2),
V(i) (2), V(5 m)(2)}. Then there exist a neighborhood U of z and holomor-
phic function / defined on U such that Zero(h) = U NZero(fi, H;) and dh has
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no zero. Moreover we may assume that U N (U I(f) U, oy [(Zero(f1, Hi) N
Zero(fi,Hy)))=0. Then there exist holomorphlc functlons @15 P25 O3 deﬁned on
U such that

(fu, Hi)=h"p, on U (1 <u<3).
On the other hand, since f; = f, = f3 on Zero(fi, H;), we have

(mel) (fuaHr)
= on Zero(f,H;), u=23.
(i)~ (i Hy) i)
Therefore, there exist holomorphic functions ¥, and ; satistying
(fi‘th) _ (ﬁhH?)
(fi,H) (N, Hy)
We rewrite P on U as follows
?1 (fl?Ht) (fl;Hg)
P = h" det % (f27Ht) (fZaHJ)
o5 (f3, Hi) (f3, Hy)

=hy, on U,u=23.

2 1 1
” (2, H:) (f2, Hy)
(flth)(flv )det : (flth) (flaHs)
0 (f37Hl) (f3aH\)
Y (h.H) (f,H)
0 1 0
(.f27Ht) lﬁ
= " H O Hy) det| (A H) Y
(.f:’”Ht)
% )

This yields that
VP(Z) >m+1= min{v(ﬁ'Hl)(z), v(fz,Hl)(Z)? V(f;,Hl)(Z)} + 1.

SuBcasg 2. Let z be a zero of (fi, H;). Repeating the same argument as
in Subcase 1, we have

vp(z) 2 min{v g m)(2), v 1) (2): v 1) (2)} + 1.

SuBcast 3. Let z be a zero of (fi,H). Repeating the same argument as
in Subcase 1, we have

vp(z) = min{v g, 1,)(2), v, (2), Vi, 1) (2)} + 1.
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SuBcase 4. Let z be a zero point of (fj, H,) with v¢ {l,¢,s}. We have

(i, H) (fi, H) (S, H)
(32)  P=det| (2, H1) (f2.H) (f2,Hy)
(f37H1) (f37Ht) (f37H5)

1 1 1
(f27H1) ( 27Ht) (f27HS)
— T] i1 -det| UnH) (hH) (hHy)
i=Lits (f37H1) (ﬁaHt) (f37Hs)
(fi,H) (fi,H) (h,Hy)
(f27Ht)7(f27H1) (fLHY)i(]FZ?Hl)
_ N . (f17HI) (f1>H1) (flvHS) (f17H1)
R R N I AR AN
(fiuH)  (fhoHY) (fGHs) (6L H))
Since fi(z) = f2(z) = f3(z), we have
(o i) (oH) (L Hy) _(fz,Hl)(Z):O
(flaHt) (thl) ( lvHS) (thl) '
(f3’Hl) (f3’H1) _( 37HV) z _(f3’H1) 2) =
Gy O Gy O = Gy O Gy O =

Therefore, the equality (3.2) implies that z is a zero of P with multiplicity at
least 2.

Thus, from the above four subcases we have

ve(z) = Y (min{vism,)(2) V) (2) Vi) ()}

v=1,t,s

for all z outside the analytic set I(fl)UI(fz)UI(ﬁ)Ui/#j/ SN (Hy N Hjr) of co-
dimension two.

. . N 1
Since min{v 7, 1, (2). Vi, 1) (2): Vi (2)} = V(3 (2) and vl ()

( (/1,Hy)

v&i_ H,,)(Z) for all 1 <u <3, the above inequality implies that

1< N 1 .
vp(z) = gZ( > 00y @ =Ly @) 2D v ()
u=1 v=1

v=1,t,s

for all z outside an analytic subset of co-dimension two.
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Integrating both sides of the above inequality, we get

(ZV(N&)HL)() NG iy () +ZZNfM ) >
1 3 q )
- §Z< > M) +2ZIN<ﬁ”HU>(r)).

Then for all re Ej, we have

3 q
Np(r) > %Z( > M) +2ZN<(.};4)A,HU)(’)>
1

— v=1,t,5 v=1

q
1
() +2D NG (’))
v=1

Y
(ST
-

u=1 \v=1,[q/3]+1,2[q/3]+1

\%
(ST
(-
—
W | —
=,
Z
=
_|_
\S}
=
SNz
=
=

v

(S A
(]~
.
W

Vv

‘ P
[~]-
=
w
=
e
S
=
+
o
LN

I

(98]
S~—
=2
==
I
=
.

2¢+3N -3 )
= " 3Ny ZZN(A,HE)(’)'

On the other hand, by Jensen’s formula and the definition of the characteristic
function we have

Np(r) = L( TogiPloy + 0()

<Zj tog(| (o H)® + 1w HP + U H2) )+ O(1)

3
SZL()logH.quGnJrO ZTfu ") + o(Ty,(1)).
u=1 r

u=

By these inequalities and by the Second Main Theorem, we have
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3 3
zrﬁ,wz"”N SSOS TN, )+ 0T ()
u=1

u=1 v=1

(2 + 3N — 3) (g— N -
> v Z Ty, (1) + o( Ty (r))
for every z € E;, outside a Borel finite measure set.
Letting r — +o0 (re Ej,) we get
(29 +3N -3)(¢-N-1) _,
3Ng -

This implies that

- 2N + 5+ V28N2 + 20N + 1

< 1 .
This is a contradiction. Thus, fi A A f3=0. We complete the proof of the
theorem. u

In order to prove Theorem 1.2, we need the following.

LemMA 3.3. Let [ and g be two linearly non-degenerate meromorphic
mappings of C" into PY(C) and let {H;}, be a family of q (q=2N +3)
hyperplanes of PY(C) in general position with

dim((Zero(f, H;) U Zero(g, H;))
N (Zero(f,H;)UZero(g, H;))) <n—2 (1<i<j<gq).

Assume that the following conditions are satisfied.
(@) f is linearly non-degenerate over %y,

(b) | N, vy — vig.mpl) = o(Ty(r) (1<i<q—N—1),

O 1 N LN ) S o)~ o)) (g N 2 < ).
Then f=g.

Proof. We assume that f and ¢ have reduced representations [ =
(fo:-+-: fnv)and g=(go: ---: gn) respectively. Each hyperplane H; (1 <i <¢q)
is given by

N
(Wo:-+-:wy): Zamwv =0,.
v=0

For each i (1 <i<g— N —1), using the Second Main Theorem we have

q
I Tr(r) < > Nipwy(r) + Nigoy (r) + o(Ty(r)) = Ny, (r) + o(Ty(r)).
v=q—N
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On the other hand, by the assumption (b) we have
I Ty (r) = Nig.a) (r) + 0Ty (r) < Nig.uy (r) + N(r, v g, 1) = Vig.mpl) + 0(Ty(r))
< Ty(r) + o(Ty (r))-
Therefore, || Ty(r) = O(Ty(r)). Similarly, we also have
I Ty(r) = Nig.u) (r) + o(Ty(r)) and | Ty(r) = O(T(r)).

H H;
For each i (1<i<N+2), we set hi:LHl)- (g’H)'
that h; € #;. Indeed, we see that (9, H1) (f,H))

| e, ) < m( ((f; Zﬁj) g,Hl )

< Tyom)/r.)(r) = Nepy (r) + Tig g, (r) = Nig.y (r) + O(1)
< Tr(r) = Nig,my)(r) + Ty(r) — Nig, ) (r) + o(Ty(r)) = o(T¢(r)).

On the other hand, we also have

We will show

| N (r) < N virmy = Vg D) + N vy = vigmpl) = o(Ty(r).

Thus || T3, (r) = m(r, hi) + Ny, (r) = o(T¢(r)). This means h; € Z; forall 1 <i <
N +2. Then we have

(f,Hi) (f,H) (f,Hy2)
= =hypr s
(9, Hy) (9.Hy) (9, Hy12)
Since {H,»}fi Tz are in general position, there exist nozero constants ci,...,cy41

such that

N+1
aN+2); Zc,a,j (0<j<N).

Thus (f, Hyy2) = ZINTI ¢i(f,H;) and (g, Hyi2) = ZZZTI ¢i(g, H;). This implies

that

(o) o (Hve) o S G H) Z,NTI e(f, Hi)

(gaHl) " (gaHN+2) i ZZXTI C[((,Hi) " N+1 (f H)(g7H1)
T

Thus

N+1 N+1 N+1

doahil(f H) =hyi2 Y alf Hi) & Y cilhi —hy)(f, Hy) = 0.
i=1 i=1

i=1

+

Since f is linearly non-degenerate over %, the above equality yields that
h=h=h==hyp.
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This means that

() (fH) | (fHye)
(9, H1) (9, Ha) (9, Hy+2)
This implies that f=¢g. The lemma is proved. ]

Proof of Theorem 1.2. Suppose that fi A /o A f3 0. Denote by .# the set
of all permutations of the (¢ — N — 1)-tuple (1,...,¢ — N — 1), that means

Qﬂ:{li(il,...,l’q,Nfl):{il,...,l'q,Nfl}:{1,2,...,Q7N71}}.

For each I = (i,...,i;-n-1) € # we define a subset E; of [1,+0c0) as follows
— @) (™)
E; = {r >1: N(thil)(r) > > N(fl»Hiq,N,])(r)}'

By rearranging if necessary, we may assume that the element I, =
(1,2,...,g— N —1) of 4, satistying

J dr = +o0.
Ep,

0
() ™)
We have N(ﬁ_’Hl)(r) 2N<ﬁ7H2>(r) >--->N
For each i=1,...,g— N — 1, we set

V; = ((ﬁ7Hi)7 (fz>Hi), (]F3,Hl)) € .%3

(V)
N

( quA_l)(r) for all re Ej,.

and
t=min{i: Vi A V; #0}.

Then we have VAV, =0 for all 1 <i<j<t
We consider the following two cases.

Case 1. t> {N+ 1} + 1. Then we have
‘ . .
i ) _ (i, o) (o Hvyapn) (<ki<?).
(/i H)  (fi, H2) (1, H(n+1)/2141)

The the assertion (i) holds in this case.

1
Case 2. t< [NT—'—} + 1. In this case, we have Vi AV, #0. Since fi A

fan f3 #0, there exists an index s (f<s <N+ 1) such that V1AV, AV #0.
Therefore

(ﬁ,Hl) (flth) (ﬁ)HA)

P = det (ﬁ7H1) (ﬁ?Ht) (fzaH\) §—é0
(fs. Hy) (fs,Hi) (f3,Hs)
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For zqéU 1(fu) U, . j(Zero(fi, Hy) N Zero(fi, Hy)), we consider the
following two subcases

SuBcase 1. Let z be a zero of (f;, H,) with ve {l,¢,s}. It is easy to see
that

vp(2) = min{v(s p1,)(2), V(1) () Va2 20 () (1 <u<3).

SuBcasge 2. Let z is a zero of (f,H,) with v>¢— N. We have

(/s

(flle) (flaHt) (f17 )

(34) P=det| (So,H) (fr.H) (/o Hy)
(

(fs, Hy) (fs,Ho) (S5, Hy)
1 1 1
(o, Hi) (S H) (f2, Hy)
(f1, i) -det| (fi,H) (fi,H) (fi, Hy)
= (fs. Hy) (f3,H) (f3,H,)
(fi,H) (N, H) (A Hy)
(2, H)) (o, Hy) (f2,Hs) (f2,H))
(f17 ) det (flaHr) (flle) (fl,Hs) (flaHl)
i=1,t,s (f37Hz)_(f3»H1) (f3>HS)_(f37H1)
(i, H) (i, H) (fi,H)  (fr, H))
Since fi(z) = fa(z) = f3(z), we have
(o Hy) (o H) (N, Hy) (z)—(fz’H')(z) _0
(1, H,) (fi, Hy) (/1. Hy) (f1, Hy) 7
(f3, H.) (/3, H1) (/3, Hy) (/3, H1)
) Y T P P
Therefore, the equality (3.4) implies that z is a zero of P with multiplicity at

least 2. Hence
vp(2) 2200 4i(2) (I<u<3),

Thus, from the above two subcases we have

q
()= 30 vl @12 3 v (sus))

v=1,ts v=¢g—N

for all z outside the analytic set I(ﬁ)UI(fQ)UI(fg)Ul.,#j,(Zero(fl,H,-/)ﬂ
Zero(f1,Hj')) of co-dimension two. This inequality implies that

w02 43 3 @42 3 w0)

v=I1,1,s v=g—N

for all z outside an analytic subset of co-dimension two.
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Integrating both sides of the above inequality, we get

Ne( Z( > NG +2 Y N(F};,),Hn(”))'

u v=I1,t,s v=q—N

Then for all re Ej, we have

\Y

Np(r)

1\
W —
MW
+
b
M
2
=

u=l \ v=1,[(N+1)/2] 11 2[(N+1 /2]+1 v=g N
1 3 1 [N+1)/2] (N) q (1)
>3 | v NG iy (42D Ny (1)
u=1 B = v=¢g—N
=
1 3 &K W ot
23> f—N_1 NG () 42 D0 NG g ()
u=1 v=1 v=q—
1< 3 K 2 &
Z §Z q _N — 1 N(.fl/) l')(r) +N Z N(fu7HD)(r)
u=1 v=1 v=q—N
3 q
_ 1 (V) 1 2 3 V)
- ;qu —7 2 Ny +§;(N_ q—N-— 1) L:;NN”” )

. N+1 N 2

Here we note that since ¢ > 3{%] +N+2> 3?+N+2 then v

3

g—N-—1
On the other hand, by Jensen’s formula and the definition of the charac-

teristic function we have

> 0.

Np(r) = L( TogiPloy + 0()

3

< 3| roullt P + 10 HOP + 1 H)P) o+ 01

u=1

3
<3| 1oslllles+ 01 ZTfu 7)+ ol(T; (7).

u=1
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By this inequality and by the Second Main Theorem, we have

Z Ty, (r) = Np(r) + o(T (r))

U=

u=1 q
12 3 L
32§ 7w =1) 2 Vi@ +o(T5()
u=1 v=q—N
o 12 3 N -
2> T +32 5~ 7=v=1) 2 Nowm®) +o(Ti()
u=1 u=1 v=¢g—N
for every r € Ej, outside a Borel set with finite measure. Thus
(3.5) N () =o(Ty () (1su<3,q—N<v<q)

for every re Ej, outside a Borel set with finite measure.

Since [1,+00) = {J,., Er and the inequality (3.5) holds for all r € E; with
fE dr = oo outside a Borel set with finite measure, this equality also holds for all
r outside a Borel set with finite measure. This means that, for all r [1,400) w
have

(3.6) | N () =o(Ty(r) (1<u<3,q-N<v=<q)

For each index i (1 <i<g— N —1), by the Second Main Theorem we have

q
I Ta) < 30 NGy () + NGy (1) + 0(T5 ()
=N O +o(T, () (1<u<3).

Therefore, it follows that

I N myon (1) < (N + DNy (1) = N ()

< (N + 1)(T;,(r) - N((X?H,.)(V)) + o(T3,(r))
=o(Ty(r) (1 <u<3).

Then for each 1 <i<qg— N —1, we have

(3.7) | N(ry s, m) = Visom)l) < Nigomy,>n (1) + Negomy, v (r)
=0(Ts(r) (I <uk<3).
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From (3.6) and (3.7) and applying Lemma 3.3, we have fj = f, = f3. Thisis a
contradiction to the supposition that fj A f A f3 # 0.

Thus, fiAfanfz =0. Hence the assertion (ii) holds in this case.

We complete the proof of the theorem. ]

4. Correction of the proof of Theorem B in [10]

Let f be a linearly non-degenerate meromorphic mapping of C” into P"(C)
(N >3). Let Hy,...,Hyy.» be hyperplanes of PY(C) in general position with

dim(Zero(f,H;) NZero(f, H;)) <n—2 (1<i<j<gq).

Now for three mappings fi, f2, fs € Z (f, {H}ZN+2 1), we set

Fl=>""—"- (0<k<2,1<i,j<2N+2).
= )
For meromorphic functions F, G, H on C" and o= (u,...,%,) € Z with

lo] =37, =1, we put

1 1 1
! 1 1
(F,G.H):=F-G-H-| F G H

o 1 o 1 o 1
() < (6) “(@)
LEmMA 4.1 (see [10, Lemma 3.8]). Let f and {H;}>"** be as above. If there

are two distinct maps fi and f, in F(f,{H; }2N+2 1) then the following assertion
holds.

1
I T4 () + Ty () = 2N}y (1) + N(<;Z?H,><r> — (N + DNy ()

+§:N r) 4 o(Ty(r)) (1 <t<2N+2).

LemmA 4.2 (see [10, Lemma 3.16)). Let fi, f2, f3 be three distinct maps in
7 (f, {H )}, 1).  Assume that there exist i,j€{1,2,...,2N +2} (i # j) such

that ®* := ®*(F) FIU,lej) =0 for all |a| = 1. Then the following assertion holds
m N2
EPLICEDY Ny () + o( T4 (7).

v=i,j

The following lemma is the correction of [10, Lemma 3.20].
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Lemma 4.3. Let fi, fo, f3 be three maps in F(f,{H;}*""2,1).  Assume
that there exist i,je{l,2,....2N+2} (i#j) and |o|=1 such that ®*:=
®*(F),F/,F))) #0. Then, for each 1 < u < 3, the following assertions hold

(@ | ZFINU,-,,H,()HEW ) <>—<2N+1>N(§}-?H,)<r>szvqym,

(i) 1| Nov(r) < 53, To() - 550, NGy (1) + (N + DN () 4+ o(Tr (1),
(iii) Moreover, if we assume further that (I)“(F({',Flj’,Fzﬂ) £0 for all o] =1
then

2n+2
||3( /H,)()+N/H/ ZN/H +0(Tf())

Proof. (i) The first assertion is due to [10, Lemma 3.20(i)].

(i) We now prove the second assertion of the lemma. Denote by S the set
of all singularities of f~!(H,) (1 <t<2N +2). Then S is an analytic subset of
codimension at least two in C". We set

1=su | (H)NSTNHY)).

1<s<t<2N+2

Similarly as in the proof of [10, Lemma 3.20(ii)], we have

2
(4.4) | m(r,®*) <> m(r,F7) + o(Ty(r))
0

v=|

and that ®* is holomorphic at all zeros of (f, H;), which are outside /. Hence
a zero of (f, H;) outside / is not pole of ®*. Thus, a pole of ®* outside 7 is
a zero of (f,H;). Assume that z is a zero of (f,H;), and zp ¢ I. We may
assume that

vgl,;(zo) =d = vF,,( 0) =dh > VF,,(Z()) = ds.

Choose a holomorphic function 4 on C" with zero multiplicity at zy equal to
1 such that F/'=h%gp, (1 <u<3), where ¢, are meromorphic on C”" and
holomorphic on a neighborhood of z;. Then

OF — Fi . i '~ F{ F{' —F{
— 4 Tty 83 F/z F]I 7k FjifFji

7% ) 2M(Fy — FY)

— —hl=%p, 3 —h=bg,
i i pl h+d-

= F] Fj 3j -h 3. @a(hd27d3(p2 _ hd17d3(ﬂl)

i P*(p3 — h = py)
D (h2 gy — h~g))

i at zo is

We see that the pole multiplicity of the function
at most 1. This yields that
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3

(4.5) V(Dx Zo < ZV?, Z() dg +1
— f

3
> 7i(20) —min{N,d} — min{N,d>} — min{N,ds} + (N + 1)

u=1

3 3
- Z vis(20) = Z min{N,v{, 1)(70)}

u=1 u=1

A

This yields that

3 3
(46) Nl/qﬂ(r) < ZNFJI ZNfu N+ 1) ij)(r)'

u=1 u=1
From (4.4) and (4.6) we get

| Nos(r) < T(r,®%) + O(1) = m(r, ") + Nyjor(r) + O(1)

3 3
< > (m(rE)) + Npp(0) = >Ny

u=1 u=1

+ (N + DN (1) + o(T7 (1)

3 3
=Y T FD) =Y N () + (N + DN () + o( T (1)

3
< 3T = YN )+ (VDN () + o(T3 ().
u=1

This implies the second assertion of the lemma.
(iii) Now we assume that ®*(F/', FJ', FJ') 0. By the second assertion of
the lemma, we have

2N+2

3 3
N
I ) = YN )+ NG, +22Nfﬂ,
u=1

u=1
— 2N+ 3Ny (1) = (N + 3N} (1) + o( T (1)

3 2N4-2

3
N N 1
and || Z Ty, (r) = Z(N<(/;.,)H,~)(”) +N<(f;.,)11,»>(’)) +2 Z N(</'?Hr)(r)
u=1 t=1

u=1

= N+ 3Ny (1) = (N + 3Ny () 4 0T (1)
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Summing-up both sides of these above inequalitics, we get

w

N
(4.7) [ 22 Ty, (r) Z /u H, <(/u7)H/->(r>>

2N+-2

Y] 1)
+4 Z NGy () = BN + 6Ny (1)
=

~ BN + )N}y (1) + o(Ty (1))

N
- X (o 0
I<u<i<3

ey

2N+2
1
N DN )+ Y N<(f),H,>(V)>

t=1

2N+2

= D3N > N o () + 0Ty (1)),

v=i,j
From Lemma 4.1 and the inequality (4.7), it follows that

2N42

3 3
123" 73,0 =23 T (r —3ZNfH ZNfH r) + o(Ty(r)).
u=1 u=1 =

Thus
0 2N+2
132 Ny 2 3 Ny () + (T3 ()
v=i,j
The third assertion is proved. ]

Proof of Theorem B for the case where N > 3. Suppose that there exist
three distinct maps fi, f>, f3 in Z(f,{H; }2N “21). By Lemma 4.2 and Lemma
4.3(iii), we always have

2N+2
| 3(N ,H)<)+N,H ZN”,) ) +o(Ty(r)) (1<i<j<2N+2).

Summing-up both sides of the above inequalities over all 1 <i < j < 2N + 2, we
get

2N+2 2N+2

||6ZN > (2N +2) ZN (1) + (T (1)
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Thus

2N42

1> NGy (1) = o(Ty (1)
=1

By the second main theorem, we have

2N+2
| (N+1)Ty(r) < Z N((/]‘\'],)H,)(r) +o(Ty(r))
i=1

2N+2 |
<N YN () + o(Ty (1) = o(T3 (7).

i=1

This is a contradiction.

(1]

Hence #7 (f, {Hi}f:/\/]”,l) < 2. We complete the proof of the theorem.
]
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